• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

how to write a data analysis in research paper

Home Market Research

Data Analysis in Research: Types & Methods


Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.


how to write a data analysis in research paper

Why Multilingual 360 Feedback Surveys Provide Better Insights

Jun 3, 2024

Raked Weighting

Raked Weighting: A Key Tool for Accurate Survey Results

May 31, 2024

Data trends

Top 8 Data Trends to Understand the Future of Data

May 30, 2024

interactive presentation software

Top 12 Interactive Presentation Software to Engage Your User

May 29, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

How to Write Data Analysis Reports in 9 Easy Steps

Author's avatar

Table of contents

Peter Caputa

Enjoy reading this blog post written by our experts or partners.

If you want to see what Databox can do for you, click here .

Imagine a bunch of bricks. They don’t have a purpose until you put them together into a house, do they?

In business intelligence, data is your building material, and a quality data analysis report is what you want to see as the result.

But if you’ve ever tried to use the collected data and assemble it into an insightful report, you know it’s not an easy job to do. Data is supposed to tell a story about your performance, but there’s a long way from unprocessed, raw data to a meaningful narrative that you can use to create an actionable plan for making steady progress towards your goals.

This article will help you improve the quality of your data analysis reports and build them effortlessly and fast. Let’s jump right in.

What Is a Data Analysis Report?

Why is data analysis reporting important, how to write a data analysis report 9 simple steps, data analysis report examples.


A data analysis report is a type of business report in which you present quantitative and qualitative data to evaluate your strategies and performance. Based on this data, you give recommendations for further steps and business decisions while using the data as evidence that backs up your evaluation.

Today, data analysis is one of the most important elements of business intelligence strategies as companies have realized the potential of having data-driven insights at hand to help them make data-driven decisions.

Just like you’ll look at your car’s dashboard if something’s wrong, you’ll pull your data to see what’s causing drops in website traffic, conversions, or sales – or any other business metric you may be following. This unprocessed data still doesn’t give you a diagnosis – it’s the first step towards a quality analysis. Once you’ve extracted and organized your data, it’s important to use graphs and charts to visualize it and make it easier to draw conclusions.

Once you add meaning to your data and create suggestions based on it, you have a data analysis report.

A vital detail everyone should know about data analysis reports is their accessibility for everyone in your team, and the ability to innovate. Your analysis report will contain your vital KPIs, so you can see where you’re reaching your targets and achieving goals, and where you need to speed up your activities or optimize your strategy. If you can uncover trends or patterns in your data, you can use it to innovate and stand out by offering even more valuable content, services, or products to your audience.

Data analysis is vital for companies for several reasons.

A reliable source of information

Trusting your intuition is fine, but relying on data is safer. When you can base your action plan on data that clearly shows that something is working or failing, you won’t only justify your decisions in front of the management, clients, or investors, but you’ll also be sure that you’ve taken appropriate steps to fix an issue or seize an important opportunity.

A better understanding of your business

According to Databox’s State of Business Reporting , most companies stated that regular monitoring and reporting improved progress monitoring, increased team effectiveness, allowed them to identify trends more easily, and improved financial performance. Data analysis makes it easier to understand your business as a whole, and each aspect individually. You can see how different departments analyze their workflow and how each step impacts their results in the end, by following their KPIs over time. Then, you can easily conclude what your business needs to grow – to boost your sales strategy, optimize your finances, or up your SEO game, for example.

An additional way to understand your business better is to compare your most important metrics and KPIs against companies that are just like yours. With Databox Benchmarks , you will need only one spot to see how all of your teams stack up against your peers and competitors.

Instantly and Anonymously Benchmark Your Company’s Performance Against Others Just Like You

If you ever asked yourself:

  • How does our marketing stack up against our competitors?
  • Are our salespeople as productive as reps from similar companies?
  • Are our profit margins as high as our peers?

Databox Benchmark Groups can finally help you answer these questions and discover how your company measures up against similar companies based on your KPIs.

When you join Benchmark Groups, you will:

  • Get instant, up-to-date data on how your company stacks up against similar companies based on the metrics most important to you. Explore benchmarks for dozens of metrics, built on anonymized data from thousands of companies and get a full 360° view of your company’s KPIs across sales, marketing, finance, and more.
  • Understand where your business excels and where you may be falling behind so you can shift to what will make the biggest impact. Leverage industry insights to set more effective, competitive business strategies. Explore where exactly you have room for growth within your business based on objective market data.
  • Keep your clients happy by using data to back up your expertise. Show your clients where you’re helping them overperform against similar companies. Use the data to show prospects where they really are… and the potential of where they could be.
  • Get a valuable asset for improving yearly and quarterly planning . Get valuable insights into areas that need more work. Gain more context for strategic planning.

The best part?

  • Benchmark Groups are free to access.
  • The data is 100% anonymized. No other company will be able to see your performance, and you won’t be able to see the performance of individual companies either.

When it comes to showing you how your performance compares to others, here is what it might look like for the metric Average Session Duration:

how to write a data analysis in research paper

And here is an example of an open group you could join:

how to write a data analysis in research paper

And this is just a fraction of what you’ll get. With Databox Benchmarks, you will need only one spot to see how all of your teams stack up — marketing, sales, customer service, product development, finance, and more. 

  • Choose criteria so that the Benchmark is calculated using only companies like yours
  • Narrow the benchmark sample using criteria that describe your company
  • Display benchmarks right on your Databox dashboards

Sounds like something you want to try out? Join a Databox Benchmark Group today!

It makes data accessible to everyone

Data doesn’t represent a magical creature reserved for data scientists only anymore. Now that you have streamlined and easy-to-follow data visualizations and tools that automatically show the latest figures, you can include everyone in the decision-making process as they’ll understand what means what in the charts and tables. The data may be complex, but it becomes easy to read when combined with proper illustrations. And when your teams gain such useful and accessible insight, they will feel motivated to act on it immediately.

Better collaboration

Data analysis reports help teams collaborate better, as well. You can apply the SMART technique to your KPIs and goals, because your KPIs become assignable. When they’re easy to interpret for your whole team, you can assign each person with one or multiple KPIs that they’ll be in charge of. That means taking a lot off a team leader’s plate so they can focus more on making other improvements in the business. At the same time, removing inaccurate data from your day-to-day operations will improve friction between different departments, like marketing and sales, for instance.

More productivity

You can also expect increased productivity, since you’ll be saving time you’d otherwise spend on waiting for specialists to translate data for other departments, etc. This means your internal procedures will also be on a top level.

Want to give value with your data analysis report? It’s critical to master the skill of writing a quality data analytics report. Want to know how to report on data efficiently? We’ll share our secret in the following section.

  • Start with an Outline
  • Make a Selection of Vital KPIs
  • Pick the Right Charts for Appealing Design
  • Use a Narrative
  • Organize the Information
  • Include a Summary
  • Careful with Your Recommendations
  • Double-Check Everything
  • Use Interactive Dashboards

1. Start with an Outline

If you start writing without having a clear idea of what your data analysis report is going to include, it may get messy. Important insights may slip through your fingers, and you may stray away too far from the main topic. To avoid this, start the report by writing an outline first. Plan the structure and contents of each section first to make sure you’ve covered everything, and only then start crafting the report.

2. Make a Selection of Vital KPIs

Don’t overwhelm the audience by including every single metric there is. You can discuss your whole dashboard in a meeting with your team, but if you’re creating data analytics reports or marketing reports for other departments or the executives, it’s best to focus on the most relevant KPIs that demonstrate the data important for the overall business performance.

PRO TIP: How Well Are Your Marketing KPIs Performing?

Like most marketers and marketing managers, you want to know how well your efforts are translating into results each month. How much traffic and new contact conversions do you get? How many new contacts do you get from organic sessions? How are your email campaigns performing? How well are your landing pages converting? You might have to scramble to put all of this together in a single report, but now you can have it all at your fingertips in a single Databox dashboard.

Our Marketing Overview Dashboard includes data from Google Analytics 4 and HubSpot Marketing with key performance metrics like:

  • Sessions . The number of sessions can tell you how many times people are returning to your website. Obviously, the higher the better.
  • New Contacts from Sessions . How well is your campaign driving new contacts and customers?
  • Marketing Performance KPIs . Tracking the number of MQLs, SQLs, New Contacts and similar will help you identify how your marketing efforts contribute to sales.
  • Email Performance . Measure the success of your email campaigns from HubSpot. Keep an eye on your most important email marketing metrics such as number of sent emails, number of opened emails, open rate, email click-through rate, and more.
  • Blog Posts and Landing Pages . How many people have viewed your blog recently? How well are your landing pages performing?

Now you can benefit from the experience of our Google Analytics and HubSpot Marketing experts, who have put together a plug-and-play Databox template that contains all the essential metrics for monitoring your leads. It’s simple to implement and start using as a standalone dashboard or in marketing reports, and best of all, it’s free!


You can easily set it up in just a few clicks – no coding required.

To set up the dashboard, follow these 3 simple steps:

Step 1: Get the template 

Step 2: Connect your HubSpot and Google Analytics 4 accounts with Databox. 

Step 3: Watch your dashboard populate in seconds.

3. Pick the Right Charts for Appealing Design

If you’re showing historical data – for instance, how you’ve performed now compared to last month – it’s best to use timelines or graphs. For other data, pie charts or tables may be more suitable. Make sure you use the right data visualization to display your data accurately and in an easy-to-understand manner.

4. Use a Narrative

Do you work on analytics and reporting ? Just exporting your data into a spreadsheet doesn’t qualify as either of them. The fact that you’re dealing with data may sound too technical, but actually, your report should tell a story about your performance. What happened on a specific day? Did your organic traffic increase or suddenly drop? Why? And more. There are a lot of questions to answer and you can put all the responses together in a coherent, understandable narrative.

5. Organize the Information

Before you start writing or building your dashboard, choose how you’re going to organize your data. Are you going to talk about the most relevant and general ones first? It may be the best way to start the report – the best practices typically involve starting with more general information and then diving into details if necessary.

6. Include a Summary

Some people in your audience won’t have the time to read the whole report, but they’ll want to know about your findings. Besides, a summary at the beginning of your data analytics report will help the reader get familiar with the topic and the goal of the report. And a quick note: although the summary should be placed at the beginning, you usually write it when you’re done with the report. When you have the whole picture, it’s easier to extract the key points that you’ll include in the summary.

7. Careful with Your Recommendations

Your communication skills may be critical in data analytics reports. Know that some of the results probably won’t be satisfactory, which means that someone’s strategy failed. Make sure you’re objective in your recommendations and that you’re not looking for someone to blame. Don’t criticize, but give suggestions on how things can be improved. Being solution-oriented is much more important and helpful for the business.

8. Double-Check Everything

The whole point of using data analytics tools and data, in general, is to achieve as much accuracy as possible. Avoid manual mistakes by proofreading your report when you finish, and if possible, give it to another person so they can confirm everything’s in place.

9. Use Interactive Dashboards

Using the right tools is just as important as the contents of your data analysis. The way you present it can make or break a good report, regardless of how valuable the data is. That said, choose a great reporting tool that can automatically update your data and display it in a visually appealing manner. Make sure it offers streamlined interactive dashboards that you can also customize depending on the purpose of the report.

To wrap up the guide, we decided to share nine excellent examples of what awesome data analysis reports can look like. You’ll learn what metrics you should include and how to organize them in logical sections to make your report beautiful and effective.

  • Marketing Data Analysis Report Example

SEO Data Analysis Report Example

Sales data analysis report example.

  • Customer Support Data Analysis Report Example

Help Desk Data Analysis Report Example

Ecommerce data analysis report example, project management data analysis report example, social media data analysis report example, financial kpi data analysis report example, marketing data report example.

If you need an intuitive dashboard that allows you to track your website performance effortlessly and monitor all the relevant metrics such as website sessions, pageviews, or CTA engagement, you’ll love this free HubSpot Marketing Website Overview dashboard template .

Marketing Data Report Example

Tracking the performance of your SEO efforts is important. You can easily monitor relevant SEO KPIs like clicks by page, engaged sessions, or views by session medium by downloading this Google Organic SEO Dashboard .

Google Organic SEO Dashboard

How successful is your sales team? It’s easy to analyze their performance and predict future growth if you choose this HubSpot CRM Sales Analytics Overview dashboard template and track metrics such as average time to close the deal, new deals amount, or average revenue per new client.

Sales Data Analysis Report Example

Customer Support Analysis Data Report Example

Customer support is one of the essential factors that impact your business growth. You can use this streamlined, customizable Customer Success dashboard template . In a single dashboard, you can monitor metrics such as customer satisfaction score, new MRR, or time to first response time.

Customer Support Analysis Data Report Example

Other than being free and intuitive, this HelpScout for Customer Support dashboard template is also customizable and enables you to track the most vital metrics that indicate your customer support agents’ performance: handle time, happiness score, interactions per resolution, and more.

Help Desk Data Analysis Report Example

Is your online store improving or failing? You can easily collect relevant data about your store and monitor the most important metrics like total sales, orders placed, and new customers by downloading this WooCommerce Shop Overview dashboard template .

Ecommerce Data Analysis Report Example

Does your IT department need feedback on their project management performance? Download this Jira dashboard template to track vital metrics such as issues created or resolved, issues by status, etc. Jira enables you to gain valuable insights into your teams’ productivity.

Project Management Data Analysis Report Example

Need to know if your social media strategy is successful? You can find that out by using this easy-to-understand Social Media Awareness & Engagement dashboard template . Here you can monitor and analyze metrics like sessions by social source, track the number of likes and followers, and measure the traffic from each source.

Social Media Data Analysis Report Example

Tracking your finances is critical for keeping your business profitable. If you want to monitor metrics such as the number of open invoices, open deals amount by stage by pipeline, or closed-won deals, use this free QuickBooks + HubSpot CRM Financial Performance dashboard template .

Financial KPI Data Analysis Report Example

Rely on Accurate Data with Databox

“I don’t have time to build custom reports from scratch.”

“It takes too long and becomes daunting very soon.”

“I’m not sure how to organize the data to make it effective and prove the value of my work.”

Does this sound like you?

Well, it’s something we all said at some point – creating data analytics reports can be time-consuming and tiring. And you’re still not sure if the report is compelling and understandable enough when you’re done.

That’s why we decided to create Databox dashboards – a world-class solution for saving your money and time. We build streamlined and easy-to-follow dashboards that include all the metrics that you may need and allow you to create custom ones if necessary. That way, you can use templates and adjust them to any new project or client without having to build a report from scratch.

You can skip the setup and get your first dashboard for free in just 24 hours, with our fantastic customer support team on the line to assist you with the metrics you should track and the structure you should use.

Enjoy crafting brilliant data analysis reports that will improve your business – it’s never been faster and more effortless. Sign up today and get your free dashboard in no time.

  • Databox Benchmarks
  • Future Value Calculator
  • ROI Calculator
  • Return On Ads Calculator
  • Percentage Growth Rate Calculator
  • Report Automation
  • Client Reporting
  • What is a KPI?
  • Google Sheets KPIs
  • Sales Analysis Report
  • Shopify Reports
  • Data Analysis Report
  • Google Sheets Dashboard
  • Best Dashboard Examples
  • Analysing Data
  • Marketing Agency KPIs
  • Automate Agency Google Ads Report
  • Marketing Research Report
  • Social Media Dashboard Examples
  • Ecom Dashboard Examples

Performance Benchmarks

Does Your Performance Stack Up?

Are you maximizing your business potential? Stop guessing and start comparing with companies like yours.

Pete Caputa speaking

A Message From Our CEO

At Databox, we’re obsessed with helping companies more easily monitor, analyze, and report their results. Whether it’s the resources we put into building and maintaining integrations with 100+ popular marketing tools, enabling customizability of charts, dashboards, and reports, or building functionality to make analysis, benchmarking, and forecasting easier, we’re constantly trying to find ways to help our customers save time and deliver better results.

Do you want an All-in-One Analytics Platform?

Hey, we’re Databox. Our mission is to help businesses save time and grow faster. Click here to see our platform in action. 

Share on Twitter

Stefana Zarić is a freelance writer & content marketer. Other than writing for SaaS and fintech clients, she educates future writers who want to build a career in marketing. When not working, Stefana loves to read books, play with her kid, travel, and dance.

Get practical strategies that drive consistent growth

12 Tips for Developing a Successful Data Analytics Strategy

Author's avatar

What Is Data Reporting and How to Create Data Reports for Your Business

What is kpi reporting kpi report examples, tips, and best practices.

Author's avatar

Build your first dashboard in 5 minutes or less

Latest from our blog

  • Landing Page Best Practices for B2B SaaS and Tech Companies June 3, 2024
  • How Databox University Supports Employee Personal Growth in 7 Key Areas of Life May 30, 2024
  • Metrics & KPIs
  • vs. Tableau
  • vs. Looker Studio
  • vs. Klipfolio
  • vs. Power BI
  • vs. Whatagraph
  • vs. AgencyAnalytics
  • Product & Engineering
  • Inside Databox
  • Terms of Service
  • Privacy Policy
  • Talent Resources
  • We're Hiring!
  • Help Center
  • API Documentation

Pledge 1%

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Turk J Urol
  • v.39(Suppl 1); 2013 Sep

How to clearly articulate results and construct tables and figures in a scientific paper?

The writing of the results section of a scientific paper is very important for the readers for clearly understanding of the study. This review summarizes the rules for writing the results section of a scientific paper and describes the use of tables and figures.


Medical articles consist of review articles, case reports, and letters to the editor which are prepared with the intention of publishing in journals related to the medical discipline of the author. For an academician to be able to progress in carreer, and make his/her activities known in the academic environment, require preparation of the protocol of his/her academic research article, and acquiring sufficient information, and experience related to the composition of this article. In this review article, the information related to the writing of the ‘Results’ section, and use of tables, and figures will be presented to the attention of the readers.

Writing the ‘Results’ section

The ‘Results’ section is perhaps the most important part of a research article. In fact the authors will share the results of their research/study with their readers. Renown British biologist Thomas Henry Huxley (1825–1895) indicated his feelings as “The great tragedy of science: the slaying of a beautiful hypothesis by an ugly fact.” which emphasizes the importance of accurately, and impressively written results.

In essence results provide a response for the question” What is found in the research performed?”. Therefore, it is the most vital part of the article. As a priority, while drafting the ‘Results’ section of a manuscript one should not firstly write down methods in the ‘Material and Method’ section. The first sentence should give information about the number of patients who met the inclusion criteria, and thus enrolled in the study. [ 1 ] Besides information about the number of patients excluded from the study, and the reasons for exclusion is very important in that they will enlighten the readers, and reviewers who critically evaluate the manuscript, and also reflect the seriousness of the study. On the other hand, the results obtained should be recorded in chronological order, and without any comments. [ 2 ] In this section use of simple present tense is more appropriate. The findings should be expressed in brief, lucid, and explicable words. The writing style should not be boring for the reader. During writing process of a research article, a generally ill-conceived point is that positive, and significant findings are more important, attractive, and valuable, while negative, and insignificant findings are worthless, and less attractive. A scientific research is not performed to confirm a hypothesis, rather to test it. Not only positive, and significant results are worth writing, on the other hand negative or statistically insignificant result which support fallacy of a widely accepted opinion might be valuable. Therefore, all findings obtained during research should be inclıuded in the ‘Results’ section. [ 1 ]

While writing the ‘Results’ section, the sequence of results, tabulated data, and information which will be illustrated as figures should be definitively indicated. In indicating insignificant changes, do not use expressions as “decreased” or “increased”, these words should be reserved for significant changes. If results related to more than one parameter would be reported, it is appropriate to write the results under the subheading of its related parameter so as to facilitate reading, and comprehension of information. [ 2 ] Only data, and information concerning the study in question should be included in the ‘Results’ section. Results not mentioned in this section should not be included in the ‘Discussion’ and ‘Summary’ sections. Since the results obtained by the authors are cited in the ‘Results’ section, any reference should not be indicated in this section. [ 3 ]

In the ‘Results’ section, numerical expressions should be written in technically appropriate terms. The number of digits (1, 2 or 3 digits) to be written after a comma (in Turkish) or a point (in especially American English) should be determined The number of digits written after the punctuation marks should not be changed all throughout the text. Data should be expressed as mean/median ± standard deviation. Data as age, and scale scores should be indicated together with ranges of values. Absolute numerical value corresponding to a percentage must be also indicated. P values calculated in statistical analysis should be expressed in their absolute values. While writing p values of statistically significant data, instead of p<0.05 the actual level of significance should be recorded. If p value is smaller than 0.001, then it can be written as p <0.01. [ 2 ] While writing the ‘Results’ section, significant data which should be recalled by the readers must be indicated in the main text. It will be appropriate to indicate other demographic numerical details in tables or figures.

As an example elucidating the abovementioned topics a research paper written by the authors of this review article, and published in the Turkish Journal of Urology in the year 2007 (Türk Üroloji Dergisi 2007;33:18–23) is presented below:

“A total of 9 (56.2%) female, and 7 (43.8%) male patients with were included in this study. Mean age of all the patients was 44.3±13.8 (17–65) years, and mean dimensions of the adrenal mass was 4.5±3.4 (1–14) cm. Mean ages of the male, and female patients were 44.1 (30–65), and 42.4 (17–64) years, while mean diameters of adrenal masses were 3.2 (1–5), and 4.5 (1–14) cm (p age =0.963, p mass size =0.206). Surgical procedures were realized using transperitoneal approach through Chevron incision in 1 (6.2%), and retroperitoneal approach using flank incision with removal of the 11. rib in 15 (93.7%) patients. Right (n=6; 37.5%), and left (n=2; 12.5%) adrenalectomies were performed. Two (12.5%) patients underwent bilateral adrenalectomy in the same session because of clinical Cushing’s syndrome persisted despite transsphenoidal hipophysectomy. Mean operative time, and length of the hospital stay were 135 (65–190) min, and 3 (2–6) days, respectively. While resecting 11. rib during retroperitoneal adrenalectomy performed in 1 patient, pleura was perforated for nearly 1.5 cm. The perforated region was drained, and closed intraoperatively with 4/0 polyglyctan sutures. The patient did not develop postoperative pneumothorax. In none of the patients postoperative complications as pneumothorax, bleeding, prolonged drainage were seen. Results of histopathological analysis of the specimens retrieved at the end of the operation were summarized in Table 1 .” Table 1. Histopathological examination results of the patients Histopathological diagnosis Men n (%) Women n (%) Total n (%) Adrenal cortical adenoma 5 (31.3) 6 (37.6) 11 (68.8) Pheochromocytoma 1 (6.2) 1 (6.2) 2 (12.6) Ganglioneuroma 1 (6.2) - 1 (6.2) Myelolipoma - 1 (6.2) 1 (6.2) Adrenal carcinoma - 1 (6.2) 1 (6.2) Total 7 (43.7) 9 (56.2) 16 (100) Open in a separate window

Use of tables, and figures

To prevent the audience from getting bored while reading a scientific article, some of the data should be expressed in a visual format in graphics, and figures rather than crowded numerical values in the text. Peer-reviewers frequently look at tables, and figures. High quality tables, and figures increase the chance of acceptance of the manuscript for publication.

Number of tables in the manuscript should not exceed the number recommended by the editorial board of the journal. Data in the main text, and tables should not be repeated many times. Tables should be comprehensible, and a reader should be able to express an opinion about the results just at looking at the tables without reading the main text. Data included in tables should comply with those mentioned in the main text, and percentages in rows, and columns should be summed up accurately. Unit of each variable should be absolutely defined. Sampling size of each group should be absolutely indicated. Values should be expressed as values±standard error, range or 95% confidence interval. Tables should include precise p values, and level of significance as assessed with statistical analysis should be indicated in footnotes. [ 2 ] Use of abbreviations in tables should be avoided, if abbreviations are required they should be defined explicitly in the footnotes or legends of the tables. As a general rule, rows should be arranged as double-spaced Besides do not use pattern coloring for cells of rows, and columns. Values included in tables should be correctly approximated. [ 1 , 2 ]

As an example elucidating the abovementioned topics a research paper written by the authors of this review article, and published in the Turkish Journal of Urology in the year 2007 (Türk Üroloji Dergisi 2007;33:18–23).is shown in Table 1 .

Most of the readers priorly prefer to look at figures, and graphs rather than reading lots of pages. Selection of appropriate types of graphs for demonstration of data is a critical decision which requires artist’s meticulousness. As is the case with tables, graphs, and figures should also disploay information not provided in the text. Bar, line, and pie graphs, scatter plots, and histograms are some examples of graphs. In graphs, independent variables should be represented on the horizontal, and dependent variables on the vertical axis. Number of subjects in every subgroup should be indicated The labels on each axis should be easily understandable. [ 2 ] The label of the Y axis should be written vertically from bottom to top. The fundamental point in writing explanatory notes for graphs, and figures is to help the readers understand the contents of them without referring to the main text. Meanings of abbreviations, and acronyms used in the graphs, and figures should be provided in explanatory notes. In the explanatory notes striking data should be emphasized. Statistical tests used, levels of significance, sampling size, stains used for analyses, and magnification rate should be written in order to facilitate comprehension of the study procedures. [ 1 , 2 ]

Flow diagram can be utilized in the ‘Results’ section. This diagram facilitates comprehension of the results obtained at certain steps of monitorization during the research process. Flow diagram can be used either in the ‘Results’ or ‘Material and Method’ section. [ 2 , 3 ]

Histopathological analyses, surgical technique or radiological images which are considered to be more useful for the comprehension of the text by the readers can be visually displayed. Important findings should be marked on photos, and their definitions should be provided clearly in the explanatory legends. [ 1 ]

As an example elucidating the abovementioned issues, graphics, and flow diagram in the ‘Results’ section of a research paper written by the authors of this review article, and published in the World Journal of Urology in the year 2010 (World J Urol 2010;28:17–22.) are shown in Figures 1 , and ​ and2 2 .

An external file that holds a picture, illustration, etc.
Object name is TJU-39-Supp-16-g01.jpg

a The mean SHIM scores of the groups before and after treatment. SHIM sexual health inventory for male. b The mean IPSS scores of the groups before and after treatment. IPSS international prostate symptom score

An external file that holds a picture, illustration, etc.
Object name is TJU-39-Supp-16-g02.jpg

Flowchart showing patients’ progress during the study. SHIM sexual health inventory for male, IIEF international index of erectile function, IPSS international prostate symptom score, QoL quality of life, Q max maximum urinary flow rate. PRV post voiding residual urine volume

In conclusion, in line with the motto of the famous German physicist Albert Einstein (1879–1955). ‘If you are out to describe the truth, leave elegance to the tailor .’ results obtained in a scientific research article should be expressed accurately, and with a masterstroke of a tailor in compliance with certain rules which will ensure acceptability of the scientific manuscript by the editorial board of the journal, and also facilitate its intelligibility by the readers.

  • Privacy Policy

Research Method

Home » Research Methodology – Types, Examples and writing Guide

Research Methodology – Types, Examples and writing Guide

Table of Contents

Research Methodology

Research Methodology


Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect , analyze , and interpret data to answer research questions or solve research problems . Moreover, They are philosophical and theoretical frameworks that guide the research process.

Structure of Research Methodology

Research methodology formats can vary depending on the specific requirements of the research project, but the following is a basic example of a structure for a research methodology section:

I. Introduction

  • Provide an overview of the research problem and the need for a research methodology section
  • Outline the main research questions and objectives

II. Research Design

  • Explain the research design chosen and why it is appropriate for the research question(s) and objectives
  • Discuss any alternative research designs considered and why they were not chosen
  • Describe the research setting and participants (if applicable)

III. Data Collection Methods

  • Describe the methods used to collect data (e.g., surveys, interviews, observations)
  • Explain how the data collection methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or instruments used for data collection

IV. Data Analysis Methods

  • Describe the methods used to analyze the data (e.g., statistical analysis, content analysis )
  • Explain how the data analysis methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or software used for data analysis

V. Ethical Considerations

  • Discuss any ethical issues that may arise from the research and how they were addressed
  • Explain how informed consent was obtained (if applicable)
  • Detail any measures taken to ensure confidentiality and anonymity

VI. Limitations

  • Identify any potential limitations of the research methodology and how they may impact the results and conclusions

VII. Conclusion

  • Summarize the key aspects of the research methodology section
  • Explain how the research methodology addresses the research question(s) and objectives

Research Methodology Types

Types of Research Methodology are as follows:

Quantitative Research Methodology

This is a research methodology that involves the collection and analysis of numerical data using statistical methods. This type of research is often used to study cause-and-effect relationships and to make predictions.

Qualitative Research Methodology

This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

Mixed-Methods Research Methodology

This is a research methodology that combines elements of both quantitative and qualitative research. This approach can be particularly useful for studies that aim to explore complex phenomena and to provide a more comprehensive understanding of a particular topic.

Case Study Research Methodology

This is a research methodology that involves in-depth examination of a single case or a small number of cases. Case studies are often used in psychology, sociology, and anthropology to gain a detailed understanding of a particular individual or group.

Action Research Methodology

This is a research methodology that involves a collaborative process between researchers and practitioners to identify and solve real-world problems. Action research is often used in education, healthcare, and social work.

Experimental Research Methodology

This is a research methodology that involves the manipulation of one or more independent variables to observe their effects on a dependent variable. Experimental research is often used to study cause-and-effect relationships and to make predictions.

Survey Research Methodology

This is a research methodology that involves the collection of data from a sample of individuals using questionnaires or interviews. Survey research is often used to study attitudes, opinions, and behaviors.

Grounded Theory Research Methodology

This is a research methodology that involves the development of theories based on the data collected during the research process. Grounded theory is often used in sociology and anthropology to generate theories about social phenomena.

Research Methodology Example

An Example of Research Methodology could be the following:

Research Methodology for Investigating the Effectiveness of Cognitive Behavioral Therapy in Reducing Symptoms of Depression in Adults


The aim of this research is to investigate the effectiveness of cognitive-behavioral therapy (CBT) in reducing symptoms of depression in adults. To achieve this objective, a randomized controlled trial (RCT) will be conducted using a mixed-methods approach.

Research Design:

The study will follow a pre-test and post-test design with two groups: an experimental group receiving CBT and a control group receiving no intervention. The study will also include a qualitative component, in which semi-structured interviews will be conducted with a subset of participants to explore their experiences of receiving CBT.


Participants will be recruited from community mental health clinics in the local area. The sample will consist of 100 adults aged 18-65 years old who meet the diagnostic criteria for major depressive disorder. Participants will be randomly assigned to either the experimental group or the control group.

Intervention :

The experimental group will receive 12 weekly sessions of CBT, each lasting 60 minutes. The intervention will be delivered by licensed mental health professionals who have been trained in CBT. The control group will receive no intervention during the study period.

Data Collection:

Quantitative data will be collected through the use of standardized measures such as the Beck Depression Inventory-II (BDI-II) and the Generalized Anxiety Disorder-7 (GAD-7). Data will be collected at baseline, immediately after the intervention, and at a 3-month follow-up. Qualitative data will be collected through semi-structured interviews with a subset of participants from the experimental group. The interviews will be conducted at the end of the intervention period, and will explore participants’ experiences of receiving CBT.

Data Analysis:

Quantitative data will be analyzed using descriptive statistics, t-tests, and mixed-model analyses of variance (ANOVA) to assess the effectiveness of the intervention. Qualitative data will be analyzed using thematic analysis to identify common themes and patterns in participants’ experiences of receiving CBT.

Ethical Considerations:

This study will comply with ethical guidelines for research involving human subjects. Participants will provide informed consent before participating in the study, and their privacy and confidentiality will be protected throughout the study. Any adverse events or reactions will be reported and managed appropriately.

Data Management:

All data collected will be kept confidential and stored securely using password-protected databases. Identifying information will be removed from qualitative data transcripts to ensure participants’ anonymity.


One potential limitation of this study is that it only focuses on one type of psychotherapy, CBT, and may not generalize to other types of therapy or interventions. Another limitation is that the study will only include participants from community mental health clinics, which may not be representative of the general population.


This research aims to investigate the effectiveness of CBT in reducing symptoms of depression in adults. By using a randomized controlled trial and a mixed-methods approach, the study will provide valuable insights into the mechanisms underlying the relationship between CBT and depression. The results of this study will have important implications for the development of effective treatments for depression in clinical settings.

How to Write Research Methodology

Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It’s an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings. Here are the steps to write a research methodology:

  • Start by explaining your research question: Begin the methodology section by restating your research question and explaining why it’s important. This helps readers understand the purpose of your research and the rationale behind your methods.
  • Describe your research design: Explain the overall approach you used to conduct research. This could be a qualitative or quantitative research design, experimental or non-experimental, case study or survey, etc. Discuss the advantages and limitations of the chosen design.
  • Discuss your sample: Describe the participants or subjects you included in your study. Include details such as their demographics, sampling method, sample size, and any exclusion criteria used.
  • Describe your data collection methods : Explain how you collected data from your participants. This could include surveys, interviews, observations, questionnaires, or experiments. Include details on how you obtained informed consent, how you administered the tools, and how you minimized the risk of bias.
  • Explain your data analysis techniques: Describe the methods you used to analyze the data you collected. This could include statistical analysis, content analysis, thematic analysis, or discourse analysis. Explain how you dealt with missing data, outliers, and any other issues that arose during the analysis.
  • Discuss the validity and reliability of your research : Explain how you ensured the validity and reliability of your study. This could include measures such as triangulation, member checking, peer review, or inter-coder reliability.
  • Acknowledge any limitations of your research: Discuss any limitations of your study, including any potential threats to validity or generalizability. This helps readers understand the scope of your findings and how they might apply to other contexts.
  • Provide a summary: End the methodology section by summarizing the methods and techniques you used to conduct your research. This provides a clear overview of your research methodology and helps readers understand the process you followed to arrive at your findings.

When to Write Research Methodology

Research methodology is typically written after the research proposal has been approved and before the actual research is conducted. It should be written prior to data collection and analysis, as it provides a clear roadmap for the research project.

The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

The methodology should be written in a clear and concise manner, and it should be based on established research practices and standards. It is important to provide enough detail so that the reader can understand how the research was conducted and evaluate the validity of the results.

Applications of Research Methodology

Here are some of the applications of research methodology:

  • To identify the research problem: Research methodology is used to identify the research problem, which is the first step in conducting any research.
  • To design the research: Research methodology helps in designing the research by selecting the appropriate research method, research design, and sampling technique.
  • To collect data: Research methodology provides a systematic approach to collect data from primary and secondary sources.
  • To analyze data: Research methodology helps in analyzing the collected data using various statistical and non-statistical techniques.
  • To test hypotheses: Research methodology provides a framework for testing hypotheses and drawing conclusions based on the analysis of data.
  • To generalize findings: Research methodology helps in generalizing the findings of the research to the target population.
  • To develop theories : Research methodology is used to develop new theories and modify existing theories based on the findings of the research.
  • To evaluate programs and policies : Research methodology is used to evaluate the effectiveness of programs and policies by collecting data and analyzing it.
  • To improve decision-making: Research methodology helps in making informed decisions by providing reliable and valid data.

Purpose of Research Methodology

Research methodology serves several important purposes, including:

  • To guide the research process: Research methodology provides a systematic framework for conducting research. It helps researchers to plan their research, define their research questions, and select appropriate methods and techniques for collecting and analyzing data.
  • To ensure research quality: Research methodology helps researchers to ensure that their research is rigorous, reliable, and valid. It provides guidelines for minimizing bias and error in data collection and analysis, and for ensuring that research findings are accurate and trustworthy.
  • To replicate research: Research methodology provides a clear and detailed account of the research process, making it possible for other researchers to replicate the study and verify its findings.
  • To advance knowledge: Research methodology enables researchers to generate new knowledge and to contribute to the body of knowledge in their field. It provides a means for testing hypotheses, exploring new ideas, and discovering new insights.
  • To inform decision-making: Research methodology provides evidence-based information that can inform policy and decision-making in a variety of fields, including medicine, public health, education, and business.

Advantages of Research Methodology

Research methodology has several advantages that make it a valuable tool for conducting research in various fields. Here are some of the key advantages of research methodology:

  • Systematic and structured approach : Research methodology provides a systematic and structured approach to conducting research, which ensures that the research is conducted in a rigorous and comprehensive manner.
  • Objectivity : Research methodology aims to ensure objectivity in the research process, which means that the research findings are based on evidence and not influenced by personal bias or subjective opinions.
  • Replicability : Research methodology ensures that research can be replicated by other researchers, which is essential for validating research findings and ensuring their accuracy.
  • Reliability : Research methodology aims to ensure that the research findings are reliable, which means that they are consistent and can be depended upon.
  • Validity : Research methodology ensures that the research findings are valid, which means that they accurately reflect the research question or hypothesis being tested.
  • Efficiency : Research methodology provides a structured and efficient way of conducting research, which helps to save time and resources.
  • Flexibility : Research methodology allows researchers to choose the most appropriate research methods and techniques based on the research question, data availability, and other relevant factors.
  • Scope for innovation: Research methodology provides scope for innovation and creativity in designing research studies and developing new research techniques.

Research Methodology Vs Research Methods

About the author.

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Dissertation Methodology

Dissertation Methodology – Structure, Example...

Research Methods

Research Methods – Types, Examples and Guide

Data Interpretation

Data Interpretation – Process, Methods and...

Research Paper

Research Paper – Structure, Examples and Writing...


Thesis – Structure, Example and Writing Guide

Limitations in Research

Limitations in Research – Types, Examples and...

Elsevier QRcode Wechat

  • Manuscript Preparation

A Must-see for Researchers! How to Ensure Inclusivity in Your Scientific Writing

  • 4 minute read

Table of Contents

Highly influential research findings have several real-world implications that affect the public’s perception of individuals and communities to some extent. The way science is communicated shapes people’s behavior, interactions, and even related policies. As a result, in recent years there has been a growing recognition of the need to foster inclusive language within scholarly communication, which can help avoid bias or misunderstanding.  

Researchers, especially the younger generation, are becoming increasingly aware of the significance of using inclusive language in academic writing. This approach helps create a collaborative global academic landscape, while fostering respect for diverse perspectives. It is also conducive to the wide dissemination of papers and supports researchers in their long-term academic endeavors.  

This article will explain why and how to use inclusive language in your manuscript. Also, it will help researchers improve their ability to choose words with precision when writing by providing examples of appropriate inclusive terms. Let’s have a look!  

1. Referring to Persons with Disabilities¹  

When referring to someone with a disability, it is important to focus on the person first, not highlight their condition . Avoid using the terms “disabled person” or “handicapped person.” Instead, use person-first language, such as “a person with disability,” “a person with hearing loss,” etc.  

Additionally, when referring to individuals without disabilities, avoid using terms such as “normal” or “typical.” Instead, use phrases like “individuals without disabilities” or “people without disabilities.”  

Example of inclusive language : Students with disabilities often encounter distinct challenges in academic settings. These can range from physical barriers like inaccessible buildings to difficulties accessing educational materials in suitable formats. In contrast, students without disabilities typically navigate the educational environment with fewer hindrances.  

2. Using Gendered Nouns  

Gendered nouns such as “man” or words ending in “-man” can exclude certain groups, so it is best to avoid them² . Fortunately, they can be easily substituted with neutral terms . For instance, instead of writing “man”, write “person” or “individual” and instead of writing “mankind,” write “humanity” or “human beings.”  

When discussing people’s occupational roles, using neutral language is essential. For example, instead of writing “policeman,” write “police officer,” and instead of writing “chairman,” write “chairperson.”  

Example of gendered noun use:  The chairman oversees the company’s operations.  

Example of inclusive language:  The chairperson oversees the company’s operations.  

3. Using Pronouns  

When you know a person’s preferred pronoun, it is easy to incorporate it into writing. For example, most people use the pronouns he/him or she/her. However, using pronouns can become tricky in neutral or ambiguous contexts. In the past, it was common to use the  generic he   in these situations³ . However, it is best to avoid this practice as it can be exclusionary .  

Here are some tips to avoid the  generic he³ :  

Don’t only use he/his, add she/her  

For example, do not write:  An early career researcher needs mentors. He can learn the secrets to making an impact in academia with someone more experienced.  

Instead, write:  An early career researcher needs mentors. He or she can learn the secrets to making an impact in academia with someone more experienced.  

Eliminate the pronoun if possible  

For example, do not write:  We returned his manuscript two days after submission.  

Instead, write:  We returned the manuscript two days after submission.  

Use a plural term  

For example, do not write:  When an author revises his manuscript , he should consider the feedback provided by the peer reviewers.  

Instead, write:  When authors revise their manuscripts , they should consider the feedback provided by the peer reviewers.  

4. Describing Age  

As a general rule, refrain from mentioning a person’s age unless it is absolutely necessary for the context . In scientific writing, it is acceptable to use broad terms , such as infants, children, young adults, or older adults, to categorize age groups⁴ . This approach maintains inclusivity and respects individuals regardless of their age.   


Embracing inclusive language in scholarly communication fosters a more welcoming environment for scholars from diverse backgrounds. It ensures that everyone, regardless of their life experiences, can equally benefit from advancements in science. It is worth noting that inclusive language constantly evolves with social development, which poses a great challenge for authors in terms of their English skills and the ability to pay attention to social trends.  

If you would like to achieve more efficient and inclusive expression in your papers, please choose Elsevier Language Services . Our professional editors, all native English speakers, with editing experience in more than 100 disciplines, can help you achieve professional, authentic, and inclusive academic expression in your papers, improve the chances of successful publication, and achieve long-term academic success.  


  • University of Idaho Inclusive Writing Guide. (n.d.). https://www.uidaho.edu/brand/print-digital-content/inclusive-writing-guide  
  • UNC-Chapel Hill Writing Center. (2023, December 8). Gender-Inclusive Language – The Writing Center. University of North Carolina at Chapel Hill. https://writingcenter.unc.edu/tips-and-tools/gender-inclusive-language/  
  • Leu, P. (2020, July 2). Academic Writing: How do we use gender-inclusive language in academic writing? – Explorations in English Language Learning. Explorations in English Language Learning. https://englishexplorations.check.uni-hamburg.de/academic-writing-how-do-we-use-gender-inclusive-language-in-academic-writing/  
  • Inclusive writing | York St John University. (n.d.). York St John University. https://www.yorksj.ac.uk/brand/our-writing-style/inclusive-writing/#age  

Tips to Efficient Spellchecks

  • Manuscript Review

Essential for High-Quality Paper Editing: Three Tips to Efficient Spellchecks

Being Mindful of Tone and Structure in Artilces

Page-Turner Articles are More Than Just Good Arguments: Be Mindful of Tone and Structure!

You may also like.

Being Mindful of Tone and Structure in Artilces

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

Writing an Impactful Paper

The Clear Path to An Impactful Paper: ②

Essentials of Writing to Communicate Research in Medicine

The Essentials of Writing to Communicate Research in Medicine

Input your search keywords and press Enter.


  1. How to Write an Analysis Paper

    how to write a data analysis in research paper

  2. Data Analysis in research methodology

    how to write a data analysis in research paper

  3. Analysis In A Research Paper

    how to write a data analysis in research paper

  4. Research paper data analysis

    how to write a data analysis in research paper

  5. 😍 Example of data analysis in research paper. Sample Research Paper on

    how to write a data analysis in research paper

  6. FREE 10+ Sample Data Analysis Templates in PDF

    how to write a data analysis in research paper


  1. How to Assess the Quantitative Data Collected from Questionnaire

  2. Writng a Data Analysis Chapter

  3. What is the Future of Academic Research with the Advancement of AI?


  5. Research 20. Code: 0043. How to Write Data Analysis Chapter



  1. PDF Structure of a Data Analysis Report

    - Data - Methods - Analysis - Results This format is very familiar to those who have written psych research papers. It often works well for a data analysis paper as well, though one problem with it is that the Methods section often sounds like a bit of a stretch: In a psych research paper the Methods section describes what you did to ...

  2. A practical guide to data analysis in general literature reviews

    This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.

  3. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  4. The Beginner's Guide to Statistical Analysis

    Step 1: Write your hypotheses and plan your research design. To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design. Writing statistical hypotheses. The goal of research is often to investigate a relationship between variables within a population. You start with a prediction ...

  5. A Really Simple Guide to Quantitative Data Analysis

    It is important to know w hat kind of data you are planning to collect or analyse as this w ill. affect your analysis method. A 12 step approach to quantitative data analysis. Step 1: Start with ...

  6. Creating a Data Analysis Plan: What to Consider When Choosing

    The first step in a data analysis plan is to describe the data collected in the study. This can be done using figures to give a visual presentation of the data and statistics to generate numeric descriptions of the data. Selection of an appropriate figure to represent a particular set of data depends on the measurement level of the variable.

  7. How to Write an APA Methods Section

    Report all of the procedures applied for administering the study, processing the data, and for planned data analyses. Data collection methods and research design. Data collection methods refers to the general mode of the instruments: surveys, interviews, observations, focus groups, neuroimaging, cognitive tests, and so on. Summarize exactly how ...

  8. PDF Tips for Writing Analytic Research Papers

    Communications Program. 79 John F. Kennedy Street Cambridge, Massachusetts 02138. TIPS FOR WRITING ANALYTIC RESEARCH PAPERS. • Papers require analysis, not just description. When you describe an existing situation (e.g., a policy, organization, or problem), use that description for some analytic purpose: respond to it, evaluate it according ...

  9. Learning to Do Qualitative Data Analysis: A Starting Point

    On the basis of Rocco (2010), Storberg-Walker's (2012) amended list on qualitative data analysis in research papers included the following: (a) the article should provide enough details so that reviewers could follow the same analytical steps; (b) the analysis process selected should be logically connected to the purpose of the study; and (c ...

  10. A Practical Guide to Writing Quantitative and Qualitative Research

    The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question.1 An excellent research question clarifies the research writing while facilitating understanding of the research topic ...


    •Data are random numbers. Plan accordingly. • Statistical analysis is the language of scientific inference. Expand your vocabulary. • Statistical analysis is harder than it looks. • Get help now, before you start writing. • Get help while you are writing. • Budget help for later. • When in doubt, call statistician. • When not in doubt, call statistician.

  12. How to Write Data Analysis Reports in 9 Easy Steps

    1. Start with an Outline. If you start writing without having a clear idea of what your data analysis report is going to include, it may get messy. Important insights may slip through your fingers, and you may stray away too far from the main topic. To avoid this, start the report by writing an outline first.

  13. How to write data analysis in a research paper?

    Step 2: Obtain data from a representative sample. Once you have used an appropriate sampling procedure when conducting statistical analysis, you can extend your conclusions beyond your sample. Probability sampling involves selecting participants at random from the population to conduct a study. In non-probability sampling, some members of a ...

  14. Reporting Research Results in APA Style

    Reporting Research Results in APA Style | Tips & Examples. Published on December 21, 2020 by Pritha Bhandari.Revised on January 17, 2024. The results section of a quantitative research paper is where you summarize your data and report the findings of any relevant statistical analyses.. The APA manual provides rigorous guidelines for what to report in quantitative research papers in the fields ...

  15. How to clearly articulate results and construct tables and figures in a

    While writing p values of statistically significant data, instead of p<0.05 the actual level of significance should be recorded. If p value is smaller than 0.001, then it can be written as p<0.01. While writing the 'Results' section, significant data which should be recalled by the readers must be indicated in the main text.

  16. PDF How to Write the Methods Section of a Research Paper

    The methods section should describe what was done to answer the research question, describe how it was done, justify the experimental design, and explain how the results were analyzed. Scientific writing is direct and orderly. Therefore, the methods section structure should: describe the materials used in the study, explain how the materials ...

  17. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  18. Reporting Statistics in APA Style

    The APA Publication Manual is commonly used for reporting research results in the social and natural sciences. This article walks you through APA Style standards for reporting statistics in academic writing. Statistical analysis involves gathering and testing quantitative data to make inferences about the world.

  19. PDF Chapter 4: Analysis and Interpretation of Results

    The analysis and interpretation of data is carried out in two phases. The. first part, which is based on the results of the questionnaire, deals with a quantitative. analysis of data. The second, which is based on the results of the interview and focus group. discussions, is a qualitative interpretation.

  20. Research Findings

    Research findings refer to the results obtained from a study or investigation conducted through a systematic and scientific approach. These findings are the outcomes of the data analysis, interpretation, and evaluation carried out during the research process. Types of Research Findings. There are two main types of research findings: Qualitative ...

  21. Research Methodology

    Qualitative Research Methodology. This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

  22. How to Write the Methods Section of a Research Manuscript

    The methods section of a manuscript is one of the most important parts of a research paper because it provides information on the validity of the study and credibility of the results. Inadequate description of the methods has been reported as one of the main reasons for manuscript rejection. The methods section must include sufficient detail so ...

  23. Data Collection

    Data Collection | Definition, Methods & Examples. Published on June 5, 2020 by Pritha Bhandari.Revised on June 21, 2023. Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem.

  24. How to Ensure Inclusivity in Your Scientific Writing

    3. Using Pronouns. Don't only use he/his, add she/her. Eliminate the pronoun if possible. Use a plural term. 4. Describing Age. Conclusion. Highly influential research findings have several real-world implications that affect the public's perception of individuals and communities to some extent.

  25. How to Write a Results Section

    The most logical way to structure quantitative results is to frame them around your research questions or hypotheses. For each question or hypothesis, share: A reminder of the type of analysis you used (e.g., a two-sample t test or simple linear regression). A more detailed description of your analysis should go in your methodology section.

  26. ChatGPT

    Write a message that goes with a kitten gif for a friend on a rough day (opens in a new window) Test my knowledge on ancient civilizations (opens in a new window) Write a text asking a friend to be my plus-one at a wedding (opens in a new window)