what is importance of the study in research

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

What is the Significance of the Study?

DiscoverPhDs

  • By DiscoverPhDs
  • August 25, 2020

Significance of the Study

  • what the significance of the study means,
  • why it’s important to include in your research work,
  • where you would include it in your paper, thesis or dissertation,
  • how you write one
  • and finally an example of a well written section about the significance of the study.

What does Significance of the Study mean?

The significance of the study is a written statement that explains why your research was needed. It’s a justification of the importance of your work and impact it has on your research field, it’s contribution to new knowledge and how others will benefit from it.

Why is the Significance of the Study important?

The significance of the study, also known as the rationale of the study, is important to convey to the reader why the research work was important. This may be an academic reviewer assessing your manuscript under peer-review, an examiner reading your PhD thesis, a funder reading your grant application or another research group reading your published journal paper. Your academic writing should make clear to the reader what the significance of the research that you performed was, the contribution you made and the benefits of it.

How do you write the Significance of the Study?

When writing this section, first think about where the gaps in knowledge are in your research field. What are the areas that are poorly understood with little or no previously published literature? Or what topics have others previously published on that still require further work. This is often referred to as the problem statement.

The introduction section within the significance of the study should include you writing the problem statement and explaining to the reader where the gap in literature is.

Then think about the significance of your research and thesis study from two perspectives: (1) what is the general contribution of your research on your field and (2) what specific contribution have you made to the knowledge and who does this benefit the most.

For example, the gap in knowledge may be that the benefits of dumbbell exercises for patients recovering from a broken arm are not fully understood. You may have performed a study investigating the impact of dumbbell training in patients with fractures versus those that did not perform dumbbell exercises and shown there to be a benefit in their use. The broad significance of the study would be the improvement in the understanding of effective physiotherapy methods. Your specific contribution has been to show a significant improvement in the rate of recovery in patients with broken arms when performing certain dumbbell exercise routines.

This statement should be no more than 500 words in length when written for a thesis. Within a research paper, the statement should be shorter and around 200 words at most.

Significance of the Study: An example

Building on the above hypothetical academic study, the following is an example of a full statement of the significance of the study for you to consider when writing your own. Keep in mind though that there’s no single way of writing the perfect significance statement and it may well depend on the subject area and the study content.

Here’s another example to help demonstrate how a significance of the study can also be applied to non-technical fields:

The significance of this research lies in its potential to inform clinical practices and patient counseling. By understanding the psychological outcomes associated with non-surgical facial aesthetics, practitioners can better guide their patients in making informed decisions about their treatment plans. Additionally, this study contributes to the body of academic knowledge by providing empirical evidence on the effects of these cosmetic procedures, which have been largely anecdotal up to this point.

The statement of the significance of the study is used by students and researchers in academic writing to convey the importance of the research performed; this section is written at the end of the introduction and should describe the specific contribution made and who it benefits.

Science Investigatory Project

A science investigatory project is a science-based research project or study that is performed by school children in a classroom, exhibition or science fair.

What is an Appendix Dissertation explained

A thesis and dissertation appendix contains additional information which supports your main arguments. Find out what they should include and how to format them.

MBA vs PhD

Considering whether to do an MBA or a PhD? If so, find out what their differences are, and more importantly, which one is better suited for you.

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

what is importance of the study in research

Browse PhDs Now

Dissertation Title Page

The title page of your dissertation or thesis conveys all the essential details about your project. This guide helps you format it in the correct way.

What is the age limit for doing a PhD?

The answer is simple: there is no age limit for doing a PhD; in fact, the oldest known person to have gained a PhD in the UK was 95 years old.

what is importance of the study in research

Dr Ayres completed her PhD at the University of Warwick in 2017, researching the use of diamond to make electrochemical sensors. She is now a research scientists in the water industry, developing different analytical techniques and sensors to help keep our water systems safe.

what is importance of the study in research

Islam is in the final year of his Physics PhD program at Washington State University in the field of particle cosmology. His research is on the Possible Connections Between Inflaton and Dark Energy Within An Oscillating Reheating Framework.

Join Thousands of Students

The Savvy Scientist

The Savvy Scientist

Experiences of a London PhD student and beyond

What is the Significance of a Study? Examples and Guide

Significance of a study graphic, showing a female scientist reading a book

If you’re reading this post you’re probably wondering: what is the significance of a study?

No matter where you’re at with a piece of research, it is a good idea to think about the potential significance of your work. And sometimes you’ll have to explicitly write a statement of significance in your papers, it addition to it forming part of your thesis.

In this post I’ll cover what the significance of a study is, how to measure it, how to describe it with examples and add in some of my own experiences having now worked in research for over nine years.

If you’re reading this because you’re writing up your first paper, welcome! You may also like my how-to guide for all aspects of writing your first research paper .

Looking for guidance on writing the statement of significance for a paper or thesis? Click here to skip straight to that section.

What is the Significance of a Study?

For research papers, theses or dissertations it’s common to explicitly write a section describing the significance of the study. We’ll come onto what to include in that section in just a moment.

However the significance of a study can actually refer to several different things.

Graphic showing the broadening significance of a study going from your study, the wider research field, business opportunities through to society as a whole.

Working our way from the most technical to the broadest, depending on the context, the significance of a study may refer to:

  • Within your study: Statistical significance. Can we trust the findings?
  • Wider research field: Research significance. How does your study progress the field?
  • Commercial / economic significance: Could there be business opportunities for your findings?
  • Societal significance: What impact could your study have on the wider society.
  • And probably other domain-specific significance!

We’ll shortly cover each of them in turn, including how they’re measured and some examples for each type of study significance.

But first, let’s touch on why you should consider the significance of your research at an early stage.

Why Care About the Significance of a Study?

No matter what is motivating you to carry out your research, it is sensible to think about the potential significance of your work. In the broadest sense this asks, how does the study contribute to the world?

After all, for many people research is only worth doing if it will result in some expected significance. For the vast majority of us our studies won’t be significant enough to reach the evening news, but most studies will help to enhance knowledge in a particular field and when research has at least some significance it makes for a far more fulfilling longterm pursuit.

Furthermore, a lot of us are carrying out research funded by the public. It therefore makes sense to keep an eye on what benefits the work could bring to the wider community.

Often in research you’ll come to a crossroads where you must decide which path of research to pursue. Thinking about the potential benefits of a strand of research can be useful for deciding how to spend your time, money and resources.

It’s worth noting though, that not all research activities have to work towards obvious significance. This is especially true while you’re a PhD student, where you’re figuring out what you enjoy and may simply be looking for an opportunity to learn a new skill.

However, if you’re trying to decide between two potential projects, it can be useful to weigh up the potential significance of each.

Let’s now dive into the different types of significance, starting with research significance.

Research Significance

What is the research significance of a study.

Unless someone specifies which type of significance they’re referring to, it is fair to assume that they want to know about the research significance of your study.

Research significance describes how your work has contributed to the field, how it could inform future studies and progress research.

Where should I write about my study’s significance in my thesis?

Typically you should write about your study’s significance in the Introduction and Conclusions sections of your thesis.

It’s important to mention it in the Introduction so that the relevance of your work and the potential impact and benefits it could have on the field are immediately apparent. Explaining why your work matters will help to engage readers (and examiners!) early on.

It’s also a good idea to detail the study’s significance in your Conclusions section. This adds weight to your findings and helps explain what your study contributes to the field.

On occasion you may also choose to include a brief description in your Abstract.

What is expected when submitting an article to a journal

It is common for journals to request a statement of significance, although this can sometimes be called other things such as:

  • Impact statement
  • Significance statement
  • Advances in knowledge section

Here is one such example of what is expected:

Impact Statement:  An Impact Statement is required for all submissions.  Your impact statement will be evaluated by the Editor-in-Chief, Global Editors, and appropriate Associate Editor. For your manuscript to receive full review, the editors must be convinced that it is an important advance in for the field. The Impact Statement is not a restating of the abstract. It should address the following: Why is the work submitted important to the field? How does the work submitted advance the field? What new information does this work impart to the field? How does this new information impact the field? Experimental Biology and Medicine journal, author guidelines

Typically the impact statement will be shorter than the Abstract, around 150 words.

Defining the study’s significance is helpful not just for the impact statement (if the journal asks for one) but also for building a more compelling argument throughout your submission. For instance, usually you’ll start the Discussion section of a paper by highlighting the research significance of your work. You’ll also include a short description in your Abstract too.

How to describe the research significance of a study, with examples

Whether you’re writing a thesis or a journal article, the approach to writing about the significance of a study are broadly the same.

I’d therefore suggest using the questions above as a starting point to base your statements on.

  • Why is the work submitted important to the field?
  • How does the work submitted advance the field?
  • What new information does this work impart to the field?
  • How does this new information impact the field?

Answer those questions and you’ll have a much clearer idea of the research significance of your work.

When describing it, try to clearly state what is novel about your study’s contribution to the literature. Then go on to discuss what impact it could have on progressing the field along with recommendations for future work.

Potential sentence starters

If you’re not sure where to start, why not set a 10 minute timer and have a go at trying to finish a few of the following sentences. Not sure on what to put? Have a chat to your supervisor or lab mates and they may be able to suggest some ideas.

  • This study is important to the field because…
  • These findings advance the field by…
  • Our results highlight the importance of…
  • Our discoveries impact the field by…

Now you’ve had a go let’s have a look at some real life examples.

Statement of significance examples

A statement of significance / impact:

Impact Statement This review highlights the historical development of the concept of “ideal protein” that began in the 1950s and 1980s for poultry and swine diets, respectively, and the major conceptual deficiencies of the long-standing concept of “ideal protein” in animal nutrition based on recent advances in amino acid (AA) metabolism and functions. Nutritionists should move beyond the “ideal protein” concept to consider optimum ratios and amounts of all proteinogenic AAs in animal foods and, in the case of carnivores, also taurine. This will help formulate effective low-protein diets for livestock, poultry, and fish, while sustaining global animal production. Because they are not only species of agricultural importance, but also useful models to study the biology and diseases of humans as well as companion (e.g. dogs and cats), zoo, and extinct animals in the world, our work applies to a more general readership than the nutritionists and producers of farm animals. Wu G, Li P. The “ideal protein” concept is not ideal in animal nutrition.  Experimental Biology and Medicine . 2022;247(13):1191-1201. doi: 10.1177/15353702221082658

And the same type of section but this time called “Advances in knowledge”:

Advances in knowledge: According to the MY-RADs criteria, size measurements of focal lesions in MRI are now of relevance for response assessment in patients with monoclonal plasma cell disorders. Size changes of 1 or 2 mm are frequently observed due to uncertainty of the measurement only, while the actual focal lesion has not undergone any biological change. Size changes of at least 6 mm or more in  T 1  weighted or  T 2  weighted short tau inversion recovery sequences occur in only 5% or less of cases when the focal lesion has not undergone any biological change. Wennmann M, Grözinger M, Weru V, et al. Test-retest, inter- and intra-rater reproducibility of size measurements of focal bone marrow lesions in MRI in patients with multiple myeloma [published online ahead of print, 2023 Apr 12].  Br J Radiol . 2023;20220745. doi: 10.1259/bjr.20220745

Other examples of research significance

Moving beyond the formal statement of significance, here is how you can describe research significance more broadly within your paper.

Describing research impact in an Abstract of a paper:

Three-dimensional visualisation and quantification of the chondrocyte population within articular cartilage can be achieved across a field of view of several millimetres using laboratory-based micro-CT. The ability to map chondrocytes in 3D opens possibilities for research in fields from skeletal development through to medical device design and treatment of cartilage degeneration. Conclusions section of the abstract in my first paper .

In the Discussion section of a paper:

We report for the utility of a standard laboratory micro-CT scanner to visualise and quantify features of the chondrocyte population within intact articular cartilage in 3D. This study represents a complimentary addition to the growing body of evidence supporting the non-destructive imaging of the constituents of articular cartilage. This offers researchers the opportunity to image chondrocyte distributions in 3D without specialised synchrotron equipment, enabling investigations such as chondrocyte morphology across grades of cartilage damage, 3D strain mapping techniques such as digital volume correlation to evaluate mechanical properties  in situ , and models for 3D finite element analysis  in silico  simulations. This enables an objective quantification of chondrocyte distribution and morphology in three dimensions allowing greater insight for investigations into studies of cartilage development, degeneration and repair. One such application of our method, is as a means to provide a 3D pattern in the cartilage which, when combined with digital volume correlation, could determine 3D strain gradient measurements enabling potential treatment and repair of cartilage degeneration. Moreover, the method proposed here will allow evaluation of cartilage implanted with tissue engineered scaffolds designed to promote chondral repair, providing valuable insight into the induced regenerative process. The Discussion section of the paper is laced with references to research significance.

How is longer term research significance measured?

Looking beyond writing impact statements within papers, sometimes you’ll want to quantify the long term research significance of your work. For instance when applying for jobs.

The most obvious measure of a study’s long term research significance is the number of citations it receives from future publications. The thinking is that a study which receives more citations will have had more research impact, and therefore significance , than a study which received less citations. Citations can give a broad indication of how useful the work is to other researchers but citations aren’t really a good measure of significance.

Bear in mind that us researchers can be lazy folks and sometimes are simply looking to cite the first paper which backs up one of our claims. You can find studies which receive a lot of citations simply for packaging up the obvious in a form which can be easily found and referenced, for instance by having a catchy or optimised title.

Likewise, research activity varies wildly between fields. Therefore a certain study may have had a big impact on a particular field but receive a modest number of citations, simply because not many other researchers are working in the field.

Nevertheless, citations are a standard measure of significance and for better or worse it remains impressive for someone to be the first author of a publication receiving lots of citations.

Other measures for the research significance of a study include:

  • Accolades: best paper awards at conferences, thesis awards, “most downloaded” titles for articles, press coverage.
  • How much follow-on research the study creates. For instance, part of my PhD involved a novel material initially developed by another PhD student in the lab. That PhD student’s research had unlocked lots of potential new studies and now lots of people in the group were using the same material and developing it for different applications. The initial study may not receive a high number of citations yet long term it generated a lot of research activity.

That covers research significance, but you’ll often want to consider other types of significance for your study and we’ll cover those next.

Statistical Significance

What is the statistical significance of a study.

Often as part of a study you’ll carry out statistical tests and then state the statistical significance of your findings: think p-values eg <0.05. It is useful to describe the outcome of these tests within your report or paper, to give a measure of statistical significance.

Effectively you are trying to show whether the performance of your innovation is actually better than a control or baseline and not just chance. Statistical significance deserves a whole other post so I won’t go into a huge amount of depth here.

Things that make publication in  The BMJ  impossible or unlikely Internal validity/robustness of the study • It had insufficient statistical power, making interpretation difficult; • Lack of statistical power; The British Medical Journal’s guide for authors

Calculating statistical significance isn’t always necessary (or valid) for a study, such as if you have a very small number of samples, but it is a very common requirement for scientific articles.

Writing a journal article? Check the journal’s guide for authors to see what they expect. Generally if you have approximately five or more samples or replicates it makes sense to start thinking about statistical tests. Speak to your supervisor and lab mates for advice, and look at other published articles in your field.

How is statistical significance measured?

Statistical significance is quantified using p-values . Depending on your study design you’ll choose different statistical tests to compute the p-value.

A p-value of 0.05 is a common threshold value. The 0.05 means that there is a 1/20 chance that the difference in performance you’re reporting is just down to random chance.

  • p-values above 0.05 mean that the result isn’t statistically significant enough to be trusted: it is too likely that the effect you’re showing is just luck.
  • p-values less than or equal to 0.05 mean that the result is statistically significant. In other words: unlikely to just be chance, which is usually considered a good outcome.

Low p-values (eg p = 0.001) mean that it is highly unlikely to be random chance (1/1000 in the case of p = 0.001), therefore more statistically significant.

It is important to clarify that, although low p-values mean that your findings are statistically significant, it doesn’t automatically mean that the result is scientifically important. More on that in the next section on research significance.

How to describe the statistical significance of your study, with examples

In the first paper from my PhD I ran some statistical tests to see if different staining techniques (basically dyes) increased how well you could see cells in cow tissue using micro-CT scanning (a 3D imaging technique).

In your methods section you should mention the statistical tests you conducted and then in the results you will have statements such as:

Between mediums for the two scan protocols C/N [contrast to noise ratio] was greater for EtOH than the PBS in both scanning methods (both  p  < 0.0001) with mean differences of 1.243 (95% CI [confidence interval] 0.709 to 1.778) for absorption contrast and 6.231 (95% CI 5.772 to 6.690) for propagation contrast. … Two repeat propagation scans were taken of samples from the PTA-stained groups. No difference in mean C/N was found with either medium: PBS had a mean difference of 0.058 ( p  = 0.852, 95% CI -0.560 to 0.676), EtOH had a mean difference of 1.183 ( p  = 0.112, 95% CI 0.281 to 2.648). From the Results section of my first paper, available here . Square brackets added for this post to aid clarity.

From this text the reader can infer from the first paragraph that there was a statistically significant difference in using EtOH compared to PBS (really small p-value of <0.0001). However, from the second paragraph, the difference between two repeat scans was statistically insignificant for both PBS (p = 0.852) and EtOH (p = 0.112).

By conducting these statistical tests you have then earned your right to make bold statements, such as these from the discussion section:

Propagation phase-contrast increases the contrast of individual chondrocytes [cartilage cells] compared to using absorption contrast. From the Discussion section from the same paper.

Without statistical tests you have no evidence that your results are not just down to random chance.

Beyond describing the statistical significance of a study in the main body text of your work, you can also show it in your figures.

In figures such as bar charts you’ll often see asterisks to represent statistical significance, and “n.s.” to show differences between groups which are not statistically significant. Here is one such figure, with some subplots, from the same paper:

Figure from a paper showing the statistical significance of a study using asterisks

In this example an asterisk (*) between two bars represents p < 0.05. Two asterisks (**) represents p < 0.001 and three asterisks (***) represents p < 0.0001. This should always be stated in the caption of your figure since the values that each asterisk refers to can vary.

Now that we know if a study is showing statistically and research significance, let’s zoom out a little and consider the potential for commercial significance.

Commercial and Industrial Significance

What are commercial and industrial significance.

Moving beyond significance in relation to academia, your research may also have commercial or economic significance.

Simply put:

  • Commercial significance: could the research be commercialised as a product or service? Perhaps the underlying technology described in your study could be licensed to a company or you could even start your own business using it.
  • Industrial significance: more widely than just providing a product which could be sold, does your research provide insights which may affect a whole industry? Such as: revealing insights or issues with current practices, performance gains you don’t want to commercialise (e.g. solar power efficiency), providing suggested frameworks or improvements which could be employed industry-wide.

I’ve grouped these two together because there can certainly be overlap. For instance, perhaps your new technology could be commercialised whilst providing wider improvements for the whole industry.

Commercial and industrial significance are not relevant to most studies, so only write about it if you and your supervisor can think of reasonable routes to your work having an impact in these ways.

How are commercial and industrial significance measured?

Unlike statistical and research significances, the measures of commercial and industrial significance can be much more broad.

Here are some potential measures of significance:

Commercial significance:

  • How much value does your technology bring to potential customers or users?
  • How big is the potential market and how much revenue could the product potentially generate?
  • Is the intellectual property protectable? i.e. patentable, or if not could the novelty be protected with trade secrets: if so publish your method with caution!
  • If commercialised, could the product bring employment to a geographical area?

Industrial significance:

What impact could it have on the industry? For instance if you’re revealing an issue with something, such as unintended negative consequences of a drug , what does that mean for the industry and the public? This could be:

  • Reduced overhead costs
  • Better safety
  • Faster production methods
  • Improved scaleability

How to describe the commercial and industrial significance of a study, with examples

Commercial significance.

If your technology could be commercially viable, and you’ve got an interest in commercialising it yourself, it is likely that you and your university may not want to immediately publish the study in a journal.

You’ll probably want to consider routes to exploiting the technology and your university may have a “technology transfer” team to help researchers navigate the various options.

However, if instead of publishing a paper you’re submitting a thesis or dissertation then it can be useful to highlight the commercial significance of your work. In this instance you could include statements of commercial significance such as:

The measurement technology described in this study provides state of the art performance and could enable the development of low cost devices for aerospace applications. An example of commercial significance I invented for this post

Industrial significance

First, think about the industrial sectors who could benefit from the developments described in your study.

For example if you’re working to improve battery efficiency it is easy to think of how it could lead to performance gains for certain industries, like personal electronics or electric vehicles. In these instances you can describe the industrial significance relatively easily, based off your findings.

For example:

By utilising abundant materials in the described battery fabrication process we provide a framework for battery manufacturers to reduce dependence on rare earth components. Again, an invented example

For other technologies there may well be industrial applications but they are less immediately obvious and applicable. In these scenarios the best you can do is to simply reframe your research significance statement in terms of potential commercial applications in a broad way.

As a reminder: not all studies should address industrial significance, so don’t try to invent applications just for the sake of it!

Societal Significance

What is the societal significance of a study.

The most broad category of significance is the societal impact which could stem from it.

If you’re working in an applied field it may be quite easy to see a route for your research to impact society. For others, the route to societal significance may be less immediate or clear.

Studies can help with big issues facing society such as:

  • Medical applications : vaccines, surgical implants, drugs, improving patient safety. For instance this medical device and drug combination I worked on which has a very direct route to societal significance.
  • Political significance : Your research may provide insights which could contribute towards potential changes in policy or better understanding of issues facing society.
  • Public health : for instance COVID-19 transmission and related decisions.
  • Climate change : mitigation such as more efficient solar panels and lower cost battery solutions, and studying required adaptation efforts and technologies. Also, better understanding around related societal issues, for instance this study on the effects of temperature on hate speech.

How is societal significance measured?

Societal significance at a high level can be quantified by the size of its potential societal effect. Just like a lab risk assessment, you can think of it in terms of probability (or how many people it could help) and impact magnitude.

Societal impact = How many people it could help x the magnitude of the impact

Think about how widely applicable the findings are: for instance does it affect only certain people? Then think about the potential size of the impact: what kind of difference could it make to those people?

Between these two metrics you can get a pretty good overview of the potential societal significance of your research study.

How to describe the societal significance of a study, with examples

Quite often the broad societal significance of your study is what you’re setting the scene for in your Introduction. In addition to describing the existing literature, it is common to for the study’s motivation to touch on its wider impact for society.

For those of us working in healthcare research it is usually pretty easy to see a path towards societal significance.

Our CLOUT model has state-of-the-art performance in mortality prediction, surpassing other competitive NN models and a logistic regression model … Our results show that the risk factors identified by the CLOUT model agree with physicians’ assessment, suggesting that CLOUT could be used in real-world clinicalsettings. Our results strongly support that CLOUT may be a useful tool to generate clinical prediction models, especially among hospitalized and critically ill patient populations. Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation

In other domains the societal significance may either take longer or be more indirect, meaning that it can be more difficult to describe the societal impact.

Even so, here are some examples I’ve found from studies in non-healthcare domains:

We examined food waste as an initial investigation and test of this methodology, and there is clear potential for the examination of not only other policy texts related to food waste (e.g., liability protection, tax incentives, etc.; Broad Leib et al., 2020) but related to sustainable fishing (Worm et al., 2006) and energy use (Hawken, 2017). These other areas are of obvious relevance to climate change… AI-Based Text Analysis for Evaluating Food Waste Policies
The continued development of state-of-the art NLP tools tailored to climate policy will allow climate researchers and policy makers to extract meaningful information from this growing body of text, to monitor trends over time and administrative units, and to identify potential policy improvements. BERT Classification of Paris Agreement Climate Action Plans

Top Tips For Identifying & Writing About the Significance of Your Study

  • Writing a thesis? Describe the significance of your study in the Introduction and the Conclusion .
  • Submitting a paper? Read the journal’s guidelines. If you’re writing a statement of significance for a journal, make sure you read any guidance they give for what they’re expecting.
  • Take a step back from your research and consider your study’s main contributions.
  • Read previously published studies in your field . Use this for inspiration and ideas on how to describe the significance of your own study
  • Discuss the study with your supervisor and potential co-authors or collaborators and brainstorm potential types of significance for it.

Now you’ve finished reading up on the significance of a study you may also like my how-to guide for all aspects of writing your first research paper .

Writing an academic journal paper

I hope that you’ve learned something useful from this article about the significance of a study. If you have any more research-related questions let me know, I’m here to help.

To gain access to my content library you can subscribe below for free:

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)

Related Posts

Graphic of data from experiments written on a notepad with the title "How to manage data"

How to Master Data Management in Research

25th April 2024 27th April 2024

Graphic of a researcher writing, perhaps a thesis title

Thesis Title: Examples and Suggestions from a PhD Grad

23rd February 2024 23rd February 2024

Graphic of a zen-like man meditating, surrounded by graphics of healthy food, sport, sleep and heart-health: all in an effort to stay healthy as a student

How to Stay Healthy as a Student

25th January 2024 25th January 2024

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Notify me of follow-up comments by email.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Privacy Overview

How To Write Significance of the Study (With Examples) 

How To Write Significance of the Study (With Examples) 

Whether you’re writing a research paper or thesis, a portion called Significance of the Study ensures your readers understand the impact of your work. Learn how to effectively write this vital part of your research paper or thesis through our detailed steps, guidelines, and examples.

Related: How to Write a Concept Paper for Academic Research

Table of Contents

What is the significance of the study.

The Significance of the Study presents the importance of your research. It allows you to prove the study’s impact on your field of research, the new knowledge it contributes, and the people who will benefit from it.

Related: How To Write Scope and Delimitation of a Research Paper (With Examples)

Where Should I Put the Significance of the Study?

The Significance of the Study is part of the first chapter or the Introduction. It comes after the research’s rationale, problem statement, and hypothesis.

Related: How to Make Conceptual Framework (with Examples and Templates)

Why Should I Include the Significance of the Study?

The purpose of the Significance of the Study is to give you space to explain to your readers how exactly your research will be contributing to the literature of the field you are studying 1 . It’s where you explain why your research is worth conducting and its significance to the community, the people, and various institutions.

How To Write Significance of the Study: 5 Steps

Below are the steps and guidelines for writing your research’s Significance of the Study.

1. Use Your Research Problem as a Starting Point

Your problem statement can provide clues to your research study’s outcome and who will benefit from it 2 .

Ask yourself, “How will the answers to my research problem be beneficial?”. In this manner, you will know how valuable it is to conduct your study. 

Let’s say your research problem is “What is the level of effectiveness of the lemongrass (Cymbopogon citratus) in lowering the blood glucose level of Swiss mice (Mus musculus)?”

Discovering a positive correlation between the use of lemongrass and lower blood glucose level may lead to the following results:

  • Increased public understanding of the plant’s medical properties;
  • Higher appreciation of the importance of lemongrass  by the community;
  • Adoption of lemongrass tea as a cheap, readily available, and natural remedy to lower their blood glucose level.

Once you’ve zeroed in on the general benefits of your study, it’s time to break it down into specific beneficiaries.

2. State How Your Research Will Contribute to the Existing Literature in the Field

Think of the things that were not explored by previous studies. Then, write how your research tackles those unexplored areas. Through this, you can convince your readers that you are studying something new and adding value to the field.

3. Explain How Your Research Will Benefit Society

In this part, tell how your research will impact society. Think of how the results of your study will change something in your community. 

For example, in the study about using lemongrass tea to lower blood glucose levels, you may indicate that through your research, the community will realize the significance of lemongrass and other herbal plants. As a result, the community will be encouraged to promote the cultivation and use of medicinal plants.

4. Mention the Specific Persons or Institutions Who Will Benefit From Your Study

Using the same example above, you may indicate that this research’s results will benefit those seeking an alternative supplement to prevent high blood glucose levels.

5. Indicate How Your Study May Help Future Studies in the Field

You must also specifically indicate how your research will be part of the literature of your field and how it will benefit future researchers. In our example above, you may indicate that through the data and analysis your research will provide, future researchers may explore other capabilities of herbal plants in preventing different diseases.

Tips and Warnings

  • Think ahead . By visualizing your study in its complete form, it will be easier for you to connect the dots and identify the beneficiaries of your research.
  • Write concisely. Make it straightforward, clear, and easy to understand so that the readers will appreciate the benefits of your research. Avoid making it too long and wordy.
  • Go from general to specific . Like an inverted pyramid, you start from above by discussing the general contribution of your study and become more specific as you go along. For instance, if your research is about the effect of remote learning setup on the mental health of college students of a specific university , you may start by discussing the benefits of the research to society, to the educational institution, to the learning facilitators, and finally, to the students.
  • Seek help . For example, you may ask your research adviser for insights on how your research may contribute to the existing literature. If you ask the right questions, your research adviser can point you in the right direction.
  • Revise, revise, revise. Be ready to apply necessary changes to your research on the fly. Unexpected things require adaptability, whether it’s the respondents or variables involved in your study. There’s always room for improvement, so never assume your work is done until you have reached the finish line.

Significance of the Study Examples

This section presents examples of the Significance of the Study using the steps and guidelines presented above.

Example 1: STEM-Related Research

Research Topic: Level of Effectiveness of the Lemongrass ( Cymbopogon citratus ) Tea in Lowering the Blood Glucose Level of Swiss Mice ( Mus musculus ).

Significance of the Study .

This research will provide new insights into the medicinal benefit of lemongrass ( Cymbopogon citratus ), specifically on its hypoglycemic ability.

Through this research, the community will further realize promoting medicinal plants, especially lemongrass, as a preventive measure against various diseases. People and medical institutions may also consider lemongrass tea as an alternative supplement against hyperglycemia. 

Moreover, the analysis presented in this study will convey valuable information for future research exploring the medicinal benefits of lemongrass and other medicinal plants.  

Example 2: Business and Management-Related Research

Research Topic: A Comparative Analysis of Traditional and Social Media Marketing of Small Clothing Enterprises.

Significance of the Study:

By comparing the two marketing strategies presented by this research, there will be an expansion on the current understanding of the firms on these marketing strategies in terms of cost, acceptability, and sustainability. This study presents these marketing strategies for small clothing enterprises, giving them insights into which method is more appropriate and valuable for them. 

Specifically, this research will benefit start-up clothing enterprises in deciding which marketing strategy they should employ. Long-time clothing enterprises may also consider the result of this research to review their current marketing strategy.

Furthermore, a detailed presentation on the comparison of the marketing strategies involved in this research may serve as a tool for further studies to innovate the current method employed in the clothing Industry.

Example 3: Social Science -Related Research.

Research Topic:  Divide Et Impera : An Overview of How the Divide-and-Conquer Strategy Prevailed on Philippine Political History.

Significance of the Study :

Through the comprehensive exploration of this study on Philippine political history, the influence of the Divide et Impera, or political decentralization, on the political discernment across the history of the Philippines will be unraveled, emphasized, and scrutinized. Moreover, this research will elucidate how this principle prevailed until the current political theatre of the Philippines.

In this regard, this study will give awareness to society on how this principle might affect the current political context. Moreover, through the analysis made by this study, political entities and institutions will have a new approach to how to deal with this principle by learning about its influence in the past.

In addition, the overview presented in this research will push for new paradigms, which will be helpful for future discussion of the Divide et Impera principle and may lead to a more in-depth analysis.

Example 4: Humanities-Related Research

Research Topic: Effectiveness of Meditation on Reducing the Anxiety Levels of College Students.

Significance of the Study: 

This research will provide new perspectives in approaching anxiety issues of college students through meditation. 

Specifically, this research will benefit the following:

 Community – this study spreads awareness on recognizing anxiety as a mental health concern and how meditation can be a valuable approach to alleviating it.

Academic Institutions and Administrators – through this research, educational institutions and administrators may promote programs and advocacies regarding meditation to help students deal with their anxiety issues.

Mental health advocates – the result of this research will provide valuable information for the advocates to further their campaign on spreading awareness on dealing with various mental health issues, including anxiety, and how to stop stigmatizing those with mental health disorders.

Parents – this research may convince parents to consider programs involving meditation that may help the students deal with their anxiety issues.

Students will benefit directly from this research as its findings may encourage them to consider meditation to lower anxiety levels.

Future researchers – this study covers information involving meditation as an approach to reducing anxiety levels. Thus, the result of this study can be used for future discussions on the capabilities of meditation in alleviating other mental health concerns.

Frequently Asked Questions

1. what is the difference between the significance of the study and the rationale of the study.

Both aim to justify the conduct of the research. However, the Significance of the Study focuses on the specific benefits of your research in the field, society, and various people and institutions. On the other hand, the Rationale of the Study gives context on why the researcher initiated the conduct of the study.

Let’s take the research about the Effectiveness of Meditation in Reducing Anxiety Levels of College Students as an example. Suppose you are writing about the Significance of the Study. In that case, you must explain how your research will help society, the academic institution, and students deal with anxiety issues through meditation. Meanwhile, for the Rationale of the Study, you may state that due to the prevalence of anxiety attacks among college students, you’ve decided to make it the focal point of your research work.

2. What is the difference between Justification and the Significance of the Study?

In Justification, you express the logical reasoning behind the conduct of the study. On the other hand, the Significance of the Study aims to present to your readers the specific benefits your research will contribute to the field you are studying, community, people, and institutions.

Suppose again that your research is about the Effectiveness of Meditation in Reducing the Anxiety Levels of College Students. Suppose you are writing the Significance of the Study. In that case, you may state that your research will provide new insights and evidence regarding meditation’s ability to reduce college students’ anxiety levels. Meanwhile, you may note in the Justification that studies are saying how people used meditation in dealing with their mental health concerns. You may also indicate how meditation is a feasible approach to managing anxiety using the analysis presented by previous literature.

3. How should I start my research’s Significance of the Study section?

– This research will contribute… – The findings of this research… – This study aims to… – This study will provide… – Through the analysis presented in this study… – This study will benefit…

Moreover, you may start the Significance of the Study by elaborating on the contribution of your research in the field you are studying.

4. What is the difference between the Purpose of the Study and the Significance of the Study?

The Purpose of the Study focuses on why your research was conducted, while the Significance of the Study tells how the results of your research will benefit anyone.

Suppose your research is about the Effectiveness of Lemongrass Tea in Lowering the Blood Glucose Level of Swiss Mice . You may include in your Significance of the Study that the research results will provide new information and analysis on the medical ability of lemongrass to solve hyperglycemia. Meanwhile, you may include in your Purpose of the Study that your research wants to provide a cheaper and natural way to lower blood glucose levels since commercial supplements are expensive.

5. What is the Significance of the Study in Tagalog?

In Filipino research, the Significance of the Study is referred to as Kahalagahan ng Pag-aaral.

  • Draft your Significance of the Study. Retrieved 18 April 2021, from http://dissertationedd.usc.edu/draft-your-significance-of-the-study.html
  • Regoniel, P. (2015). Two Tips on How to Write the Significance of the Study. Retrieved 18 April 2021, from https://simplyeducate.me/2015/02/09/significance-of-the-study/

Written by Jewel Kyle Fabula

in Career and Education , Juander How

Last Updated May 6, 2023 10:29 AM

what is importance of the study in research

Jewel Kyle Fabula

Jewel Kyle Fabula is a Bachelor of Science in Economics student at the University of the Philippines Diliman. His passion for learning mathematics developed as he competed in some mathematics competitions during his Junior High School years. He loves cats, playing video games, and listening to music.

Browse all articles written by Jewel Kyle Fabula

Copyright Notice

All materials contained on this site are protected by the Republic of the Philippines copyright law and may not be reproduced, distributed, transmitted, displayed, published, or broadcast without the prior written permission of filipiknow.net or in the case of third party materials, the owner of that content. You may not alter or remove any trademark, copyright, or other notice from copies of the content. Be warned that we have already reported and helped terminate several websites and YouTube channels for blatantly stealing our content. If you wish to use filipiknow.net content for commercial purposes, such as for content syndication, etc., please contact us at legal(at)filipiknow(dot)net

StatAnalytica

What Is The Significance Of The Study?

What Is The Significance Of The Study

In the vast landscape of academia, every research study serves a purpose beyond just adding to the pile of existing knowledge. It’s about unraveling mysteries, solving problems, and making the world a little better. But before diving into any research, one crucial question needs answering: What is the significance of the study? Let’s embark on a journey to understand the importance of this question and how it shapes the landscape of research.

What Is The Importance Of Studying?

Table of Contents

Studying is a fundamental aspect of human learning and development, playing a crucial role in various aspects of life. Its importance spans across personal, academic, professional, and societal domains. Here’s a breakdown of why studying is essential:

  • Academic Achievement: Studying is essential for academic success. It helps students grasp concepts, retain information, and demonstrate their understanding through assessments. Whether it’s preparing for exams, completing assignments, or engaging in class discussions, studying forms the backbone of academic achievement.
  • Skill Development: Studying isn’t just about memorizing facts; it’s also about developing critical skills such as problem-solving, analytical thinking, and communication. Through studying, individuals hone these skills, which are invaluable in both academic and real-world settings.
  • Personal Growth: Studying expands one’s horizons and fosters personal growth. It exposes individuals to new ideas, perspectives, and experiences, challenging them to think critically and question assumptions. Additionally, studying encourages self-discipline, time management, and perseverance, all of which are essential qualities for personal success.
  • Career Advancement: In today’s competitive job market, continuous learning is essential for career advancement. Studying allows individuals to acquire new knowledge, skills, and qualifications, making them more competitive and marketable to employers. Whether it’s pursuing higher education, attending professional development courses, or staying updated on industry trends, studying is crucial for career growth.
  • Intellectual Stimulation: Studying stimulates the mind and fosters intellectual curiosity. It allows individuals to delve into topics of interest, explore complex ideas, and engage in meaningful intellectual discourse. This intellectual stimulation not only enriches one’s understanding of the world but also enhances cognitive abilities and overall mental well-being.
  • Societal Contribution: Studying plays a vital role in advancing society as a whole. Through research, innovation, and knowledge dissemination, studying drives progress in various fields, from science and technology to arts and humanities. Additionally, educated individuals are better equipped to contribute positively to their communities, advocate for social change, and address pressing global challenges.

The significance of a study lies in its ability to address a specific problem or question, contribute to existing knowledge, and have practical applications or implications for various stakeholders. Let’s delve into each aspect with relevant examples:

Addressing a Specific Problem or Question

  • Example: A study on the impact of social media usage on mental health among teenagers addresses the pressing concern of rising mental health issues in young people attributed to excessive screen time and online interactions.

Contributing to Existing Knowledge

  • Example: A research project investigating the effects of climate change on biodiversity builds upon previous studies by providing new insights into how changing environmental conditions affect different species and ecosystems. By adding to the body of knowledge on this topic, the study contributes to our understanding of the complex interactions between climate and biodiversity.

Practical Applications or Implications

  • Example: A study on the effectiveness of mindfulness-based interventions in reducing workplace stress offers practical implications for employers and employees alike. By demonstrating the positive impact of mindfulness practices on employee well-being and productivity, the study informs organizational policies and practices aimed at promoting a healthier work environment.

Informing Policy Decisions

  • Example: Research on the economic impact of renewable energy adoption provides policymakers with valuable insights into the potential benefits of transitioning to sustainable energy sources. By quantifying the economic advantages and environmental benefits of renewable energy investments, the study informs policy decisions related to energy planning and resource allocation.

Addressing Social or Health Issues

  • Example: Research into how well vaccination campaigns work to lower the spread of diseases is important for public health. This kind of study looks at how good vaccination plans are at stopping diseases from spreading. It also figures out what stops people from getting vaccinated. With this information, health programs can do better at preventing outbreaks and keeping communities safe from diseases.

Fostering Innovation and Progress

  • Example: Research on the development of artificial intelligence algorithms for medical diagnosis advances technological innovation in healthcare. By harnessing the power of machine learning and data analytics, the study enables more accurate and efficient diagnosis of medical conditions, leading to improved patient outcomes and advancements in medical practice.

What Is The Significance Of The Study And Statement Of The Problem?

The significance of the study and the statement of the problem are two critical components of any research endeavor, as they lay the foundation for the entire study. Let’s explore their significance individually:

Significance of the Study

  • The significance of the study articulates why the research is important and why it matters. It provides justification for conducting the study and highlights its relevance in the broader context of academia, society, or a specific field.
  • Significance is about identifying the value and impact of the research in terms of its potential contributions to knowledge, practical applications, policy implications, or societal relevance.
  • Without a clear understanding of the significance of the study, researchers may struggle to convey the importance of their work to stakeholders, peers, and the broader community.
  • A well-defined significance statement serves as a guiding principle throughout the research process, helping researchers stay focused on the overarching goals and objectives of their study.

Statement of the Problem

  • The statement of the problem defines the specific issue or question that the research seeks to address. It clarifies the scope and boundaries of the study by identifying the key variables, concepts, or phenomena under investigation.
  • The problem statement highlights the gap or deficiency in existing knowledge that the research aims to fill. It identifies the research gap by demonstrating what is currently unknown, unresolved, or underexplored in the literature.
  • A well-crafted problem statement provides a clear and concise description of the research problem, making it easier for readers to understand the purpose and rationale behind the study.
  • By defining the problem upfront, researchers can effectively plan their research design, methodology, and data collection strategies to address the identified research gap.
  • The statement of the problem serves as a roadmap for the research, guiding the selection of research questions, hypotheses, and analytical approaches to be used in the study.

How Do You Write The Significance Of Research?

Writing the significance of research involves clearly articulating why the study is important, relevant, and worthy of attention. Here’s a step-by-step guide on how to write the significance of research:

  • Identify the Problem or Issue

Begin by clearly defining the problem, question, or issue that the research seeks to address. This sets the stage for explaining why the research is necessary.

  • Review Existing Literature

Conduct a thorough review of existing literature in the field to understand what has already been studied and what gaps or limitations exist in current knowledge.

  • Highlight the Gap in Knowledge

Identify the specific gap or deficiency in existing research that the study aims to fill. This could be a lack of research on a particular topic, conflicting findings in the literature, or unanswered questions that need further exploration.

  • Explain the Relevance and Importance

Clearly articulate why the research is important and relevant in the broader context. Consider the potential implications of the research for theory development, practical applications, policy decisions, or societal impact.

  • Demonstrate Potential Contributions

Explain how the research will contribute to advancing knowledge in the field. This could involve providing new insights, validating existing theories, developing innovative methodologies, or addressing practical problems.

  • Consider Stakeholder Perspectives

Identify the stakeholders or audiences who will benefit from the research findings. Consider their perspectives and interests when explaining the significance of the research.

  • Emphasize Practical Applications

Highlight any practical applications or real-world implications of the research. This could include informing policy decisions, improving practices, addressing societal challenges, or benefiting specific industries or communities.

  • Provide Justification for Conducting the Study

Offer a compelling rationale for why the research is worth undertaking. This could involve emphasizing the urgency of the problem, the potential benefits of finding a solution, or the intellectual merit of exploring a novel research question.

  • Be Concise and Clear

Write the significance of research in a clear, concise, and compelling manner. Avoid jargon or technical language that may obscure the message and focus on communicating the importance of the research in accessible terms.

  • Revise and Refine

Review and revise the significance of research to ensure clarity, coherence, and persuasiveness. Solicit feedback from peers, mentors, or colleagues to refine your argument and strengthen your rationale.

In the ever-evolving world of research, the significance of each study lies in its ability to push the boundaries of knowledge, address pressing issues, and make a meaningful impact on the world.

By understanding why a study matters, researchers can ensure that their work contributes meaningfully to the collective pursuit of knowledge and progress. 

So the next time you embark on a research journey, remember to ask yourself: What is the significance of the study? The answer could shape the course of history.

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

How To Write a Significance Statement for Your Research

A significance statement is an essential part of a research paper. It explains the importance and relevance of the study to the academic community and the world at large. To write a compelling significance statement, identify the research problem, explain why it is significant, provide evidence of its importance, and highlight its potential impact on future research, policy, or practice. A well-crafted significance statement should effectively communicate the value of the research to readers and help them understand why it matters.

Updated on May 4, 2023

a life sciences researcher writing a significance statement for her researcher

A significance statement is a clearly stated, non-technical paragraph that explains why your research matters. It’s central in making the public aware of and gaining support for your research.

Write it in jargon-free language that a reader from any field can understand. Well-crafted, easily readable significance statements can improve your chances for citation and impact and make it easier for readers outside your field to find and understand your work.

Read on for more details on what a significance statement is, how it can enhance the impact of your research, and, of course, how to write one.

What is a significance statement in research?

A significance statement answers the question: How will your research advance scientific knowledge and impact society at large (as well as specific populations)? 

You might also see it called a “Significance of the study” statement. Some professional organizations in the STEM sciences and social sciences now recommended that journals in their disciplines make such statements a standard feature of each published article. Funding agencies also consider “significance” a key criterion for their awards.

Read some examples of significance statements from the Proceedings of the National Academy of Sciences (PNAS) here .

Depending upon the specific journal or funding agency’s requirements, your statement may be around 100 words and answer these questions:

1. What’s the purpose of this research?

2. What are its key findings?

3. Why do they matter?

4. Who benefits from the research results?

Readers will want to know: “What is interesting or important about this research?” Keep asking yourself that question.

Where to place the significance statement in your manuscript

Most journals ask you to place the significance statement before or after the abstract, so check with each journal’s guide. 

This article is focused on the formal significance statement, even though you’ll naturally highlight your project’s significance elsewhere in your manuscript. (In the introduction, you’ll set out your research aims, and in the conclusion, you’ll explain the potential applications of your research and recommend areas for future research. You’re building an overall case for the value of your work.)

Developing the significance statement

The main steps in planning and developing your statement are to assess the gaps to which your study contributes, and then define your work’s implications and impact.

Identify what gaps your study fills and what it contributes

Your literature review was a big part of how you planned your study. To develop your research aims and objectives, you identified gaps or unanswered questions in the preceding research and designed your study to address them.

Go back to that lit review and look at those gaps again. Review your research proposal to refresh your memory. Ask:

  • How have my research findings advanced knowledge or provided notable new insights?
  • How has my research helped to prove (or disprove) a hypothesis or answer a research question?
  • Why are those results important?

Consider your study’s potential impact at two levels: 

  • What contribution does my research make to my field?
  • How does it specifically contribute to knowledge; that is, who will benefit the most from it?

Define the implications and potential impact

As you make notes, keep the reasons in mind for why you are writing this statement. Whom will it impact, and why?

The first audience for your significance statement will be journal reviewers when you submit your article for publishing. Many journals require one for manuscript submissions. Study the author’s guide of your desired journal to see its criteria ( here’s an example ). Peer reviewers who can clearly understand the value of your research will be more likely to recommend publication. 

Second, when you apply for funding, your significance statement will help justify why your research deserves a grant from a funding agency . The U.S. National Institutes of Health (NIH), for example, wants to see that a project will “exert a sustained, powerful influence on the research field(s) involved.” Clear, simple language is always valuable because not all reviewers will be specialists in your field.

Third, this concise statement about your study’s importance can affect how potential readers engage with your work. Science journalists and interested readers can promote and spread your work, enhancing your reputation and influence. Help them understand your work.

You’re now ready to express the importance of your research clearly and concisely. Time to start writing.

How to write a significance statement: Key elements 

When drafting your statement, focus on both the content and writing style.

  • In terms of content, emphasize the importance, timeliness, and relevance of your research results. 
  • Write the statement in plain, clear language rather than scientific or technical jargon. Your audience will include not just your fellow scientists but also non-specialists like journalists, funding reviewers, and members of the public. 

Follow the process we outline below to build a solid, well-crafted, and informative statement. 

Get started

Some suggested opening lines to help you get started might be:

  • The implications of this study are… 
  • Building upon previous contributions, our study moves the field forward because…
  • Our study furthers previous understanding about…

Alternatively, you may start with a statement about the phenomenon you’re studying, leading to the problem statement.

Include these components

Next, draft some sentences that include the following elements. A good example, which we’ll use here, is a significance statement by Rogers et al. (2022) published in the Journal of Climate .

1. Briefly situate your research study in its larger context . Start by introducing the topic, leading to a problem statement. Here’s an example:

‘Heatwaves pose a major threat to human health, ecosystems, and human systems.”

2. State the research problem.

“Simultaneous heatwaves affecting multiple regions can exacerbate such threats. For example, multiple food-producing regions simultaneously undergoing heat-related crop damage could drive global food shortages.”

3. Tell what your study does to address it.

“We assess recent changes in the occurrence of simultaneous large heatwaves.”

4. Provide brief but powerful evidence to support the claims your statement is making , Use quantifiable terms rather than vague ones (e.g., instead of “This phenomenon is happening now more than ever,” see below how Rogers et al. (2022) explained it). This evidence intensifies and illustrates the problem more vividly:

“Such simultaneous heatwaves are 7 times more likely now than 40 years ago. They are also hotter and affect a larger area. Their increasing occurrence is mainly driven by warming baseline temperatures due to global heating, but changes in weather patterns contribute to disproportionate increases over parts of Europe, the eastern United States, and Asia.

5. Relate your study’s impact to the broader context , starting with its general significance to society—then, when possible, move to the particular as you name specific applications of your research findings. (Our example lacks this second level of application.) 

“Better understanding the drivers of weather pattern changes is therefore important for understanding future concurrent heatwave characteristics and their impacts.”

Refine your English

Don’t understate or overstate your findings – just make clear what your study contributes. When you have all the elements in place, review your draft to simplify and polish your language. Even better, get an expert AJE edit . Be sure to use “plain” language rather than academic jargon.

  • Avoid acronyms, scientific jargon, and technical terms 
  • Use active verbs in your sentence structure rather than passive voice (e.g., instead of “It was found that...”, use “We found...”)
  • Make sentence structures short, easy to understand – readable
  • Try to address only one idea in each sentence and keep sentences within 25 words (15 words is even better)
  • Eliminate nonessential words and phrases (“fluff” and wordiness)

Enhance your significance statement’s impact

Always take time to review your draft multiple times. Make sure that you:

  • Keep your language focused
  • Provide evidence to support your claims
  • Relate the significance to the broader research context in your field

After revising your significance statement, request feedback from a reading mentor about how to make it even clearer. If you’re not a native English speaker, seek help from a native-English-speaking colleague or use an editing service like AJE to make sure your work is at a native level.

Understanding the significance of your study

Your readers may have much less interest than you do in the specific details of your research methods and measures. Many readers will scan your article to learn how your findings might apply to them and their own research. 

Different types of significance

Your findings may have different types of significance, relevant to different populations or fields of study for different reasons. You can emphasize your work’s statistical, clinical, or practical significance. Editors or reviewers in the social sciences might also evaluate your work’s social or political significance.

Statistical significance means that the results are unlikely to have occurred randomly. Instead, it implies a true cause-and-effect relationship.

Clinical significance means that your findings are applicable for treating patients and improving quality of life.

Practical significance is when your research outcomes are meaningful to society at large, in the “real world.” Practical significance is usually measured by the study’s  effect size . Similarly, evaluators may attribute social or political significance to research that addresses “real and immediate” social problems.

The AJE Team

The AJE Team

See our "Privacy Policy"

  • U.S. Department of Health & Human Services

National Institutes of Health (NIH) - Turning Discovery into Health

  • Virtual Tour
  • Staff Directory
  • En Español

You are here

Science, health, and public trust.

September 8, 2021

Explaining How Research Works

Understanding Research infographic

We’ve heard “follow the science” a lot during the pandemic. But it seems science has taken us on a long and winding road filled with twists and turns, even changing directions at times. That’s led some people to feel they can’t trust science. But when what we know changes, it often means science is working.

Expaling How Research Works Infographic en español

Explaining the scientific process may be one way that science communicators can help maintain public trust in science. Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle.

Questions about how the world works are often investigated on many different levels. For example, scientists can look at the different atoms in a molecule, cells in a tissue, or how different tissues or systems affect each other. Researchers often must choose one or a finite number of ways to investigate a question. It can take many different studies using different approaches to start piecing the whole picture together.

Sometimes it might seem like research results contradict each other. But often, studies are just looking at different aspects of the same problem. Researchers can also investigate a question using different techniques or timeframes. That may lead them to arrive at different conclusions from the same data.

Using the data available at the time of their study, scientists develop different explanations, or models. New information may mean that a novel model needs to be developed to account for it. The models that prevail are those that can withstand the test of time and incorporate new information. Science is a constantly evolving and self-correcting process.

Scientists gain more confidence about a model through the scientific process. They replicate each other’s work. They present at conferences. And papers undergo peer review, in which experts in the field review the work before it can be published in scientific journals. This helps ensure that the study is up to current scientific standards and maintains a level of integrity. Peer reviewers may find problems with the experiments or think different experiments are needed to justify the conclusions. They might even offer new ways to interpret the data.

It’s important for science communicators to consider which stage a study is at in the scientific process when deciding whether to cover it. Some studies are posted on preprint servers for other scientists to start weighing in on and haven’t yet been fully vetted. Results that haven't yet been subjected to scientific scrutiny should be reported on with care and context to avoid confusion or frustration from readers.

We’ve developed a one-page guide, "How Research Works: Understanding the Process of Science" to help communicators put the process of science into perspective. We hope it can serve as a useful resource to help explain why science changes—and why it’s important to expect that change. Please take a look and share your thoughts with us by sending an email to  [email protected].

Below are some additional resources:

  • Discoveries in Basic Science: A Perfectly Imperfect Process
  • When Clinical Research Is in the News
  • What is Basic Science and Why is it Important?
  • ​ What is a Research Organism?
  • What Are Clinical Trials and Studies?
  • Basic Research – Digital Media Kit
  • Decoding Science: How Does Science Know What It Knows? (NAS)
  • Can Science Help People Make Decisions ? (NAS)

Connect with Us

  • More Social Media from NIH
  • Link to facebook
  • Link to linkedin
  • Link to twitter
  • Link to youtube
  • Writing Tips

How to Discuss the Significance of Your Research

How to Discuss the Significance of Your Research

  • 6-minute read
  • 10th April 2023

Introduction

Research papers can be a real headache for college students . As a student, your research needs to be credible enough to support your thesis statement. You must also ensure you’ve discussed the literature review, findings, and results.

However, it’s also important to discuss the significance of your research . Your potential audience will care deeply about this. It will also help you conduct your research. By knowing the impact of your research, you’ll understand what important questions to answer.

If you’d like to know more about the impact of your research, read on! We’ll talk about why it’s important and how to discuss it in your paper.

What Is the Significance of Research?

This is the potential impact of your research on the field of study. It includes contributions from new knowledge from the research and those who would benefit from it. You should present this before conducting research, so you need to be aware of current issues associated with the thesis before discussing the significance of the research.

Why Does the Significance of Research Matter?

Potential readers need to know why your research is worth pursuing. Discussing the significance of research answers the following questions:

●  Why should people read your research paper ?

●  How will your research contribute to the current knowledge related to your topic?

●  What potential impact will it have on the community and professionals in the field?

Not including the significance of research in your paper would be like a knight trying to fight a dragon without weapons.

Where Do I Discuss the Significance of Research in My Paper?

As previously mentioned, the significance of research comes before you conduct it. Therefore, you should discuss the significance of your research in the Introduction section. Your reader should know the problem statement and hypothesis beforehand.

Steps to Discussing the Significance of Your Research

Discussing the significance of research might seem like a loaded question, so we’ve outlined some steps to help you tackle it.

Step 1: The Research Problem

The problem statement can reveal clues about the outcome of your research. Your research should provide answers to the problem, which is beneficial to all those concerned. For example, imagine the problem statement is, “To what extent do elementary and high school teachers believe cyberbullying affects student performance?”

Learning teachers’ opinions on the effects of cyberbullying on student performance could result in the following:

●  Increased public awareness of cyberbullying in elementary and high schools

●  Teachers’ perceptions of cyberbullying negatively affecting student performance

Find this useful?

Subscribe to our newsletter and get writing tips from our editors straight to your inbox.

●  Whether cyberbullying is more prevalent in elementary or high schools

The research problem will steer your research in the right direction, so it’s best to start with the problem statement.

Step 2: Existing Literature in the Field

Think about current information on your topic, and then find out what information is missing. Are there any areas that haven’t been explored? Your research should add new information to the literature, so be sure to state this in your discussion. You’ll need to know the current literature on your topic anyway, as this is part of your literature review section .

Step 3: Your Research’s Impact on Society

Inform your readers about the impact on society your research could have on it. For example, in the study about teachers’ opinions on cyberbullying, you could mention that your research will educate the community about teachers’ perceptions of cyberbullying as it affects student performance. As a result, the community will know how many teachers believe cyberbullying affects student performance.

You can also mention specific individuals and institutions that would benefit from your study. In the example of cyberbullying, you might indicate that school principals and superintendents would benefit from your research.

Step 4: Future Studies in the Field

Next, discuss how the significance of your research will benefit future studies, which is especially helpful for future researchers in your field. In the example of cyberbullying affecting student performance, your research could provide further opportunities to assess teacher perceptions of cyberbullying and its effects on students from larger populations. This prepares future researchers for data collection and analysis.

Discussing the significance of your research may sound daunting when you haven’t conducted it yet. However, an audience might not read your paper if they don’t know the significance of the research. By focusing on the problem statement and the research benefits to society and future studies, you can convince your audience of the value of your research.

Remember that everything you write doesn’t have to be set in stone. You can go back and tweak the significance of your research after conducting it. At first, you might only include general contributions of your study, but as you research, your contributions will become more specific.

You should have a solid understanding of your topic in general, its associated problems, and the literature review before tackling the significance of your research. However, you’re not trying to prove your thesis statement at this point. The significance of research just convinces the audience that your study is worth reading.

Finally, we always recommend seeking help from your research advisor whenever you’re struggling with ideas. For a more visual idea of how to discuss the significance of your research, we suggest checking out this video .

1. Do I need to do my research before discussing its significance?

No, you’re discussing the significance of your research before you conduct it. However, you should be knowledgeable about your topic and the related literature.

2. Is the significance of research the same as its implications?

No, the research implications are potential questions from your study that justify further exploration, which comes after conducting the research.

 3. Discussing the significance of research seems overwhelming. Where should I start?

We recommend the problem statement as a starting point, which reveals clues to the potential outcome of your research.

4. How can I get feedback on my discussion of the significance of my research?

Our proofreading experts can help. They’ll check your writing for grammar, punctuation errors, spelling, and concision. Submit a 500-word document for free today!

Share this article:

Post A New Comment

Got content that needs a quick turnaround? Let us polish your work. Explore our editorial business services.

3-minute read

How to Insert a Text Box in a Google Doc

Google Docs is a powerful collaborative tool, and mastering its features can significantly enhance your...

2-minute read

How to Cite the CDC in APA

If you’re writing about health issues, you might need to reference the Centers for Disease...

5-minute read

Six Product Description Generator Tools for Your Product Copy

Introduction If you’re involved with ecommerce, you’re likely familiar with the often painstaking process of...

What Is a Content Editor?

Are you interested in learning more about the role of a content editor and the...

4-minute read

The Benefits of Using an Online Proofreading Service

Proofreading is important to ensure your writing is clear and concise for your readers. Whether...

6 Online AI Presentation Maker Tools

Creating presentations can be time-consuming and frustrating. Trying to construct a visually appealing and informative...

Logo Harvard University

Make sure your writing is the best it can be with our expert English proofreading and editing.

We use cookies on this site to enhance your experience

By clicking any link on this page you are giving your consent for us to set cookies.

A link to reset your password has been sent to your email.

Back to login

We need additional information from you. Please complete your profile first before placing your order.

Thank you. payment completed., you will receive an email from us to confirm your registration, please click the link in the email to activate your account., there was error during payment, orcid profile found in public registry, download history, writing the significance of a study.

  • Charlesworth Author Services
  • 20 July, 2022

The significance of a study is its importance . It refers to the contribution(s) to and impact of the study on a research field. The significance also signals who benefits from the research findings and how.

Purpose of writing the significance of a study

A study’s significance should spark the interest of the reader. Researchers will be able to appreciate your work better when they understand the relevance and its (potential) impact. Peer reviewers also assess the significance of the work, which will influence the decision made (acceptance/rejection) on the manuscript. 

Sections in which the significance of the study is written

Introduction.

In the Introduction of your paper, the significance appears where you talk about the potential importance and impact of the study. It should flow naturally from the problem , aims and objectives, and rationale .

The significance is described in more detail in the concluding paragraph(s) of the Discussion or the dedicated Conclusions section. Here, you put the findings into perspective and outline the contributions of the findings in terms of implications and applications.

The significance may or may not appear in the abstract . When it does, it is written in the concluding lines of the abstract.

Significance vs. other introductory elements of your paper

In the Introduction…

  • The problem statement outlines the concern that needs to be addressed.
  • The research aim describes the purpose of the study.
  • The objectives indicate how that aim will be achieved.
  • The rationale explains why you are performing the study.
  • The significance tells the reader how the findings affect the topic/broad field. In other words, the significance is about how much the findings matter.

How to write the significance of the study

A good significance statement may be written in different ways. The approach to writing it also depends on the study area. In the arts and humanities , the significance statement might be longer and more descriptive. In applied sciences , it might be more direct.

a. Suggested sequence for writing the significance statement

  • Think of the gaps your study is setting out to address.
  • Look at your research from general and specific angles in terms of its (potential) contribution .
  • Once you have these points ready, start writing them, connecting them to your study as a whole.

b. Some ways to begin your statement(s) of significance

Here are some opening lines to build on:

  • The particular significance of this study lies in the… 
  • We argue that this study moves the field forward because…
  • This study makes some important contributions to…
  • Our findings deepen the current understanding about…

c. Don’ts of writing a significance statement

  • Don’t make it too long .
  • Don’t repeat any information that has been presented in other sections.
  • Don’t overstate or exaggerat e the importance; it should match your actual findings.

Example of significance of a study

Note the significance statements highlighted in the following fictional study.

Significance in the Introduction

The effects of Miyawaki forests on local biodiversity in urban housing complexes remain poorly understood. No formal studies on negative impacts on insect activity, populations or diversity have been undertaken thus far. In this study, we compared the effects that Miyawaki forests in urban dwellings have on local pollinator activity. The findings of this study will help improve the design of this afforestation technique in a way that balances local fauna, particularly pollinators, which are highly sensitive to microclimatic changes.

Significance in the Conclusion

[…] The findings provide valuable insights for guiding and informing Miyawaki afforestation in urban dwellings. We demonstrate that urban planning and landscaping policies need to consider potential declines.

A study’s significance usually appears at the end of the Introduction and in the Conclusion to describe the importance of the research findings. A strong and clear significance statement will pique the interest of readers, as well as that of relevant stakeholders.

Maximise your publication success with Charlesworth Author Services.

Charlesworth Author Services, a trusted brand supporting the world’s leading academic publishers, institutions and authors since 1928.

To know more about our services, visit: Our Services

Share with your colleagues

Related articles.

what is importance of the study in research

How to write an Introduction to an academic article

Charlesworth Author Services 17/08/2020 00:00:00

what is importance of the study in research

Writing an effective Discussion section in a scientific paper

Charlesworth Author Services 27/10/2021 00:00:00

what is importance of the study in research

How to write the Conclusion section of a scientific article

Charlesworth Author Services 10/06/2022 00:00:00

Related webinars

what is importance of the study in research

Bitesize Webinar: How to write and structure your academic article for publication: Module 4: Prepare to write your academic paper

Charlesworth Author Services 04/03/2021 00:00:00

what is importance of the study in research

Bitesize Webinar: How to write and structure your academic article for publication: Module 7: Write a strong theoretical framework section

Charlesworth Author Services 05/03/2021 00:00:00

what is importance of the study in research

Bitesize Webinar: How to write and structure your academic article for publication: Module 8: Write a strong methods section

what is importance of the study in research

Bitesize Webinar: How to write and structure your academic article for publication: Module 9:Write a strong results and discussion section

what is importance of the study in research

How to write the Rationale for your research

Charlesworth Author Services 19/11/2021 00:00:00

what is importance of the study in research

How to write the Statement of a Problem

what is importance of the study in research

Developing and framing Research Objectives

Charlesworth Author Services 23/03/2022 00:00:00

2.1 Why Is Research Important?

Learning objectives.

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure 2.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student's acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children's development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

Link to Learning

Watch this video about early childhood program effectiveness to learn how scientists evaluate effectiveness and how best to invest money into programs that are most effective.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine that your sister, Maria, expresses concern about her two-year-old child, Umberto. Umberto does not speak as much or as clearly as the other children in his daycare or others in the family. Umberto's pediatrician undertakes some screening and recommends an evaluation by a speech pathologist, but does not refer Maria to any other specialists. Maria is concerned that Umberto's speech delays are signs of a developmental disorder, but Umberto's pediatrician does not; she sees indications of differences in Umberto's jaw and facial muscles. Hearing this, you do some internet searches, but you are overwhelmed by the breadth of information and the wide array of sources. You see blog posts, top-ten lists, advertisements from healthcare providers, and recommendations from several advocacy organizations. Why are there so many sites? Which are based in research, and which are not?

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

NOTABLE RESEARCHERS

Psychological research has a long history involving important figures from diverse backgrounds. While the introductory chapter discussed several researchers who made significant contributions to the discipline, there are many more individuals who deserve attention in considering how psychology has advanced as a science through their work ( Figure 2.3 ). For instance, Margaret Floy Washburn (1871–1939) was the first woman to earn a PhD in psychology. Her research focused on animal behavior and cognition (Margaret Floy Washburn, PhD, n.d.). Mary Whiton Calkins (1863–1930) was a preeminent first-generation American psychologist who opposed the behaviorist movement, conducted significant research into memory, and established one of the earliest experimental psychology labs in the United States (Mary Whiton Calkins, n.d.).

Francis Sumner (1895–1954) was the first African American to receive a PhD in psychology in 1920. His dissertation focused on issues related to psychoanalysis. Sumner also had research interests in racial bias and educational justice. Sumner was one of the founders of Howard University’s department of psychology, and because of his accomplishments, he is sometimes referred to as the “Father of Black Psychology.” Thirteen years later, Inez Beverly Prosser (1895–1934) became the first African American woman to receive a PhD in psychology. Prosser’s research highlighted issues related to education in segregated versus integrated schools, and ultimately, her work was very influential in the hallmark Brown v. Board of Education Supreme Court ruling that segregation of public schools was unconstitutional (Ethnicity and Health in America Series: Featured Psychologists, n.d.).

Although the establishment of psychology’s scientific roots occurred first in Europe and the United States, it did not take much time until researchers from around the world began to establish their own laboratories and research programs. For example, some of the first experimental psychology laboratories in South America were founded by Horatio Piñero (1869–1919) at two institutions in Buenos Aires, Argentina (Godoy & Brussino, 2010). In India, Gunamudian David Boaz (1908–1965) and Narendra Nath Sen Gupta (1889–1944) established the first independent departments of psychology at the University of Madras and the University of Calcutta, respectively. These developments provided an opportunity for Indian researchers to make important contributions to the field (Gunamudian David Boaz, n.d.; Narendra Nath Sen Gupta, n.d.).

When the American Psychological Association (APA) was first founded in 1892, all of the members were White males (Women and Minorities in Psychology, n.d.). However, by 1905, Mary Whiton Calkins was elected as the first female president of the APA, and by 1946, nearly one-quarter of American psychologists were female. Psychology became a popular degree option for students enrolled in the nation’s historically Black higher education institutions, increasing the number of Black Americans who went on to become psychologists. Given demographic shifts occurring in the United States and increased access to higher educational opportunities among historically underrepresented populations, there is reason to hope that the diversity of the field will increasingly match the larger population, and that the research contributions made by the psychologists of the future will better serve people of all backgrounds (Women and Minorities in Psychology, n.d.).

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested in the real world; in inductive reasoning , real-world observations lead to new ideas ( Figure 2.4 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure 2.5 .

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( Figure 2.6 ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/2-1-why-is-research-important

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

what is importance of the study in research

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

16k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Science Resource Online

What Is the Importance of Research? 5 Reasons Why Research is Critical

by Logan Bessant | Nov 16, 2021 | Science

What Is the Importance of Research? 5 Reasons Why Research is Critical

Most of us appreciate that research is a crucial part of medical advancement. But what exactly is the importance of research? In short, it is critical in the development of new medicines as well as ensuring that existing treatments are used to their full potential. 

Research can bridge knowledge gaps and change the way healthcare practitioners work by providing solutions to previously unknown questions.

In this post, we’ll discuss the importance of research and its impact on medical breakthroughs.  

The Importance Of Health Research

The purpose of studying is to gather information and evidence, inform actions, and contribute to the overall knowledge of a certain field. None of this is possible without research. 

Understanding how to conduct research and the importance of it may seem like a very simple idea to some, but in reality, it’s more than conducting a quick browser search and reading a few chapters in a textbook. 

No matter what career field you are in, there is always more to learn. Even for people who hold a Doctor of Philosophy (PhD) in their field of study, there is always some sort of unknown that can be researched. Delving into this unlocks the unknowns, letting you explore the world from different perspectives and fueling a deeper understanding of how the universe works.

To make things a little more specific, this concept can be clearly applied in any healthcare scenario. Health research has an incredibly high value to society as it provides important information about disease trends and risk factors, outcomes of treatments, patterns of care, and health care costs and use. All of these factors as well as many more are usually researched through a clinical trial. 

What Is The Importance Of Clinical Research?

Clinical trials are a type of research that provides information about a new test or treatment. They are usually carried out to find out what, or if, there are any effects of these procedures or drugs on the human body. 

All legitimate clinical trials are carefully designed, reviewed and completed, and need to be approved by professionals before they can begin. They also play a vital part in the advancement of medical research including:

  • Providing new and good information on which types of drugs are more effective.  
  • Bringing new treatments such as medicines, vaccines and devices into the field. 
  • Testing the safety and efficacy of a new drug before it is brought to market and used in clinical practice.
  • Giving the opportunity for more effective treatments to benefit millions of lives both now and in the future. 
  • Enhancing health, lengthening life, and reducing the burdens of illness and disability. 

This all plays back to clinical research as it opens doors to advancing prevention, as well as providing treatments and cures for diseases and disabilities. Clinical trial volunteer participants are essential to this progress which further supports the need for the importance of research to be well-known amongst healthcare professionals, students and the general public. 

The image shows a researchers hand holding a magnifying glass to signify the importance of research.

Five Reasons Why Research is Critical

Research is vital for almost everyone irrespective of their career field. From doctors to lawyers to students to scientists, research is the key to better work. 

  • Increases quality of life

 Research is the backbone of any major scientific or medical breakthrough. None of the advanced treatments or life-saving discoveries used to treat patients today would be available if it wasn’t for the detailed and intricate work carried out by scientists, doctors and healthcare professionals over the past decade. 

This improves quality of life because it can help us find out important facts connected to the researched subject. For example, universities across the globe are now studying a wide variety of things from how technology can help breed healthier livestock, to how dance can provide long-term benefits to people living with Parkinson’s. 

For both of these studies, quality of life is improved. Farmers can use technology to breed healthier livestock which in turn provides them with a better turnover, and people who suffer from Parkinson’s disease can find a way to reduce their symptoms and ease their stress. 

Research is a catalyst for solving the world’s most pressing issues. Even though the complexity of these issues evolves over time, they always provide a glimmer of hope to improving lives and making processes simpler. 

  • Builds up credibility 

People are willing to listen and trust someone with new information on one condition – it’s backed up. And that’s exactly where research comes in. Conducting studies on new and unfamiliar subjects, and achieving the desired or expected outcome, can help people accept the unknown.

However, this goes without saying that your research should be focused on the best sources. It is easy for people to poke holes in your findings if your studies have not been carried out correctly, or there is no reliable data to back them up. 

This way once you have done completed your research, you can speak with confidence about your findings within your field of study. 

  • Drives progress forward 

It is with thanks to scientific research that many diseases once thought incurable, now have treatments. For example, before the 1930s, anyone who contracted a bacterial infection had a high probability of death. There simply was no treatment for even the mildest of infections as, at the time, it was thought that nothing could kill bacteria in the gut.

When antibiotics were discovered and researched in 1928, it was considered one of the biggest breakthroughs in the medical field. This goes to show how much research drives progress forward, and how it is also responsible for the evolution of technology . 

Today vaccines, diagnoses and treatments can all be simplified with the progression of medical research, making us question just what research can achieve in the future. 

  • Engages curiosity 

The acts of searching for information and thinking critically serve as food for the brain, allowing our inherent creativity and logic to remain active. Aside from the fact that this curiosity plays such a huge part within research, it is also proven that exercising our minds can reduce anxiety and our chances of developing mental illnesses in the future. 

Without our natural thirst and our constant need to ask ‘why?’ and ‘how?’ many important theories would not have been put forward and life-changing discoveries would not have been made. The best part is that the research process itself rewards this curiosity. 

Research opens you up to different opinions and new ideas which can take a proposed question and turn into a real-life concept. It also builds discerning and analytical skills which are always beneficial in many career fields – not just scientific ones. 

  • Increases awareness 

The main goal of any research study is to increase awareness, whether it’s contemplating new concepts with peers from work or attracting the attention of the general public surrounding a certain issue. 

Around the globe, research is used to help raise awareness of issues like climate change, racial discrimination, and gender inequality. Without consistent and reliable studies to back up these issues, it would be hard to convenience people that there is a problem that needs to be solved in the first place. 

The problem is that social media has become a place where fake news spreads like a wildfire, and with so many incorrect facts out there it can be hard to know who to trust. Assessing the integrity of the news source and checking for similar news on legitimate media outlets can help prove right from wrong. 

This can pinpoint fake research articles and raises awareness of just how important fact-checking can be. 

The Importance Of Research To Students

It is not a hidden fact that research can be mentally draining, which is why most students avoid it like the plague. But the matter of fact is that no matter which career path you choose to go down, research will inevitably be a part of it. 

But why is research so important to students ? The truth is without research, any intellectual growth is pretty much impossible. It acts as a knowledge-building tool that can guide you up to the different levels of learning. Even if you are an expert in your field, there is always more to uncover, or if you are studying an entirely new topic, research can help you build a unique perspective about it.

For example, if you are looking into a topic for the first time, it might be confusing knowing where to begin. Most of the time you have an overwhelming amount of information to sort through whether that be reading through scientific journals online or getting through a pile of textbooks. Research helps to narrow down to the most important points you need so you are able to find what you need to succeed quickly and easily. 

It can also open up great doors in the working world. Employers, especially those in the scientific and medical fields, are always looking for skilled people to hire. Undertaking research and completing studies within your academic phase can show just how multi-skilled you are and give you the resources to tackle any tasks given to you in the workplace. 

The Importance Of Research Methodology

There are many different types of research that can be done, each one with its unique methodology and features that have been designed to use in specific settings. 

When showing your research to others, they will want to be guaranteed that your proposed inquiry needs asking, and that your methodology is equipt to answer your inquiry and will convey the results you’re looking for.

That’s why it’s so important to choose the right methodology for your study. Knowing what the different types of research are and what each of them focuses on can allow you to plan your project to better utilise the most appropriate methodologies and techniques available. Here are some of the most common types:

  • Theoretical Research: This attempts to answer a question based on the unknown. This could include studying phenomena or ideas whose conclusions may not have any immediate real-world application. Commonly used in physics and astronomy applications.
  • Applied Research: Mainly for development purposes, this seeks to solve a practical problem that draws on theory to generate practical scientific knowledge. Commonly used in STEM and medical fields. 
  • Exploratory Research: Used to investigate a problem that is not clearly defined, this type of research can be used to establish cause-and-effect relationships. It can be applied in a wide range of fields from business to literature. 
  • Correlational Research: This identifies the relationship between two or more variables to see if and how they interact with each other. Very commonly used in psychological and statistical applications. 

The Importance Of Qualitative Research

This type of research is most commonly used in scientific and social applications. It collects, compares and interprets information to specifically address the “how” and “why” research questions. 

Qualitative research allows you to ask questions that cannot be easily put into numbers to understand human experience because you’re not limited by survey instruments with a fixed set of possible responses.

Information can be gathered in numerous ways including interviews, focus groups and ethnographic research which is then all reported in the language of the informant instead of statistical analyses. 

This type of research is important because they do not usually require a hypothesis to be carried out. Instead, it is an open-ended research approach that can be adapted and changed while the study is ongoing. This enhances the quality of the data and insights generated and creates a much more unique set of data to analyse. 

The Process Of Scientific Research

No matter the type of research completed, it will be shared and read by others. Whether this is with colleagues at work, peers at university, or whilst it’s being reviewed and repeated during secondary analysis.

A reliable procedure is necessary in order to obtain the best information which is why it’s important to have a plan. Here are the six basic steps that apply in any research process. 

  • Observation and asking questions: Seeing a phenomenon and asking yourself ‘How, What, When, Who, Which, Why, or Where?’. It is best that these questions are measurable and answerable through experimentation. 
  • Gathering information: Doing some background research to learn what is already known about the topic, and what you need to find out. 
  • Forming a hypothesis: Constructing a tentative statement to study.
  • Testing the hypothesis: Conducting an experiment to test the accuracy of your statement. This is a way to gather data about your predictions and should be easy to repeat. 
  • Making conclusions: Analysing the data from the experiment(s) and drawing conclusions about whether they support or contradict your hypothesis. 
  • Reporting: Presenting your findings in a clear way to communicate with others. This could include making a video, writing a report or giving a presentation to illustrate your findings. 

Although most scientists and researchers use this method, it may be tweaked between one study and another. Skipping or repeating steps is common within, however the core principles of the research process still apply.

By clearly explaining the steps and procedures used throughout the study, other researchers can then replicate the results. This is especially beneficial for peer reviews that try to replicate the results to ensure that the study is sound. 

What Is The Importance Of Research In Everyday Life?

Conducting a research study and comparing it to how important it is in everyday life are two very different things.

Carrying out research allows you to gain a deeper understanding of science and medicine by developing research questions and letting your curiosity blossom. You can experience what it is like to work in a lab and learn about the whole reasoning behind the scientific process. But how does that impact everyday life? 

Simply put, it allows us to disprove lies and support truths. This can help society to develop a confident attitude and not believe everything as easily, especially with the rise of fake news.

Research is the best and reliable way to understand and act on the complexities of various issues that we as humans are facing. From technology to healthcare to defence to climate change, carrying out studies is the only safe and reliable way to face our future.

Not only does research sharpen our brains, but also helps us to understand various issues of life in a much larger manner, always leaving us questioning everything and fuelling our need for answers. 

Logan Bessant

Related Articles:

  • What is STEM education?
  • How Stem Education Improves Student Learning
  • What Are the Three Domains for the Roles of Technology for Teaching and Learning?
  • Why Is FIDO2 Secure?
  • The Significance of Workplace Incident Reporting Software
  • The Operating Principle of Syringe Pumps: A Comprehensive Guide
  • Choosing the Right Penetration Testing Service for Your Business
  • The Benefits of Powerflushing in Central Heating Systems
  • The Role of AI and Machine Learning in Modern Scientific Research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Arab J Urol
  • v.12(1); 2014 Mar

Why should I do research? Is it a waste of time?

Athanasios dellis.

a 2nd Department of Surgery, Aretaieion Hospital, University of Athens, Greece

Andreas Skolarikos

b 2nd Department of Urology, Sismanogleion Hospital, University of Athens, Greece

Athanasios G. Papatsoris

  • • In medicine, research is the search for scientific knowledge, which is crucial for the development of novel medications and techniques.
  • • Conducting research provides a deeper understanding of several scientific topics of the specialty of each doctor.
  • • Research through RCTs represents the principal methodological approach.
  • • There are two main research processes; qualitative and quantitative studies.
  • • It is important to develop Research Units in hospitals and medical centres.
  • • Ethics and the high quality of research are ensured by committees (i.e., Internal Board Review, Ethics Research Committee).
  • • Research sessions could be implemented in the job plans of doctors.
  • • Research is not a waste of time, but a scientific investment.

To answer the questions ‘Why should I do research? Is it a waste of time?’ and present relevant issues.

Medline was used to identify relevant articles published from 2000 to 2013, using the following keywords ‘medicine’, ‘research’, ‘purpose’, ‘study’, ‘trial’, ‘urology’.

Research is the most important activity to achieve scientific progress. Although it is an easy process on a theoretical basis, practically it is a laborious process, and full commitment and dedication are of paramount importance. Currently, given that the financial crisis has a key influence in daily practice, the need to stress the real purpose of research is crucial.

Research is necessary and not a waste of time. Efforts to improving medical knowledge should be continuous.

What is research?

Research is a general term that covers all processes aiming to find responses to worthwhile scientific questions by means of a systematic and scientific approach. In fact, research is the search for scientific knowledge, a systematically formal process to increase the fund of knowledge and use it properly for the development of novel applications.

There are several types of research, such as basic science laboratory research, translational research, and clinical and population-based research. Medical research through randomised clinical trials (RCTs) represents the principal methodological approach for the structured assessment of medical outcomes. RCTs provide prospective and investigator-controlled studies, representing the highest level of evidence (LoE) and grade of recommendation, and define the ultimate practice guideline [1] . However, many constraints, such as ethical, economic and/or social issues, render the conduct of RCTs difficult and their application problematic. For instance, in one of the largest RCTs in urology, on preventing prostate cancer with finasteride, the LoE was 1 [2] . In this RCT, after 7 years of finasteride chemoprevention, the rate of cancer decreased from 24.4% to 18.4%. Based on this study, it could be postulated that finasteride chemoprevention should be offered to men in the general population in an attempt to reduce the risk of prostate cancer. However, the findings of this RCT could not be implemented universally due to financial issues [3] .

There are two main research processes, i.e., qualitative and quantitative studies. Although very different in structure and methods, these studies represent two arms of the same research body. Qualitative studies are based mainly on human experience, using notions and theoretical information without quantifying variables, while quantitative studies record information obtained from participants in a numerical form, to enable a statistical analysis of the data. Therefore, quantitative studies can be used to establish the existence of associative or causal relationships between variables.

From a practical perspective, adding a Research Unit to a Medical Department would ultimately enhance clinical practice and education. As such, almost all hospitals in Western countries have research and development (R&D) departments, where the R&D can be linked with clinical innovation. Basic areas in this field include business planning, sales policies and activities, model design, and strategic propositions and campaign development. However, if researchers are not motivated, the research could be counterproductive, and the whole process could ultimately be a waste of time and effort [4] .

The ethics and the high quality of research are ensured by committees, such as the Internal Review Board, and Ethics Research Committees, especially in academic hospitals. They consist of highly educated and dedicated scientists of good faith as well as objectivity, to be the trustees of ethical and properly designed and performed studies.

Do we need research?

Research is the fuel for future progress and it has significantly shaped perspectives in medicine. In urology there are numerous examples showing that current practice has rapidly changed as a result of several key research findings. For example, from the research of Huggins and Hodges (who won the Nobel Prize in 1966), hormone therapy has become the standard treatment for patients with advanced/metastatic prostate cancer. The use of ESWL to treat stones in the urinary tract is another example of research that has improved practice in urology. The current trend in urology to use robotic assistance in surgery is a relatively recent example of how constant research worldwide improves everyday clinical practice [5] . Furthermore, in a more sophisticated field, research is used to identify factors influencing decision-making, clarify the preferred alternatives, and encourage the selection of a preferred screening option in diseases such as prostate cancer [6,7] .

Conducting research provides a deeper understanding of several scientific topics within the specialty of each doctor. Furthermore, it helps doctors of a particular specialty to understand better the scientific work of other colleagues. Despite the different areas of interest between the different specialties, there are common research methods.

In a University, PhD and MSc students concentrate their efforts at higher research levels. Apart from having to produce a challenging and stimulating thesis, young researchers try to develop their analytical, conceptual and critical thinking skills to the highest academic level. Also, postgraduate students thus prepare themselves for a future job in the global market.

During the research process several approaches can be tested and compared for their safety and efficacy, while the results of this procedure can be recorded and statistically analysed to extract the relevant results. Similarly, any aspects of false results and side-effects, e.g., for new medications, can be detected and properly evaluated to devise every possible improvement. Hence, research components under the auspices of dedicated supervisors, assisted by devoted personnel, are of utmost importance. Also, funding is a catalyst for the optimum progress of the research programme, and it must be independent from any other financial source with a possible conflict. Unfortunately, in cases of economic crisis in a hospital, the first department that is trimmed is research.

Is research time a waste of time?

Even if the right personnel are appointed and the funding is secured, it would be a great mistake to believe that the results are guaranteed. Full commitment and dedication are of utmost importance for successful research. Also, these questions are raised in relation to the scientific papers that are accepted for publication in medical journals. About US$ 160 billion is spent every year on biomedical research [8] . Recently, in the Lancet [9] it was estimated that 85% of research is wasteful or inefficient, with deficiencies presented in the following questions: (1) is the research question relevant for clinicians or patients?; (2) are the design and methods appropriate?; (3) is the full report accessible?; (4) is it unbiased and clinically meaningful? Such questions about the importance, purpose and impact of research should surely be answered during the research. The view of the general public is that the purpose of medical research is to advance knowledge for the good of society, to invent new substances to fight disease, to create diagnostic and therapeutic algorithms, to improve public health, to prevent diseases, to improve the quality of life and to prolong overall survival.

Pharmaceutical companies that sponsor research are financially orientated. This fact leads to a sole result, i.e., profit, as a return on their investment. In this framework it would be impossible for academic institutions to operate on any other basis but finance. Economic indicators, even better benefits and the commercial potential of research are important for their survival. Nevertheless, the purpose of research is more than that. It is time to reframe the way research is done and rewarded, leaving profits in second place. We need to remind ourselves about the real purpose of scientific research. Moreover, we need to decide what research is needed and what impact it is likely to have. Researchers and those who benefit from research (i.e., patients, practising doctors) have a crucial role in the research process. Academic institutions should assess and reward researchers on a long-term basis, and help them to concentrate on meaningful research. Researchers must defend their selection of topics as being those appropriate to benefit public health.

Each medical specialty has a different working plan, and surgical specialties such as urology are characterised by a lack of time for research. It is suggested that specific sessions for research could be implemented in the job plan of urologists, and for other doctors. This is more important for the ‘academic doctor’, but even non-academic doctors could undertake research, if only of the current updated medical literature.

Last but not least is the issue of teaching research to junior doctors. This is very important, as the sooner each doctor is involved in the research process the better for his or her career. Even for junior doctors who are not interested in an academic career, understanding the research process helps them to develop their scientific skills. Young doctors should be motivated to understand and undertake research. However, it is important to guide them through the basic principles of research and to mentor them during their first scientific projects. Furthermore, specific academic training opportunities should be offered within developing programmes, such as the academic specialist registrar’s career pathways in the UK [10] .

In conclusion, research is necessary and not a waste of time. All relevant components of the research engine should co-operate to achieve scientific progress that will help patients and the general population.

Take-home messages

  • • Ethics and the high quality of research are ensured by committees (i.e. Internal Board Review, Ethical Research Committee).

Conflict of interest

Source of funding.

Peer review under responsibility of Arab Association of Urology.

An external file that holds a picture, illustration, etc.
Object name is fx1.jpg

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Family time is far more important than other aspects of life for most Americans

what is importance of the study in research

Americans overwhelmingly view spending time with family as one of the most important things in their life, far outranking other personal priorities, according to a new Pew Research Center survey.

About three-quarters of U.S. adults (73%) rate spending time with family as one of the most important things to them personally, regardless of how much time they actually devote to it. Nine-in-ten say they view it either as one of the most important things or as very important but not the most important thing.

Pew Research Center conducted this analysis to assess public attitudes about personal life priorities. We surveyed 5,079 adults from March 27 to April 2, 2023. Everyone who took part in this survey is a member of the Center’s American Trends Panel (ATP), an online survey panel that is recruited through national, random sampling of residential addresses. This way nearly all U.S. adults have a chance of selection. The survey is weighted to be representative of the U.S. adult population by gender, race, ethnicity, partisan affiliation, education and other categories. Read more about the ATP’s methodology .

Here are the questions used for the analysis, along with responses, and its methodology .

A bar chart showing that family time is of top importance for most Americans; majorities also prioritize physical activity, being outdoors and career success.

No more than a third of Americans rate any of the other eight items on the survey as among the most important to them. Clear majorities say being physically active (74%), being outdoors and experiencing nature (72%), and being successful in their career (66%) are at least very important to them.

Americans are split on the importance of practicing a religious faith: Half rate it as at least very important to them personally, while 21% say it is somewhat important and around three-in-ten (28%) say it is not important.

Smaller shares view participating in creative activities such as music, art or writing (43%), being involved with their community (40%), and being involved in social and political causes (27%) as at least very important to them personally. About three-in-ten (28%) say that social and political involvement is not at all important to them.

Republicans, Democrats have largely similar personal priorities

The survey of 5,079 U.S. adults, conducted from March 27 to April 2, finds that Republicans and Democrats rate many of these aspects of life similarly.

A dot plot that shows Republicans and Democrats alike say family time is one of the most important things to them.

Spending time with family is at the top of the list for people in both parties. Roughly nine-in-ten people who identify with or lean toward each party say it is at least very important to them. Republicans and Democrats also have largely similar views about the importance of physical activity and of being outdoors and experiencing nature (about three-quarters in both parties say these are at least very important). And about two-thirds in both parties place high importance on career success.

Partisan differences are evident, however, on some items that are generally seen as less important.

Republicans and Republican-leaning independents are more likely than Democrats and Democratic leaners to rate practicing a religious faith as at least very important to them personally (61% vs. 40%). By contrast, Democrats are more likely than Republicans to rate participating in creative activities such as music, art or writing as at least very important to them (52% vs. 35%) and to say the same of being involved in social or political causes (35% vs. 21%).

Personal priorities by age

Large shares of Americans of every age group rank family time, physical activity and being outdoors as either one of the most important things or very important to them personally. But older adults – particularly those ages 65 and older – are less likely than younger age groups to view being successful in their career as at least very important to them personally. Around three-quarters (76%) of adults 18 to 29 rate career success as at least very important, as do 71% of those 30 to 49 and 65% of those 50 to 64. Around half (51%) of adults 65 and older say the same.

A dot plot showing that U.S. adults of all ages prioritize family time, physical activity and nature, but they differ on importance of career success and religious practice.

Adults 65 and older are also the least likely to say that participating in creative activities is at least very important to them. One-in-three say this, compared with four-in-ten or more adults ages 30 to 49 and 50 to 64 and about half of adults ages 18 to 29. By contrast, older adults are more likely than younger adults to rate practicing a religious faith as at least very important to them personally: Six-in-ten of those 65 and older rate it as such, as do 56% of those 50 to 64 and around half (48%) of adults 30 to 49. About four-in-ten adults ages 18 to 29 say the same (37%).

Note: Here are the questions used for the analysis, along with responses, and its methodology .

  • Family & Relationships
  • Politics & Policy

Andy Cerda's photo

Andy Cerda is a research assistant focusing on politics at Pew Research Center

Few East Asian adults believe women have an obligation to society to have children

Among parents with young adult children, some dads feel less connected to their kids than moms do, how teens and parents approach screen time, most east asian adults say men and women should share financial and caregiving duties, among young adults without children, men are more likely than women to say they want to be parents someday, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

Asking the better questions that unlock new answers to the working world's most complex issues.

Trending topics

AI insights

EY podcasts

EY webcasts

Operations leaders

Technology leaders

Marketing and growth leaders

Cybersecurity and privacy leaders

Risk leaders

EY Center for Board Matters

EY helps clients create long-term value for all stakeholders. Enabled by data and technology, our services and solutions provide trust through assurance and help clients transform, grow and operate.

Artificial Intelligence (AI)

Strategy, transaction and transformation consulting

Technology transformation

Tax function operations

Climate change and sustainability services

EY Ecosystems

Supply chain and operations

EY Partner Ecosystem

Explore Services

We bring together extraordinary people, like you, to build a better working world.

Experienced professionals

MBA and advanced-degree students

Student and entry level programs

Contract workers

EY-Parthenon careers

Discover how EY insights and services are helping to reframe the future of your industry.

Case studies

Energy and resources

How data analytics can strengthen supply chain performance

13-Jul-2023 Ben Williams

How Takeda harnessed the power of the metaverse for positive human impact

26-Jun-2023 Edwina Fitzmaurice

Banking and Capital Markets

How cutting back infused higher quality in transaction monitoring

11-Jul-2023 Ron V. Giammarco

At EY, our purpose is building a better working world. The insights and services we provide help to create long-term value for clients, people and society, and to build trust in the capital markets.

EY is now carbon negative

19-Sep-2022 Carmine Di Sibio

Our commitment to audit quality

13-Nov-2023 Julie A. Boland

No results have been found

 alt=

Recent Searches

what is importance of the study in research

BEPS 2.0: as policies evolve, engagement is key

It remains to be seen whether the US will align its tax law with the OECD/G20’s global BEPS 2.0 rules. MNEs will feel the impact in 2024. Learn more.

what is importance of the study in research

How GenAI strategy can transform innovation

Companies considering or investing in a transformative GenAI strategy should tie generative artificial intelligence use cases to revenue, cost and expense. Learn more

what is importance of the study in research

Top five private equity trends for 2024

Read about the five key trends private equity firms will emphasize in 2024 as they create value

Select your location

close expand_more

Banking & Capital Markets

The bank of the future will integrate disruptive technologies with an ecosystem of partners to transform their business and achieve growth.

Disruption is creating opportunities and challenges for global banks. While the risk and regulatory protection agenda remains a major focus, banks must also address financial performance and heightened customer and investor expectations, as they reshape and optimize operational and business models to deliver sustainable returns. Innovation and business-led transformation will be critical for future growth. To remain competitive and relevant, every bank must embrace disruption and strategically build a better ecosystem — not a bigger bank.

Our worldwide team of industry-focused assurance, tax, transaction and consulting professionals integrates sector knowledge and technical experience. We work with clients to navigate digital innovation, new business models and ecosystem partnerships, helping banks become the nimble, responsive organizations that customers demand.

Five priorities for harnessing the power of GenAI in banking</p> "> Five priorities for harnessing the power of GenAI in banking

Young handsome black man using phone, typing text message in a front of neon blue light office window in rainy night

What to expect from global financial services in 2024 — Americas and EMEIA

In this webcast for Americas and EMEIA audiences, the EY Global Regulatory Network will discuss the direction of travel for regulators across key areas and how to prepare for what's coming.

Interior of pedestrian tunnel illuminated at night at the new Crossrail station at Canary Wharf. The lighting was designed by French  artist 'Camille Walala' at Canada Place

Our latest thinking on Banking & Capital Markets

EY diverse employees team engaged in teamwork in modern boardroom

Impacts of Central Clearing of US Treasuries and Repo

In this webcast, panelists will discuss key themes and high-level requirements of the US Treasury and repo central clearing rules.

EY racing boat

Can core platform modernization position a bank for future success?  

Case study: how one regional bank used core platform modernization to build a strong foundation for future profitability.

ey business meeting with presentation

The case for a modern transaction banking platform

The evolution of corporate treasury management needs presents an opportunity for corporate banks. Learn from an industry approach.

ey group of buisness discussing in meeting

How to transition from a tactical to strategic adoption of ISO 20022

With ISO 20022 adoption lagging amid competing global deadlines, a successful migration may hinge on changing from a tactical to a strategic mindset.

Friends splitting the bill in restaurant

How Gen Z’s preference for digital is changing the payments landscape

EY survey shows Gen Z embraces simple, seamless payment methods. Learn more.

Young woman working on laptop

How can financial institutions modernize their fair-lending practices?

FIs that disregard fair banking are lagging behind FIs that enhance compliance procedures, lending models and data analytics to become more compliant. Read more.

Fingerprint login access on smartphone data security

Digital identity opportunities in financial services

Exploring the policy and regulatory trends shaping digital identity and opportunities for financial services companies in a changing payment landscape.

Explore our Banking & Capital Markets case studies

A little girl holding a magnifying glass

Using AI to augment pricing intelligence for banks

How an AI-powered digital tool, Smart Advisor (SA), helped one bank deliver better client service while maximizing value creation.

Top view from drone of green rice terrace field with shape and pattern

How a global FinTech captured growth in the SME segment

A global Fintech captured growth in an opportunistic SME segment with a differentiated, holistic strategy. Learn more in this case study.

AI line of customers at a bank

Using AI to improve a bank’s agent effectiveness

Leveraging the power of AI and machine learning, one bank mined sales agents’ calls for performance-boosting insights. Learn more in this case study.

Father and son watching stars through telescope in the night

After cloud migration, investment bank sees potential for big dividends

A leading investment bank sought to move vital assets to the clouds by building an experienced, cross-functional team. Find out how.

Zhongyuan overpass harbin after snowstorm

How digital transformation is redesigning trade finance

Banks that adopt an agile, design-based approach to digital transformation can boost the success of their trade finance functions.

Man kite surfing in Mauritius

How to transform product development to outperform the competition

EY Nexus is a cloud-based platform offering access to the most advanced technologies to launch new products, businesses and services.

How EY can help

Capital Markets Services

Know how our Capital Markets consulting team can help your business grow, manage costs and meet regulatory requirements.

Consumer banking and wealth services

EY consumer banking and wealth technology solutions are designed to drive operational excellence and profitable growth. Learn more.

Corporate, Commercial and SME Banking services

Our Corporate, Commercial and SME (CCSB) Banking services team can help your business navigate through rising market expectation. Learn more.

Cost transformation

EY cost transformation teams help banks to optimize profits and fund transformation. Find out more.

Consumer lending services

Our consumer lending team can help navigate the complexities of unique lending propositions. Find out how.

EY Nexus for Banking

A transformative solution that accelerates innovation, unlocks value in your ecosystem, and powers frictionless business. Learn more.

Finance transformation

We help clients transform finance functions to be a strategic business partner for the business via value creation and controllership activities.

EY Financial Crime solutions

Our skilled teams, operational efficiencies enabled by innovative technology and flexible global delivery service centers can help you manage financial crime risk in a cost-effective, sustainable way.

Financial services risk management

Discover how EY can help the banking & capital markets, insurance, wealth & asset management and private equity sectors tackle the challenges of risk management.

IBOR transition services

EY helps global institutions prepare for the imminent transition away from Interbank Offered Rates (IBORs) to Alternate Reference Rates (ARRs). We also play a leading role in supporting regulators, trade associations and others to increase awareness and education.

Open banking services

Our open banking professionals can help your business maintain a trusted and secure open banking ecosystem while managing its risks. Learn more.

Payment services

Our payments professionals can help your business enhance innovation, drive growth and improve performance. Find out more.

Third-party risk management services

Discover how EY's Third Party Risk Management team can enable your business to make better decisions about the third parties they choose to work with.

Direct to your inbox

Stay up to date with our Editor‘s picks newsletter.

The Banking & Capital Markets team

Photographic portrait of John R Walsh

Enjoys traveling with family, and coaching his daughters’ basketball and soccer teams. Enjoys running and playing basketball and golf.

Photographic portrait of Lee Ann Lednik

Lee Ann Lednik

People-focused leader committed to building trust and transparency amid increasing complexity. Passionate working mom of three. Aspiring photographer. Avid sports fan.

David Kadio-Morokro

David Kadio-Morokro

Passionate about technology, innovation, and leading EY people to solve clients’ most challenging problems.

Photographic portrait of Heidi Boyle

Heidi Boyle

Passionate about helping people thrive in the workplace and creating a sense of belonging for all. Writer. Musician. Cooking enthusiast.

Cindy Doe

Seasoned financial services professional. Resides in Massachusetts with her husband and three children.

Photographic portrait of Kellen Maia de Sá

Kellen Maia de Sá

Collaborator and problem-solver with the desire to do the right thing. Leads efforts to help financial services clients with the disruption and impact of COVID-19.

Photographic portrait of Terry Cardew

Terry Cardew

Builds trust by helping banks solve business issues and stay competitive. Devoted husband. Father of six. Avid skier. NY Giants and Yankees fan. Supporter of The Fresh Air Fund and Lynne’s Kids.

what is importance of the study in research

  • Connect with us
  • Our locations
  • Do Not Sell or Share My Personal Information
  • Legal and privacy
  • Accessibility
  • Open Facebook profile
  • Open X profile
  • Open LinkedIn profile
  • Open Youtube profile

EY refers to the global organization, and may refer to one or more, of the member firms of Ernst & Young Global Limited, each of which is a separate legal entity. Ernst & Young Global Limited, a UK company limited by guarantee, does not provide services to clients.

  • International edition
  • Australia edition
  • Europe edition

Cambridge Kings College Chapel Exterior

Foreign states targeting sensitive research at UK universities, MI5 warns

Ministers considering more funding to protect important research sites, with China seen as a particular concern

MI5 has warned universities that hostile foreign states are targeting sensitive research, as ministers consider measures to bolster protections.

Vice-chancellors from 24 leading institutions, including Oxford, Cambridge and Imperial College London , were briefed on the threat by the domestic security service’s director general, Ken McCallum, and National Cybersecurity Centre (NCSC) chief, Felicity Oswald.

In addition, the UK government is looking at increased funding to improve security at sensitive sites. Oliver Dowden, the deputy prime minister, announced plans for a consultation on a package of measures that could include looking at key university personnel being given security clearance and a strengthened process to improve the transparency of funding, particularly with foreign institutions.

The measures will be focused on a small proportion of academic work, with a particular focus on research with potential dual uses in civilian and military life.

McCallum told the vice-chancellors that hostile states are targeting universities to steal technology that can “deliver their authoritarian, military and commercial priorities”, the Times reported.

The government ordered a review of protections for higher education in its refreshed foreign and security policy last year amid concerns that hostile states – and particularly China – were gaining undue influence over the sector.

Dowden has previously warned that some universities’ reliance on overseas funding could leave them open to being “influenced, exploited, or even coerced” by a foreign power.

After the security briefing, Dowden said: “For a millennium, our universities have thrived on being open – open to ideas, open to innovation, open to being independent of government.

“This is not about erecting fences, this is about balancing evolving threats and protecting the integrity and security of our great institutions.”

The consultation will explore proposals to protect cutting-edge technology under development in sensitive sectors that are being targeted by states intent on stealing intellectual property to enhance their own economic and military capabilities.

The NCSC and the National Protective Security Authority have also launched a tool to help universities assess their research security.

Michelle Donelan, the science and technology secretary, said: “I believe that universities are on the frontlines of a battle for information.

“Maintaining the UK’s world-leading reputation as an academic superpower relies on having strong safeguards to protect research from those who wish to do us harm.”

Tim Bradshaw, chief executive of the Russell Group of leading research universities, said: “Russell Group universities take their national security responsibilities incredibly seriously and already work closely with government and the intelligence community to help protect UK breakthroughs in fields like AI, which are important to our national interest.

“But we also recognise security is a dynamic and evolving challenge which means we need the right expertise and intelligence to keep pace with this.”

Universities UK chief executive Vivienne Stern said: “For several years, Universities UK has worked with government to ensure that universities are supported and equipped to recognise and mitigate risks to national security.

“This is important and necessary, and we welcome the government’s approach to working hand in hand with us to get the mechanisms right.”

  • Universities
  • University of Oxford
  • University of Cambridge
  • Imperial College London

More on this story

what is importance of the study in research

Bernardine Evaristo joins calls to save Goldsmiths’ Black British literature MA

what is importance of the study in research

How the dung queen of Dublin was swept from history

what is importance of the study in research

German university rescinds Jewish American’s job offer over pro-Palestinian letter

what is importance of the study in research

Creative arts courses at English universities face funding cut

what is importance of the study in research

Tory immigration policies risk over-reliance on Chinese students, ex-universities minister warns

what is importance of the study in research

Sunak’s student visas clampdown continues boom-and-bust pattern

what is importance of the study in research

Sadiq Khan pledges new Erasmus-style overseas study scheme for London youngsters

what is importance of the study in research

Britain’s universities are in freefall – and saving them will take more than funding

Most viewed.

IMAGES

  1. What Is Significance Of Study In Research Proposal

    what is importance of the study in research

  2. Significance of the Study

    what is importance of the study in research

  3. Methodology of scientific researches

    what is importance of the study in research

  4. 7 Reasons Why Research Is Important

    what is importance of the study in research

  5. Importance of Research

    what is importance of the study in research

  6. Importance of Research

    what is importance of the study in research

VIDEO

  1. How to write Significance of the Study

  2. English medium science, give importance study #school #🐕😁

  3. Importance of Education By Education Research and Motivation

  4. Don't waste your time #youtubeshorts #shorts #time

  5. Importance of Research

  6. Importance of Research

COMMENTS

  1. Significance of the Study

    Significance of the study in research refers to the potential importance, relevance, or impact of the research findings. It outlines how the research contributes to the existing body of knowledge, what gaps it fills, or what new understanding it brings to a particular field of study. In general, the significance of a study can be assessed based ...

  2. What is the Significance of the Study?

    The significance of the study is a section in the introduction of your thesis or paper. It's purpose is to make clear why your study was needed and the specific contribution your research made to furthering academic knowledge in your field. In this guide you'll learn: what the significance of the study means, why it's important to include ...

  3. What is the Significance of a Study? Examples and Guide

    The most obvious measure of a study's long term research significance is the number of citations it receives from future publications. The thinking is that a study which receives more citations will have had more research impact, and therefore significance, than a study which received less citations.

  4. How To Write Significance of the Study (With Examples)

    4. Mention the Specific Persons or Institutions Who Will Benefit From Your Study. 5. Indicate How Your Study May Help Future Studies in the Field. Tips and Warnings. Significance of the Study Examples. Example 1: STEM-Related Research. Example 2: Business and Management-Related Research.

  5. What is the significance of a study and how is it stated in a research

    Answer: In simple terms, the significance of the study is basically the importance of your research. The significance of a study must be stated in the Introduction section of your research paper. While stating the significance, you must highlight how your research will be beneficial to the development of science and the society in general.

  6. A Practical Guide to Writing Quantitative and Qualitative Research

    Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. ... To construct effective research questions and hypotheses, it is very important to 1) ...

  7. What Is The Significance Of The Study?

    The significance of the study articulates why the research is important and why it matters. It provides justification for conducting the study and highlights its relevance in the broader context of academia, society, or a specific field. Significance is about identifying the value and impact of the research in terms of its potential ...

  8. How To Write a Significance Statement for Your Research

    A significance statement is an essential part of a research paper. It explains the importance and relevance of the study to the academic community and the world at large. To write a compelling significance statement, identify the research problem, and explain why it is significant.

  9. Significance of a Study: Revisiting the "So What" Question

    An important consequence of interpreting significance as a carefully developed argument for the importance of your research study within a larger domain is that it reveals the advantage of conducting a series of connected studies rather than single, disconnected studies. Building the significance of a research study requires time and effort.

  10. Explaining How Research Works

    Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle. Questions about how the world works are often investigated on many different levels.

  11. A tutorial on methodological studies: the what, when, how and why

    In this tutorial paper, we will use the term methodological study to refer to any study that reports on the design, conduct, analysis or reporting of primary or secondary research-related reports (such as trial registry entries and conference abstracts). In the past 10 years, there has been an increase in the use of terms related to ...

  12. How to Discuss the Significance of Your Research

    Step 4: Future Studies in the Field. Next, discuss how the significance of your research will benefit future studies, which is especially helpful for future researchers in your field. In the example of cyberbullying affecting student performance, your research could provide further opportunities to assess teacher perceptions of cyberbullying ...

  13. How to write the significance of a study?

    A study's significance usually appears at the end of the Introduction and in the Conclusion to describe the importance of the research findings. A strong and clear significance statement will pique the interest of readers, as well as that of relevant stakeholders. Maximise your publication success with Charlesworth Author Services.

  14. 2.1 Why Is Research Important?

    Appreciate how scientific research can be important in making personal decisions; Scientific research is a critical tool for successfully navigating our complex world. ... Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills ...

  15. What Is Research, and Why Do People Do It?

    And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community. If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or ...

  16. Purpose of Research

    The purpose of research can vary depending on the field of study, the research question, and the intended audience. In general, research can be used to: Generate new knowledge and theories. Test existing theories or hypotheses. Identify trends or patterns. Gather information for decision-making. Evaluate the effectiveness of programs, policies ...

  17. 7 Reasons Why Research Is Important

    Why Research Is Necessary and Valuable in Our Daily Lives. It's a tool for building knowledge and facilitating learning. It's a means to understand issues and increase public awareness. It helps us succeed in business. It allows us to disprove lies and support truths. It is a means to find, gauge, and seize opportunities.

  18. The Importance of Research—A Student Perspective

    Abstract. As students, we will focus on the importance of an objective ranking system, research, and mentorship to an applicant. We will address points raised in the (Behavior Analysis In Practice 8 (1):7-15, 2015) article as well as debate the usefulness of proposed standards of objective ranking. Keywords: Graduate school, Graduate training ...

  19. PDF Why research is important

    in a research study • your own barriers and motivators around learning more about research. A pragmatic definition of research A useful working definition of research is: a systematic process of critical inquiry leading to valid propositions and conclusions that are communicated to interested others. Breaking this definition down into its ...

  20. What Is the Importance of Research? 5 Reasons Why Research is Critical

    Builds up credibility. People are willing to listen and trust someone with new information on one condition - it's backed up. And that's exactly where research comes in. Conducting studies on new and unfamiliar subjects, and achieving the desired or expected outcome, can help people accept the unknown.

  21. Research Objectives

    Example: Research aim. To examine contributory factors to muscle retention in a group of elderly people. Example: Research objectives. To assess the relationship between sedentary habits and muscle atrophy among the participants. To determine the impact of dietary factors, particularly protein consumption, on the muscular health of the ...

  22. Six Reasons Why Research Is Important

    2- Research Helps in Problem-solving. The goal of the research is to broaden our understanding. Research gives us the information and knowledge to solve problems and make decisions. To differentiate between research that attempts to advance our knowledge and research that seeks to apply pre-existing information to real-world situations.

  23. The importance of suprasegmental features in language attitude research

    Previous language attitude research has paid little attention to the (para)linguistic inventory of the speech samples used for accent evaluation. As an example, this study used five Hong Kong English (HKE) voices with more or less localised features, which were assessed by 100 English language teachers in Hong Kong in a verbal-guise experiment.

  24. New research suggests cerebellum may play important role in autism

    Federal grant will fund studies on how autism-associated gene impacts a crucial, but long-overlooked brain area. Researchers in the UC Davis College of Biological Sciences have received a grant to study the role of the cerebellum in autism. "We need a more holistic understanding of the brain circuits that drive autism," said Alex Nord, an ...

  25. Physiology of the weight‐loss plateau in response to diet restriction

    where ΔI(t) is the change in energy intake over time relative to the weight-maintenance baseline, P(t) is a parameter that shifts the system away from the baseline equilibrium, and k is a feedback gain parameter relating appetite to weight change, i.e., ΔW(t).In the absence of an intervention, P(t) = 0 and k = 95 kcal/day per kilogram corresponding to the baseline strength of the feedback ...

  26. Why should I do research? Is it a waste of time?

    Research is the most important activity to achieve scientific progress. Although it is an easy process on a theoretical basis, practically it is a laborious process, and full commitment and dedication are of paramount importance.

  27. Americans see family time as one of the most important things in life

    Andy Cerda. (The Good Brigade via Getty Images) Americans overwhelmingly view spending time with family as one of the most important things in their life, far outranking other personal priorities, according to a new Pew Research Center survey. About three-quarters of U.S. adults (73%) rate spending time with family as one of the most important ...

  28. Banking & Capital Markets

    Banking & Capital Markets. The bank of the future will integrate disruptive technologies with an ecosystem of partners to transform their business and achieve growth. Disruption is creating opportunities and challenges for global banks. While the risk and regulatory protection agenda remains a major focus, banks must also address financial ...

  29. Foreign states targeting sensitive research at UK universities, MI5

    Ministers considering more funding to protect important research sites, with China seen as a particular concern MI5 has warned universities that hostile foreign states are targeting sensitive ...