• Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

hypothesis research article

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 1 April 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

hypothesis research article

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

hypothesis research article

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis, operational definitions, types of hypotheses, hypotheses examples.

  • Collecting Data

Frequently Asked Questions

A hypothesis is a tentative statement about the relationship between two or more  variables. It is a specific, testable prediction about what you expect to happen in a study.

One hypothesis example would be a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis. Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore a number of factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk wisdom that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis.   In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in a number of different ways. One of the basic principles of any type of scientific research is that the results must be replicable.   By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. How would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

In order to measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming other people. In this situation, the researcher might utilize a simulated task to measure aggressiveness.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests that there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type of hypothesis suggests a relationship between three or more variables, such as two independent variables and a dependent variable.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative sample of the population and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • Complex hypothesis: "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "Children who receive a new reading intervention will have scores different than students who do not receive the intervention."
  • "There will be no difference in scores on a memory recall task between children and adults."

Examples of an alternative hypothesis:

  • "Children who receive a new reading intervention will perform better than students who did not receive the intervention."
  • "Adults will perform better on a memory task than children." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when it would be impossible or difficult to  conduct an experiment . These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a correlational study can then be used to look at how the variables are related. This type of research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

A Word From Verywell

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Some examples of how to write a hypothesis include:

  • "Staying up late will lead to worse test performance the next day."
  • "People who consume one apple each day will visit the doctor fewer times each year."
  • "Breaking study sessions up into three 20-minute sessions will lead to better test results than a single 60-minute study session."

The four parts of a hypothesis are:

  • The research question
  • The independent variable (IV)
  • The dependent variable (DV)
  • The proposed relationship between the IV and DV

Castillo M. The scientific method: a need for something better? . AJNR Am J Neuroradiol. 2013;34(9):1669-71. doi:10.3174/ajnr.A3401

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Elsevier QRcode Wechat

  • Manuscript Preparation

What is and How to Write a Good Hypothesis in Research?

  • 4 minute read
  • 287.1K views

Table of Contents

One of the most important aspects of conducting research is constructing a strong hypothesis. But what makes a hypothesis in research effective? In this article, we’ll look at the difference between a hypothesis and a research question, as well as the elements of a good hypothesis in research. We’ll also include some examples of effective hypotheses, and what pitfalls to avoid.

What is a Hypothesis in Research?

Simply put, a hypothesis is a research question that also includes the predicted or expected result of the research. Without a hypothesis, there can be no basis for a scientific or research experiment. As such, it is critical that you carefully construct your hypothesis by being deliberate and thorough, even before you set pen to paper. Unless your hypothesis is clearly and carefully constructed, any flaw can have an adverse, and even grave, effect on the quality of your experiment and its subsequent results.

Research Question vs Hypothesis

It’s easy to confuse research questions with hypotheses, and vice versa. While they’re both critical to the Scientific Method, they have very specific differences. Primarily, a research question, just like a hypothesis, is focused and concise. But a hypothesis includes a prediction based on the proposed research, and is designed to forecast the relationship of and between two (or more) variables. Research questions are open-ended, and invite debate and discussion, while hypotheses are closed, e.g. “The relationship between A and B will be C.”

A hypothesis is generally used if your research topic is fairly well established, and you are relatively certain about the relationship between the variables that will be presented in your research. Since a hypothesis is ideally suited for experimental studies, it will, by its very existence, affect the design of your experiment. The research question is typically used for new topics that have not yet been researched extensively. Here, the relationship between different variables is less known. There is no prediction made, but there may be variables explored. The research question can be casual in nature, simply trying to understand if a relationship even exists, descriptive or comparative.

How to Write Hypothesis in Research

Writing an effective hypothesis starts before you even begin to type. Like any task, preparation is key, so you start first by conducting research yourself, and reading all you can about the topic that you plan to research. From there, you’ll gain the knowledge you need to understand where your focus within the topic will lie.

Remember that a hypothesis is a prediction of the relationship that exists between two or more variables. Your job is to write a hypothesis, and design the research, to “prove” whether or not your prediction is correct. A common pitfall is to use judgments that are subjective and inappropriate for the construction of a hypothesis. It’s important to keep the focus and language of your hypothesis objective.

An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions.

Use the following points as a checklist to evaluate the effectiveness of your research hypothesis:

  • Predicts the relationship and outcome
  • Simple and concise – avoid wordiness
  • Clear with no ambiguity or assumptions about the readers’ knowledge
  • Observable and testable results
  • Relevant and specific to the research question or problem

Research Hypothesis Example

Perhaps the best way to evaluate whether or not your hypothesis is effective is to compare it to those of your colleagues in the field. There is no need to reinvent the wheel when it comes to writing a powerful research hypothesis. As you’re reading and preparing your hypothesis, you’ll also read other hypotheses. These can help guide you on what works, and what doesn’t, when it comes to writing a strong research hypothesis.

Here are a few generic examples to get you started.

Eating an apple each day, after the age of 60, will result in a reduction of frequency of physician visits.

Budget airlines are more likely to receive more customer complaints. A budget airline is defined as an airline that offers lower fares and fewer amenities than a traditional full-service airline. (Note that the term “budget airline” is included in the hypothesis.

Workplaces that offer flexible working hours report higher levels of employee job satisfaction than workplaces with fixed hours.

Each of the above examples are specific, observable and measurable, and the statement of prediction can be verified or shown to be false by utilizing standard experimental practices. It should be noted, however, that often your hypothesis will change as your research progresses.

Language Editing Plus

Elsevier’s Language Editing Plus service can help ensure that your research hypothesis is well-designed, and articulates your research and conclusions. Our most comprehensive editing package, you can count on a thorough language review by native-English speakers who are PhDs or PhD candidates. We’ll check for effective logic and flow of your manuscript, as well as document formatting for your chosen journal, reference checks, and much more.

Systematic Literature Review or Literature Review

  • Research Process

Systematic Literature Review or Literature Review?

What is a Problem Statement

What is a Problem Statement? [with examples]

You may also like.

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

hypothesis research article

The Clear Path to An Impactful Paper: ②

Essentials of Writing to Communicate Research in Medicine

The Essentials of Writing to Communicate Research in Medicine

There are some recognizable elements and patterns often used for framing engaging sentences in English. Find here the sentence patterns in Academic Writing

Changing Lines: Sentence Patterns in Academic Writing

Input your search keywords and press Enter.

How to Write a Research Hypothesis

  • Research Process
  • Peer Review

Since grade school, we've all been familiar with hypotheses. The hypothesis is an essential step of the scientific method. But what makes an effective research hypothesis, how do you create one, and what types of hypotheses are there? We answer these questions and more.

Updated on April 27, 2022

the word hypothesis being typed on white paper

What is a research hypothesis?

General hypothesis.

Since grade school, we've all been familiar with the term “hypothesis.” A hypothesis is a fact-based guess or prediction that has not been proven. It is an essential step of the scientific method. The hypothesis of a study is a drive for experimentation to either prove the hypothesis or dispute it.

Research Hypothesis

A research hypothesis is more specific than a general hypothesis. It is an educated, expected prediction of the outcome of a study that is testable.

What makes an effective research hypothesis?

A good research hypothesis is a clear statement of the relationship between a dependent variable(s) and independent variable(s) relevant to the study that can be disproven.

Research hypothesis checklist

Once you've written a possible hypothesis, make sure it checks the following boxes:

  • It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis.
  • It must include a dependent and independent variable: At least one independent variable ( cause ) and one dependent variable ( effect ) must be included.
  • The language must be easy to understand: Be as clear and concise as possible. Nothing should be left to interpretation.
  • It must be relevant to your research topic: You probably shouldn't be talking about cats and dogs if your research topic is outer space. Stay relevant to your topic.

How to create an effective research hypothesis

Pose it as a question first.

Start your research hypothesis from a journalistic approach. Ask one of the five W's: Who, what, when, where, or why.

A possible initial question could be: Why is the sky blue?

Do the preliminary research

Once you have a question in mind, read research around your topic. Collect research from academic journals.

If you're looking for information about the sky and why it is blue, research information about the atmosphere, weather, space, the sun, etc.

Write a draft hypothesis

Once you're comfortable with your subject and have preliminary knowledge, create a working hypothesis. Don't stress much over this. Your first hypothesis is not permanent. Look at it as a draft.

Your first draft of a hypothesis could be: Certain molecules in the Earth's atmosphere are responsive to the sky being the color blue.

Make your working draft perfect

Take your working hypothesis and make it perfect. Narrow it down to include only the information listed in the “Research hypothesis checklist” above.

Now that you've written your working hypothesis, narrow it down. Your new hypothesis could be: Light from the sun hitting oxygen molecules in the sky makes the color of the sky appear blue.

Write a null hypothesis

Your null hypothesis should be the opposite of your research hypothesis. It should be able to be disproven by your research.

In this example, your null hypothesis would be: Light from the sun hitting oxygen molecules in the sky does not make the color of the sky appear blue.

Why is it important to have a clear, testable hypothesis?

One of the main reasons a manuscript can be rejected from a journal is because of a weak hypothesis. “Poor hypothesis, study design, methodology, and improper use of statistics are other reasons for rejection of a manuscript,” says Dr. Ish Kumar Dhammi and Dr. Rehan-Ul-Haq in Indian Journal of Orthopaedics.

According to Dr. James M. Provenzale in American Journal of Roentgenology , “The clear declaration of a research question (or hypothesis) in the Introduction is critical for reviewers to understand the intent of the research study. It is best to clearly state the study goal in plain language (for example, “We set out to determine whether condition x produces condition y.”) An insufficient problem statement is one of the more common reasons for manuscript rejection.”

Characteristics that make a hypothesis weak include:

  • Unclear variables
  • Unoriginality
  • Too general
  • Too specific

A weak hypothesis leads to weak research and methods . The goal of a paper is to prove or disprove a hypothesis - or to prove or disprove a null hypothesis. If the hypothesis is not a dependent variable of what is being studied, the paper's methods should come into question.

A strong hypothesis is essential to the scientific method. A hypothesis states an assumed relationship between at least two variables and the experiment then proves or disproves that relationship with statistical significance. Without a proven and reproducible relationship, the paper feeds into the reproducibility crisis. Learn more about writing for reproducibility .

In a study published in The Journal of Obstetrics and Gynecology of India by Dr. Suvarna Satish Khadilkar, she reviewed 400 rejected manuscripts to see why they were rejected. Her studies revealed that poor methodology was a top reason for the submission having a final disposition of rejection.

Aside from publication chances, Dr. Gareth Dyke believes a clear hypothesis helps efficiency.

“Developing a clear and testable hypothesis for your research project means that you will not waste time, energy, and money with your work,” said Dyke. “Refining a hypothesis that is both meaningful, interesting, attainable, and testable is the goal of all effective research.”

Types of research hypotheses

There can be overlap in these types of hypotheses.

Simple hypothesis

A simple hypothesis is a hypothesis at its most basic form. It shows the relationship of one independent and one independent variable.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable).

Complex hypothesis

A complex hypothesis shows the relationship of two or more independent and dependent variables.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable) and heart disease (dependent variable).

Directional hypothesis

A directional hypothesis guesses which way the results of an experiment will go. It uses words like increase, decrease, higher, lower, positive, negative, more, or less. It is also frequently used in statistics.

Example: Humans exposed to radiation have a higher risk of cancer than humans not exposed to radiation.

Non-directional hypothesis

A non-directional hypothesis says there will be an effect on the dependent variable, but it does not say which direction.

Associative hypothesis

An associative hypothesis says that when one variable changes, so does the other variable.

Alternative hypothesis

An alternative hypothesis states that the variables have a relationship.

  • The opposite of a null hypothesis

Example: An apple a day keeps the doctor away.

Null hypothesis

A null hypothesis states that there is no relationship between the two variables. It is posed as the opposite of what the alternative hypothesis states.

Researchers use a null hypothesis to work to be able to reject it. A null hypothesis:

  • Can never be proven
  • Can only be rejected
  • Is the opposite of an alternative hypothesis

Example: An apple a day does not keep the doctor away.

Logical hypothesis

A logical hypothesis is a suggested explanation while using limited evidence.

Example: Bats can navigate in the dark better than tigers.

In this hypothesis, the researcher knows that tigers cannot see in the dark, and bats mostly live in darkness.

Empirical hypothesis

An empirical hypothesis is also called a “working hypothesis.” It uses the trial and error method and changes around the independent variables.

  • An apple a day keeps the doctor away.
  • Two apples a day keep the doctor away.
  • Three apples a day keep the doctor away.

In this case, the research changes the hypothesis as the researcher learns more about his/her research.

Statistical hypothesis

A statistical hypothesis is a look of a part of a population or statistical model. This type of hypothesis is especially useful if you are making a statement about a large population. Instead of having to test the entire population of Illinois, you could just use a smaller sample of people who live there.

Example: 70% of people who live in Illinois are iron deficient.

Causal hypothesis

A causal hypothesis states that the independent variable will have an effect on the dependent variable.

Example: Using tobacco products causes cancer.

Final thoughts

Make sure your research is error-free before you send it to your preferred journal . Check our our English Editing services to avoid your chances of desk rejection.

Jonny Rhein, BA

Jonny Rhein, BA

See our "Privacy Policy"

Grad Coach

What Is A Research (Scientific) Hypothesis? A plain-language explainer + examples

By:  Derek Jansen (MBA)  | Reviewed By: Dr Eunice Rautenbach | June 2020

If you’re new to the world of research, or it’s your first time writing a dissertation or thesis, you’re probably noticing that the words “research hypothesis” and “scientific hypothesis” are used quite a bit, and you’re wondering what they mean in a research context .

“Hypothesis” is one of those words that people use loosely, thinking they understand what it means. However, it has a very specific meaning within academic research. So, it’s important to understand the exact meaning before you start hypothesizing. 

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

hypothesis research article

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.  

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference. 

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

hypothesis research article

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Research limitations vs delimitations

16 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Tesfaye Negesa Urge

this is very important note help me much more

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Privacy Policy

Buy Me a Coffee

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

hypothesis research article

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved April 1, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

Rate this article Cancel Reply

Your email address will not be published.

hypothesis research article

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

hypothesis research article

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

hypothesis research article

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

hypothesis research article

What should universities' stance be on AI tools in research and academic writing?

  • Research article
  • Open access
  • Published: 25 June 2018

Identification of research hypotheses and new knowledge from scientific literature

  • Matthew Shardlow 1 ,
  • Riza Batista-Navarro 1 ,
  • Paul Thompson 1 ,
  • Raheel Nawaz 1 ,
  • John McNaught 1 &
  • Sophia Ananiadou   ORCID: orcid.org/0000-0002-4097-9191 1  

BMC Medical Informatics and Decision Making volume  18 , Article number:  46 ( 2018 ) Cite this article

9848 Accesses

46 Citations

6 Altmetric

Metrics details

Text mining (TM) methods have been used extensively to extract relations and events from the literature. In addition, TM techniques have been used to extract various types or dimensions of interpretative information, known as Meta-Knowledge (MK), from the context of relations and events, e.g. negation, speculation, certainty and knowledge type. However, most existing methods have focussed on the extraction of individual dimensions of MK, without investigating how they can be combined to obtain even richer contextual information. In this paper, we describe a novel, supervised method to extract new MK dimensions that encode Research Hypotheses (an author’s intended knowledge gain) and New Knowledge (an author’s findings). The method incorporates various features, including a combination of simple MK dimensions.

We identify previously explored dimensions and then use a random forest to combine these with linguistic features into a classification model. To facilitate evaluation of the model, we have enriched two existing corpora annotated with relations and events, i.e., a subset of the GENIA-MK corpus and the EU-ADR corpus, by adding attributes to encode whether each relation or event corresponds to Research Hypothesis or New Knowledge. In the GENIA-MK corpus, these new attributes complement simpler MK dimensions that had previously been annotated.

We show that our approach is able to assign different types of MK dimensions to relations and events with a high degree of accuracy. Firstly, our method is able to improve upon the previously reported state of the art performance for an existing dimension, i.e., Knowledge Type. Secondly, we also demonstrate high F1-score in predicting the new dimensions of Research Hypothesis (GENIA: 0.914, EU-ADR 0.802) and New Knowledge (GENIA: 0.829, EU-ADR 0.836).

We have presented a novel approach for predicting New Knowledge and Research Hypothesis, which combines simple MK dimensions to achieve high F1-scores. The extraction of such information is valuable for a number of practical TM applications.

Peer Review reports

The goal of information extraction (IE) is to automatically distil and structure associations from unstructured text, with the aim of making it easier to locate information of interest in huge volumes of text. Within biomedical research articles, the textual context of a particular piece of knowledge often provides clues as to its current status along the ‘research journey’ timeline. Sentences (1)–(3) below exemplify a number of different points along the research timeline regarding the establishment of an association between Interleukin-17 (IL-17) and psoriasis . The association is firstly introduced in (1) as a hypothesis to be investigated. In (2), which is taken from the same paper [ 1 ], the putative association is backed up by initial experimental evidence. Sentence (3) comes from a paper published 10 years later [ 2 ], by which time the association is presented as widely accepted knowledge, presumably on the basis of many further positive experimental results.

(1) ‘To investigate the role of Interleukin-17 (IL-17) in the pathogenesis of psoriasis...’ (2) ‘These findings indicate that up-regulated expression of IL-17 might be involved in the pathogenesis of psoriasis.’ (3) ‘IL-17 is a critical factor in the pathogenesis of psoriasis and other inflammatory diseases.’

There is a strong need to identify different types of emerging knowledge, such as those shown in sentences (1–2), in a number of different scenarios. It has been shown elsewhere that incorporating this type of information improves the automated curation of biomedical networks and models [ 3 ].

In processing sentences (1)–(3) above, a typical IE system would firstly detect that Interleukin-17 and IL-17 are phrases that describe the same gene concept and that psoriasis represents a disease concept. Subsequently, the system would recognise that a specific association exists between these concepts. These associations may be binary relations between concepts, which encode that a specific type of association exists, or they may be events , which encode complex n -ary relations between a trigger word and multiple concepts or other events. Figure  1 shows the specific characteristics of both a relation and an event using the visualisation of the brat rapid annotation tool [ 4 ]. The output of the IE system would allow the location of all sentences within a large document collection, regardless of their varied phrasing, that explicitly mention the same association, or those mentioning other related types of associations, e.g., to find different genes that have an association with psoriasis. The structured associations that are extracted may subsequently be used as input to further stages of reasoning or data mining. Many IE systems would consider that sentences (1)–(3) each conveys exactly the same information, since most such systems only take into account the key information and not the wider context. Recently, however, there has been a trend towards detecting various aspects of contextual/interpretative information (such as negation or speculation) automatically [ 5 – 8 ].

figure 1

An example of two sentences, one containing events and the other containing one relation. The first sentence shows two events. The first event in the sentence concerns the term ‘activation’ which is a type of positive regulation. The theme of this event is ‘NF-kappaB’, indicating that this protein is being activated. The next event in the sentence is centered around ‘dependent’ which is a type of positive regulation. This event has the cause ‘oxidative stress’ and its theme is the first event in the sentence. The example of a relation between two entities is, in contrast to the event, clearly much more simple. The relation indicates that NPTN is related to Schizophrenia in a relation that can be categorised as ‘Target-Disorder’

In this work, we focus on the automatic assignment of two interpretative dimensions to relations and events extracted by text mining tools. Specifically, we aim to determine whether or not each relation and event corresponds to a Research Hypothesis , as in sentence (1), or to New Knowledge , as in sentence (2). To the best of our knowledge, this work represents the first effort to apply a supervised approach to detect this type of information at such a fine-grained level.

We envisage that the recognition of these two interpretative dimensions is valuable in tasks where the discovery of emerging knowledge is important. To demonstrate the utility and portability of our method, we show that it can be used to enrich instances of both events and relations.

Related work

The task of automatically classifying knowledge contained within scientific literature according to its intended interpretation has long been recognised as an important step towards helping researchers to make sense of the information reported, and to allow important details to be located in an efficient manner. Previous work, focussing either on general scientific text or biomedical text, has aimed to assign interpretative information to continuous textual units, varying in granularity from segments of sentences to complete paragraphs, but most frequently concerning complete sentences. Specific aspects of interpretation addressed have included negation [ 5 ], speculation [ 6 – 8 ], general information content/rhetorical intent, e.g., background, methods, results, insights, etc. [ 9 – 12 ] and the distinction between novel information and background knowledge [ 13 , 14 ].

Despite the demonstrated utility of approaches such as the above, performing such classifications at the level of continuous text spans is not straightforward. For example, a single sentence or clause can introduce multiple types of information (e.g., several interactions or associations), each of which may have a different interpretation, in terms of speculation, negation, research novelty, etc. As can be seen from Fig.  1 , events and relations can structure and categorise the potentially complex information that is described in a continuous text span. Following on from the successful development of IE systems that are able to extract both gene-disease relations [ 15 – 17 ] and biomolecular events [ 18 , 19 ], there has been a growing interest in the task of assigning interpretative information to relations and events. However, given that a single sentence may contain mutiple events or relations, the challenge is to determine whether and how the interpretation of each of these structures is affected by the presence of particular words or phrases in the sentence that denote negation or speculation, etc.

IE systems are typically developed by applying supervised or semi-supervised methods to annotated corpora marked up with relations and events. There have been several efforts to manually enrich corpora with interpretative information, such that it is possible to train models to determine automatically how particular types of contxtual information in a sentence affect the interpretation of different events and relations. Most work on enriching relations and events has been focussed on one or two specific aspects of interpretation (e.g., negation [ 20 , 21 ] and/or speculation [ 22 , 23 ]). Subsequent work has shown that these types of information can be detected automatically [ 24 , 25 ].

In contrast, work on Meta-Knowledge (MK) captures a wider range of contextual information, integrating and building upon various aspects of the above-mentioned schemes to create a number of separate ‘dimensions’ of information, which are aimed at capturing subtle differences in the interpretation of relations and events. Domain-specific versions of the MK scheme have been created to enrich complex event structures in two different domain corpora, i.e., the ACE-MK corpus [ 26 ], which enriches the general domain news-related events of the ACE2005 corpus [ 27 ], and the GENIA-MK corpus [ 28 ], which adds MK to the biomolecular interactions captured as events in the GENIA event corpus [ 22 ]. Recent work has focussed on the detection of uncertainty around events in the GENIA-MK Corpus. Uncertainty was detected using a hybrid approach of rules and machine learning. The authors were able to show that incorporating uncertainty into a pathway modelling task led to an improvement in curator performance [ 3 ].

The GENIA-MK annotation scheme defines five distinct core dimensions of MK for events, each of which has a number of possible values, as shown in Fig.  2 :

Knowledge Type , which categorises the knowledge that the author wishes to express into one of: Observation, Investigation, Analysis, Method, Fact or Other.

figure 2

The GENIA-MK annotation scheme. There are five Meta-Knowledge dimensions introduced by Thompson et al. as well as two further hyperdimensions

Knowledge Source , which encodes whether the author presents the knowledge as part of their own work (Current), or whether it is referring to previous work (Other).

Polarity , which is set to Positive if the event took place, and to Negative if it is negated, i.e., it did not take place.

Manner , which denotes the event’s intensity, i.e., High, Low or Neutral.

Certainty Level or Uncertainty , which indicates how certain an event is. It may be certain (L3), probable (L2) or possible (L1).

These five dimensions are considered to be independent of one another, in that the value of one dimension does not affect the value of any other dimension. There may, however, be emergent correlations between the dimensions (i.e., an event with the MK value ’Knowledge Source=Other’ is more frequently negated), which occur due to the characteristics of the events. Previous work using the GENIA-MK corpus has demonstrated the feasibility of automatically recognising one or more of the MK dimensions [ 29 – 31 ]. In addition to the five core dimensions, Thompson et al. [ 28 ] introduced the notion of hyperdimensions , (i.e., New Knowledge and Hypothesis) which represent higher level dimensions of information whose values are determined according to specific combinations of values that are assigned to different core MK dimensions. These hyperdimensions are also represented in Fig.  2 . We build upon these approaches in our own work to develop novel techniques for the recognition of New Knowledge and Hypothesis, which take into account several of the core MK dimensions described above, as well as other features pertaining to the structure of the event and sentence.

Our work took as its starting point the MK hyperdimensions defined by Thompson et al. [ 28 ], since we are also interested in idenfifying relations and events that describe hypotheses or new knowledge. However, we found a number of issues with the original work on these hyperdimensions. Firstly, Thompson et al. [ 28 ] did not provide clear definitions for of ‘Hypothesis‘ and ‘New Knowledge’. In response, we have formulated concise definitions for each of them, as shown below. Secondly, by performing an analysis of events that takes into account these definitions, we found that it was not possible to reliably and consistently identify events that describe new knowledge or hypotheses based only on the values of the core MK dimensions. As such, we decided to carry out a new annotation effort to mark up both ‘Research Hypothesis’ and ‘New Knowledge’ as independent MK dimensions (i.e., their values do not necessarily have any dependence on the values of other core MK dimensons), and to explore supervised, rather than rule-based methods, to facilitate their automated recognition.

Annotation guidelines

The starting point for our novel annotation effort was our tightened definitions of Research Hypothesis and New Knowledge ; our initial definitions were refined throughout the process of annotation. As the definitions and guidelines evolved, we asked the annotators to revisit previously annotated documents in each new round. Our final definitions are presented below:

Research Hypothesis: A relation or event is considered as a Research Hypothesis if it encompasses a statement of the authors’ anticipated knowledge gain. This is shown in examples (1) and (2) in Table  1 . Table 1 Examples of sentences containing research hypotheses and new knowledge Full size table
New Knowledge: A relation or event is considered as New Knowledge if it corresponds to a novel research outcome resulting from the work the author is describing, as per examples (3) and (4) in Table  1 .

Whereas the value assigned to each of the core MK dimensions of Thompson et al. is completely independent of the values assigned to the other core dimensions, our newly introduced dimensions do not maintain this independence. Rather, Research Hypothesis and New Knowledge possess the property of mutual exclusivity, as an event or relation cannnot be simultaneously both a Research Hypothesis and New Knowledge. We chose to enrich two different corpora with attributes encoding Research Hypothesis and New Knowledge, i.e., a subset of the biomolecular interactions annotated as events in the GENIA-MK corpus [ 28 ], and the biomarker-relevant relations involving genes, diseases and treatments in the EU-ADR corpus [ 23 ]. Leveraging the previously-added core MK annotations in the GENIA-MK corpus, we explored how these can contribute to the accurate recognition of New Knowledge and Research Hypothesis. Specifically, we have introduced new approaches for predicting the values of the core Knowledge Type and Knowledge Source dimensions, demonstrating an improvement over the former state of the art for Knowledge Type. We subsequently use supervised methods to automatically detect New Knowledge and Research Hypothesis, incorporating the values of Knowledge Type, Knowledge Source and Uncertainty as features into the trained models.

The GENIA-MK corpus consists of one thousand MEDLINE abstracts on the subject of transcription factors in human blood cells, which have been annotated with a range of entities and events that provide detailed, structured information about various types of biomolecular interactions that are described in text. In the GENIA-MK corpus, values for all five core MK dimensions are already manually annotated for all of the 36,000 events. The MK annotation effort also involved the identification of ‘clue words’, i.e., words or phrases that provide evidence for the assignment of values for particular MK dimensions. For example, the word ‘suggest’ would be annotated as a clue both for Uncertainty and Knowledge Type, as it indicates that the information encoded in the event is stated based on a speculative analysis of results.

The EU-ADR corpus consists of three sets of 100 MEDLINE abstracts, each obtained using different PubMed queries aimed at retrieving abstracts that are likely to contain three specific types of relations (i.e., gene-disease, gene-drug and drug-disease), the former two of which can be important in discovering how different types of genetic information influence disease susceptibility and treatment response. The original annotation task involved identifying three types of entities, i.e., targets (proteins, genes and variants), diseases and drugs, together with relationships between these entity types, where these are present. In contrast to the richness of the event representations in the GENIA-MK corpus, each relation annotation in the EU-ADR corpus consists only of links between entities of two specific types. Relations were annotated in 159 of the 300 abstracts selected for inclusion in the corpus.

Annotation of new knowledge and research hypothesis

As an initial step of our work, subsets of GENIA-MK and EU-ADR were manually enriched with additional annotations, which identify those events or relations corresponding to Research Hypotheses or New Knowledge. Since high quality annotations are key to ensuring that accurate supervised models can be trained, we engaged with a number of experts and carried out an exploratory annotation exercise prior to the the final annotation effort, in order to ensure the highest possible inter-annotator agreement (IAA).

Initially, we worked with two domain experts, a text mining researcher and a medical professional. They added the novel MK annotations to events that had been automatically detected in sentences from full-text papers. We found, however, that there were some issues with this annotation set-up. Firstly, we found that events denoting Research Hypotheses and New Knowledge were very sparse in full papers. Secondly, we found that isolated sentences often provided insufficient context for annotators to determine accurately whether or not the event described new knowledge or a hypothesis. Finally, we found that errors in the automatically detected events were detracting the annotators’ attention from the task at hand. Based on these findings, we decided not to pursue this apporach, and instead focussed our anotation efforts on annotating Research Hypotheses and New Knowledge in abstracts containing gold-standard, expert-annotated events and relations, whose quality had previously been verified. Since abstracts also generally contain denser and more consolidated statements of New Knowledge and Research Hypotheses than full papers [ 32 ], we also expected that this approach would produce more useful training data.

We then employed two PhD students (both working in disciplines related to biological sciences) to carry out the next round of annotation work. We held regular meetings to discuss new annotations and provided feedback as necessary. A subset of the abstracts was doubly annotated by both annotators, allowing us to evaluate the annotation quality by calculating IAA using Cohen’s Kappa [ 33 ].

Table  2 , which shows IAA at three different points during the annotation process, illustrates a steady increase in IAA as time progressed and as more discussions were held, demonstrating a convergence towards a common understanding of the guidelines by the two annotators. We get a final agreement of above 0.8 on most dimensions, indicating a strong level of agreement [ 34 ]. Annotation of Research Hypothesis in the EU-ADR corpus achieved slightly lower agreement of 0.761, indicating moderate agreement between the annotators [ 34 ]. At the end of the annotation process, the annotators were asked to revisit their earlier annotations to make revisions based on their enhanced understanding of the guidelines. Remaining discrepancies were resolved by the lead author after consultation with both annotators.

Each annotator marked up 112 abstracts from the EU-ADR corpus (70 of which were doubly annotated), and 100 abstracts from the GENIA-MK corpus (50 of which were doubly annotated). This resulted in a total of 150 GENIA-MK abstracts and 159 EU-ADR abstracts annotated with New Knowledge and Research Hypothesis. Statistics on the final corpus are shown in Table  3 .

Baseline method for new knowledge and research hypothesis

Thompson et al. [ 28 ] suggest a method for detecting new knowledge and hypothesis based on automatic inferences from core MK values. Their inferences state that an event will be an instance of new knowledge if the Knowledge Source dimension is equal to ‘Current’ , the Uncertainty dimension is equal to ‘L3’ (equivalent to ‘Certain’ in our work, see below) and the Knowledge Type dimension is equal to either ‘Observation’ or ‘Analysis’ . Similarly, according to their inferences, an event will be an instance of Hypothesis if the Knowledge Type dimension is equal to ‘Analysis’ and Uncertainty is equal to either ‘L2’ or ‘L1’ (which are both equivalent to ‘Uncertain’ in our work, see below).

We use these automated inferences as a baseline for our techniques. To best reflect the work of Thompson et al. [ 28 ], we use their manually annotated values of Knowledge Type, Uncertainty and Knowledge Source for the GENIA-MK corpus. This allows us to compare our own work with previous efforts, as well as providing a lower bound for the performance of a rule based system, which we contrast with our supervised learning system, as introduced in the next section.

A supervised method for extracting new knowledge and research hypothesis

We took a supervised approach to annotating events with instances of our target dimensions of New Knowledge and Research Hypothesis. According to the previously mentioned intrinsic links to the core MK dimensions of Knowledge Source, Knowledge Type and Uncertainty, we incorporated the values of these dimensions as features that are used by our classifiers.

Uncertainty

For the Uncertainty dimension, we used an existing system [ 3 ]. Adopting their treatment of Uncertainty, we differ from Thompson et al. [ 28 ] as we use only have 2 levels (certain and uncertain), as opposed to their three levels (L3 = certain, L2 = probable and L1 = possible). Since our development of the original MK scheme, we have experimented and discussed different levels of granularity for this dimension with domain experts, and have concluded that the differences between the two different levels of uncertainty in our original scheme (i.e., L1 and L2) are often too subtle to be of benefit in practical scenarios. Therefore, it was decided to focus instead on the binary distinction between certainty and uncertainty.

Knowledge source

The Knowledge Source dimension distinguishes events that encode information originating from an author’s own work (Knowledge Source = Current), from those describing work from an alternative source (Knowledge Source = Other). Such information is relevant to the identification of New Knowledge, as a relation or event that corresponds to information reported in background literature definitely cannot be classed as New Knowledge. Attribution by citation is a well-established practice in the scientific literature. Citations can be expressed heterogeneously between documents, but are typically expressed homogeneously within a single document, or a collection of similarly-sourced documents. We used regular expressions to identify citations following the work of Miwa et al. [ 35 ], in conjunction with a set of clue expressions that aim to detect background knowledge in cases where no citation is given. These include statements such as ‘we previously showed…’ or ‘as seen in our former work’. Whereas Miwa et al. use a supervised learning method to detect Knowledge Source, we found that supervised learning approaches overfitted to the overwhelming majority class (Source =Current) in the GENIA-MK dataset. This meant that we suffered poor performance on unseen data, such as the EU-ADR corpus. To alleviate this, we simply used the regular expression feature as described above as an indicator of Knowledge Source being ‘Other’. A list of our regular expressions and clue expressions is made available as part of the Additional files .

Knowledge type

For Knowledge Type, we used an implementation of the random forest algorithm [ 36 ] from the WEKA library [ 37 ]. We used the standard parameters of the random forest in the WEKA implementation. We used ten-fold cross validation for all experiments, and results are reported as the macro-average across the ten folds. We treat the identification of Knowledge Type as a multi-class classification problem and we took a supervised approach to categorising relations and events in the two corpora according to the values of the Knowledge Type dimension. To facilitate this, we used the following seven types of features to generate information about each event from GENIA-MK and relation from EU-ADR:

Sentence features describing the sentence containing the relation or event.

Structural features, inspired by the structural differences of events.

Participant features, representing the participants in the relation or event.

Lexical features, capturing the presence of clue words.

Constituency features, corresponding to relationships between a clue and the relation or event, based on the output of a parser.

Dependency features, which capture relationships between a clue and the relation or event based on the dependency parse tree.

Parse tree features, which pertain to the structure of the dependency parse tree.

These features are further described in Table  4 . To generate these features, we made use of the GENIA Tagger [ 38 ] to obtain part-of-speech (POS) tags, and the Enju parser [ 39 ] to compute syntactic parse trees.

Research hypotheses and new knowledge

We followed a similar approach to predicting Research Hypothesis and New Knowledge values to that described above for the recognition of Knowledge Type. We used the same features and also a random forest classifier. We incorporated additional features encoding the Knowledge Source, Knowledge Type and Uncertainty of each relation and event.

Clue lists, developed by the authors, were used for the detection of Knowledge Type, Knowledge Source and Uncertainty. For the detection of New Knowledge and Hypothesis, a combination of clues for Knowledge Type, Knowledge Source and Uncertainty was used. The exact clue lists are available in the Additional files .

In this section, we present our experiments to detect the core Knowledge Type dimension, in which we determine the most appropriate feature subset to use, and also compare our approach to previous work. We then extend this approach to recognise New Knowledge and Research Hypothesis, and to evaluate our results in terms of precision Footnote 1 , recall , Footnote 2 and F1-score . Footnote 3

Our experiments to predict the correct values for the Knowledge Type dimension were carried out only using the events in the GENIA-MK corpus, given that Knowledge Type is only annotated in this corpus and not in EU-ADR. We performed an analysis of each feature subset to assess its impact on classifier performance, as shown in Table  5 . It was established that removing each of the participant, dependency and parse tree features individually leads to a small increase in F1-score. However, in subsequent experiments, we found that removing all three features does not lead to an additional increase in performance. We therefore used all feature subsets except for the participant features in subsequent experiments, as this gave us the best overall score. By observing the isolated performance of each feature subset, we also determined that the lexical and structural features are both significant individual contributors to the final classification score. In Table  6 , we compare the performance of our classifier in predicting each Knowledge Type value with the results obtained by the state-of-the-art method developed by Miwa et al. [ 31 ]. The results reveal that our approach achieves an increase in F1-score over Miwa et al. [ 31 ] by a minimum of 0.063 for the Other value, and a maximum of 0.113 for Method. We also see corresponding performance boosts in terms of precision and recall. Although we observe a small drop in recall for Fact and Method, this is offset by an increase in precision of 0.210 and 0.299, respectively.

To further investigate our improvement over Miwa et al., we swapped our classifier for an SVM, but used all the same features. The results of this are shown in Table  6 . This experiment allowed us to compare the performance of our features with the same classification algorithm (SVM), as used by Miwa et al. We note that using the SVM with our features leads to a similar, but slightly worse performance in terms of F1 score than Miwa et al. on all categories except for Analysis. However we do note an increase in Precision for certain categories (Method, Investigation, Analysis) and Recall for others (Observation, Analysis). As our features are tuned for performance with a Random Forest, this experiment demonstrates that different types of classifiers may require different feature sets to achieve optimal performance.

To further understand the impact of our feature categories, we analysed the correlation of each feature with each Knowledge Type value. This allowed us to determine the most informative features for each Knowlegde Type value, as displayed in Table  7 . In addition to this, we calculated the average rank of each feature across all Knowledge Type values. This measure shows us the most globally useful features. The top features according to average rank are displayed in Table  8 .

For the identification of New Knowledge and Research Hypothesis, we firstly performed 10-fold cross validation on each corpus (GENIA-MK and EU-ADR) and for each dimension of interest, yielding the results in Table  9 . In our presentation of results, we term the negative class for New Knowledge as “Other Knowledge”, as it covers a number of categories that we wish to exclude (e.g., background knowledge, irrelevant knowledge, supporting knowledge, etc.). We were able to classify Knowledge Type for relations in the EU-ADR corpus by setting the event and participant features to sensible static values — e.g., the number of participants in a relation is always 2.

In Table  5 , we observed the effects of each feature subset on the overall classification score for Knowledge Type. We found that the structural, lexical and sentence features had particularly strong contributions. The structural features encoded information about the structure of the event and were particularly useful for identifying events that participate in other events. The lexical features depended on the identification of clue words that appeared in the context of relations and events, which provided important evidence to determine the most appropriate MK values to assign. However, the usefulness of this feature is directly tied to the comprehensiveness of the list of clues associated with each MK value.

In addition to the feature analysis in Table  5 , we also provided additional analysis of each specific feature in Tables  7 and 8 . In line with the results from Table  5 , these tables demonstrate that the structural features were particularly informative for most classes, as well as the lexical, dependency and constituency features. It is interesting to note from Table  7 that no individual feature is particularly strongly correlated with each class label. This supports our ensemble approach and indicates that multiple feature sources are needed to attain a high classification accuracy. In addition, we can see that the correlations drop fairly quickly for all classes - indicating that not all features are used for every class. Finally, we can see that different features occur in each column (with some repetition), indicating that certain features were more useful for specific classes.

For the classification of New Knowledge and Hypothesis, we incorporated features denoting the existing meta-knowledge values of the event for Knowledge Source, Knowledge Type and Uncertainty. Knowledge Source indicates whether an event is current to the research in question, or whether it describes background work. This may be especially helpful for the detection of new knowledge, since it is clear that any background work cannot be classified as new knowledge. Knowledge Type classifies events as falling into one of six categories, i.e., Fact, Method, Analysis, Investigation, Observation or Other. The Investigation category may have contributed to the classification of Hypothetical events, whereas Observation and Analysis may have helped to contribute to the detection of New Knowledge events. The Fact, Method and Other categories could have helped the system to determine that events did not convey either hyperdimension. Finally, Uncertainty describes whether an author presented their results with confidence in their accuracy, or with some hedging (e.g., use of the words may, possibly, perhaps , etc.). This dimension could have helped to contribute to the classification of hypotheses (where an author states that an event may occur) and new knowledge, where we expect an author to be certain about their results.

We compared our results to those of Miwa et al. (2012) in Table  6 , where we showed a consistent improvement of precision, recall and F1-score across all categories. Their system used support vector machines (SVMs) for classification, with a set of features similar to our lexical and structural features. However, our work used an enhanced set of features as well as a random forest classifier, which is typically robust in high dimensional classification problems [ 36 ]. These two factors contributed to our system’s improved performance. Our system yielded an average increase in precision of 0.156, but only yielded an average increase in recall of 0.04. This implies that the use of a random forest and additional features mainly helped to ensure that the system returned results which are consistently correct. For both the ‘Fact’ and ‘Method’ Knowledge Type values, our system yielded a slight dip in recall compared to previous work. However, this was coupled with an increase in precision of 0.210 and 0.298, respectively.

To understand the relative contributions made by our switches in both feature set and type of classifier, compared to previous work, we analysed the performance of our system when using an SVM with our features instead of a Random Forest. We attained a similar performance to Miwa et al. using our feature set and SVM, although some values were lower than those reported by Miwa et al. This implies that our decision to use a different type of classifier to Miwa et al. (i.e., Random Forest instead of SVM) was the main reason behind our improved performance. Different feature sets are better suited to different types of classifiers, and our feature set was carefully selected (as documented in Table  5 ) to be performant with a Random Forest. Miwa et al.’s features were equally selected to perform well with an SVM. We have shown similar results in prior work for a task on detecting metaknowledge for negated bio-events [ 29 ], where we showed that tree-based methods, including the Random Forest, outperformed other techniques such as the SVM for detecting the negation dimension of metaknowledge.

We illustrated our results for the identification of the novel dimensions New Knowledge and Research Hypothesis in Table  9 . These showed strong performance across both corpora and association types (events and relations). The results for the GENIA-MK corpus (events) outperformed those for the EU-ADR corpus (relations). This was most likely due to the difference in size between the corpora. There are over ten times more annotated events in the subset of GENIA-MK that we annotated than relations in the subset of EU-ADR (6899 events vs. 622 relations). The fact that we annotated all of the 159 abstracts available in the EU-ADR corpus and only 150 abstracts from GENIA-MK indicates that event structures are more densely packed in GENIA-MK than relations in EU-ADR.

In particular, the EU-ADR corpus yielded a poor recall value for Research Hypotheses. There were only 38 examples of relations annotated as Research Hypothesis in the EU-ADR corpus. Our annotators reported that several relations occuring in hypothetical contexts appeared to have been missed by the original annotators of the EU-ADR corpus, which may be the cause of this sparsity. However, adding additional relations to the corpus was beyond the scope of the current work. The precision for the prediction of Research Hypothesis in the EU-ADR corpus was 1.00, indicating that of those relations automatically classified as Research Hypothesis, all were indeed Research Hypotheses (i.e., there were no false positives). It is usually the case in minority class situations that a classifier will tend towards classifying instances as the majority class (i.e., favouring false negatives over false positives), so this result is expected. We chose not to perform subsampling of the majority class, as the density of Research Hypotheses or New Knowledge in our training data is reflective of the density we would expect in other biomedical abstracts.

Our corpus has focussed on identifying Research Hypotheses and New Knowledge in biomedical abstracts. However, it has been shown elsewhere that full texts contain more information than abstracts alone [ 40 ]. Whilst our future goal is to additionally facilitate the recognition of New Knowledge and Research Hypothesis in full papers, our decision to focus initially on abstracts was motivated by the findings of our earlier rounds of annotation. These initial annotation efforts revealed that the density of the types of MK that form the focus of the current paper are very low in full papers and are consequently difficult for annotators to reliably identify. Therefore we chose to use abstracts, where the density was higher, since the availability of as many examples as possible of relevant MK was important for the development of our methods. We noted that abstracts fairly consistently mention the main Research Hypotheses and New Knowledge outcomes from a paper. However, further information may be available in the full paper that has not been mentioned in the abstract. To access this information we will need to further adapt our techniques and develop annotated corpora of full papers — this is left for future work.

Error analysis

Finally, we present an analysis of some common errors that our system makes and strategies for overcoming these in future work. In the following sentence, the event centred on “regulation” was marked as Non-Hypothetical by the annotators, but our system recognised it as a Hypothetical event.

To continue our investigation of the cellular events that occur following human CMV (HCMV) infection, we focused on the regulation of cellular activation following viral binding to human monocytes.

It is likely that this event was marked as a hypothesis by the system because of the words ‘investigation’ and ‘focused’ that occur before it. However in this case, the main hypothesis that the annotators have marked is on the event centred on ‘occur’ preceding the event centred around ‘focused’. To overcome this in future work, we could implement a classification strategy that takes into account MK information that has already been assigned to other events that occur in the context of the focussed event. A conditional random field or deep learning model could be used for sequence labelling to accomplish this.

The second error, which concerns the event centred on “effects” in the following sentence, was marked as Hypothetical by our annotators, but was classified as Non-Hypothetical by our system.

MATERIAL AND METHODS: In the present study, we analyzed the effects of CyA, aspirin, and indomethacin \(\dots \)

This event is clearly stating the subject of the authors’ investigation, and so should be marked as hypothesis. It is likely that our system was confused by the preceding section heading, which led it to believe that this was part of the background or methods, and not a statement of the authors’ intended research goals. To overcome this, we could identify these section headings automatically and either exclude them from the text to be analysed, or use them as extra features in our classification scheme.

In our third example error, the event in the sentence below is centred on the phrase “result in decreased”. The event was marked as new knowledge by the annotators, but the system was not able to recognise it as such.

Down-regulation of MCP-1 expression by aspirin may result in decreased recruitment of monocytes into the arterial intima beneath stressed EC.

We believe that the cause of this classification errors is the unusual event trigger - the majority of events only have a single verb as their trigger. To help the system to better determine cases in which such events denote new knowledge, it would be necessary to further increase our corpus size, such that the training set includes a wider variety of trigger types. A further factor affecting the inability of the system to determine the new knowledge classification may have been be the lack of an appropriate new knowledge clue. In this case, the annotators most likely determined this as an example of new knowledge due to information from the wider context of the discourse. We could improve our classifier by looking for clues in a wider window, or by looking for discourse clues that might indicate that the author is drawing their conclusions.

The final example below concerns an event (centred on the verb “enhanced”), which was marked as ‘other knowledge’ by the annotators, but which the system determined to be an example of new knowledge.

Taken together, these data indicate that the unexpected expression of megakaryocytic genes is a specific property of immortalized cells that cannot be explained only by enhanced expression of Spi-1 and/or Fli-1 genes

In this example, the event is somewhat problematic as regards the assignment of MK. Although it is clear both that the sentence is a concluding statement, and that there is some new knowledge contained within it, the annotators chose not to mark the event with the trigger “enhanced” as new knowledge, indicating that they did not consider it to convey the main aspect of new knowledge in this sentence. Interestingly, however, both annotators agreed with the system that the event centred on the first instance of “expression” should be marked as an instance of new knowledge. The presence of the clue ‘indicate’ may be affecting the system’s classification decision in both cases. A human annotator can distinguish that indicate is most relevant to ‘expression’, rather than ‘enhanced’, whereas our system was unable to make this distinction.

Conclusions

We have presented a novel application of text mining techniques for the discovery of Research Hypotheses and New Knowledge at the level of events and relations. This constitutes the first study into the application of supervised methods to assign these interpretative aspects at such a fine-grained level. We firstly showed that by applying a Random Forest classifier using a new feature set, we were able to achieve a better performance than previous efforts in detecting Knowledge Type. We subsequently showed that the core MK dimensions of Knowledge Type, Knowledge Source and Uncertainty could feed into the training of classifiers that can predict whether events and relations represent Research Hypotheses and New Knowledge, with a high degree of accuracy. Our techniques can be incorporated into a system that allows researchers to quickly filter information contained within the abstracts of research articles, as shown in previous literature [ 3 ]. Our methods generally favour precision on the positive class (i.e., Research Hypothesis or New Knowledge). Specifically, we attain a precision of between 0.863 and 1.00 on all of the corpus experiments. This demonstrates that our approach is successful in avoiding the identification of false positives, thus allowing researchers to be confident that instances of Research Hypothesis or New Knowledge identified by our method will usually be correct.

the proportion of results returned by the system which are correct.

the proportion of correct results returned by the system as a fraction of all the correct results that should have been found.

the balanced harmonic mean between precision and recall, providing a single overall measure of performance.

Abbreviations

Adverse Drug Reaction

F1 Score (The harmonic mean between Precision and Recall)

Information Extraction

Inter-Annotator Agreement

Meta-Knowledge

Support Vector Machine

Text Mining

Jiawen L, Dongsheng L, Zhijian T. The expression of interleukin-17, interferon-gamma, and macrophage inflammatory protein-3 alpha mRNA in patients with psoriasis vulgaris. J Huazhong University Sci Technol [Med Sci]. 2004; 24(3):294–6. https://doi.org/10.1007/BF02832018 .

Article   Google Scholar  

Scharffetter-Kochanek K, Singh K, Tasdogan A, Wlaschek M, Gatzka M, Hainzl A, Peters T. Reduction of CD18 promotes expansion of inflammatory gd T cells collaborating with CD4 T cells in chronic murine psoriasiform dermatitis. J Immunol. 2013; 191:5477–88. https://doi.org/10.4049/jimmunol.1300976 .

Article   PubMed   CAS   Google Scholar  

Zerva C, Batista-Navarro R, Day P, Ananiadou S. Using uncertainty to link and rank evidence from biomedical literature for model curation. Bioinformatics. btx466. https://doi.org/10.1093/bioinformatics/btx466 .

Stenetorp P, Pyysalo S, Topić G, Ohta T, Ananiadou S, Tsujii J. BRAT: a web-based tool for NLP-assisted text annotation. In: Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics: 2012. p. 102–107.

Agarwal S, Yu H, Kohane I. BioNØT: A searchable database of biomedical negated sentences. BMC Bioinformatics. 2011; 12(1):420. https://doi.org/10.1186/1471-2105-12-420 .

Article   PubMed   PubMed Central   Google Scholar  

Medlock B, Briscoe T. Weakly supervised learning for hedge classification in scientific literature. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. Prague, Czech Republic: Association for Computational Linguistics: 2007. p. 992–9. http://www.aclweb.org/anthology/P07-1125 .

Google Scholar  

Vincze V, Szarvas G, Farkas R, Móra G, Csirik J. The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinformatics. 2008; 9(11):1–9.

Malhotra A, Younesi E, Gurulingappa H, Hofmann-Apitius M. ‘HypothesisFinder:’ a strategy for the detection of speculative statements in scientific text. PLOS Comput Biol. 2013; 9(7):1–10. https://doi.org/10.1371/journal.pcbi.1003117 .

Article   CAS   Google Scholar  

Ruch P, Boyer C, Chichester C, Tbahriti I, Geissbühler A, Fabry P, Gobeill J, Pillet V, Rebholz-Schuhmann D, Lovis C, et al. Using argumentation to extract key sentences from biomedical abstracts. Int J Med Inform. 2007; 76(2):195–200.

Article   PubMed   Google Scholar  

Teufel S, Carletta J, Moens M. An annotation scheme for discourse-level argumentation in research articles. In: Proceedings of the Ninth Conference on European Chapter of the Association for Computational Linguistics. EACL ’99. Stroudsburg: Association for Computational Linguistics: 1999. p. 110–7. https://doi.org/10.3115/977035.977051 .

Mizuta Y, Collier N. Zone identification in biology articles as a basis for information extraction. In: Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and Its Applications. JNLPBA ’04. Stroudsburg: Association for Computational Linguistics: 2004. p. 29–35. http://dl.acm.org/citation.cfm?id=1567594.1567600 .

Burns G, Dasigi P, de Waard A, Hovy EH. Automated detection of discourse segment and experimental types from the text of cancer pathway results sections. Database. 2016; 2016:122. https://doi.org/10.1093/database/baw122 .

Liakata M, Saha S, Dobnik S, Batchelor C, Rebholz-Schuhmann D. Automatic recognition of conceptualization zones in scientific articles and two life science applications. Bioinformatics. 2012; 28(7):991. https://doi.org/10.1093/bioinformatics/bts071 .

Article   PubMed   PubMed Central   CAS   Google Scholar  

Simsek D, Buckingham Shum S, Sandor A, De Liddo A, Ferguson R. Xip dashboard: visual analytics from automated rhetorical parsing of scientific metadiscourse. In: 1st International Workshop on Discourse-Centric Learning Analytics. Leuven: 2013.

Bundschus M, Dejori M, Stetter M, Tresp V, Kriegel HP. Extraction of semantic biomedical relations from text using conditional random fields. BMC Bioinformatics. 2008; 9(1):207.

Bravo A, Piñero J, Queralt-Rosinach N, Rautschka LIM. Furlong: Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research. BMC Bioinformatics. 2015; 16(1):55.

Verspoor KM, Heo EG, Kang KY, Song M. Establishing a baseline for literature mining human genetic variants and their relationships to disease cohorts. BMC Med Inf Decis Mak. 2016; 16(1):68.

Nedellec C. Learning language in logic-genic interaction extraction challenge. In: Proceedings of the ICML-2005 Workshop on Learning Language in Logic (LLL05): 2005. p. 31–7.

Kim JD, Pyysalo S, Ohta T, Bossy R, Nguyen N, Tsujii J. Overview of BioNLP shared task 2011. In: Proceedings of the BioNLP Shared Task 2011 Workshop. Portland: Association for Computational Linguistics: 2011. p. 1–6.

Pyysalo S, Ginter F, Heimonen J, Björne F, Boberg F, Järvinen F, Salakoski T. BioInfer: a corpus for information extraction in the biomedical domain. BMC Bioinformatics. 2007; 8(1):50.

Sanchez-Graillet O, Poesio M. Negation of protein—protein interactions: analysis and extraction. Bioinformatics. 2007; 23(13):424. https://doi.org/10.1093/bioinformatics/btm184 .

Kim JD, Ohta T, Tsujii J. Corpus annotation for mining biomedical events from literature. BMC Bioinformatics. 2008; 9(1):1–25.

Van Mulligen EM, Fourrier-Reglat A, Gurwitz D, Molokhia M, Nieto A, Trifiro G, Kors JA, Furlong LI. The EU-ADR corpus: annotated drugs, diseases, targets, and their relationships. J Biomed Inform. 2012; 45(5):879–84.

Björne J, Ginter F, Salakoski T. University of Turku in the BioNLP’11 shared task. BMC Bioinformatics. 2012; 13(11):4.

Kilicoglu H, Bergler S. Biological event composition. BMC Bioinformatics. 2012; 13(11):7.

Thompson P, Nawaz R, McNaught J, Ananiadou S. Enriching news events with meta-knowledge information. Lang Resour Eval. 2016:1–30. https://doi.org/10.1007/s10579-016-9344-9 .

Walker C, Strassel S, Medero J, Maeda K. ACE 2005 multilingual training corpus. Philadelphia: Linguistic Data Consortium; 2006.

Thompson P, Nawaz R, McNaught J, Ananiadou S. Enriching a biomedical event corpus with meta-knowledge annotation. BMC Bioinformatics. 2011; 12(1):1–18.

Nawaz R, Thompson P, Ananiadou S. Negated BioEvents: Analysis and identification. BMC Bioinformatics. 2013; 14(1):14. https://doi.org/10.1186/1471-2105-14-14 .

Nawaz R, Thompson P, Ananiadou S. Something old, something new: identifying knowledge source in bio-events. Int J Comput Linguist Appl. 2013; 4(1):129–44.

Miwa M, Thompson P, McNaught J, Kell DB, Ananiadou S. Extracting semantically enriched events from biomedical literature. BMC Bioinformatics. 2012; 13:108. https://doi.org/10.1186/1471-2105-13-108 . Highly Accessed.

Nawaz R, Thompson P, Ananiadou S. Meta-knowledge annotation at the event level: Comparison between abstracts and full papers. In: Proceedings of the Third Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2012): 2012. p. 24–31.

Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960; 20(1):37–46. https://doi.org/10.1177/001316446002000104 .

McHugh ML. Interrater reliability: the kappa statistic. Biochemia medica. 2012; 22(3):276–82.

Miwa M, Sætre R, Kim JD, Tsujii J. Event extraction with complex event classification using rich features. J Bioinforma Comput Biol. 2010; 8(01):131–46.

Breiman L. Random forests. Machine Learning. 2001; 45(1):5–32.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: An update. SIGKDD Explor Newsl. 2009; 11(1):10–18. https://doi.org/10.1145/1656274.1656278 .

Tsuruoka Y, Tateishi Y, Kim JD, Ohta T, McNaught J, Ananiadou S, Tsujii J. Developing a robust part-of-speech tagger for biomedical text. Berlin, Heidelberg: Springer; 2005, pp. 382–92. Advances in Informatics: 10th Panhellenic Conference on Informatics, PCI 2005, Volas, Greece, November 11-13, 2005.

Book   Google Scholar  

Miyao Y, Tsujii J. Feature forest models for probabilistic HPSG parsing. Comput Linguist. 2008; 34(1):35–80. https://doi.org/10.1162/coli.2008.34.1.35 .

Schuemie MJ, Weeber M, Schijvenaars BJA, van Mulligen EM, van der Eijk CC, Jelier R, Mons B, Kors JA. Distribution of information in biomedical abstracts and full-text publications. Bioinformatics. 2004; 20(16):2597–604. https://doi.org/10.1093/bioinformatics/bth291 .

Download references

Acknowledgements

The authors wish to thank the annotators involved in creating the dataset for this paper, without whom this research would not have been possible. Out thanks also go to the reviewers for their considered feedback on our research.

The authors of this work were funded by the European Commission (an Open Mining Infrastructure for Text and Data. OpenMinTeD. Grant: 654021), the Medical Research Council (Manchester Molecular Pathology Innovation Centre. MMPathIC Grant: MR/N00583X/1) and the Biotechnology and Biological Sciences Research Council (Enriching Metabolic PATHwaY models with evidence from the literature. EMPATHY. Grant: BB/M006891/1). The funders played no part in either the design of the study or the collection, analysis, and interpretation of data, or in writing the manuscript.

Availability of data and materials

The datasets generated and analysed during the current study are available as Additional files to this paper.

Author information

Authors and affiliations.

National Centre for Text Mining, University of Manchester, Manchester, UK

Matthew Shardlow, Riza Batista-Navarro, Paul Thompson, Raheel Nawaz, John McNaught & Sophia Ananiadou

You can also search for this author in PubMed   Google Scholar

Contributions

MS ran the principal experiments, performed the analysis of the results and participated in authoring the paper. RB helped with the design of the experiments and authoring the paper. PT contributed work on the preparation of the EU-ADR corpus as well as participating in the authorship of the paper. RN contributed to the experimental design, guidelines for the annotators and participated in the authorship of the paper. JM and SA jointly supervised the research and participated in authoring the paper. All authors read and approved the final version of this manuscript prior to publication.

Corresponding author

Correspondence to Sophia Ananiadou .

Ethics declarations

Ethics approval and consent to participate.

No ethics approval was required for any element of this study.

Consent for publication

Not Applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Additional files

Additional file 1.

The annotation guidelines that were given to annotators for reference. (PDF 830 kb)

Additional file 2

A table providing an in depth description of each feature. (PDF 32 kb)

Additional file 3

Read me documentation explaining the structure of the clue files. (TXT 4 kb)

Additional file 4

The clues used to detect the Analysis component of the Knowledge Type meta-knowledge dimension. (FILE 3 kb)

Additional file 5

The clues used to detect the Fact component of the Knowledge Type meta-knowledge dimension. (FILE 4 kb)

Additional file 6

The clues used to detect the Investigation component of the Knowledge Type meta-knowledge dimension. (FILE 2 kb)

Additional file 7

The clues used to detect the Method component of the Knowledge Type meta-knowledge dimension. (FILE 4 kb)

Additional file 8

The clues used to detect the Observation component of the Knowledge Type meta-knowledge dimension. (FILE 4 kb)

Additional file 9

The clues used to detect the Other component of the Knowledge Source meta-knowledge dimension. (FILE 1 kb)

Additional file 10

The clues used to detect the Uncertain component of the Certainty Level meta-knowledge dimension. (FILE 4 kb)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article.

Shardlow, M., Batista-Navarro, R., Thompson, P. et al. Identification of research hypotheses and new knowledge from scientific literature. BMC Med Inform Decis Mak 18 , 46 (2018). https://doi.org/10.1186/s12911-018-0639-1

Download citation

Received : 10 August 2017

Accepted : 11 June 2018

Published : 25 June 2018

DOI : https://doi.org/10.1186/s12911-018-0639-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Text mining
  • Meta-knowledge
  • New knowledge

BMC Medical Informatics and Decision Making

ISSN: 1472-6947

hypothesis research article

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Journal Club
  • Published: 06 July 2022

RNA BIOLOGY

The RNA world ‘hypothesis’

  • Hirohide Saito 1  

Nature Reviews Molecular Cell Biology volume  23 ,  page 582 ( 2022 ) Cite this article

5579 Accesses

4 Citations

84 Altmetric

Metrics details

  • Riboswitches

How has life emerged from scratch, and evolved to current living systems? This question has always intrigued us. The RNA world hypothesis — which postulates that RNA with both genetic information and catalytic activity had an essential role in the origin of life — is now supported by many scientists. Two seminal papers published in the early 1990s investigated this hypothesis using different approaches.

In June 1992, Harry F. Noller and colleagues reported an interesting biochemical (reductive) approach that demonstrated the involvement of 23S ribosomal RNA (rRNA) in peptidyl transferase (PTase) activity. The authors removed ribosomal proteins from 50S ribosomal subunits of Thermus aquaticus without disturbing the structure of rRNA and on this preparation performed a fragment reaction, which mimics peptidyl transfer from peptidyl-tRNA to an aminoacyl-tRNA analogue. Surprisingly, the ribosomal subunits maintained their PTase activity, even after 95% of the ribosomal proteins were removed. Their results strongly indicated that 23S rRNA is a ribozyme (RNA enzyme) that catalyses peptide bond formation, but their statement was modest to say that “Direct proof for the hypothesis that peptide bond formation is catalyzed solely by rRNA will require demonstration of activity with completely protein-free preparations.” The precise X-ray structure of the 50S ribosome was only solved in 2000, in which no visible peptide chain within 18 Å from the PTase centre was observed, providing the structural evidence that 23S rRNA catalyses peptide bond formation.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

176,64 € per year

only 14,72 € per issue

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Original articles

Noller, H. F. et al. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256 , 1416–1419 (1992)

Article   CAS   Google Scholar  

Bartel, D. P. & Szostak, J. W. Isolation of new ribozymes from a large pool of random sequences. Science 261 , 1411–1418 (1993)

Related article

Gilbert, W. The RNA world. Nature 319 , 618 (1986)

Article   Google Scholar  

Download references

Author information

Authors and affiliations.

Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan

Hirohide Saito

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hirohide Saito .

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Saito, H. The RNA world ‘hypothesis’. Nat Rev Mol Cell Biol 23 , 582 (2022). https://doi.org/10.1038/s41580-022-00514-6

Download citation

Published : 06 July 2022

Issue Date : September 2022

DOI : https://doi.org/10.1038/s41580-022-00514-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

hypothesis research article

hypothesis research article

English dominates scientific research – here’s how we can fix it, and why it matters

hypothesis research article

Científica del Instituto de Lengua, Literatura y Antropología (ILLA), del Centro de Ciencias Humanas y Sociales (CCHS) del Consejo Superior de Investigaciones Científicas (CSIC), Centro de Ciencias Humanas y Sociales (CCHS - CSIC)

Disclosure statement

Elea Giménez Toledo does not receive a salary, nor does she own shares, nor does she receive funding from any company or organisation that might benefit from this article. She is a commissioner of the SEGIB, which implies only unpaid scientific advice to this institution, as part of the scientific activity carried out at the CSIC.

Consejo Superior de Investigaciones Científicas provides funding as a founding partner of The Conversation ES.

View all partners

It is often remarked that Spanish should be more widely spoken or understood in the scientific community given its number of speakers around the world, a figure the Instituto Cervantes places at almost 600 million .

However, millions of speakers do not necessarily grant a language strength in academia. This has to be cultivated on a scientific, political and cultural level, with sustained efforts from many institutions and specialists.

The scientific community should communicate in as many languages as possible

By some estimates, as much as 98% of the world’s scientific research is published in English , while only around 18% of the world’s population speaks it. This makes it essential to publish in other languages if we are to bring scientific research to society at large.

The value of multilingualism in science has been highlighted by numerous high profile organisations, with public declarations and statements on the matter from the European Charter for Researchers , the Helsinki Initiative on Multiligualism , the Unesco Recommendation on Open Science , the OPERAS Multiligualism White Paper , the Latin American Forum on Research Assessment , the COARA Agreement on Reforming Research Assessment , and the Declaration of the 5th Meeting of Minsters and Scientific Authorities of Ibero-American Countries . These organisations all agree on one thing: all languages have value in scientific communication .

As the last of these declarations points out, locally, regionally and nationally relevant research is constantly being published in languages other than English. This research has an economic, social and cultural impact on its surrounding environment, as when scientific knowledge is disseminated it filters through to non-academic professionals, thus creating a broader culture of knowledge sharing.

Greater diversity also enables fluid dialogue among academics who share the same language, or who speak and understand multiple languages. In Ibero-America, for example, Spanish and Portuguese can often be mutually understood by non-native speakers, allowing them to share the scientific stage. The same happens in Spain with the majority of its co-official languages .

Read more: Non-native English speaking scientists work much harder just to keep up, global research reveals

No hierarchies, no categories

Too often, scientific research in any language other than English is automatically seen as second tier, with little consideration for the quality of the work itself.

This harmful prejudice ignores the work of those involved, especially in the humanities and social sciences. It also profoundly undermines the global academic community’s ability to share knowledge with society.

By defending and preserving multilingualism, the scientific community brings research closer to those who need it. Failing to pursue this aim means that academia cannot develop or expand its audience. We have to work carefully, systematically and consistently in every language available to us.

Read more: Prestigious journals make it hard for scientists who don't speak English to get published. And we all lose out

The logistics of strengthening linguistic diversity in science

Making a language stronger in academia is a complex process. It does not happen spontaneously, and requires careful coordination and planning. Efforts have to come from public and private institutions, the media, and other cultural outlets, as well as from politicians, science diplomacy , and researchers themselves.

Many of these elements have to work in harmony, as demonstrated by the Spanish National Research Council’s work in ES CIENCIA , a project which seeks to unite scientific and and political efforts.

Academic publishing and AI models: a new challenge

The global academic environment is changing as a result the digital transition and new models of open access. Research into publishers of scientific content in other languages will be essential to understanding this shift. One thing is clear though: making scientific content produced in a particular language visible and searchable online is crucial to ensuring its strength.

In the case of academic books, the transition to open access has barely begun , especially in the commercial publishing sector, which releases around 80% of scientific books in Spain. As with online publishing, a clear understanding will make it possible to design policies and models that account for the different ways of disseminating scientific research, including those that communicate locally and in other languages. Greater linguistic diversity in book publishing can also allow us to properly recognise the work done by publishers in sharing research among non-English speakers.

Read more: Removing author fees can help open access journals make research available to everyone

Making publications, datasets, and other non-linguistic research results easy to find is another vital element, which requires both scientific and technical support. The same applies to expanding the corpus of scientific literature in Spanish and other languages, especially since this feeds into generative artificial intelligence models.

If linguistically diverse scientific content is not incorporated into AI systems, they will spread information that is incomplete, biased or misleading: a recent Spanish government report on the state of Spanish and co-official languages points out that 90% of the text currently fed into AI is written in English.

Deep study of terminology is essential

Research into terminology is of the utmost importance in preventing the use of improvised, imprecise language or unintelligible jargon. It can also bring huge benefits for the quality of both human and machine translations, specialised language teaching, and the indexing and organisation of large volumes of documents.

Terminology work in Spanish is being carried out today thanks to the processing of large language corpuses by AI and researchers in the TeresIA project, a joint effort coordinated by the Spanish National Research Council. However, 15 years of ups and downs were needed to to get such a project off the ground in Spanish.

The Basque Country, Catalonia and Galicia, on the other hand, have worked intensively and systematically on their respective languages. They have not only tackled terminology as a public language policy issue, but have also been committed to established terminology projects for a long time.

Multiligualism is a global issue

This need for broader diversity also applies to Ibero-America as a whole, where efforts are being coordinated to promote Spanish and Portuguese in academia, notably by the Ibero-American General Secretariat and the Mexican National Council of Humanities, Sciences and Technologies .

While this is sorely needed, we cannot promote the region’s two most widely spoken languages and also ignore its diversity of indigenous and co-official languages. These are also involved in the production of knowledge, and are a vehicle for the transfer of scientific information, as demonstrated by efforts in Spain.

Each country has its own unique role to play in promoting greater linguistic diversity in scientific communication. If this can be achieved, the strength of Iberian languages – and all languages, for that matter – in academia will not be at the mercy of well intentioned but sporadic efforts. It will, instead, be the result of the scientific community’s commitment to a culture of knowledge sharing.

This article was originally published in Spanish

  • Scientific publishing
  • Multilingualism
  • The Conversation Europe

hypothesis research article

Lecturer (Hindi-Urdu)

hypothesis research article

Initiative Tech Lead, Digital Products COE

hypothesis research article

Director, Defence and Security

hypothesis research article

Opportunities with the new CIEHF

hypothesis research article

School of Social Sciences – Public Policy and International Relations opportunities

Retraction Note: The role of monetary and fiscal policies in determining environmental pollution: Revisiting the N-shaped EKC hypothesis for China

  • Retraction Note
  • Published: 26 March 2024

Cite this article

  • Tang Zhengxia 1 ,
  • Mohammad Haseeb 2 ,
  • Muhammad Usman   ORCID: orcid.org/0000-0002-6131-2118 2 ,
  • Mohd Shuaib   ORCID: orcid.org/0009-0006-6027-2317 2 ,
  • Mustafa Kamal 3 &
  • Mohammad Faisal Khan 4  

223 Accesses

Explore all metrics

The Original Article was published on 17 July 2023

Avoid common mistakes on your manuscript.

Retraction Note: Environmental Science and Pollution Research (2023) 30:89756-89769

https://doi.org/10.1007/s11356-023-28672-w

The Publisher has retracted this article in agreement with the Editor-in-Chief. An investigation by the publisher found a number of articles, including this one, with a number of concerns, including but not limited to compromised peer review process, inappropriate or irrelevant references, containing nonstandard phrases or not being in scope of the journal. Based on the investigation's findings the publisher, in consultation with the Editor-in-Chief therefore no longer has confidence in the results and conclusions of this article.

The authors have not replied to correspondence from the Publisher.

Author information

Authors and affiliations.

School of Economics and Management, Xichang University, Sichuan Province, 1 Xuefu Road, Xichang City, 615000, China

Tang Zhengxia

School of Economics and Management, and Center for Industrial Economics, Wuhan University, Wuhan, 430072, China

Mohammad Haseeb, Muhammad Usman & Mohd Shuaib

Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Dammam, 32256, Saudi Arabia

Mustafa Kamal

Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, 11673, Riyadh, Saudi Arabia

Mohammad Faisal Khan

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Muhammad Usman .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Zhengxia, T., Haseeb, M., Usman, M. et al. Retraction Note: The role of monetary and fiscal policies in determining environmental pollution: Revisiting the N-shaped EKC hypothesis for China. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-33020-7

Download citation

Published : 26 March 2024

DOI : https://doi.org/10.1007/s11356-024-33020-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Crit Care Med
  • v.23(Suppl 3); 2019 Sep

An Introduction to Statistics: Understanding Hypothesis Testing and Statistical Errors

Priya ranganathan.

1 Department of Anesthesiology, Critical Care and Pain, Tata Memorial Hospital, Mumbai, Maharashtra, India

2 Department of Surgical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India

The second article in this series on biostatistics covers the concepts of sample, population, research hypotheses and statistical errors.

How to cite this article

Ranganathan P, Pramesh CS. An Introduction to Statistics: Understanding Hypothesis Testing and Statistical Errors. Indian J Crit Care Med 2019;23(Suppl 3):S230–S231.

Two papers quoted in this issue of the Indian Journal of Critical Care Medicine report. The results of studies aim to prove that a new intervention is better than (superior to) an existing treatment. In the ABLE study, the investigators wanted to show that transfusion of fresh red blood cells would be superior to standard-issue red cells in reducing 90-day mortality in ICU patients. 1 The PROPPR study was designed to prove that transfusion of a lower ratio of plasma and platelets to red cells would be superior to a higher ratio in decreasing 24-hour and 30-day mortality in critically ill patients. 2 These studies are known as superiority studies (as opposed to noninferiority or equivalence studies which will be discussed in a subsequent article).

SAMPLE VERSUS POPULATION

A sample represents a group of participants selected from the entire population. Since studies cannot be carried out on entire populations, researchers choose samples, which are representative of the population. This is similar to walking into a grocery store and examining a few grains of rice or wheat before purchasing an entire bag; we assume that the few grains that we select (the sample) are representative of the entire sack of grains (the population).

The results of the study are then extrapolated to generate inferences about the population. We do this using a process known as hypothesis testing. This means that the results of the study may not always be identical to the results we would expect to find in the population; i.e., there is the possibility that the study results may be erroneous.

HYPOTHESIS TESTING

A clinical trial begins with an assumption or belief, and then proceeds to either prove or disprove this assumption. In statistical terms, this belief or assumption is known as a hypothesis. Counterintuitively, what the researcher believes in (or is trying to prove) is called the “alternate” hypothesis, and the opposite is called the “null” hypothesis; every study has a null hypothesis and an alternate hypothesis. For superiority studies, the alternate hypothesis states that one treatment (usually the new or experimental treatment) is superior to the other; the null hypothesis states that there is no difference between the treatments (the treatments are equal). For example, in the ABLE study, we start by stating the null hypothesis—there is no difference in mortality between groups receiving fresh RBCs and standard-issue RBCs. We then state the alternate hypothesis—There is a difference between groups receiving fresh RBCs and standard-issue RBCs. It is important to note that we have stated that the groups are different, without specifying which group will be better than the other. This is known as a two-tailed hypothesis and it allows us to test for superiority on either side (using a two-sided test). This is because, when we start a study, we are not 100% certain that the new treatment can only be better than the standard treatment—it could be worse, and if it is so, the study should pick it up as well. One tailed hypothesis and one-sided statistical testing is done for non-inferiority studies, which will be discussed in a subsequent paper in this series.

STATISTICAL ERRORS

There are two possibilities to consider when interpreting the results of a superiority study. The first possibility is that there is truly no difference between the treatments but the study finds that they are different. This is called a Type-1 error or false-positive error or alpha error. This means falsely rejecting the null hypothesis.

The second possibility is that there is a difference between the treatments and the study does not pick up this difference. This is called a Type 2 error or false-negative error or beta error. This means falsely accepting the null hypothesis.

The power of the study is the ability to detect a difference between groups and is the converse of the beta error; i.e., power = 1-beta error. Alpha and beta errors are finalized when the protocol is written and form the basis for sample size calculation for the study. In an ideal world, we would not like any error in the results of our study; however, we would need to do the study in the entire population (infinite sample size) to be able to get a 0% alpha and beta error. These two errors enable us to do studies with realistic sample sizes, with the compromise that there is a small possibility that the results may not always reflect the truth. The basis for this will be discussed in a subsequent paper in this series dealing with sample size calculation.

Conventionally, type 1 or alpha error is set at 5%. This means, that at the end of the study, if there is a difference between groups, we want to be 95% certain that this is a true difference and allow only a 5% probability that this difference has occurred by chance (false positive). Type 2 or beta error is usually set between 10% and 20%; therefore, the power of the study is 90% or 80%. This means that if there is a difference between groups, we want to be 80% (or 90%) certain that the study will detect that difference. For example, in the ABLE study, sample size was calculated with a type 1 error of 5% (two-sided) and power of 90% (type 2 error of 10%) (1).

Table 1 gives a summary of the two types of statistical errors with an example

Statistical errors

In the next article in this series, we will look at the meaning and interpretation of ‘ p ’ value and confidence intervals for hypothesis testing.

Source of support: Nil

Conflict of interest: None

IMAGES

  1. What is a Research Hypothesis And How to Write it?

    hypothesis research article

  2. 🏷️ Formulation of hypothesis in research. How to Write a Strong

    hypothesis research article

  3. Research Hypothesis: Definition, Types, Examples and Quick Tips (2022)

    hypothesis research article

  4. Research Hypothesis: Definition, Types, Examples and Quick Tips

    hypothesis research article

  5. (PDF) Visually Hypothesising in Scientific Paper Writing: Confirming

    hypothesis research article

  6. How to write a Research Hypothesis

    hypothesis research article

VIDEO

  1. Research Methods

  2. THE RESEARCH HYPOTHESIS-ACADEMIC RESEARCH WRITING BASIC GUIDELINES

  3. Alternate hypothesis

  4. What is Hypothesis

  5. Types of hypothesis

  6. How to write a hypothesis

COMMENTS

  1. Scientific Hypotheses: Writing, Promoting, and Predicting Implications

    A snapshot analysis of citation activity of hypothesis articles may reveal interest of the global scientific community towards their implications across various disciplines and countries. As a prime example, Strachan's hygiene hypothesis, published in 1989,10 is still attracting numerous citations on Scopus, the largest bibliographic database ...

  2. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  3. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  4. Formulating Hypotheses for Different Study Designs

    Thus, hypothesis generation is an important initial step in the research workflow, reflecting accumulating evidence and experts' stance. In this article, we overview the genesis and importance of scientific hypotheses and their relevance in the era of the coronavirus disease 2019 (COVID-19) pandemic.

  5. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  6. Full article: Research Problems and Hypotheses in Empirical Research

    Research problems and hypotheses are important means for attaining valuable knowledge. They are pointers or guides to such knowledge, or as formulated by Kerlinger ( 1986, p. 19): " … they direct investigation.". There are many kinds of problems and hypotheses, and they may play various roles in knowledge construction.

  7. Research Hypothesis: Definition, Types, Examples and Quick Tips

    3. Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  8. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  9. The Research Hypothesis: Role and Construction

    A hypothesis (from the Greek, foundation) is a logical construct, interposed between a problem and its solution, which represents a proposed answer to a research question. It gives direction to the investigator's thinking about the problem and, therefore, facilitates a solution. Unlike facts and assumptions (presumed true and, therefore, not ...

  10. Hypothesis Examples: How to Write a Great Research Hypothesis

    This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use. The Hypothesis in the Scientific Method In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think ...

  11. What is and How to Write a Good Hypothesis in Research?

    An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions. Use the following points as a checklist to evaluate the effectiveness of your research hypothesis: Predicts the relationship and outcome.

  12. How to Write a Research Hypothesis

    Research hypothesis checklist. Once you've written a possible hypothesis, make sure it checks the following boxes: It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis. It must include a dependent and independent variable: At least one independent variable ( cause) and one dependent ...

  13. What Is A Research Hypothesis? A Simple Definition

    A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes - specificity, clarity and testability. Let's take a look at these more closely.

  14. What is a Hypothesis

    Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments and the ...

  15. Research questions, hypotheses and objectives

    The development of the research question, including a supportive hypothesis and objectives, is a necessary key step in producing clinically relevant results to be used in evidence-based practice. A well-defined and specific research question is more likely to help guide us in making decisions about study design and population and subsequently ...

  16. Hypothesis Testing

    There are 5 main steps in hypothesis testing: State your research hypothesis as a null hypothesis and alternate hypothesis (H o) and (H a or H 1 ). Collect data in a way designed to test the hypothesis. Perform an appropriate statistical test. Decide whether to reject or fail to reject your null hypothesis. Present the findings in your results ...

  17. What is a Research Hypothesis and How to Write a Hypothesis

    The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure. 3.

  18. (PDF) Hypothesis Types and Research

    A hypothesis is a statement of the researcher's expectation or prediction about relationship among study variables. The research process begins and ends with the hypothesis. It is core to the ...

  19. Research: Articulating Questions, Generating Hypotheses, and Choosing

    The hypothesis is a tentative prediction of the nature and direction of relationships between sets of data, phrased as a declarative statement. Therefore, hypotheses are really only required for studies that address relational or causal research questions. ... This article is the second in the CJHP Research Primer Series, an initiative of the ...

  20. Identification of research hypotheses and new knowledge from scientific

    In this work, we focus on the automatic assignment of two interpretative dimensions to relations and events extracted by text mining tools. Specifically, we aim to determine whether or not each relation and event corresponds to a Research Hypothesis, as in sentence (1), or to New Knowledge, as in sentence (2).To the best of our knowledge, this work represents the first effort to apply a ...

  21. The RNA world 'hypothesis'

    The RNA world hypothesis — which postulates that RNA with both genetic information and catalytic activity had an essential role in the origin of life — is now supported by many scientists. Two ...

  22. English dominates scientific research

    This research has an economic, social and cultural impact on its surrounding environment, as when scientific knowledge is disseminated it filters through to non-academic professionals, thus ...

  23. Retraction Note: The role of monetary and fiscal policies in ...

    The Publisher has retracted this article in agreement with the Editor-in-Chief. An investigation by the publisher found a number of articles, including this one, with a number of concerns, including but not limited to compromised peer review process, inappropriate or irrelevant references, containing nonstandard phrases or not being in scope of the journal.

  24. An Introduction to Statistics: Understanding Hypothesis Testing and

    HYPOTHESIS TESTING. A clinical trial begins with an assumption or belief, and then proceeds to either prove or disprove this assumption. In statistical terms, this belief or assumption is known as a hypothesis. Counterintuitively, what the researcher believes in (or is trying to prove) is called the "alternate" hypothesis, and the opposite ...

  25. Uncovering the new science of clinical hypnosis

    Research suggests that hypnotic suggestion may be useful for a host of other behavioral health problems, including improving sleep, managing stress, and quitting smoking. One meta-analysis found, for instance, that hypnosis was a promising treatment for sleep problems ( Chamine, I., et al., Journal of Clinical Sleep Medicine , Vol. 14, No. 2 ...