Problem-Solving Method in Teaching

The problem-solving method is a highly effective teaching strategy that is designed to help students develop critical thinking skills and problem-solving abilities . It involves providing students with real-world problems and challenges that require them to apply their knowledge, skills, and creativity to find solutions. This method encourages active learning, promotes collaboration, and allows students to take ownership of their learning.

Table of Contents

Definition of problem-solving method.

Problem-solving is a process of identifying, analyzing, and resolving problems. The problem-solving method in teaching involves providing students with real-world problems that they must solve through collaboration and critical thinking. This method encourages students to apply their knowledge and creativity to develop solutions that are effective and practical.

Meaning of Problem-Solving Method

The meaning and Definition of problem-solving are given by different Scholars. These are-

Woodworth and Marquis(1948) : Problem-solving behavior occurs in novel or difficult situations in which a solution is not obtainable by the habitual methods of applying concepts and principles derived from past experience in very similar situations.

Skinner (1968): Problem-solving is a process of overcoming difficulties that appear to interfere with the attainment of a goal. It is the procedure of making adjustments in spite of interference

Benefits of Problem-Solving Method

The problem-solving method has several benefits for both students and teachers. These benefits include:

  • Encourages active learning: The problem-solving method encourages students to actively participate in their own learning by engaging them in real-world problems that require critical thinking and collaboration
  • Promotes collaboration: Problem-solving requires students to work together to find solutions. This promotes teamwork, communication, and cooperation.
  • Builds critical thinking skills: The problem-solving method helps students develop critical thinking skills by providing them with opportunities to analyze and evaluate problems
  • Increases motivation: When students are engaged in solving real-world problems, they are more motivated to learn and apply their knowledge.
  • Enhances creativity: The problem-solving method encourages students to be creative in finding solutions to problems.

Steps in Problem-Solving Method

The problem-solving method involves several steps that teachers can use to guide their students. These steps include

  • Identifying the problem: The first step in problem-solving is identifying the problem that needs to be solved. Teachers can present students with a real-world problem or challenge that requires critical thinking and collaboration.
  • Analyzing the problem: Once the problem is identified, students should analyze it to determine its scope and underlying causes.
  • Generating solutions: After analyzing the problem, students should generate possible solutions. This step requires creativity and critical thinking.
  • Evaluating solutions: The next step is to evaluate each solution based on its effectiveness and practicality
  • Selecting the best solution: The final step is to select the best solution and implement it.

Verification of the concluded solution or Hypothesis

The solution arrived at or the conclusion drawn must be further verified by utilizing it in solving various other likewise problems. In case, the derived solution helps in solving these problems, then and only then if one is free to agree with his finding regarding the solution. The verified solution may then become a useful product of his problem-solving behavior that can be utilized in solving further problems. The above steps can be utilized in solving various problems thereby fostering creative thinking ability in an individual.

The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to succeed in school and in life.

  • Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. Routledge.
  • Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266.
  • Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006). The effectiveness of problem-based instruction: A comparative study of instructional methods and student characteristics. Interdisciplinary Journal of Problem-based Learning, 1(2), 49-69.
  • Richey, R. C., Klein, J. D., & Tracey, M. W. (2011). The instructional design knowledge base: Theory, research, and practice. Routledge.
  • Savery, J. R., & Duffy, T. M. (2001). Problem-based learning: An instructional model and its constructivist framework. CRLT Technical Report No. 16-01, University of Michigan. Wojcikowski, J. (2013). Solving real-world problems through problem-based learning. College Teaching, 61(4), 153-156

Micro Teaching Skills

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

discuss problem solving method of teaching

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

Logo for FHSU Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Teaching Mathematics Through Problem Solving

Janet Stramel

Problem Solving

In his book “How to Solve It,” George Pólya (1945) said, “One of the most important tasks of the teacher is to help his students. This task is not quite easy; it demands time, practice, devotion, and sound principles. The student should acquire as much experience of independent work as possible. But if he is left alone with his problem without any help, he may make no progress at all. If the teacher helps too much, nothing is left to the student. The teacher should help, but not too much and not too little, so that the student shall have a reasonable share of the work.” (page 1)

What is a problem  in mathematics? A problem is “any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method” (Hiebert, et. al., 1997). Problem solving in mathematics is one of the most important topics to teach; learning to problem solve helps students develop a sense of solving real-life problems and apply mathematics to real world situations. It is also used for a deeper understanding of mathematical concepts. Learning “math facts” is not enough; students must also learn how to use these facts to develop their thinking skills.

According to NCTM (2010), the term “problem solving” refers to mathematical tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. When you first hear “problem solving,” what do you think about? Story problems or word problems? Story problems may be limited to and not “problematic” enough. For example, you may ask students to find the area of a rectangle, given the length and width. This type of problem is an exercise in computation and can be completed mindlessly without understanding the concept of area. Worthwhile problems  includes problems that are truly problematic and have the potential to provide contexts for students’ mathematical development.

There are three ways to solve problems: teaching for problem solving, teaching about problem solving, and teaching through problem solving.

Teaching for problem solving begins with learning a skill. For example, students are learning how to multiply a two-digit number by a one-digit number, and the story problems you select are multiplication problems. Be sure when you are teaching for problem solving, you select or develop tasks that can promote the development of mathematical understanding.

Teaching about problem solving begins with suggested strategies to solve a problem. For example, “draw a picture,” “make a table,” etc. You may see posters in teachers’ classrooms of the “Problem Solving Method” such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no evidence that students’ problem-solving abilities are improved when teaching about problem solving. Students will see a word problem as a separate endeavor and focus on the steps to follow rather than the mathematics. In addition, students will tend to use trial and error instead of focusing on sense making.

Teaching through problem solving  focuses students’ attention on ideas and sense making and develops mathematical practices. Teaching through problem solving also develops a student’s confidence and builds on their strengths. It allows for collaboration among students and engages students in their own learning.

Consider the following worthwhile-problem criteria developed by Lappan and Phillips (1998):

  • The problem has important, useful mathematics embedded in it.
  • The problem requires high-level thinking and problem solving.
  • The problem contributes to the conceptual development of students.
  • The problem creates an opportunity for the teacher to assess what his or her students are learning and where they are experiencing difficulty.
  • The problem can be approached by students in multiple ways using different solution strategies.
  • The problem has various solutions or allows different decisions or positions to be taken and defended.
  • The problem encourages student engagement and discourse.
  • The problem connects to other important mathematical ideas.
  • The problem promotes the skillful use of mathematics.
  • The problem provides an opportunity to practice important skills.

Of course, not every problem will include all of the above. Sometimes, you will choose a problem because your students need an opportunity to practice a certain skill.

Key features of a good mathematics problem includes:

  • It must begin where the students are mathematically.
  • The feature of the problem must be the mathematics that students are to learn.
  • It must require justifications and explanations for both answers and methods of solving.

Needlepoint of cats

Problem solving is not a  neat and orderly process. Think about needlework. On the front side, it is neat and perfect and pretty.

Back of a needlepoint

But look at the b ack.

It is messy and full of knots and loops. Problem solving in mathematics is also like this and we need to help our students be “messy” with problem solving; they need to go through those knots and loops and learn how to solve problems with the teacher’s guidance.

When you teach through problem solving , your students are focused on ideas and sense-making and they develop confidence in mathematics!

Mathematics Tasks and Activities that Promote Teaching through Problem Solving

Teacher teaching a math lesson

Choosing the Right Task

Selecting activities and/or tasks is the most significant decision teachers make that will affect students’ learning. Consider the following questions:

  • Teachers must do the activity first. What is problematic about the activity? What will you need to do BEFORE the activity and AFTER the activity? Additionally, think how your students would do the activity.
  • What mathematical ideas will the activity develop? Are there connections to other related mathematics topics, or other content areas?
  • Can the activity accomplish your learning objective/goals?

discuss problem solving method of teaching

Low Floor High Ceiling Tasks

By definition, a “ low floor/high ceiling task ” is a mathematical activity where everyone in the group can begin and then work on at their own level of engagement. Low Floor High Ceiling Tasks are activities that everyone can begin and work on based on their own level, and have many possibilities for students to do more challenging mathematics. One gauge of knowing whether an activity is a Low Floor High Ceiling Task is when the work on the problems becomes more important than the answer itself, and leads to rich mathematical discourse [Hover: ways of representing, thinking, talking, agreeing, and disagreeing; the way ideas are exchanged and what the ideas entail; and as being shaped by the tasks in which students engage as well as by the nature of the learning environment].

The strengths of using Low Floor High Ceiling Tasks:

  • Allows students to show what they can do, not what they can’t.
  • Provides differentiation to all students.
  • Promotes a positive classroom environment.
  • Advances a growth mindset in students
  • Aligns with the Standards for Mathematical Practice

Examples of some Low Floor High Ceiling Tasks can be found at the following sites:

  • YouCubed – under grades choose Low Floor High Ceiling
  • NRICH Creating a Low Threshold High Ceiling Classroom
  • Inside Mathematics Problems of the Month

Math in 3-Acts

Math in 3-Acts was developed by Dan Meyer to spark an interest in and engage students in thought-provoking mathematical inquiry. Math in 3-Acts is a whole-group mathematics task consisting of three distinct parts:

Act One is about noticing and wondering. The teacher shares with students an image, video, or other situation that is engaging and perplexing. Students then generate questions about the situation.

In Act Two , the teacher offers some information for the students to use as they find the solutions to the problem.

Act Three is the “reveal.” Students share their thinking as well as their solutions.

“Math in 3 Acts” is a fun way to engage your students, there is a low entry point that gives students confidence, there are multiple paths to a solution, and it encourages students to work in groups to solve the problem. Some examples of Math in 3-Acts can be found at the following websites:

  • Dan Meyer’s Three-Act Math Tasks
  • Graham Fletcher3-Act Tasks ]
  • Math in 3-Acts: Real World Math Problems to Make Math Contextual, Visual and Concrete

Number Talks

Number talks are brief, 5-15 minute discussions that focus on student solutions for a mental math computation problem. Students share their different mental math processes aloud while the teacher records their thinking visually on a chart or board. In addition, students learn from each other’s strategies as they question, critique, or build on the strategies that are shared.. To use a “number talk,” you would include the following steps:

  • The teacher presents a problem for students to solve mentally.
  • Provide adequate “ wait time .”
  • The teacher calls on a students and asks, “What were you thinking?” and “Explain your thinking.”
  • For each student who volunteers to share their strategy, write their thinking on the board. Make sure to accurately record their thinking; do not correct their responses.
  • Invite students to question each other about their strategies, compare and contrast the strategies, and ask for clarification about strategies that are confusing.

“Number Talks” can be used as an introduction, a warm up to a lesson, or an extension. Some examples of Number Talks can be found at the following websites:

  • Inside Mathematics Number Talks
  • Number Talks Build Numerical Reasoning

Light bulb

Saying “This is Easy”

“This is easy.” Three little words that can have a big impact on students. What may be “easy” for one person, may be more “difficult” for someone else. And saying “this is easy” defeats the purpose of a growth mindset classroom, where students are comfortable making mistakes.

When the teacher says, “this is easy,” students may think,

  • “Everyone else understands and I don’t. I can’t do this!”
  • Students may just give up and surrender the mathematics to their classmates.
  • Students may shut down.

Instead, you and your students could say the following:

  • “I think I can do this.”
  • “I have an idea I want to try.”
  • “I’ve seen this kind of problem before.”

Tracy Zager wrote a short article, “This is easy”: The Little Phrase That Causes Big Problems” that can give you more information. Read Tracy Zager’s article here.

Using “Worksheets”

Do you want your students to memorize concepts, or do you want them to understand and apply the mathematics for different situations?

What is a “worksheet” in mathematics? It is a paper and pencil assignment when no other materials are used. A worksheet does not allow your students to use hands-on materials/manipulatives [Hover: physical objects that are used as teaching tools to engage students in the hands-on learning of mathematics]; and worksheets are many times “naked number” with no context. And a worksheet should not be used to enhance a hands-on activity.

Students need time to explore and manipulate materials in order to learn the mathematics concept. Worksheets are just a test of rote memory. Students need to develop those higher-order thinking skills, and worksheets will not allow them to do that.

One productive belief from the NCTM publication, Principles to Action (2014), states, “Students at all grade levels can benefit from the use of physical and virtual manipulative materials to provide visual models of a range of mathematical ideas.”

You may need an “activity sheet,” a “graphic organizer,” etc. as you plan your mathematics activities/lessons, but be sure to include hands-on manipulatives. Using manipulatives can

  • Provide your students a bridge between the concrete and abstract
  • Serve as models that support students’ thinking
  • Provide another representation
  • Support student engagement
  • Give students ownership of their own learning.

Adapted from “ The Top 5 Reasons for Using Manipulatives in the Classroom ”.

any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method

should be intriguing and contain a level of challenge that invites speculation and hard work, and directs students to investigate important mathematical ideas and ways of thinking toward the learning

involves teaching a skill so that a student can later solve a story problem

when we teach students how to problem solve

teaching mathematics content through real contexts, problems, situations, and models

a mathematical activity where everyone in the group can begin and then work on at their own level of engagement

20 seconds to 2 minutes for students to make sense of questions

Mathematics Methods for Early Childhood Copyright © 2021 by Janet Stramel is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

  • Illinois Online
  • Illinois Remote

teaching_learning_banner

  • TA Resources
  • Teaching Consultation
  • Teaching Portfolio Program
  • Grad Academy for College Teaching
  • Faculty Events
  • The Art of Teaching
  • 2022 Illinois Summer Teaching Institute
  • Large Classes
  • Leading Discussions
  • Laboratory Classes
  • Lecture-Based Classes
  • Planning a Class Session
  • Questioning Strategies
  • Classroom Assessment Techniques (CATs)
  • Problem-Based Learning (PBL)
  • The Case Method
  • Community-Based Learning: Service Learning
  • Group Learning
  • Just-in-Time Teaching
  • Creating a Syllabus
  • Motivating Students
  • Dealing With Cheating
  • Discouraging & Detecting Plagiarism
  • Diversity & Creating an Inclusive Classroom
  • Harassment & Discrimination
  • Professional Conduct
  • Foundations of Good Teaching
  • Student Engagement
  • Assessment Strategies
  • Course Design
  • Student Resources
  • Teaching Tips
  • Graduate Teacher Certificate
  • Certificate in Foundations of Teaching
  • Teacher Scholar Certificate
  • Certificate in Technology-Enhanced Teaching
  • Master Course in Online Teaching (MCOT)
  • 2022 Celebration of College Teaching
  • 2023 Celebration of College Teaching
  • Hybrid Teaching and Learning Certificate
  • Classroom Observation Etiquette
  • Teaching Philosophy Statement
  • Pedagogical Literature Review
  • Scholarship of Teaching and Learning
  • Instructor Stories
  • Podcast: Teach Talk Listen Learn
  • Universal Design for Learning

Sign-Up to receive Teaching and Learning news and events

Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and communication skills. It can also provide opportunities for working in groups, finding and evaluating research materials, and life-long learning (Duch et al, 2001).

PBL can be incorporated into any learning situation. In the strictest definition of PBL, the approach is used over the entire semester as the primary method of teaching. However, broader definitions and uses range from including PBL in lab and design classes, to using it simply to start a single discussion. PBL can also be used to create assessment items. The main thread connecting these various uses is the real-world problem.

Any subject area can be adapted to PBL with a little creativity. While the core problems will vary among disciplines, there are some characteristics of good PBL problems that transcend fields (Duch, Groh, and Allen, 2001):

  • The problem must motivate students to seek out a deeper understanding of concepts.
  • The problem should require students to make reasoned decisions and to defend them.
  • The problem should incorporate the content objectives in such a way as to connect it to previous courses/knowledge.
  • If used for a group project, the problem needs a level of complexity to ensure that the students must work together to solve it.
  • If used for a multistage project, the initial steps of the problem should be open-ended and engaging to draw students into the problem.

The problems can come from a variety of sources: newspapers, magazines, journals, books, textbooks, and television/ movies. Some are in such form that they can be used with little editing; however, others need to be rewritten to be of use. The following guidelines from The Power of Problem-Based Learning (Duch et al, 2001) are written for creating PBL problems for a class centered around the method; however, the general ideas can be applied in simpler uses of PBL:

  • Choose a central idea, concept, or principle that is always taught in a given course, and then think of a typical end-of-chapter problem, assignment, or homework that is usually assigned to students to help them learn that concept. List the learning objectives that students should meet when they work through the problem.
  • Think of a real-world context for the concept under consideration. Develop a storytelling aspect to an end-of-chapter problem, or research an actual case that can be adapted, adding some motivation for students to solve the problem. More complex problems will challenge students to go beyond simple plug-and-chug to solve it. Look at magazines, newspapers, and articles for ideas on the story line. Some PBL practitioners talk to professionals in the field, searching for ideas of realistic applications of the concept being taught.
  • What will the first page (or stage) look like? What open-ended questions can be asked? What learning issues will be identified?
  • How will the problem be structured?
  • How long will the problem be? How many class periods will it take to complete?
  • Will students be given information in subsequent pages (or stages) as they work through the problem?
  • What resources will the students need?
  • What end product will the students produce at the completion of the problem?
  • Write a teacher's guide detailing the instructional plans on using the problem in the course. If the course is a medium- to large-size class, a combination of mini-lectures, whole-class discussions, and small group work with regular reporting may be necessary. The teacher's guide can indicate plans or options for cycling through the pages of the problem interspersing the various modes of learning.
  • The final step is to identify key resources for students. Students need to learn to identify and utilize learning resources on their own, but it can be helpful if the instructor indicates a few good sources to get them started. Many students will want to limit their research to the Internet, so it will be important to guide them toward the library as well.

The method for distributing a PBL problem falls under three closely related teaching techniques: case studies, role-plays, and simulations. Case studies are presented to students in written form. Role-plays have students improvise scenes based on character descriptions given. Today, simulations often involve computer-based programs. Regardless of which technique is used, the heart of the method remains the same: the real-world problem.

Where can I learn more?

  • PBL through the Institute for Transforming Undergraduate Education at the University of Delaware
  • Duch, B. J., Groh, S. E, & Allen, D. E. (Eds.). (2001). The power of problem-based learning . Sterling, VA: Stylus.
  • Grasha, A. F. (1996). Teaching with style: A practical guide to enhancing learning by understanding teaching and learning styles. Pittsburgh: Alliance Publishers.

Center for Innovation in Teaching & Learning

249 Armory Building 505 East Armory Avenue Champaign, IL 61820

217 333-1462

Email: [email protected]

Office of the Provost

Center for Teaching Innovation

Resource library.

  • Establishing Community Agreements and Classroom Norms
  • Sample group work rubric
  • Problem-Based Learning Clearinghouse of Activities, University of Delaware

Problem-Based Learning

Problem-based learning  (PBL) is a student-centered approach in which students learn about a subject by working in groups to solve an open-ended problem. This problem is what drives the motivation and the learning. 

Why Use Problem-Based Learning?

Nilson (2010) lists the following learning outcomes that are associated with PBL. A well-designed PBL project provides students with the opportunity to develop skills related to:

  • Working in teams.
  • Managing projects and holding leadership roles.
  • Oral and written communication.
  • Self-awareness and evaluation of group processes.
  • Working independently.
  • Critical thinking and analysis.
  • Explaining concepts.
  • Self-directed learning.
  • Applying course content to real-world examples.
  • Researching and information literacy.
  • Problem solving across disciplines.

Considerations for Using Problem-Based Learning

Rather than teaching relevant material and subsequently having students apply the knowledge to solve problems, the problem is presented first. PBL assignments can be short, or they can be more involved and take a whole semester. PBL is often group-oriented, so it is beneficial to set aside classroom time to prepare students to   work in groups  and to allow them to engage in their PBL project.

Students generally must:

  • Examine and define the problem.
  • Explore what they already know about underlying issues related to it.
  • Determine what they need to learn and where they can acquire the information and tools necessary to solve the problem.
  • Evaluate possible ways to solve the problem.
  • Solve the problem.
  • Report on their findings.

Getting Started with Problem-Based Learning

  • Articulate the learning outcomes of the project. What do you want students to know or be able to do as a result of participating in the assignment?
  • Create the problem. Ideally, this will be a real-world situation that resembles something students may encounter in their future careers or lives. Cases are often the basis of PBL activities. Previously developed PBL activities can be found online through the University of Delaware’s PBL Clearinghouse of Activities .
  • Establish ground rules at the beginning to prepare students to work effectively in groups.
  • Introduce students to group processes and do some warm up exercises to allow them to practice assessing both their own work and that of their peers.
  • Consider having students take on different roles or divide up the work up amongst themselves. Alternatively, the project might require students to assume various perspectives, such as those of government officials, local business owners, etc.
  • Establish how you will evaluate and assess the assignment. Consider making the self and peer assessments a part of the assignment grade.

Nilson, L. B. (2010).  Teaching at its best: A research-based resource for college instructors  (2nd ed.).  San Francisco, CA: Jossey-Bass. 

Teaching Problem-Solving Skills

Many instructors design opportunities for students to solve “problems”. But are their students solving true problems or merely participating in practice exercises? The former stresses critical thinking and decision­ making skills whereas the latter requires only the application of previously learned procedures.

Problem solving is often broadly defined as "the ability to understand the environment, identify complex problems, review related information to develop, evaluate strategies and implement solutions to build the desired outcome" (Fissore, C. et al, 2021). True problem solving is the process of applying a method – not known in advance – to a problem that is subject to a specific set of conditions and that the problem solver has not seen before, in order to obtain a satisfactory solution.

Below you will find some basic principles for teaching problem solving and one model to implement in your classroom teaching.

Principles for teaching problem solving

  • Model a useful problem-solving method . Problem solving can be difficult and sometimes tedious. Show students how to be patient and persistent, and how to follow a structured method, such as Woods’ model described below. Articulate your method as you use it so students see the connections.
  • Teach within a specific context . Teach problem-solving skills in the context in which they will be used by students (e.g., mole fraction calculations in a chemistry course). Use real-life problems in explanations, examples, and exams. Do not teach problem solving as an independent, abstract skill.
  • Help students understand the problem . In order to solve problems, students need to define the end goal. This step is crucial to successful learning of problem-solving skills. If you succeed at helping students answer the questions “what?” and “why?”, finding the answer to “how?” will be easier.
  • Take enough time . When planning a lecture/tutorial, budget enough time for: understanding the problem and defining the goal (both individually and as a class); dealing with questions from you and your students; making, finding, and fixing mistakes; and solving entire problems in a single session.
  • Ask questions and make suggestions . Ask students to predict “what would happen if …” or explain why something happened. This will help them to develop analytical and deductive thinking skills. Also, ask questions and make suggestions about strategies to encourage students to reflect on the problem-solving strategies that they use.
  • Link errors to misconceptions . Use errors as evidence of misconceptions, not carelessness or random guessing. Make an effort to isolate the misconception and correct it, then teach students to do this by themselves. We can all learn from mistakes.

Woods’ problem-solving model

Define the problem.

  • The system . Have students identify the system under study (e.g., a metal bridge subject to certain forces) by interpreting the information provided in the problem statement. Drawing a diagram is a great way to do this.
  • Known(s) and concepts . List what is known about the problem, and identify the knowledge needed to understand (and eventually) solve it.
  • Unknown(s) . Once you have a list of knowns, identifying the unknown(s) becomes simpler. One unknown is generally the answer to the problem, but there may be other unknowns. Be sure that students understand what they are expected to find.
  • Units and symbols . One key aspect in problem solving is teaching students how to select, interpret, and use units and symbols. Emphasize the use of units whenever applicable. Develop a habit of using appropriate units and symbols yourself at all times.
  • Constraints . All problems have some stated or implied constraints. Teach students to look for the words "only", "must", "neglect", or "assume" to help identify the constraints.
  • Criteria for success . Help students consider, from the beginning, what a logical type of answer would be. What characteristics will it possess? For example, a quantitative problem will require an answer in some form of numerical units (e.g., $/kg product, square cm, etc.) while an optimization problem requires an answer in the form of either a numerical maximum or minimum.

Think about it

  • “Let it simmer”.  Use this stage to ponder the problem. Ideally, students will develop a mental image of the problem at hand during this stage.
  • Identify specific pieces of knowledge . Students need to determine by themselves the required background knowledge from illustrations, examples and problems covered in the course.
  • Collect information . Encourage students to collect pertinent information such as conversion factors, constants, and tables needed to solve the problem.

Plan a solution

  • Consider possible strategies . Often, the type of solution will be determined by the type of problem. Some common problem-solving strategies are: compute; simplify; use an equation; make a model, diagram, table, or chart; or work backwards.
  • Choose the best strategy . Help students to choose the best strategy by reminding them again what they are required to find or calculate.

Carry out the plan

  • Be patient . Most problems are not solved quickly or on the first attempt. In other cases, executing the solution may be the easiest step.
  • Be persistent . If a plan does not work immediately, do not let students get discouraged. Encourage them to try a different strategy and keep trying.

Encourage students to reflect. Once a solution has been reached, students should ask themselves the following questions:

  • Does the answer make sense?
  • Does it fit with the criteria established in step 1?
  • Did I answer the question(s)?
  • What did I learn by doing this?
  • Could I have done the problem another way?

If you would like support applying these tips to your own teaching, CTE staff members are here to help.  View the  CTE Support  page to find the most relevant staff member to contact. 

  • Fissore, C., Marchisio, M., Roman, F., & Sacchet, M. (2021). Development of problem solving skills with Maple in higher education. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds) Maple in Mathematics Education and Research. MC 2020. Communications in Computer and Information Science, vol 1414. Springer, Cham. https://doi.org/10.1007/978-3-030-81698-8_15
  • Foshay, R., & Kirkley, J. (1998). Principles for Teaching Problem Solving. TRO Learning Inc., Edina MN.  (PDF) Principles for Teaching Problem Solving (researchgate.net)
  • Hayes, J.R. (1989). The Complete Problem Solver. 2nd Edition. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Woods, D.R., Wright, J.D., Hoffman, T.W., Swartman, R.K., Doig, I.D. (1975). Teaching Problem solving Skills.
  • Engineering Education. Vol 1, No. 1. p. 238. Washington, DC: The American Society for Engineering Education.

teaching tips

Catalog search

Teaching tip categories.

  • Assessment and feedback
  • Blended Learning and Educational Technologies
  • Career Development
  • Course Design
  • Course Implementation
  • Inclusive Teaching and Learning
  • Learning activities
  • Support for Student Learning
  • Support for TAs
  • Learning activities ,
  • Faculty & Staff

Teaching problem solving

Strategies for teaching problem solving apply across disciplines and instructional contexts. First, introduce the problem and explain how people in your discipline generally make sense of the given information. Then, explain how to apply these approaches to solve the problem.

Introducing the problem

Explaining how people in your discipline understand and interpret these types of problems can help students develop the skills they need to understand the problem (and find a solution). After introducing how you would go about solving a problem, you could then ask students to:

  • frame the problem in their own words
  • define key terms and concepts
  • determine statements that accurately represent the givens of a problem
  • identify analogous problems
  • determine what information is needed to solve the problem

Working on solutions

In the solution phase, one develops and then implements a coherent plan for solving the problem. As you help students with this phase, you might ask them to:

  • identify the general model or procedure they have in mind for solving the problem
  • set sub-goals for solving the problem
  • identify necessary operations and steps
  • draw conclusions
  • carry out necessary operations

You can help students tackle a problem effectively by asking them to:

  • systematically explain each step and its rationale
  • explain how they would approach solving the problem
  • help you solve the problem by posing questions at key points in the process
  • work together in small groups (3 to 5 students) to solve the problem and then have the solution presented to the rest of the class (either by you or by a student in the group)

In all cases, the more you get the students to articulate their own understandings of the problem and potential solutions, the more you can help them develop their expertise in approaching problems in your discipline.

Teaching problem solving: Let students get ‘stuck’ and ‘unstuck’

Subscribe to the center for universal education bulletin, kate mills and km kate mills literacy interventionist - red bank primary school helyn kim helyn kim former brookings expert @helyn_kim.

October 31, 2017

This is the second in a six-part  blog series  on  teaching 21st century skills , including  problem solving ,  metacognition , critical thinking , and collaboration , in classrooms.

In the real world, students encounter problems that are complex, not well defined, and lack a clear solution and approach. They need to be able to identify and apply different strategies to solve these problems. However, problem solving skills do not necessarily develop naturally; they need to be explicitly taught in a way that can be transferred across multiple settings and contexts.

Here’s what Kate Mills, who taught 4 th grade for 10 years at Knollwood School in New Jersey and is now a Literacy Interventionist at Red Bank Primary School, has to say about creating a classroom culture of problem solvers:

Helping my students grow to be people who will be successful outside of the classroom is equally as important as teaching the curriculum. From the first day of school, I intentionally choose language and activities that help to create a classroom culture of problem solvers. I want to produce students who are able to think about achieving a particular goal and manage their mental processes . This is known as metacognition , and research shows that metacognitive skills help students become better problem solvers.

I begin by “normalizing trouble” in the classroom. Peter H. Johnston teaches the importance of normalizing struggle , of naming it, acknowledging it, and calling it what it is: a sign that we’re growing. The goal is for the students to accept challenge and failure as a chance to grow and do better.

I look for every chance to share problems and highlight how the students— not the teachers— worked through those problems. There is, of course, coaching along the way. For example, a science class that is arguing over whose turn it is to build a vehicle will most likely need a teacher to help them find a way to the balance the work in an equitable way. Afterwards, I make it a point to turn it back to the class and say, “Do you see how you …” By naming what it is they did to solve the problem , students can be more independent and productive as they apply and adapt their thinking when engaging in future complex tasks.

After a few weeks, most of the class understands that the teachers aren’t there to solve problems for the students, but to support them in solving the problems themselves. With that important part of our classroom culture established, we can move to focusing on the strategies that students might need.

Here’s one way I do this in the classroom:

I show the broken escalator video to the class. Since my students are fourth graders, they think it’s hilarious and immediately start exclaiming, “Just get off! Walk!”

When the video is over, I say, “Many of us, probably all of us, are like the man in the video yelling for help when we get stuck. When we get stuck, we stop and immediately say ‘Help!’ instead of embracing the challenge and trying new ways to work through it.” I often introduce this lesson during math class, but it can apply to any area of our lives, and I can refer to the experience and conversation we had during any part of our day.

Research shows that just because students know the strategies does not mean they will engage in the appropriate strategies. Therefore, I try to provide opportunities where students can explicitly practice learning how, when, and why to use which strategies effectively  so that they can become self-directed learners.

For example, I give students a math problem that will make many of them feel “stuck”. I will say, “Your job is to get yourselves stuck—or to allow yourselves to get stuck on this problem—and then work through it, being mindful of how you’re getting yourselves unstuck.” As students work, I check-in to help them name their process: “How did you get yourself unstuck?” or “What was your first step? What are you doing now? What might you try next?” As students talk about their process, I’ll add to a list of strategies that students are using and, if they are struggling, help students name a specific process. For instance, if a student says he wrote the information from the math problem down and points to a chart, I will say: “Oh that’s interesting. You pulled the important information from the problem out and organized it into a chart.” In this way, I am giving him the language to match what he did, so that he now has a strategy he could use in other times of struggle.

The charts grow with us over time and are something that we refer to when students are stuck or struggling. They become a resource for students and a way for them to talk about their process when they are reflecting on and monitoring what did or did not work.

For me, as a teacher, it is important that I create a classroom environment in which students are problem solvers. This helps tie struggles to strategies so that the students will not only see value in working harder but in working smarter by trying new and different strategies and revising their process. In doing so, they will more successful the next time around.

Related Content

Esther Care, Helyn Kim, Alvin Vista

October 17, 2017

David Owen, Alvin Vista

November 15, 2017

Loren Clarke, Esther Care

December 5, 2017

Global Education K-12 Education

Global Economy and Development

Center for Universal Education

Modupe (Mo) Olateju, Grace Cannon

April 15, 2024

Phillip Levine

April 12, 2024

Hannah C. Kistler, Shaun M. Dougherty

April 9, 2024

  • Submit A Post
  • EdTech Trainers and Consultants
  • Your Campus EdTech
  • Your EdTech Product
  • Your Feedback
  • Your Love for Us
  • EdTech Product Reviews

ETR Resources

  • Mission/Vision
  • Testimonials
  • Our Clients
  • Press Release

Key Tips On Problem Solving Method Of Teaching

discuss problem solving method of teaching

Problem-solving skills are necessary for all strata of life, and none can be better than classroom problem-solving activities. It can be an excellent way to introduce students to problem-solving skills, get them prepped and ready to solve real problems in real-life settings.  

The ability to critically analyze a problem, map out all its elements and then prepare a solution that works is one of the most valuable skills; one must acquire in life. Educating your students about problem-solving techniques from an early age can be facilitated with in-class problem-solving activities. Such efforts encourage cognitive and social development and equip students with the tools they will need to tackle and resolve their lives.  

So, what is  a  problem-solving method of teaching ?

Problem Solving  is the act of defining a problem; determining the cause of the problem; identifying, prioritizing and selecting alternatives for a solution; and implementing a solution. In a problem-solving method, children learn by working on problems. This skill enables the students to learn new knowledge by facing the problems to be solved. It is expected of them to observe, understand, analyze, interpret, find solutions, and perform applications that lead to a holistic understanding of the concept. This method develops scientific process skills. This method helps in developing a brainstorming approach to learning concepts. 

In simple words, problem-solving is an ongoing activity in which we take what we know to discover what we do not know. It involves overcoming obstacles by generating hypotheses, testing those predictions, and arriving at satisfactory solutions. 

The problem-solving method involves three basic functions

  • Seeking information
  • Generating new knowledge 
  • Making decisions 

This post will include key strategies to help you inculcate problem-solving skills in your students. 

First and foremostly, follow the 5-step model of problem-solving presented by Wood

Woods' problem-solving model

Identify the problem .

Allow your students to identify the system under study by interpreting the information provided in the problem statement. Then, prepare a list of what is known about the problem, and identify the knowledge needed to understand (and eventually) solve it. Once you have a list of known problems, identifying the unknown(s) becomes simpler. The unknown one is usually the answer to the problem; however, there may be other unknowns. Make sure that your students have a clear understanding of what they are expected to find. 

While teaching problem solving, it is very important to have students know how to select, interpret, and use units and symbols. Emphasize the use of units and symbols whenever appropriate. Develop a habit of using appropriate units and symbols yourself at all times. Teach your students to look for the words only and neglect or assume to help identify the constraints. 

Furthermore, help students consider from the beginning what a logical type of answer would be. What characteristics will it possess?  

Think about it

Use the next stage to ponder the identified problem. Ideally, students will develop an imaginary image of the problem at hand during this stage. They need to determine the required background knowledge from illustrations, examples and problems covered in the course and collect pertinent information such as conversion factors, constants, and tables needed to solve the problem. 

Plan a solution

Often, the type of problem will determine the type of solution. Some common problem-solving strategies are: compute; simplify; use an equation; make a model, diagram, table, or chart; or work backwards. 

Help your students choose the best strategy by reminding them again what they must find or calculate. 

Carry out the plan

Now that the major part of problem-solving has been done start executing the solution. There are possibilities that a plan may not work immediately, do not let students get discouraged. Encourage them to try a different strategy and keep trying. 

Encourage students to reflect. Once a solution has been reached, students should ask themselves the following questions: 

  •  Does the answer make sense? 
  •  Does it fit with the criteria established in step 1? 
  •  Did I answer the question(s)? 
  •  What did I learn by doing this? 
  •  Could I have done the problem another way?  

Other tips include

Ask open-ended questions.

When a student seeks help, you might be willing to give them the answer they are looking for so you can both move on. But what is recommend is that instead of giving answers promptly, try using open-ended questions and prompts. For example: ask What do you think will happen if..? Why do you think so? What would you do if you get into such situations? Etc. 

Emphasize Process Over Product

For elementary students, reflecting on the process of solving a problem helps them develop a growth mindset. Getting an 'incorrect' response does not have to be a bad thing! What matters most is what they have done to achieve it and how they might change their approach next time. As a teacher, you can help students learn the process of reflection. 

Model The Strategies

As children learn creative problem-solving techniques, there will probably be times when they will be frustrated or uncertain. Here are just a few simple ways to model what creative problem-solving looks like and sounds like. 

  • Ask questions in case you don't understand anything.
  • Admit to not knowing the right answer.
  • Discuss the many possible outcomes of different situations. 
  • Verbalize what you feel when you come across a problem.
  • Practising these strategies with your students will help create an environment where struggle, failure and growth are celebrated!

Encourage Grappling

Grappling is not confined to perseverance! This includes critical thinking, asking questions, observing evidence, asking more questions, formulating hypotheses and building a deep understanding of a problem. 

There are numerous ways to provide opportunities for students to struggle. All that includes the engineering design process is right! Examples include: 

  • Engineering or creative projects
  • Design-thinking challenges
  • Informatics projects
  • Science experiments

Make problem resolution relevant to the lives of your students

Limiting problem solving to class is a bad idea. This will affect students later in life because problem-solving is an essential part of human life, and we have had a chance to look at it from a mathematical perspective. Such problems are relevant to us, and they are not things that we are supposed to remember or learn but to put into practice in real life. These are things from which we can take very significant life lessons and apply them later in life. 

What's your strategy? How do you teach Problem-Solving to your students? Do let us know in the comments. 

Companies Providing Best 3D Printers For Schools

Latest EdTech News To Your Inbox

Stay connected.

discuss problem solving method of teaching

Sign in to your account

Username or Email Address

Remember Me

Site's logo

Problem-Based Learning (PBL)

What is Problem-Based Learning (PBL)? PBL is a student-centered approach to learning that involves groups of students working to solve a real-world problem, quite different from the direct teaching method of a teacher presenting facts and concepts about a specific subject to a classroom of students. Through PBL, students not only strengthen their teamwork, communication, and research skills, but they also sharpen their critical thinking and problem-solving abilities essential for life-long learning.

See also: Just-in-Time Teaching

Problem-Based Learning (PBL)

In implementing PBL, the teaching role shifts from that of the more traditional model that follows a linear, sequential pattern where the teacher presents relevant material, informs the class what needs to be done, and provides details and information for students to apply their knowledge to a given problem. With PBL, the teacher acts as a facilitator; the learning is student-driven with the aim of solving the given problem (note: the problem is established at the onset of learning opposed to being presented last in the traditional model). Also, the assignments vary in length from relatively short to an entire semester with daily instructional time structured for group work.

Pbl

By working with PBL, students will:

  • Become engaged with open-ended situations that assimilate the world of work
  • Participate in groups to pinpoint what is known/ not known and the methods of finding information to help solve the given problem.
  • Investigate a problem; through critical thinking and problem solving, brainstorm a list of unique solutions.
  • Analyze the situation to see if the real problem is framed or if there are other problems that need to be solved.

How to Begin PBL

  • Establish the learning outcomes (i.e., what is it that you want your students to really learn and to be able to do after completing the learning project).
  • Find a real-world problem that is relevant to the students; often the problems are ones that students may encounter in their own life or future career.
  • Discuss pertinent rules for working in groups to maximize learning success.
  • Practice group processes: listening, involving others, assessing their work/peers.
  • Explore different roles for students to accomplish the work that needs to be done and/or to see the problem from various perspectives depending on the problem (e.g., for a problem about pollution, different roles may be a mayor, business owner, parent, child, neighboring city government officials, etc.).
  • Determine how the project will be evaluated and assessed. Most likely, both self-assessment and peer-assessment will factor into the assignment grade.

Designing Classroom Instruction

See also: Inclusive Teaching Strategies

  • Take the curriculum and divide it into various units. Decide on the types of problems that your students will solve. These will be your objectives.
  • Determine the specific problems that most likely have several answers; consider student interest.
  • Arrange appropriate resources available to students; utilize other teaching personnel to support students where needed (e.g., media specialists to orientate students to electronic references).
  • Decide on presentation formats to communicate learning (e.g., individual paper, group PowerPoint, an online blog, etc.) and appropriate grading mechanisms (e.g., rubric).
  • Decide how to incorporate group participation (e.g., what percent, possible peer evaluation, etc.).

How to Orchestrate a PBL Activity

  • Explain Problem-Based Learning to students: its rationale, daily instruction, class expectations, grading.
  • Serve as a model and resource to the PBL process; work in-tandem through the first problem
  • Help students secure various resources when needed.
  • Supply ample class time for collaborative group work.
  • Give feedback to each group after they share via the established format; critique the solution in quality and thoroughness. Reinforce to the students that the prior thinking and reasoning process in addition to the solution are important as well.

Teacher’s Role in PBL

See also: Flipped teaching

As previously mentioned, the teacher determines a problem that is interesting, relevant, and novel for the students. It also must be multi-faceted enough to engage students in doing research and finding several solutions. The problems stem from the unit curriculum and reflect possible use in future work situations.

  • Determine a problem aligned with the course and your students. The problem needs to be demanding enough that the students most likely cannot solve it on their own. It also needs to teach them new skills. When sharing the problem with students, state it in a narrative complete with pertinent background information without excessive information. Allow the students to find out more details as they work on the problem.
  • Place students in groups, well-mixed in diversity and skill levels, to strengthen the groups. Help students work successfully. One way is to have the students take on various roles in the group process after they self-assess their strengths and weaknesses.
  • Support the students with understanding the content on a deeper level and in ways to best orchestrate the various stages of the problem-solving process.

The Role of the Students

See also: ADDIE model

The students work collaboratively on all facets of the problem to determine the best possible solution.

  • Analyze the problem and the issues it presents. Break the problem down into various parts. Continue to read, discuss, and think about the problem.
  • Construct a list of what is known about the problem. What do your fellow students know about the problem? Do they have any experiences related to the problem? Discuss the contributions expected from the team members. What are their strengths and weaknesses? Follow the rules of brainstorming (i.e., accept all answers without passing judgment) to generate possible solutions for the problem.
  • Get agreement from the team members regarding the problem statement.
  • Put the problem statement in written form.
  • Solicit feedback from the teacher.
  • Be open to changing the written statement based on any new learning that is found or feedback provided.
  • Generate a list of possible solutions. Include relevant thoughts, ideas, and educated guesses as well as causes and possible ways to solve it. Then rank the solutions and select the solution that your group is most likely to perceive as the best in terms of meeting success.
  • Include what needs to be known and done to solve the identified problems.
  • Prioritize the various action steps.
  • Consider how the steps impact the possible solutions.
  • See if the group is in agreement with the timeline; if not, decide how to reach agreement.
  • What resources are available to help (e.g., textbooks, primary/secondary sources, Internet).
  • Determine research assignments per team members.
  • Establish due dates.
  • Determine how your group will present the problem solution and also identify the audience. Usually, in PBL, each group presents their solutions via a team presentation either to the class of other students or to those who are related to the problem.
  • Both the process and the results of the learning activity need to be covered. Include the following: problem statement, questions, data gathered, data analysis, reasons for the solution(s) and/or any recommendations reflective of the data analysis.
  • A well-stated problem and conclusion.
  • The process undertaken by the group in solving the problem, the various options discussed, and the resources used.
  • Your solution’s supporting documents, guests, interviews and their purpose to be convincing to your audience.
  • In addition, be prepared for any audience comments and questions. Determine who will respond and if your team doesn’t know the answer, admit this and be open to looking into the question at a later date.
  • Reflective thinking and transfer of knowledge are important components of PBL. This helps the students be more cognizant of their own learning and teaches them how to ask appropriate questions to address problems that need to be solved. It is important to look at both the individual student and the group effort/delivery throughout the entire process. From here, you can better determine what was learned and how to improve. The students should be asked how they can apply what was learned to a different situation, to their own lives, and to other course projects.

See also: Kirkpatrick Model: Four Levels of Learning Evaluation

' src=

I am a professor of Educational Technology. I have worked at several elite universities. I hold a PhD degree from the University of Illinois and a master's degree from Purdue University.

Similar Posts

Definitions of instructional design.

What is instructional design? Instructional design can be defined as the creation of instructional materials, modules or lessons. The instructional design process consists of  determining the needs of the learners, defining the end…

Robert Gagné’s Taxonomy of Learning

Gagne classified learning outcomes into five major categories: verbal information, intellectual skills, cognitive strategies, motor skills and attitudes. What is learning to Gagné? As outlined in his 9-events of instruction, Gagne believed that learning was…

How To Create & Teach An Online Course

Do you want to build and teach your own online course? This is a high-level summary of the tasks and steps involved in creating and delivering a well-designed online course. Please note that creating…

Definitions of Instructional Technology

What is instructional technology? What is instructional design? Are the term Instructional Technology and Educational Technology considered synonymous? Instructional technology is the branch of education concerned with the scientific study of instructional design and development. The…

SAMR Model: Substitution, Augmentation, Modification, and Redefinition

When integrating technology into education, the SAMR model serves as a foundational guide. Crafted by Ruben R. Puentedura, SAMR offers educators a structured way to think about incorporating technology effectively. It stands for…

Backward Design

What is backward design? The first step to producing quality online, blended or face-t0-face courses is quality course design. The most common approach to course design is to begin with a consideration of…

Problem Solving Method Of Teaching

A woman stands beside an expansive screen, showing a map of different locations. She holds a clipboard in her hands as she looks intently at the map. A man in a black shirt and grey pants is pointing to something on the map. On the right-hand side of the map, there is a truck symbol with a pointer. On the left-hand side, there is a white airplane on a black and orange pin. Above the map is a yellow and black striped object, with a white object with black lines beside it. Below the map is a yellow and white logo and a yellow and grey sign with black text.

The problem-solving method of teaching is the learning method that allows children to learn by doing. This is because they are given examples and real-world situations so that the theory behind it can be understood better, as well as practice with each new concept or skill taught on top of what was previously learned in class before moving onto another topic at hand.

What is your preferred problem-solving technique?

Answers : - I like to brainstorm and see what works for me - I enjoy the trial and error method - I am a linear thinker

Share it with me by commenting.

For example, while solving a problem, the child may encounter terms he has not studied yet. These will further help him understand their use in context while developing his vocabulary. At the same time, being able to practice math concepts by tapping into daily activities helps an individual retain these skills better.

One way this type of teaching is applied for younger students particularly is through games played during lessons. By allowing them to become comfortable with the concepts taught through these games, they can put their knowledge into use later on. This is done by developing thinking processes that precede an action or behavior. These games can be used by teachers for different subjects including science and language.

For younger students still, the method of teaching using real-life examples helps them understand better. Through this, it becomes easier for them to relate what they learned in school with terms used outside of school settings so that the information sticks better than if all they were given were theoretical definitions. For instance, instead of just studying photosynthesis as part of biology lessons, children are asked to imagine plants growing inside a dark room because there is no sunlight present. When questioned about the plants, children will be able to recall photosynthesis more easily because they were able to see its importance in real life.

Despite being given specific examples, the act of solving problems helps students think for themselves. They learn how to approach situations and predict outcomes based on what they already know about concepts or ideas taught in class including the use of various skills they have acquired over time. These include problem-solving strategies like using drawings when describing a solution or asking advice if they are stuck to unlock solutions that would otherwise go beyond their reach.

Teachers need to point out in advance which method will be used for any particular lesson before having children engage with it. By doing this, individuals can prepare themselves mentally for what is to come. This is especially true for students who have difficulty with a particular subject. In these cases, the teacher can help them get started by providing a worked example for reference or breaking the problem down into manageable chunks that are easier to digest.

JIT (Just-in-Time): A Comprehensive Examination of its Strategic Impact

The Wisdom of Jefferson: Moving, Doing, Thinking

Root Cause Tree Analysis: Insights to Forensic Decision Making

Hazard Analysis: A Comprehensive Approach for Risk Evaluation

Ultimately, the goal of teaching using a problem-solving method is to give children the opportunity to think for themselves and to be able to do so in different contexts. Doing this helps foster independent learners who can utilize the skills they acquired in school for future endeavors.

The problem-solving method of teaching allows children to learn by doing. This is because they are given examples and real-world situations so that the theory behind it can be understood better, as practice with each new concept or skill taught on top of what was previously learned in class before moving onto another topic at hand.

One way this type of teaching is applied for younger students particularly is through games played during lessons. By allowing them to become comfortable with the concepts taught through these games, they are able to put their knowledge into use later on. This is done by developing thinking processes that precede an action or behavior. These games can be used by teachers for different subjects including science and language.

For instance, a teacher may ask students to imagine they are plants in a dark room because there is no sunlight present. When questioned about the plants, children will be able to recall photosynthesis more easily because they were able to see its importance in real life.

It is important for teachers to point out in advance which method will be used for any particular lesson before having children engage with it. By doing this, individuals can prepare themselves mentally for what is to come. This is especially true for students who have difficulty with a particular subject. In these cases, the teacher can help them get started by providing a worked example for reference or breaking the problem down into manageable chunks that are easier to digest.

lesson before having children engage with it. By doing this, individuals can prepare themselves mentally for what is to come. This is especially true for students who have difficulty with a particular subject. In these cases, the teacher can help them get started by providing a worked example for reference or breaking the problem down into manageable chunks that are easier to digest.

The teacher should have a few different ways to solve the problem.

For example, the teacher can provide a worked example for reference or break down the problem into chunks that are easier to digest.

The goal of teaching using a problem-solving method is to give children the opportunity to think for themselves and to be able to do so in different contexts. Successful problem solving allows children to become comfortable with concepts taught through games that develop thinking processes that precede an action or behavior.

Introduce the problem

The problem solving method of teaching is a popular approach to learning that allows students to understand new concepts by doing. This approach provides students with examples and real-world situations, so they can see how the theory behind a concept or skill works in practice. In addition, students are given practice with each new concept or skill taught, before moving on to the next topic. This helps them learn and retain the information better.

Explain why the problem solving method of teaching is effective.

The problem solving method of teaching is effective because it allows students to learn by doing. This means they can see how the theory behind a concept or skill works in practice, which helps them understand and remember the information better. This would not be possible if they are only told about the new concept or skill, or read a textbook to learn on their own. Since students can see how the theory works in practice through examples and real-world situations, the information is easier for them to understand.

List some advantages of using the problem solving method of teaching.

Some advantages of using the problem solving method of teaching are that it helps students retain information better since they are able to practice with each new concept or skill taught until they master it before moving on to another topic. This also allows them to learn by doing so they will have hands-on experience with facts which helps them remember important facts faster rather than just hearing about it or reading about it on their own. Furthermore, this teaching method is beneficial for students of all ages and can be adapted to different subjects making it an approach that is versatile and easily used in a classroom setting. Lastly, the problem solving method of teaching presents new information in a way that is easy to understand so students are not overwhelmed with complex material.

The problem solving method of teaching is an effective way for students to learn new concepts and skills. By providing them with examples and real-world situations, they can see how the theory behind a concept or skill works in practice. In addition, students are given practice with each new concept or skill taught, before moving on to the next topic. This them learn and retain the information better.

What has been your experience with adopting a problem-solving teaching method?

How do you feel the usefulness of your lesson plans changed since adopting this method?

What was one of your most successful attempts in using this technique to teach students, and why do you believe it was so successful?

Were there any obstacles when trying to incorporate this technique into your class? 

Did it take a while for all students to get used to the new type of teaching style before they felt comfortable enough to participate in discussions and ask questions about their newly acquired knowledge?

What are your thoughts on this method? 

“I have had the opportunity to work in several districts, including one where they used problem solving for all subjects. I never looked back after that experience--it was exciting and motivating for students and teachers alike." 

"The problem solving method of teaching is great because it makes my subject matter more interesting with hands-on activities."

Active Learning, Teaching through problem-solving allows for active learning, Children understand the theory better by getting involved in real-world situations, Practice, Continuous practice is integral to problem-solving teaching, Each new skill or concept is practiced after being learned in class, Relevance, Problem-solving techniques make learning more relevant, Real-world examples related to the topic are presented, Incremental Learning, Each new topic builds on previous lessons, Relating new problems to ones solved in previous sessions, Overcome Challenges, Enhances ability to overcome real-world situations, Children understand the application of skills learned, Variety, Problem-solving allows flexibility in teaching methods, Problems can be practical, conceptual, or theoretical, Critical Thinking, Improves children's critical thinking skills, Adding alternative paths to a solution, Confidence, Boosts children's confidence in handling problems, Children feel empowered after successfully solving a problem, Adaptability, Increases adaptability to new learning situations, Children can apply learned strategies to new problems, Engagement, Problem-solving increases engagement and interest, Children find solving real-world examples interesting

What is the role of educators in facilitating problem-solving method of teaching?

Role of Educators in Facilitating Problem-Solving Understanding the Problem-Solving Method The problem-solving method of teaching encourages students to actively engage their critical thinking skills to analyze and seek solutions to real-world problems. As such, educators play a crucial part in facilitating this learning style to ensure the effective attainment of desired skills. Encouraging Collaboration and Communication One of the ways educators can facilitate problem-solving is by promoting collaboration and communication among students. Working as a team allows students to share diverse perspectives while considering multiple solutions, thereby fostering an open-minded and inclusive environment that is crucial for effective problem-solving. Creating a Safe Space for Failure Educators must recognize that failure is an integral component of the learning process in a problem-solving method. By establishing a safe environment that allows students to fail without facing judgment or embarrassment, teachers enable students to develop perseverance, resilience, and an enhanced ability to learn from mistakes. Designing Relevant and Engaging Problems The selection and design of appropriate problems contribute significantly to the success of the problem-solving method of teaching. Educators should focus on presenting issues that are relevant, engaging, and age-appropriate, thereby sparking curiosity and interest amongst students, which further improves their problem-solving abilities. Scaffolding Learning Scaffolding is essential in the problem-solving method for providing adequate support when required. Teachers need to break down complex problems into smaller, manageable steps, and gradually remove support as students develop the necessary skills, thus promoting their self-reliance and independent thinking. Providing Constructive Feedback Constructive feedback from educators is invaluable in facilitating the problem-solving method of teaching, as it enables students to reflect on their progress, recognize areas for improvement, and actively develop their critical thinking and problem-solving abilities. In conclusion, the role of educators in facilitating the problem-solving method of teaching comprises promoting collaboration, creating a safe space for failure, designing relevant problems, scaffolding learning, and providing constructive feedback. By integrating these elements, educators can help students develop essential life-long skills and effectively navigate the complex world they will experience.

The problem-solving method of teaching is a dynamic and interactive instructional strategy that engages students directly with challenges that resemble those they might encounter outside of the classroom. Within this framework, educators are not just conveyors of knowledge, but rather facilitators of learning who empower their students to think critically and deeply. Below, we look into the nuanced role educators play in making the problem-solving method impactful.Firstly, educators must curate an atmosphere that is conducive to inquiry and exploration. They set the tone by modeling an inquisitive mindset, posing thought-provoking questions, and encouraging students to ask why, how, and what if without hesitation. This intellectual curiosity promotes the kind of deep thinking that underpins successful problem-solving.Another key responsibility is to scaffold the complexity of problems. Educators do so by assessing the readiness of their students and designing tasks that are at the appropriate level of difficulty. They must ensure challenges are neither too easy – risking boredom and disengagement – nor too difficult – potentially causing frustration and disheartenment. By striking this balance, educators help students to experience incremental success and build their problem-solving capacities over time.Educators must also provide students with relevant tools and methodologies. This might involve teaching specific problem-solving strategies such as the scientific method, design thinking, or computational thinking. Educators help students to become conversant in these approaches, allowing them to tackle problems methodically and effectively.Assessment is another pivotal area where educators play a vital role in the problem-solving method. The traditional means of assessment may not always capture the depth of understanding and learning that occurs in problem-solving scenarios. Therefore, educators develop alternative forms of assessment, such as reflective journals, portfolios, and presentations, to better gauge student learning and thinking processes.Finally, educators must be adept at facilitating group dynamics. Collaborative problem-solving can be powerful, but it also invites a range of interpersonal challenges. Thus, educators need to guide students in conflict resolution, equitable participation, and recognizing the contribution of each member to the collective effort.Educators facilitate the problem-solving method by fostering inquiry, balancing problem difficulty, equipping students with methodologies, rethinking assessment, and nurturing group cooperation. In doing so, they are not simply providing students with content knowledge but are equipping them with crucial life skills that transcend educational settings and prepare them for real-world challenges.

Can interdisciplinary approaches be incorporated into problem-solving teaching methods, and if so, how?

Interdisciplinary Approaches in Problem-Solving Teaching Methods Integration of Interdisciplinary Approaches Incorporating interdisciplinary approaches into problem-solving teaching methods can be achieved by integrating various subject areas when presenting complex problems that require students to draw from different fields of knowledge. By doing so, learners will develop a deeper understanding of the interconnectedness of various disciplines and improve their problem-solving skills. Project-Based Learning Activities Implementing project-based learning activities in the classroom allows students to work collaboratively on real-world problems. By involving learners in tasks that necessitate the integration of diverse subjects, they develop the ability to transfer skills acquired in one context to novel situations, thereby expanding their problem-solving abilities. Role of Teachers in Interdisciplinary Teaching Teachers play a crucial role in the successful incorporation of interdisciplinary methods in problem-solving teaching. They must be prepared to facilitate student-centered learning and engage in ongoing professional development tailored towards interdisciplinary education. In doing so, educators can create inclusive learning environments that encourage individualized discovery and the application of diverse perspectives to solve complex problems. Benefits of Interdisciplinary Teaching Methods Adopting interdisciplinary teaching methods in problem-solving education not only enhances students' problem-solving abilities but also fosters the development of critical thinking, creativity, and collaboration. These essential skills enable learners to navigate and adapt to an increasingly interconnected world and have been shown to contribute to students' academic and professional success. In conclusion, incorporating interdisciplinary approaches into problem-solving teaching methods can be achieved through the integration of various subject areas, implementing project-based learning activities, and the active role of teachers in interdisciplinary education. These methods benefit students by developing problem-solving skills, critical thinking, creativity, and collaboration, preparing them for future success in an interconnected world.

Interdisciplinary approaches in problem-solving teaching methods present a contemporary framework for preparing students to tackle the complexities of real-world issues. This approach can bridge the gap between various academic disciplines, offering students a more holistic and connected way of thinking.**Embracing Complexity through Interdisciplinary Problem-Solving**Problem-solving in education is no longer confined to single-subject exercises. Interdisciplinary problem-solving recognizes the multifaceted nature of real issues and encourages students to tackle them by drawing from multiple disciplines. For instance, when examining the impacts of urbanization, students might incorporate knowledge from sociology, economics, environmental science, and urban planning.**Strategies for Implementing an Interdisciplinary Approach**Various strategies can be employed to incorporate interdisciplinary methods effectively:1. **Cross-Curricular Projects**: These require students to apply knowledge and skills across different subject areas, fostering an understanding of each discipline’s unique contribution to the whole problem.2. **Thematic Units**: By designing units around broad themes, educators can seamlessly weave multiple subjects into the exploration of a single topic, prompting students to see connections between different areas of study.3. **Collaborative Teaching**: When educators from different disciplines co-teach, they can provide a combined perspective that enriches the learning experience and demonstrates the value of integrating knowledge.4. **Inquiry-Based Learning**: Encourages students to ask questions and conduct research across multiple disciplines, leading to comprehensive investigations and solutions.**Outcome-Benefits of Interdisciplinary Teaching**The merits of an interdisciplinary approach within problem-solving teaching methods are manifold:1. **Complex Problem Understanding**: It can elevate a student’s ability to deconstruct complicated issues by understanding various factors and viewpoints.2. **Adaptability**: Students learn to apply knowledge pragmatically, enabling them to adapt to new and unforeseen problems.3. **Enhanced Cognitive Abilities**: The process can promote cognitive growth, supporting the development of higher-order thinking skills like analysis and synthesis.4. **Real-World Relevance**: Students find meaning and motivation in their work when they see its relevance outside the classroom walls.In summary, integrating interdisciplinary approaches into problem-solving methods is a highly effective way to provide students with robust and adaptable skills for the future. By engaging in project-based learning activities, enjoying the support of proactive educators, and seeing the interconnectivity across subjects, students can foster critical thinking, creativity, and collaborative abilities that transcend traditional learning boundaries. As we navigate a rapidly evolving and interrelated global landscape, such approaches to education become not just advantageous but essential.

In what ways can technology be integrated into the problem-solving method of instruction?

**Role of Technology in Problem-Solving Instruction** Technology can be integrated into the problem-solving method of instruction by enhancing student engagement, promoting collaboration, and supporting personalized learning. **Enhancing Student Engagement** One way technology supports the problem-solving method is by increasing students' interest through interactive and dynamic tools. For instance, digital simulations and educational games can help students develop critical thinking and problem-solving skills in a fun, engaging manner. These tools provide real-world contexts and immediate feedback, allowing students to experiment, take risks, and learn from their mistakes. **Promoting Collaboration** Technology also promotes collaboration among students, as online platforms facilitate communication and cooperation. Utilizing tools like video conferencing and shared workspaces, students can collaborate on group projects, discuss ideas, and solve problems together. This collaborative approach fosters a sense of community, mutual support, and collective problem-solving. Moreover, it helps students develop essential interpersonal skills, such as teamwork and communication, which are crucial in today's workplaces. **Supporting Personalized Learning** Finally, technology can be used to provide personalized learning experiences tailored to individual learners' needs, interests, and abilities. With access to adaptive learning platforms or online resources, students can progress at their own pace, focus on areas where they need improvement, and explore topics that interest them. This kind of personalized approach allows instructors to identify areas where students struggle and offer targeted support, enhancing the problem-solving learning experience. In conclusion, integrating technology into the problem-solving method of instruction can improve the learning process in various ways. By fostering student engagement, promoting collaboration, and facilitating personalized learning experiences, technology can be employed as a valuable resource to develop students' problem-solving skills effectively.

The integration of technology into the problem-solving method of instruction can significantly enhance the educational process, as it offers diverse opportunities for students to engage with challenging concepts and develop practical skills. The deliberate use of technology can stimulate student interaction with course material and encourage a more dynamic approach to learning.**Interactive Problem-Solving Scenarios**Technology can simulate complex scenarios requiring students to apply their knowledge creatively to solve problems. Through interactive case studies and gamified learning environments, students can engage with these scenarios in a manner that is both compelling and educative. Such simulations often incorporate branching choices, offering an exploration of consequences which creates a deeper understanding of the material.**Data Analysis Tools**Incorporating data analysis tools into problem-solving instruction can offer students hands-on experience with real-world data sets. By learning to manipulate and analyze data through software, students can identify patterns, test hypotheses, and make evidence-based conclusions. These skills are particularly valuable in STEM fields, economics, and social sciences.**Global Connectivity & Resources**Through global connectivity, technology enables access to a vast array of resources that can be utilized to enrich problem-solving tasks. Platforms such as IIENSTITU offer courses that are designed to incorporate technology into pedagogical strategies effectively. Moreover, access to international databases, research materials, and expert lectures from around the world ensures that students are exposed to diverse perspectives and approaches to problem-solving.**Interactive Whiteboards and Projection**Interactive whiteboards and projection technology make it possible to visualize complex problems and work though them interactively in the classroom. This technology allows for collaborative diagramming and mapping of ideas, which can aid in visual learning and the synthesis of information in group settings.**Adaptive Learning Software**Educational technology that adapts to individual student performance and preferences enables personalized instruction. Adaptive learning software assesses students' skills and tailors the difficulty of problems accordingly, ensuring that each student is engaged at the appropriate level of challenge.**Formative Assessment through Technology**Technology-enabled formative assessments give teachers and students real-time feedback on understanding and performance. These tools can help identify areas of difficulty, track progress, and adjust teaching strategies to help students develop their problem-solving abilities more effectively.**Facilitating Research and Inquiry**The ability to conduct research and inquiry is central to problem solving. When students are provided with the tools to explore, research, and verify information on the internet securely, they are empowered to seek out answers to their questions and develop solutions based on evidence.**Closing Thoughts**In integrating technology into problem-solving instruction, it's important to ensure that the use of any tool or platform is pedagogically sound, enhances the learning objectives, and actually serves to improve students' problem-solving capabilities. As education evolves with the digital age, so too does the art and science of teaching problem solving, where technology becomes an indispensable ally in preparing students for the challenges of the future.

I graduated from the Family and Consumption Sciences Department at Hacettepe University. I hold certificates in blogging and personnel management. I have a Master's degree in English and have lived in the US for three years.

A rectangular puzzle piece with a light green background and a blue geometric pattern sits in the center of the image. The puzzle piece has a curved edge along the top, and straight edges along the bottom and sides. The pattern on the piece consists of a thin green line that wraps around the outside edge and a thick blue line that follows the contours of the shape. The inside of the piece is filled with various shapes of the same color, including circles, triangles, and squares. The overall effect of the piece is calming and serene. It could be part of a larger puzzle that has yet to be solved.

What are Problem Solving Skills?

A woman in a white shirt is looking down and holding her head in her hands. She has long blonde hair and blue eyes. Her lips are slightly pursed, and her eyebrows are slightly furrowed. She looks sad and contemplative, as if she is lost in thought. Her arms are crossed in front of her chest, and her head is slightly tilted to the side. Her expression is thoughtful and her posture is relaxed. She is standing in front of a plain white wall, and the light casts shadows on her face. She appears to be alone in the room, and her posture conveys a sense of loneliness and introspection.

How To Solve The Problems? Practical Problem Solving Skills

A group of people, including a man holding a laptop, a woman with her hands in her pockets, and another woman wearing a striped shirt, are standing together in a closeknit formation. One woman is holding a cup of coffee, and another has their butt partially visible in blue jeans. Everyone is smiling, and the man with the laptop appears to be engaged in conversation. The group is bathed in warm sunlight, creating a friendly atmosphere.

A Problem Solving Method: Brainstorming

A close-up of a group of people holding puzzle pieces in their hands. A man is looking at the piece he is holding, while two other people are carefully looking at the pieces they are holding in their hands. The pieces have a wooden texture, and each one is a different color. One person is holding a light blue piece, while another person is holding a red piece. All the pieces are shaped differently, and some are curved while others are straight. The pieces all fit together to form a larger puzzle.

How To Develop Problem Solving Skills?

Log in to Witsby: ASCD’s Next-Generation Professional Learning and Credentialing Platform

Art and Science of Teaching / Problem Solving in Seven Steps

author avatar

Step 1: Determine whether you have a problem and whether it's worth solving

Step 2: affirm positive beliefs regarding your ability to solve the problem, step 3: clarify the obstacle and identify possible solutions, step 4: determine each solution's likelihood of success and consider the resources required, step 5: try out the solution that has the greatest chance of success, step 6: if your solution doesn't work, try a different one, step 7: if you can't find a solution, identify an alternative goal, make it explicit.

Art and Science of Teaching / Problem Solving in Seven Steps- thumbnail

.css-191dech{margin-top:16px;margin-bottom:16px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;} .css-12z0wuy{margin-right:8px;} • .css-16w6vyg{margin:0;font-family:'Poppins',sans-serif;font-weight:400;font-size:0.875rem;line-height:1.43;font-size:1rem;font-weight:400;line-height:1.625rem;letter-spacing:0.2px;} 1 See, for example, Marzano, R. J., & Heflebower, T. (2012). Teaching and assessing 21st century skills . Bloomington, IN: Marzano Research Laboratory; Marzano, R. J. (2007). The art and science of teaching: A comprehensive framework for effective instruction . Alexandria, VA: ASCD.

discuss problem solving method of teaching

Robert Marzano is the CEO of Marzano Research Laboratory in Centennial, CO, which provides research-based, partner-centered support for educators and education agencies—with the goal of helping teachers improve educational practice.

As strategic advisor, Robert brings over 50 years of experience in action-based education research, professional development, and curriculum design to Marzano Research. He has expertise in standards-based assessment, cognition, school leadership, and competency-based education, among a host of areas.

He is the author of 30 books, 150 articles and chapters in books, and 100 sets of curriculum materials for teachers and students in grades K–12.

ASCD is a community dedicated to educators' professional growth and well-being.

Let us help you put your vision into action., from our issue.

Product cover image 114025b.jpg

To process a transaction with a Purchase Order please send to [email protected]

  • Try for free

Problem-Solving

TeacherVision Staff

Jabberwocky

Problem-solving is the ability to identify and solve problems by applying appropriate skills systematically.

Problem-solving is a process—an ongoing activity in which we take what we know to discover what we don't know. It involves overcoming obstacles by generating hypo-theses, testing those predictions, and arriving at satisfactory solutions.

Problem-solving involves three basic functions:

Seeking information

Generating new knowledge

Making decisions

Problem-solving is, and should be, a very real part of the curriculum. It presupposes that students can take on some of the responsibility for their own learning and can take personal action to solve problems, resolve conflicts, discuss alternatives, and focus on thinking as a vital element of the curriculum. It provides students with opportunities to use their newly acquired knowledge in meaningful, real-life activities and assists them in working at higher levels of thinking (see Levels of Questions ).

Here is a five-stage model that most students can easily memorize and put into action and which has direct applications to many areas of the curriculum as well as everyday life:

Expert Opinion

Here are some techniques that will help students understand the nature of a problem and the conditions that surround it:

  • List all related relevant facts.
  • Make a list of all the given information.
  • Restate the problem in their own words.
  • List the conditions that surround a problem.
  • Describe related known problems.

It's Elementary

For younger students, illustrations are helpful in organizing data, manipulating information, and outlining the limits of a problem and its possible solution(s). Students can use drawings to help them look at a problem from many different perspectives.

Understand the problem. It's important that students understand the nature of a problem and its related goals. Encourage students to frame a problem in their own words.

Describe any barriers. Students need to be aware of any barriers or constraints that may be preventing them from achieving their goal. In short, what is creating the problem? Encouraging students to verbalize these impediments is always an important step.

Identify various solutions. After the nature and parameters of a problem are understood, students will need to select one or more appropriate strategies to help resolve the problem. Students need to understand that they have many strategies available to them and that no single strategy will work for all problems. Here are some problem-solving possibilities:

Create visual images. Many problem-solvers find it useful to create “mind pictures” of a problem and its potential solutions prior to working on the problem. Mental imaging allows the problem-solvers to map out many dimensions of a problem and “see” it clearly.

Guesstimate. Give students opportunities to engage in some trial-and-error approaches to problem-solving. It should be understood, however, that this is not a singular approach to problem-solving but rather an attempt to gather some preliminary data.

Create a table. A table is an orderly arrangement of data. When students have opportunities to design and create tables of information, they begin to understand that they can group and organize most data relative to a problem.

Use manipulatives. By moving objects around on a table or desk, students can develop patterns and organize elements of a problem into recognizable and visually satisfying components.

Work backward. It's frequently helpful for students to take the data presented at the end of a problem and use a series of computations to arrive at the data presented at the beginning of the problem.

Look for a pattern. Looking for patterns is an important problem-solving strategy because many problems are similar and fall into predictable patterns. A pattern, by definition, is a regular, systematic repetition and may be numerical, visual, or behavioral.

Create a systematic list. Recording information in list form is a process used quite frequently to map out a plan of attack for defining and solving problems. Encourage students to record their ideas in lists to determine regularities, patterns, or similarities between problem elements.

Try out a solution. When working through a strategy or combination of strategies, it will be important for students to …

Keep accurate and up-to-date records of their thoughts, proceedings, and procedures. Recording the data collected, the predictions made, and the strategies used is an important part of the problem solving process.

Try to work through a selected strategy or combination of strategies until it becomes evident that it's not working, it needs to be modified, or it is yielding inappropriate data. As students become more proficient problem-solvers, they should feel comfortable rejecting potential strategies at any time during their quest for solutions.

Monitor with great care the steps undertaken as part of a solution. Although it might be a natural tendency for students to “rush” through a strategy to arrive at a quick answer, encourage them to carefully assess and monitor their progress.

Feel comfortable putting a problem aside for a period of time and tackling it at a later time. For example, scientists rarely come up with a solution the first time they approach a problem. Students should also feel comfortable letting a problem rest for a while and returning to it later.

Evaluate the results. It's vitally important that students have multiple opportunities to assess their own problem-solving skills and the solutions they generate from using those skills. Frequently, students are overly dependent upon teachers to evaluate their performance in the classroom. The process of self-assessment is not easy, however. It involves risk-taking, self-assurance, and a certain level of independence. But it can be effectively promoted by asking students questions such as “How do you feel about your progress so far?” “Are you satisfied with the results you obtained?” and “Why do you believe this is an appropriate response to the problem?”

Featured High School Resources

Poetry Packet for High School

Related Resources

Students taking a test

About the author

TeacherVision Staff

TeacherVision Editorial Staff

The TeacherVision editorial team is comprised of teachers, experts, and content professionals dedicated to bringing you the most accurate and relevant information in the teaching space.

sandbbox logo

Search form

  • About Faculty Development and Support
  • Programs and Funding Opportunities

Consultations, Observations, and Services

  • Strategic Resources & Digital Publications
  • Canvas @ Yale Support
  • Learning Environments @ Yale
  • Teaching Workshops
  • Teaching Consultations and Classroom Observations
  • Teaching Programs
  • Spring Teaching Forum
  • Written and Oral Communication Workshops and Panels
  • Writing Resources & Tutorials
  • About the Graduate Writing Laboratory
  • Writing and Public Speaking Consultations
  • Writing Workshops and Panels
  • Writing Peer-Review Groups
  • Writing Retreats and All Writes
  • Online Writing Resources for Graduate Students
  • About Teaching Development for Graduate and Professional School Students
  • Teaching Programs and Grants
  • Teaching Forums
  • Resources for Graduate Student Teachers
  • About Undergraduate Writing and Tutoring
  • Academic Strategies Program
  • The Writing Center
  • STEM Tutoring & Programs
  • Humanities & Social Sciences
  • Center for Language Study
  • Online Course Catalog
  • Antiracist Pedagogy
  • NECQL 2019: NorthEast Consortium for Quantitative Literacy XXII Meeting
  • STEMinar Series
  • Teaching in Context: Troubling Times
  • Helmsley Postdoctoral Teaching Scholars
  • Pedagogical Partners
  • Instructional Materials
  • Evaluation & Research
  • STEM Education Job Opportunities
  • Yale Connect
  • Online Education Legal Statements

You are here

Discussion methods.

Discussion methods are a variety of forums for open-ended, collaborative exchange of ideas among a teacher and students or among students for the purpose of furthering students thinking, learning, problem solving, understanding, or literary appreciation. Participants present multiple points of view, respond to the ideas of others, and reflect on their own ideas in an effort to build their knowledge, understanding, or interpretation of the matter at hand.

Discussions may occur among members of a dyad, small group, or whole class and be teacher-led or student-led. They frequently involve discussion of a written text, though discussion can also focus on a problem, issue, or topic that has its basis in a “text” in the larger sense of the term (e.g., a discipline, the media, a societal norm). Other terms for discussions used for pedagogical purposes are instructional conversations (Tharp & Gallimore, 1988) and substantive conversations (Newmann, 1990).

A defining feature of discussion is that students have considerable agency in the construction of knowledge, understanding, or interpretation. In other words, they have considerable “interpretive authority” for evaluating the plausibility or validity of participants responses. 

Source: ASHA Education

YOU MAY BE INTERESTED IN

discuss problem solving method of teaching

The Poorvu Center for Teaching and Learning routinely supports members of the Yale community with individual instructional consultations and classroom observations.

discuss problem solving method of teaching

Reserve a Room

The Poorvu Center for Teaching and Learning partners with departments and groups on-campus throughout the year to share its space. Please review the reservation form and submit a request.

Nancy Niemi in conversation with a new faculty member at the Greenberg Center

Instructional Enhancement Fund

The Instructional Enhancement Fund (IEF) awards grants of up to $500 to support the timely integration of new learning activities into an existing undergraduate or graduate course. All Yale instructors of record, including tenured and tenure-track faculty, clinical instructional faculty, lecturers, lectors, and part-time acting instructors (PTAIs), are eligible to apply. Award decisions are typically provided within two weeks to help instructors implement ideas for the current semester.

w3ipedia

Times To Educate YourSelf

Discussion Method of Teaching | Types of Discussion Method

Table of Contents

Meaning Discussion Method of Teaching

Hello and Welcome, readers!

By separating discuss from the discussion, we are able to read and comprehend its meaning. The Latin verb “ discutere ,” which meant to shake things or knowledge and hit again , is the root of the English word “discuss.” Communicate with one another and exchange knowledge, just as students do with their teachers and fellow pupils.

Therefore, the term “discussion” refers to comprehensively examining a topic in order to draw a conclusion. A discussion occurs when two or more people gather to talk about a particular topic.

The discussion method has a variety of fundamentals. For example, a teacher might lead a discussion to introduce a new concept or object, or it might be necessary to comment on and critique a topic. However, in all scenarios, the teacher should adopt a responsible attitude toward his role and educational goals.

These procedures provide the discussion method with a place to start.

Organizing the discussion method with regular planning makes it effective.

The purpose of the discussion is for students to share their opinions while working together to discover the truth. As a consequence, it develops imaginative thinking and a sense of acceptance for others who they may disagree with.

“The Discussion Method of Teaching” is also characterized as a positive process that involves the student’s ability to listen, observe, read, thinking, and talks, Respond, express, react”.

“The Teacher and the Student participate in a group activity called the Discussion Method of Teaching to define the problem and look for a solution”.

The discussion method of instruction is utilized in different subjects and topics.

For example:

A teacher can discuss this subject with the class if we wish to explain the comparison between student and teacher-centered curricula.

Objectives of Discussion Method

Discussion-based instruction allows for both agreement and disagreement, and it is built on democratic principles.

Since the teaching method is entirely discussion-based, if a student provides the right answer, he or she can share it with the teacher if the teacher makes a mistake in the classroom.

The discussion method of instruction is used to teach specific subjects and to enhance lectures, observations, site visits, and case studies.

  • Adds to a lecture.
  • Facilitates the sharing of collective experiences and ideas.
  • Clarification of concepts and information.
  • Aids in knowledge exchange and enhancement.
  • Makes the students more interested.
  • Make sure everyone participates as much as possible.
  • The chance for critique and review is given to the students.

Types Of Discussion Method Of Teaching

The following two categories can be used to classify discussion methods:

  • Small Group Discussion
  • Large Group Discussion

Types of Discussion Method of Teaching

Small Group Discussion Method Of Teaching

For people to be actively involved, a small group of twenty or fewer members meets for a small meeting or as the foundation for a bigger gathering. This group offers a variety of chances for meaningful interaction and innovative discussion.

Small-group discussions are preferable for in-class discussions; the number of group members depends on the time allotted, the sensitivity of the topic, and how complex it is.

Role Play

A specific group of students participates in a role-play discussion in which they are assigned various assignments and pretend to be other students in order to solve the difficulties.

They can cooperate with one another in this and act out scenarios while observing the issues.

Participatory Learning Approach:

Participatory Learning Approach

Through being assigned an activity that the entire group of students can complete together, the kids in this situation become deeply bonded with one another.

For example, a teacher assigned a group in his class the duty of planting a plant.

All of the pupils in the group can take part in this activity to take care of it.

Large Group Discussion Method of Teaching

Large Group discussion method of Teaching  Categories includes:

Formal Group Discussion

Formal Group Discussion Method of teaching

In discussions of this environment:

  • The class is broken up into smaller groups.
  • Each group is assigned a topic to discuss.
  • Each group chooses its own leaders and assigns tasks to each member.
  • Groups of students take part in the conversation.

Seminar Discussion

Seminar Discussion

“A seminar is a discussion led by a respected resource person and built around knowledge delivered by specialists for the benefit of the participants”.

“It is a method that works well as a tool for educating an audience discussion. The process resembles a traditional lecture format”.

Panel Discussion Method

A panel discussion often has four to eight members, all of whom are knowledgeable individuals who discuss certain topics.

We may use the Punjab Public Service Commission as an example. If we go in for an interview, there will be a panel of four to five people with whom we will communicate.

Another example of this can be that the talk shows on the news channel also consist of a panel discussion in which four to eight people sit together and discuss political and non-political topics.

Preparation and Conduct of Discussion Method

There are three stages for preparing and conducting the discussion method:

  • Orientation

Orientation:

  • Give the topic for the discussion.
  • Clearly state what the question is.
  • Describe the discussion preparation requirements for students.
  • Describe the procedure for the discussion.
  • Students should be encouraged to think.

Engagement:-

  • Creating a better learning environment in the classroom allows all of the teachers and students to carry on the teaching and learning process in a comfortable setting.
  • Ask a focused question to keep the discussion on the topic.
  • Start off by having the pupils define the terms.
  • When a student is working on an assignment, if the student needs assistance at any point, the teacher should talk with the student right away and work toward a solution.
  • A good teacher will know when to move on from a subject and when to wait for a response from the students.
  • Reorient the discussion.
  • Keep a record of your progress.
  • Concluding the debate with a summary or assessment.
  • The teacher should allow the student’s time to make notes during discussions between the students and or in class when it is necessary to do so. The retention of handwritten notes is improved.
  • Encourage the reflection of the students on their lessons.

Importance of discussion Method of Teaching

The value of the discussion method cannot be underestimated, therefore let’s talk about it in more detail now:

Expressing thoughts or opinions:

People engage with one another most of the time in some way. They participate in debate, which is the exchanging of ideas or viewpoints, and talk about a variety of topics.

In the classroom, teachers use a variety of methods. The conversational tone plays a big role. The way teachers behave in class discussions deviates significantly from the definition of discussion. As evidenced by the outcomes of the discussion in the classroom.

Two-Way Communication:

Discussion is a process of two-way communication and dialogue between the teacher and the learner.

In this approach, the teacher’s verbal or nonverbal feedback is of the utmost significance since it helps the students achieve the targeted learning outcomes.

If the lesson doesn’t go well, the student is told to put in more effort and present the information in a different way.  

Helpful for all members:

 Discussions are considered very important not only for students but also for teachers. It gives students an opportunity to explain their ideas. Facilitates logical examination and understanding of different points of view.

It not only ensures students’ participation in activities but also creates an atmosphere of reflection on important teaching points, creating understanding an understanding of new ideas and causing a change in the behavior of students.

Guidelines for improving the effectiveness of the discussion method

  • Students and teachers should interact in a friendly environment where they may accept one another. Students should be free to express themselves without inhibition.
  • The teacher must be completely knowledgeable about the subject being discussed and be ready for the discussion.
  • Students must be ready to participate in discussions at a high level. In this regard, the teacher should plan teaching activities relating to the topic before the discussion so that the students can be completely prepared for the discussion, and students should be encouraged to participate in the discussion.
  • Once there is sufficient time to complete the learning objective, the discussion activity should begin. In general, subject teaching goals for discussion involve gaining advanced skills.
  • The discussion topic should be introduced by the teacher by writing it on the whiteboard.
  • The teacher should devote enough time to thoroughly explain every topic while establishing a psychologically secure environment in the classroom.
  • It is advisable to have several types of discussions.
  • The teacher should summarize the entire conversation for the students when the discussion is finished, although it is preferable if a student does this.

Advantages of Discussion Method of Teaching

Leadership Quality:

       Students can develop this leadership quality through discussion, for example, if a school conducts student council elections, where each candidate can visit each class one at a time and gain votes for themselves through campaigning.

As it involves both challenging and delicate discussions at every stage, the competition will be a welcome opportunity to encourage the development of future leaders for the nation.

Expression Ability:-

       Ability is the capacity to perform a task. Similar to how different types of talents might arise from the discussion approach depending on the student’s intellectual capabilities and age especially. The teacher can determine their ability by doing this.

Students communicate with their classmates and teachers about their ideas and abilities.

Develops Study Habits:-

       If a teacher engages with the students in a nice manner and works to improve their study habits, they can be motivated to learn by employing the discussion method. If done, it has a significant impact on the entire discussion and develops virtuous educational habits.

Creative ability:-

        Students participate in debates and share their opinions as part of the discussion method used to initiate change, practically preparing their minds for the response that varied viewpoints would generate. You can fix challenges and find better solutions by using your creative thinking.

Problem-Solving Ability:-

       In the discussion method, a teacher provides a variety of problems to the class and invites each student to come up with a solution on their own. This helps pupils learn how to solve problems on their own.

Develop a democratic way of thinking:-

       The discussion approach is based on democratic principles, which instill democratic thinking in the students and provide them the freedom to express disagreement on any aspect of the topic being discussed in class.

Developing Communication Skills:

       Each student is allowed to participate in a discussion on the subject under the discussion method, which helps pupils improve their speaking and listening skills.

Enhance Your Motivation and Confidence:

        Through the discussion approach, pupils communicate with one another, which boosts their self-assurance and encourages them to take action and move forward to realize their objectives.   

Disadvantages of Discussion Method of Teaching

Time Consuming:

     The discussion method takes up a lot of time.

Irritating Topics:

   Because of the uninteresting topic and the student’s lack of engagement, the discussion frequently ends up being meaningless and confusing.

Avoid contributing to the discussion.

There are certain students who are unable to participate in class discussions, which has an impact on their academic performance.

Conflict among members:

         Conflicting viewpoints can frequently arise during a discussion, which could have an impact on the discussion’s central issue.

Pauses in Discussion:

       There are numerous minor and significant pauses in the discussion that disrupt its flow, forcing the teacher to step in at some point.

Failure to obtain the expected outcomes:

      When the discussion is unproductive or the desired results are not obtained, the teacher must deal with a lot of difficulties.

Pointless discussion:

       The talk frequently has no purpose because of the pupils’ immaturity and their misunderstanding of the suitors’ true backgrounds.

Discussion evaluation difficulty:

  The assessment of student engagement in the debate is another significant issue that teachers frequently encounter.

Recommended Tutorial

  • Different Types of Teaching Method| Lecture Method of Teaching
  • Teaching Technique and Methodology Full Explanation

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

discuss problem solving method of teaching

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

discuss problem solving method of teaching

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

discuss problem solving method of teaching

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

discuss problem solving method of teaching

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

IMAGES

  1. what is problem solving approach in teaching

    discuss problem solving method of teaching

  2. 5 step problem solving method

    discuss problem solving method of teaching

  3. problem solving as a teaching method

    discuss problem solving method of teaching

  4. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    discuss problem solving method of teaching

  5. Problem Solving Method Of Teaching || Methods of Teaching || tsin-eng

    discuss problem solving method of teaching

  6. problem solving as a teaching method

    discuss problem solving method of teaching

VIDEO

  1. B ed

  2. Teaching Methods

  3. Problem Solving Method (Part -2)

  4. problem solving method

  5. THE PROCESS OF PROBLEM SOLVING METHOD

  6. POLYA'S PROBLEM SOLVING METHOD

COMMENTS

  1. Problem-Solving Method In Teaching

    The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to ...

  2. Teaching Problem Solving

    Make students articulate their problem solving process . In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".

  3. Teaching Mathematics Through Problem Solving

    Teaching about problem solving begins with suggested strategies to solve a problem. For example, "draw a picture," "make a table," etc. You may see posters in teachers' classrooms of the "Problem Solving Method" such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no ...

  4. Problem-Based Learning (PBL)

    Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and ...

  5. Problem-Based Learning

    Nilson (2010) lists the following learning outcomes that are associated with PBL. A well-designed PBL project provides students with the opportunity to develop skills related to: Working in teams. Managing projects and holding leadership roles. Oral and written communication. Self-awareness and evaluation of group processes. Working independently.

  6. Teaching Problem Solving

    Within this course, we focus on developing effective problem solvers through students' teaching practices. We discuss reflective practices necessary for teaching and problem solving; theoretical frames for effective learning; how culture, context, and identity impact problem solving and teaching; and the impact of the problem-solving cycle.

  7. Teaching Problem-Solving Skills

    Some common problem-solving strategies are: compute; simplify; use an equation; make a model, diagram, table, or chart; or work backwards. Choose the best strategy. Help students to choose the best strategy by reminding them again what they are required to find or calculate. Be patient.

  8. Teaching problem solving

    Working on solutions. In the solution phase, one develops and then implements a coherent plan for solving the problem. As you help students with this phase, you might ask them to: identify the general model or procedure they have in mind for solving the problem. set sub-goals for solving the problem. identify necessary operations and steps.

  9. Full article: Understanding and explaining pedagogical problem solving

    1. Introduction. The focus of this paper is on understanding and explaining pedagogical problem solving. This theoretical paper builds on two previous studies (Riordan, Citation 2020; and Riordan, Hardman and Cumbers, Citation 2021) by introducing an 'extended Pedagogy Analysis Framework' and a 'Pedagogical Problem Typology' illustrating both with examples from video-based analysis of ...

  10. Teaching problem solving: Let students get 'stuck' and 'unstuck'

    By naming what it is they did to solve the problem, students can be more independent and productive as they apply and adapt their thinking when engaging in future complex tasks. After a few weeks ...

  11. Key Tips On Problem Solving Method Of Teaching

    The problem-solving method involves three basic functions Woods' problem-solving model Identify the problem Think about it Plan a solution Carry out the plan Look back Other tips include Ask Open-Ended Questions Emphasize Process Over Product Model The Strategies Encourage Grappling Make problem resolution relevant to the lives of your students.

  12. Problem-Based Learning (PBL)

    PBL is a student-centered approach to learning that involves groups of students working to solve a real-world problem, quite different from the direct teaching method of a teacher presenting facts and concepts about a specific subject to a classroom of students. Through PBL, students not only strengthen their teamwork, communication, and ...

  13. Problem Solving Method Of Teaching

    The problem solving method of teaching is a popular approach to learning that allows students to understand new concepts by doing. This approach provides students with examples and real-world situations, so they can see how the theory behind a concept or skill works in practice. In addition, students are given practice with each new concept or ...

  14. Art and Science of Teaching / Problem Solving in Seven Steps

    Step 2: Affirm positive beliefs regarding your ability to solve the problem. This step addresses the negative self-talk that often occurs when people encounter a problem. Although such self-talk is natural, it can have a detrimental effect on one's ability to solve problems. Teachers can help students overcome this tendency by replacing ...

  15. Problem Solving Resources

    Problem-solving is the ability to identify and solve problems by applying appropriate skills systematically. Problem-solving is a process—an ongoing activity in which we take what we know to discover what we don't know. It involves overcoming obstacles by generating hypo-theses, testing those predictions, and arriving at satisfactory solutions.

  16. PDF Problem Based Learning: A Student-Centered Approach

    Problem-based learning is a teaching method in which students' learn through the complex and open ended ... problem solving abilities, communication skills and lifelong learning. The purpose of this study is to give the general idea of PBL in the context of language learning, as PBL has expanded in the areas of law, ... Identify and discuss ...

  17. (Pdf) Learning and Problem Solving: the Use of Problem Solving Method

    The five most common methods are; trial and error, difference reduction, means-ends analysis, working backwards, and analogies. Problem solving learning is a part of active learning which is "a ...

  18. PDF Role of Teacher in Teaching Problem-solving Skills

    support their problem-solving efforts and help them accomplish their goals. Reinforce children's solutions: Let children know that their ideas and efforts are valued. Extend creative thinking and problem solving: Ask open-ended questions about activities to help children see the problem they are trying to solve in new and different ways.

  19. The Problem Method of Teaching Research Methods

    Abstract. I describe the application of the problem method, sometimes known as the case study method, to the teaching of undergraduate research methods. Problems are assigned in advance, students use course material to solve the problem, and the solutions are discussed in class. This method is particularly applicable to courses in research ...

  20. Discussion Methods

    Discussion methods are a variety of forums for open-ended, collaborative exchange of ideas among a teacher and students or among students for the purpose of furthering students thinking, learning, problem solving, understanding, or literary appreciation. Participants present multiple points of view, respond to the ideas of others, and reflect on their own ideas in an effort to build their ...

  21. Project Method of Teaching

    Inculcating a Sense of Responsibility. In the project method of teaching, the teacher is a guide and the activities carried out in the class are carried out by the students themselves. This helps improve self-reliance and self-responsibility among students. It helps students learn on their own and develop their own style of learning.

  22. Discussion Method of Teaching

    Definition. "The Discussion Method of Teaching" is also characterized as a positive process that involves the student's ability to listen, observe, read, thinking, and talks, Respond, express, react". "The Teacher and the Student participate in a group activity called the Discussion Method of Teaching to define the problem and look ...

  23. Teaching Methods for Solving Word Problems

    Teaching Methods for Solving Word Problems. This teacher professional development course will teach you about the challenges students often encounter when solving word problems and present varied solutions for teaching problem-solving skills to your students. You will be provided with a detailed plan for teaching two different problem-solving ...

  24. 35 problem-solving techniques and methods for solving complex problems

    6. Discovery & Action Dialogue (DAD) One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions. With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so.

  25. A cognitive load theory approach to understanding expert scaffolding of

    Visual problem-solving is an essential skill for professionals in various visual domains. Novices in these domains acquire such skills through interactions with experts (e.g., apprenticeships). Experts guide novice visual problem-solving with scaffolding behaviours. However, there is little consensus about the description and classification of scaffolding behaviours in practice, and to our ...