Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 08 August 2023

Clean energy can fuel the future — and make the world healthier

You have full access to this article via your institution.

Aerial view of rows of solar panels on a hillside in Zhumadian, Henan Province of China.

China is on track to reach its solar-power target for 2030. Credit: Zhao Yongtao/VCG/Getty

The 2030 targets laid out by the United Nations for the seventh Sustainable Development Goal (SDG 7) are clear enough: provide affordable access to energy; expand use of renewable sources; improve energy efficiency year on year; and enhance international cooperation in support of clean-energy research, development and infrastructure. Meeting those goals, however, will be anything but simple. As seen in many of the editorials in this series examining the SDGs at their halfway stage , the world is falling short.

This is due, at least in part, to the influence of the fossil-fuel industry, which drives the economics and, often, the politics of countries large and small, rich and poor. Rising human prosperity, as measured by economic growth, has long been linked to an abundance of fossil fuels. Many politicians fear that the pursuit of clean-energy sources will compromise that economic development. The latest science clearly counters this view — but the voice of the research community is not being heard in the right places. To meet the targets embodied in SDG 7, that has to change.

There is much to be done. In 2021, some 675 million people worldwide still did not have access to electricity. This is down from 1.1 billion a decade or so ago, but the pace of progress has slowed. On the basis of current trends, 660 million people, many of them in sub-Saharan Africa, will remain without electricity by 2030. And projections indicate that some 1.9 billion people will still be using polluting and inefficient cooking systems fuelled by coal and wood (see go.nature.com/3s8d887 ). This is bad news all round: for health, biodiversity and the climate.

research topics on alternative energy sources

Carbon emissions hit new high: warning from COP27

Achieving the energy-access targets was always going to be a stretch, but progress has been slow elsewhere, too. Take energy efficiency. More energy efficiency means less pollution, and energy efficiency has increased by around 2% annually in the past few years. But meeting the target for 2030 — to double the rate of the 1990–2010 average — would require gains of around 3.4% every year for the rest of this decade.

The picture for renewable energy is similarly mixed. Despite considerable growth in wind and solar power to generate grid electricity, progress in the heat and transport sectors remains sluggish. Renewable energy’s share of total global energy consumption was just 19.1% in 2020, according to the latest UN tracking report, but one-third of that came from burning resources such as wood.

One reason for the slow progress is the continued idea that aggressive clean-energy goals will get in the way of economic development. It’s easier and more profitable for major fossil-fuel producers to simply maintain the status quo. Just last month, ministers from the G20 group of the world’s biggest economies, including the European Union, India, Saudi Arabia and the United States, failed to agree on a plan to phase out fossil fuels and triple the capacity of renewable energy by 2030.

But this is where science has a story to tell. In the past, researchers say, many models indicated that clean energy would be more expensive than that from fossil fuels, potentially pricing the poorest nations out of the market as well as driving up people’s food bills and exacerbating hunger. But the latest research suggests that the picture is more complex. Energy is a linchpin for most of the SDGs, and research that merges climate, energy and the SDGs underscores this 1 . For example, the agriculture and food-transport sectors still depend on fossil fuels, and that generates pollution that kills millions of people each year. Other links are indirect: lack of access to light at night and to online information — as a result of energy poverty — hampers educational attainment and contributes to both long- and short-term inequality.

research topics on alternative energy sources

US aims for electric-car revolution — will it work?

The lesson from research is that it might be easier, not harder, to address these challenges together. In 2021, researcher Gabriela Iacobuţă at the German Institute of Development and Sustainability in Bonn and her colleagues showed that technologies centred on renewable resources and efficiency tend to come with few trade-offs and many benefits, including improved public health and wealth, thanks to a cleaner environment and better jobs 2 . And climate scientist Bjoern Soergel at the Potsdam Institute for Climate Impact Research in Germany and his colleagues found that a coordinated package of climate and development policies could achieve most of the SDGs while limiting global warming to 1.5 °C above pre-industrial levels 3 .

The study assessed 56 indicators across all 17 SDGs. One proposed intervention is an international climate finance mechanism that would levy fees on carbon emissions that would be redistributed through national programmes to reduce poverty. A second focuses on promoting healthy diets — including reducing the consumption of meat, the production of which requires a lot of water, energy and land. This would benefit people on low incomes by lowering both food and energy prices.

The biggest challenge lies in translating these models to the real world. To do so, we need leaders who are not bound by outmoded thinking, are aware of the latest science and can draw on the research to build public support for the necessary energy transition. We require more national and international public institutions that are willing to address problems at the system level. And all of this needs a science community that is willing and able to champion knowledge and evidence.

Nature 620 , 245 (2023)

doi: https://doi.org/10.1038/d41586-023-02510-y

Vohra, K. et al. Environ. Res. 195 , 110754 (2021).

Article   PubMed   Google Scholar  

Iacobuţă, G. I., Höhne, N., van Soest, H. L. & Leemans, R. Sustainability 13 , 10774 (2021).

Article   Google Scholar  

Soergel, B. et al. Nature Clim. Change 11 , 656–664 (2021).

Download references

Reprints and permissions

Related Articles

research topics on alternative energy sources

  • Environmental sciences

It’s time to talk about the hidden human cost of the green transition

Correspondence 16 APR 24

A better way to charge a quantum battery

A better way to charge a quantum battery

Research Highlight 08 MAR 24

The world must rethink plans for ageing oil and gas platforms

The world must rethink plans for ageing oil and gas platforms

Comment 06 MAR 24

UN plastics treaty: don’t let lobbyists drown out researchers

UN plastics treaty: don’t let lobbyists drown out researchers

Editorial 17 APR 24

Environmental drivers of increased ecosystem respiration in a warming tundra

Environmental drivers of increased ecosystem respiration in a warming tundra

Article 17 APR 24

We must protect the global plastics treaty from corporate interference

We must protect the global plastics treaty from corporate interference

World View 17 APR 24

Smoking bans are coming: what does the evidence say?

Smoking bans are coming: what does the evidence say?

News 17 APR 24

Research Postdoctoral Fellow - MD (Cardiac Surgery)

Houston, Texas (US)

Baylor College of Medicine (BCM)

research topics on alternative energy sources

Director of Mass Spectrometry

Loyola University Chicago, Stritch School of Medicine (SSOM) seeks applicants for a full-time Director of Mass Spectrometry.

Chicago, Illinois

Loyola University of Chicago - Cell and Molecular Physiology Department

research topics on alternative energy sources

Associate or Senior Editor, Nature Biomedical Engineering

Associate Editor or Senior Editor, Nature Biomedical Engineering Location: London, Shanghai and Madrid — Hybrid office and remote working Deadline:...

London (Central), London (Greater) (GB)

Springer Nature Ltd

research topics on alternative energy sources

FACULTY POSITION IN PATHOLOGY RESEARCH

Dallas, Texas (US)

The University of Texas Southwestern Medical Center (UT Southwestern Medical Center)

research topics on alternative energy sources

Postdoc Fellow / Senior Scientist

The Yakoub and Sulzer labs at Harvard Medical School-Brigham and Women’s Hospital and Columbia University

Boston, Massachusetts (US)

Harvard Medical School and Brigham and Women's Hospital

research topics on alternative energy sources

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

  • Contact Contact icon Contact
  • Training Training icon Training

cas logo

  • Portuguese, Brazil
  • Chinese, Simplified

Check the spelling in your query or search for a new term.

Site search accepts advanced operators to help refine your query. Learn more.

Top 10 areas of green energy research

Magesh Ganesan , Scientist, ACS International India Pvt. Ltd.

February 29, 2024

Wind Energy Park

With so much being published on green energy and sustainability, how can you identify the fastest growing areas of research?  Learn how CAS Insights provides a unique view of the green energy research landscape and can help you identify emerging trends sooner.  Subscribe to be the first to know when we publish new scientific insights.

Fossil fuels remain our primary energy source, but their limited availability and negative environmental impact have led to events like the 2023 United Nations Climate Change Conference (COP28) to seek green energy alternatives. These are sources that can be replenished in the average human lifespan and have a net zero environmental impact.

Every year, millions of journal articles and patent applications are created, so it can be difficult to identify the signals from the noise. CAS curates, connects, and analyzes the world’s published science inside the CAS Content Collection™ to provide a unique view of the scientific landscape. This enables novel insights that show emerging trends in new research areas. Five broad areas of research were identified that contained the fastest-growing trends: batteries, hydrogen energy, solar cells, new materials, and photothermal energy.

How was the analysis done?

First, CAS identified almost one million indexed documents in the CAS Content Collection™ that were relevant to the green energy space. Then, our researchers analyzed the hidden connections between key concepts using advanced analytics, knowledge graphing, and natural language processing to identify emerging trends in this area. Finally, our expert scientists with dozens of years of experience derived unique insights from the landscape of connections created. Several exciting growth patterns emerged between 2018 and 2022 that are early indicators of opportunities ahead. While many areas of green energy are growing quickly, we identified and prioritized the top ten emerging topics (Figure 1) that will help us reach a more sustainable future.

Figure 1: Normalized growth in the number of publications between 2013-2022 for the emerging research topics.

Batteries, energy storage, and battery recycling

Batteries are the leading method of storing electricity worldwide. Lithium-ion batteries have become commonplace, being used in portable devices and electric vehicles due to their high energy density, while lead-acid batteries are conventionally used for portable and stationary power storage. However, lithium-ion batteries are a fire hazard while lead-acid batteries are notably toxic. This has led to researchers looking for alternate, safer ways to store electricity.

  • Aqueous zinc-ion batteries: These batteries are being studied as alternatives to lead-acid batteries because they are naturally occurring, much more environmentally friendly, and notably cheaper and non-toxic.
  • Solid-state lithium-ion battery: Standard lithium-ion batteries degrade quickly, are fire hazards, and have high toxicity. However, they are still widely used because of faster charging and easy manufacturing. Solid-state lithium-ion batteries can be charged and discharged many times more than lithium-ion batteries and hold more electricity.

The successful development of these new battery types will make the industry much safer. Not only will solid-state lithium batteries be less of a fire hazard, but the overall pollution will drop, owing to the absence of toxic liquid electrolytes and more sustainable production. Learn more about lithium-ion batteries , the landscape of recyclin g legislation and regulations , and the new breakthroughs  that are driving innovation. 

Hydrogen energy, green hydrogen economy, and hydrogen storage

Hydrogen has emerged as a promising alternative to fossil fuels, being more environmentally friendly, having higher energy per given weight than gasoline, and more applicable in many energy-related fields.

  • Liquid hydrogen storage: Hydrogen has three times the gravimetric density of gasoline but only one-fourth of the volumetric energy density. This means liquid hydrogen is considered the most efficient method of storing hydrogen in its base form, and researchers are seeking new ways to take advantage of it. If properly harnessed, liquid hydrogen storage could enable new fuel cell-driven automobiles and decrease costs in petroleum refining, fertilizer production, and more. 
  • Water splitting using heterojunction photocatalysts: Photocatalysts have emerged as a sustainable energy source, producing hydrogen using only water and sunlight. The main challenge, however, is identifying or developing them due to low efficiency and unsuitable band positions. Once these hurdles are overcome, the cost of hydrogen is expected to decrease, which could make it the preferred fuel source.   

The benefits of these hydrogen production and storage technologies are immense. Urea oxidation will be dual purpose, cleaning water and providing energy simultaneously. More efficient storage methods could facilitate the utilization of hydrogen fuel cells, revolutionizing commercial products like automobiles. These changes would be further bolstered by new water-splitting methods, which would make accessing the necessary hydrogen for these processes much cheaper. Learn more about photocatalysis and new breakthroughs in the landscape of green hydrogen production.  

Solar cells

Solar cells have seen an increased interest both academically and commercially. As industries look for more sustainable options, there will be more studies on how to optimize this technology for higher efficiency and lower cost.

  • Non-fullerene acceptors for solar cells: The performance of organic solar cells has increased, but development is already underway to replace their most used acceptor, fullerene, with an alternative. These non-fullerene acceptors have more tunable properties, higher thermal and photochemical stability, and can lead to longer device lifetimes. This could lead to more stable, longer-lasting, and cheaper solar cells.
  • Stable perovskite solar cells: As researchers look to enhance the efficiency of solar cells, one area of interest is perovskite-based solar cells. These easy-to-fabricate, low-cost cells have reported some of the highest energy efficiencies. However, the current materials used are unstable in certain conditions. The advantages of stable perovskite solar cells remain substantial and could diminish manufacturing costs if this challenge is overcome.

The main hurdle that these two innovations could overcome is cost. By cutting out fullerene or developing cells with perovskite, solar energy could be more affordable to many consumers. Learn more about emerging technologies in materials .

Sustainable chemistry, new materials, and greener alternatives

Noble and toxic metals are frequently used in the energy field. While functional, risks and challenges remain, hindering the industry’s progress. This has led studies to examine more sustainable and efficient alternatives.

  • Mxenes: These are two-dimensional materials that incorporate a transition metal and a functional group. Their layered nature makes them strong candidates for energy storage applications like capacitors and batteries while their optical and catalytic properties have potential in photocatalysis and electrocatalysis. Mxenes also contain earth-abundant elements, circumventing the risks associated with noble or toxic metals. Any breakthrough with this material could result in significant cost, environmental, and energy storage benefits.
  • Covalent organic frameworks: These are two or three-dimensional structures formed by organic precursor reactions. Forming covalently bonded, porous structures, they are being studied for hydrogen/methane and catalytic/electrocatalytic energy storage applications. Successful covalent organic framework applications could lead to many economic and environmental benefits in energy storage, chemical synthesis, catalysis, and gas separation with special interest in the automobile industry.

These materials have many possible applications. Both being made of earth-abundant materials, they will be more available and sustainable compared to other materials. By replacing current materials with covalent organic frameworks and mxenes, there will also be significant environmental and economic benefits across many industries. Learn more about sustainable catalysts , new biomaterials, and carbon nanotubes that can help build upon new opportunities ahead.

Solar energy, photothermal conversion, and green energy sources

As researchers try to find ways of reducing energy’s environmental impact, special interest is placed on renewable sources. Solar is already gaining commercial and industrial popularity, but further breakthroughs could lead to wider adoption.

  • Photothermal energy conversion: The conversion of solar energy to heat, which generates steam, can generate electricity without using other sources. Researchers are studying inorganic and polymeric materials to find a suitable photothermal candidate. Success in this area could lead to a drastic energy cost reduction, owing to the sole reliance on solar energy. It would also have a substantial positive environmental impact by ideally removing the need for fossil fuels. 

Unlocking the potential of photothermal energy conversion could lead to immense energy cost savings and cleaner energy sources. Additionally, there has always been a desire to use solar energy to split water atoms for clean hydrogen production. This process of photocatalysis would be critical to using solar energy for clean hydrogen production and could reshape the future for a green hydrogen economy . 

Looking ahead

Green energy will remain a large research focus as we seek a net-zero environmental impact thanks to events like COP28. Suitable alternatives are being examined, but there remain challenges and risks that must be overcome before we see real-world applications. As more green energy advances are made, it can be challenging to keep up with the new developments. Subscribe to CAS Insights™ for unique views and the latest updates on green energy alternatives.

Gain new perspectives for faster progress directly to your inbox.

Related Insights

nuclear battery

Nuclear power in your pocket? 50-year battery...

March 11, 2024

a close up of a computer chip

Science Fact Fiction: Can we really recycle...

March 8, 2024

greening fertilizer

Infographic: Sustainable crops start with green(er)...

Infographic

February 16, 2024

Programs submenu

Regions submenu, topics submenu, 2024 global development forum, 2024 global development forum: keynote remarks and fireside discussion with representative mike gallagher (r-wi), 2024 global development forum: balancing economic growth, energy security, and decarbonization, unpacking the 2024 south korean elections: capital cable #92.

  • Abshire-Inamori Leadership Academy
  • Aerospace Security Project
  • Africa Program
  • Americas Program
  • Arleigh A. Burke Chair in Strategy
  • Asia Maritime Transparency Initiative
  • Asia Program
  • Australia Chair
  • Brzezinski Chair in Global Security and Geostrategy
  • Brzezinski Institute on Geostrategy
  • Chair in U.S.-India Policy Studies
  • China Power Project
  • Chinese Business and Economics
  • Defending Democratic Institutions
  • Defense-Industrial Initiatives Group
  • Defense 360
  • Defense Budget Analysis
  • Diversity and Leadership in International Affairs Project
  • Economics Program
  • Emeritus Chair in Strategy

Energy Security and Climate Change Program

  • Europe, Russia, and Eurasia Program
  • Freeman Chair in China Studies
  • Futures Lab
  • Geoeconomic Council of Advisers
  • Global Food and Water Security Program
  • Global Health Policy Center
  • Hess Center for New Frontiers
  • Human Rights Initiative
  • Humanitarian Agenda
  • Intelligence, National Security, and Technology Program
  • International Security Program
  • Japan Chair
  • Kissinger Chair
  • Korea Chair
  • Langone Chair in American Leadership
  • Middle East Program
  • Missile Defense Project
  • Project on Critical Minerals Security
  • Project on Fragility and Mobility
  • Project on Nuclear Issues
  • Project on Prosperity and Development
  • Project on Trade and Technology
  • Renewing American Innovation Project
  • Scholl Chair in International Business
  • Smart Women, Smart Power
  • Southeast Asia Program
  • Stephenson Ocean Security Project
  • Strategic Technologies Program
  • Transnational Threats Project
  • Wadhwani Center for AI and Advanced Technologies
  • All Regions
  • Australia, New Zealand & Pacific
  • Middle East
  • Russia and Eurasia
  • American Innovation
  • Civic Education
  • Climate Change
  • Cybersecurity
  • Defense Budget and Acquisition
  • Defense and Security
  • Energy and Sustainability
  • Food Security
  • Gender and International Security
  • Geopolitics
  • Global Health
  • Human Rights
  • Humanitarian Assistance
  • Intelligence
  • International Development
  • Maritime Issues and Oceans
  • Missile Defense
  • Nuclear Issues
  • Transnational Threats
  • Water Security

Energy Innovation

The Energy Security and Climate Change Program tracks energy sector technology advancement and innovations that will be used to address many of the world’s most pressing energy challenges.

Photo: JONATHAN NACKSTRAND/AFP via Getty Images

Photo: JONATHAN NACKSTRAND/AFP via Getty Images

Arctic Energy Security

Interest in Arctic energy resources has grown in tandem with geopolitical tensions in the region. Two topics in particular may reshape energy security in the European Arctic: climate change and Russia's ongoing invasion of Ukraine.

Report by Max Bergmann, Otto Svendsen, Arild Moe, Anne Husebekk, Silje Elde, and Else Kristine Welde — January 31, 2024

Photo: MARK FELIX/AFP /AFP via Getty Images

Cross-Industry Collaboration on Methane Reductions: Policymaker Dialogue with Representative Armstrong

Transcript — November 15, 2023

Photo: CSIS

U.S. EIA’s International Energy Outlook 2023

Transcript — October 11, 2023

Photo: CSIS

A U.S. Mineral Strategy for Global Energy Transition

Transcript — July 21, 2023

Past Events

Photo: bidala/Adobe Stock

Global Energy Markets: Views from Energy Aspects and the EIA

Photo: EMMET LIVINGSTONE/AFP via Getty Images

Investing in Critical Minerals: A Conversation with Brian Menell

Photo: APHOTOSTUDIO/Adobe Stock

Book Event: The War Below with Author Ernest Scheyder

Photo: urbans78/Adobe Stock

U.S. Electric Demand Growth: Responding To a New Era

Photo: INA FASSBENDER/AFP via Getty Images

Hydrogen Growth Prospects: Impact of the Initial 45V Guidance

Photo: David Madison/Getty Images

Outlook for 2024 Global and Japanese Energy

Photo: Anton Balazh/Adobe Stock

Africa’s Energy Transition

Photo: Frank Soellner/GettyImages

The Global Role of U.S. LNG

Related programs.

ESCC homepage banner

Joseph Majkut

5Baskaran

Gracelin Baskaran

Jane Nakano

Jane Nakano

All energy innovation content, type open filter submenu.

  • Article (99)
  • Event (149)
  • Expert/Staff (40)
  • Podcast Episode (43)
  • Podcast Series (1)
  • Report (38)

Article Type open filter submenu

Report type open filter submenu, region open filter submenu.

  • Afghanistan (1)
  • Africa (13)
  • Americas (73)
  • Australia, New Zealand & Pacific (4)
  • Caribbean Security (7)
  • Central Asia (2)
  • Eastern Europe (5)
  • Europe (27)
  • European Union (11)
  • Middle East (14)
  • North Africa (2)
  • North America (65)
  • Pakistan (2)
  • Russia (11)
  • Russia and Eurasia (12)
  • South America (13)
  • Southeast Asia (7)
  • Sub-Saharan Africa (7)
  • The Gulf (2)

Building Critical Mineral Security for a Sustainable Future

Investigate the risks facing U.S. critical minerals security and the future of sustainability in this new one-day course.

Photo: drcooke/Getty Images

Strengthening U.S. Critical Minerals Security: A Fireside Conversation with Frank Fannon

The CSIS Project on Critical Minerals Security is pleased to welcome Frank Fannon to discuss a stock take of U.S. critical minerals policies and outcomes.

Event — April 30, 2024

Photo: OLIVIER CHASSIGNOLE/AFP/Getty Images

The Future of U.S. LNG Exports: A Conversation with Rep. Sean Casten and Rep. Garret Graves

The CSIS Energy Security and Climate Change Program is pleased to host a discussion on the Biden Administration’s decision to pause new approvals for LNG export terminals with Rep. Sean Casten (D-IL) and Rep. Garret Graves (R-LA).

Event — April 29, 2024

Photo: Elisa/Adobe Stock

Please join CSIS for a conversation on global energy markets with Dr. Amrita Sen, Founder and Director of Research at Energy Aspects, and Dr. Joseph DeCarolis, Administrator of the U.S. Energy Information Administration (EIA).

Event — March 14, 2024

Photo: bidala/Adobe Stock

Please join the CSIS Energy Security and Climate Change Program for a conversation on the future of investment in critical minerals with Brian Menell, Chairman & CEO of TechMet

Event — March 12, 2024

Photo: EMMET LIVINGSTONE/AFP via Getty Images

Please join the CSIS Energy Security and Climate Change Program for a conversation with Ernest Scheyder , Senior Correspondent at Reuters, on his new book, The War Below: Lithium, Copper, and the Global Battle to Power Our Lives.

Event — March 11, 2024

Photo: APHOTOSTUDIO/Adobe Stock

Please join CSIS for a conversation between Rob Gramlich, Founder and President of Grid Strategies, Brian Janous, former VP of Energy at Microsoft, and Cy McGeady, Fellow in the Energy Security and Climate Change Program at CSIS, on the state of load growth in the U.S.

Event — February 28, 2024

Photo: urbans78/Adobe Stock

Please join the CSIS Energy Security and Climate Change Program for a livestream conversation exploring how proposed 45V guidance could shape the growth of the U.S. hydrogen industry with John Larsen, Aaron Bergman, and Maria Martinez.    

Event — February 13, 2024

Photo: INA FASSBENDER/AFP via Getty Images

Please join the CSIS Energy Security and Climate Change Program for a conversation with Ken Koyama, Chief Economist and Senior Managing Director, The Institute of Energy Economics, Japan (IEEJ). Dr Koyama will present highlights from the IEEJ Outlook 2024.

Event — February 8, 2024

Photo: David Madison/Getty Images

Please join the CSIS Energy Security and Climate Change Program for a conversation on achieving universal energy access in Africa amid global decarbonization. Andrew Herscowitz, Executive Director of ODI and former inaugural coordinator of President Barack Obama’s Power Africa initiative, will join Gracelin Baskaran, Research Director and Senior Fellow in the Energy Security and Climate Change Program at CSIS to discuss this and more. 

Event — February 1, 2024

Photo: Anton Balazh/Adobe Stock

Hey there, human — the robots need you! Vote for IEEE’s Robots Guide in the Webby Awards.

For IEEE Members

Ieee spectrum, follow ieee spectrum, support ieee spectrum, enjoy more free content and benefits by creating an account, saving articles to read later requires an ieee spectrum account, the institute content is only available for members, downloading full pdf issues is exclusive for ieee members, downloading this e-book is exclusive for ieee members, access to spectrum 's digital edition is exclusive for ieee members, following topics is a feature exclusive for ieee members, adding your response to an article requires an ieee spectrum account, create an account to access more content and features on ieee spectrum , including the ability to save articles to read later, download spectrum collections, and participate in conversations with readers and editors. for more exclusive content and features, consider joining ieee ., join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of spectrum’s articles, archives, pdf downloads, and other benefits. learn more →, join the world’s largest professional organization devoted to engineering and applied sciences and get access to this e-book plus all of ieee spectrum’s articles, archives, pdf downloads, and other benefits. learn more →, access thousands of articles — completely free, create an account and get exclusive content and features: save articles, download collections, and talk to tech insiders — all free for full access and benefits, join ieee as a paying member., getting the grid to net zero, grid-forming inverters will take us to 100 percent renewable energy.

A photo showing the power packs and solar panels with mountains in the background.

The Kapaia solar-plus-storage facility, operated by the Kauai Island Utility Cooperative, includes 52 megawatt-hours of energy storage. The storage is based on Tesla’s Powerpack 2 battery system.

It’s late in the afternoon of 2 April 2023 on the island of Kauai. The sun is sinking over this beautiful and peaceful place, when, suddenly, at 4:25 pm, there’s a glitch: The largest generator on the island, a 26-megawatt oil-fired turbine, goes offline.

This is a more urgent problem than it might sound. The westernmost Hawaiian island of significant size, Kauai is home to around 70,000 residents and 30,000 tourists at any given time. Renewable energy accounts for 70 percent of the energy produced in a typical year—a proportion that’s among the highest in the world and that can be hard to sustain for such a small and isolated grid. During the day, the local system operator, the Kauai Island Utility Cooperative, sometimes reaches levels of 90 percent from solar alone. But on 2 April, the 26-MW generator was running near its peak output, to compensate for the drop in solar output as the sun set. At the moment when it failed, that single generator had been supplying 60 percent of the load for the entire island, with the rest being met by a mix of smaller generators and several utility-scale solar-and-battery systems.

Normally, such a sudden loss would spell disaster for a small, islanded grid. But the Kauai grid has a feature that many larger grids lack: a technology called grid-forming inverters. An inverter converts direct-current electricity to grid-compatible alternating current. The island’s grid-forming inverters are connected to those battery systems, and they are a special type—in fact, they had been installed with just such a contingency in mind. They improve the grid’s resilience and allow it to operate largely on resources like batteries, solar photovoltaics, and wind turbines, all of which connect to the grid through inverters. On that April day in 2023, Kauai had over 150 megawatt-hours ’ worth of energy stored in batteries—and also the grid-forming inverters necessary to let those batteries respond rapidly and provide stable power to the grid. They worked exactly as intended and kept the grid going without any blackouts.

That April event in Kauai offers a preview of the electrical future, especially for places where utilities are now, or soon will be, relying heavily on solar photovoltaic or wind power. Similar inverters have operated for years within smaller off-grid installations. However, using them in a multimegawatt power grid, such as Kauai’s, is a relatively new idea. And it’s catching on fast: At the time of this writing, at least eight major grid-forming projects are either under construction or in operation in Australia, along with others in Asia, Europe, North America, and the Middle East.

Reaching net-zero-carbon emissions by 2050, as many international organizations now insist is necessary to stave off dire climate consequences, will require a rapid and massive shift in electricity-generating infrastructures. The International Energy Agency has calculated that to have any hope of achieving this goal would require the addition, every year , of 630 gigawatts of solar photovoltaics and 390 GW of wind starting no later than 2030—figures that are around four times as great as than any annual tally so far.

The only economical way to integrate such high levels of renewable energy into our grids is with grid-forming inverters, which can be implemented on any technology that uses an inverter, including wind, solar photovoltaics, batteries, fuel cells, microturbines, and even high-voltage direct-current transmission lines. Grid-forming inverters for utility-scale batteries are available today from Tesla , GPTech , SMA , GE Vernova , EPC Power , Dynapower , Hitachi , Enphase , CE+T , and others. Grid-forming converters for HVDC, which convert high-voltage direct current to alternating current and vice versa, are also commercially available, from companies including Hitachi, Siemens, and GE Vernova. For photovoltaics and wind, grid-forming inverters are not yet commercially available at the size and scale needed for large grids, but they are now being developed by GE Vernova, Enphase, and Solectria .

The Grid Depends on Inertia

To understand the promise of grid-forming inverters, you must first grasp how our present electrical grid functions, and why it’s inadequate for a future dominated by renewable resources such as solar and wind power.

Conventional power plants that run on natural gas, coal, nuclear fuel, or hydropower produce electricity with synchronous generators—large rotating machines that produce AC electricity at a specified frequency and voltage. These generators have some physical characteristics that make them ideal for operating power grids. Among other things, they have a natural tendency to synchronize with one another, which helps make it possible to restart a grid that’s completely blacked out. Most important, a generator has a large rotating mass, namely its rotor. When a synchronous generator is spinning, its rotor, which can weigh well over 100 tonnes, cannot stop quickly.

This characteristic gives rise to a property called system inertia . It arises naturally from those large generators running in synchrony with one another. Over many years, engineers used the inertia characteristics of the grid to determine how fast a power grid will change its frequency when a failure occurs, and then developed mitigation procedures based on that information.

If one or more big generators disconnect from the grid, the sudden imbalance of load to generation creates torque that extracts rotational energy from the remaining synchronous machines, slowing them down and thereby reducing the grid frequency—the frequency is electromechanically linked to the rotational speed of the generators feeding the grid. Fortunately, the kinetic energy stored in all that rotating mass slows this frequency drop and typically allows the remaining generators enough time to ramp up their power output to meet the additional load.

Electricity grids are designed so that even if the network loses its largest generator, running at full output, the other generators can pick up the additional load and the frequency nadir never falls below a specific threshold. In the United States, where nominal grid frequency is 60 hertz, the threshold is generally between 59.3 and 59.5 Hz . As long as the frequency remains above this point, local blackouts are unlikely to occur.

Why We Need Grid-Forming Inverters

Wind turbines, photovoltaics, and battery-storage systems differ from conventional generators because they all produce direct current (DC) electricity —they don’t have a heartbeat like alternating current does. With the exception of wind turbines, these are not rotating machines. And most modern wind turbines aren’t synchronously rotating machines from a grid standpoint—the frequency of their AC output depends on the wind speed. So that variable-frequency AC is rectified to DC before being converted to an AC waveform that matches the grid’s.

As mentioned, inverters convert the DC electricity to grid-compatible AC. A conventional, or grid-following , inverter uses power transistors that repeatedly and rapidly switch the polarity applied to a load. By switching at high speed, under software control, the inverter produces a high-frequency AC signal that is filtered by capacitors and other components to produce a smooth AC current output. So in this scheme, the software shapes the output waveform. In contrast, with synchronous generators the output waveform is determined by the physical and electrical characteristics of the generator.

Grid-following inverters operate only if they can “see” an existing voltage and frequency on the grid that they can synchronize to. They rely on controls that sense the frequency of the voltage waveform and lock onto that signal, usually by means of a technology called a phase-locked loop. So if the grid goes down, these inverters will stop injecting power because there is no voltage to follow. A key point here is that grid-following inverters do not deliver any inertia.

Grid-following inverters work fine when inverter-based power sources are relatively scarce. But as the levels of inverter-based resources rise above 60 to 70 percent, things start to get challenging . That’s why system operators around the world are beginning to put the brakes on renewable deployment and curtailing the operation of existing renewable plants. For example, the Electric Reliability Council of Texas (ERCOT) regularly curtails the use of renewables in that state because of stability issues arising from too many grid-following inverters.

It doesn’t have to be this way. When the level of inverter-based power sources on a grid is high, the inverters themselves could support grid-frequency stability. And when the level is very high, they could form the voltage and frequency of the grid. In other words, they could collectively set the pulse, rather than follow it. That’s what grid-forming inverters do.

The Difference Between Grid Forming and Grid Following

Grid-forming (GFM) and grid-following (GFL) inverters share several key characteristics. Both can inject current into the grid during a disturbance. Also, both types of inverters can support the voltage on a grid by controlling their reactive power, which is the product of the voltage and the current that are out of phase with each other. Both kinds of inverters can also help prop up the frequency on the grid, by controlling their active power, which is the product of the voltage and current that are in phase with each other.

What makes grid-forming inverters different from grid-following inverters is mainly software. GFM inverters are controlled by code designed to maintain a stable output voltage waveform, but they also allow the magnitude and phase of that waveform to change over time. What does that mean in practice? The unifying characteristic of all GFM inverters is that they hold a constant voltage magnitude and frequency on short timescales—for example, a few dozen milliseconds—while allowing that waveform’s magnitude and frequency to change over several seconds to synchronize with other nearby sources, such as traditional generators and other GFM inverters.

Some GFM inverters, called virtual synchronous machines , achieve this response by mimicking the physical and electrical characteristics of a synchronous generator, using control equations that describe how it operates. Other GFM inverters are programmed to simply hold a constant target voltage and frequency, allowing that target voltage and frequency to change slowly over time to synchronize with the rest of the power grid following what is called a droop curve . A droop curve is a formula used by grid operators to indicate how a generator should respond to a deviation from nominal voltage or frequency on its grid. There are many variations of these two basic GFM control methods, and other methods have been proposed as well.

At least eight major grid-forming projects are either under construction or in operation in Australia, along with others in Asia, Europe, North America, and the Middle East.

To better understand this concept, imagine that a transmission line shorts to ground or a generator trips due to a lightning strike. (Such problems typically occur multiple times a week, even on the best-run grids.) The key advantage of a GFM inverter in such a situation is that it does not need to quickly sense frequency and voltage decline on the grid to respond. Instead, a GFM inverter just holds its own voltage and frequency relatively constant by injecting whatever current is needed to achieve that, subject to its physical limits. In other words, a GFM inverter is programmed to act like an AC voltage source behind some small impedance (impedance is the opposition to AC current arising from resistance, capacitance, and inductance). In response to an abrupt drop in grid voltage, its digital controller increases current output by allowing more current to pass through its power transistors, without even needing to measure the change it’s responding to. In response to falling grid frequency, the controller increases power.

GFL controls, on the other hand, need to first measure the change in voltage or frequency, and then take an appropriate control action before adjusting their output current to mitigate the change. This GFL strategy works if the response does not need to be superfast (as in microseconds). But as the grid becomes weaker (meaning there are fewer voltage sources nearby), GFL controls tend to become unstable. That’s because by the time they measure the voltage and adjust their output, the voltage has already changed significantly, and fast injection of current at that point can potentially lead to a dangerous positive feedback loop. Adding more GFL inverters also tends to reduce stability because it becomes more difficult for the remaining voltage sources to stabilize them all.

When a GFM inverter responds with a surge in current, it must do so within tightly prescribed limits. It must inject enough current to provide some stability but not enough to damage the power transistors that control the current flow.

Increasing the maximum current flow is possible, but it requires increasing the capacity of the power transistors and other components, which can significantly increase cost. So most inverters (both GFM and GFL) don’t provide current surges larger than about 10 to 30 percent above their rated steady-state current. For comparison, a synchronous generator can inject around 500 to 700 percent more than its rated current for several AC line cycles (around a tenth of a second, say) without sustaining any damage. For a large generator, this can amount to thousands of amperes. Because of this difference between inverters and synchronous generators, the protection technologies used in power grids will need to be adjusted to account for lower levels of fault current.

What the Kauai Episode Reveals

The 2 April event on Kauai offered an unusual opportunity to study the performance of GFM inverters during a disturbance. After the event, one of us (Andy Hoke) along with Jin Tan and Shuan Dong and some coworkers at the National Renewable Energy Laboratory, collaborated with the Kauai Island Utility Cooperative (KIUC) to get a clear understanding of how the remaining system generators and inverter-based resources interacted with each other during the disturbance. What we determined will help power grids of the future operate at levels of inverter-based resources up to 100 percent.

NREL researchers started by creating a model of the Kauai grid. We then used a technique called electromagnetic transient (EMT) simulation, which yields information on the AC waveforms on a sub-millisecond basis. In addition, we conducted hardware tests at NREL’s Flatirons Campus on a scaled-down replica of one of Kauai’s solar-battery plants, to evaluate the grid-forming control algorithms for inverters deployed on the island.The leap from power systems like Kauai’s, with a peak demand of roughly 80 MW, to ones like South Australia’s, at 3,000 MW, is a big one. But it’s nothing compared to what will come next: grids with peak demands of 85,000 MW (in Texas) and 742,000 MW (the rest of the continental United States).

Several challenges need to be solved before we can attempt such leaps. They include creating standard GFM specifications so that inverter vendors can create products. We also need accurate models that can be used to simulate the performance of GFM inverters, so we can understand their impact on the grid.

Some progress in standardization is already happening. In the United States, for example, the North American Electric Reliability Corporation (NERC) recently published a recommendation that all future large-scale battery-storage systems have grid-forming capability.

Standards for GFM performance and validation are also starting to emerge in some countries, including Australia, Finland, and Great Britain. In the United States, the Department of Energy recently backed a consortium to tackle building and integrating inverter-based resources into power grids. Led by the National Renewable Energy Laboratory, the University of Texas at Austin, and the Electric Power Research Institute, the Universal Interoperability for Grid-Forming Inverters (UNIFI) Consortium aims to address the fundamental challenges in integrating very high levels of inverter-based resources with synchronous generators in power grids. The consortium now has over 30 members from industry, academia, and research laboratories.

At 4:25 pm on 2 April, there were two large GFM solar-battery plants, one large GFL solar-battery plant, one large oil-fired turbine, one small diesel plant, two small hydro plants, one small biomass plant, and a handful of other solar generators online. Immediately after the oil-fired turbine failed, the AC frequency dropped quickly from 60 Hz to just above 59 Hz during the first 3 seconds [red trace in the figure above]. As the frequency dropped, the two GFM-equipped plants quickly ramped up power, with one plant quadrupling its output and the other doubling its output in less than 1/20 of a second.

In contrast, the remaining synchronous machines contributed some rapid but unsustained active power via their inertial responses, but took several seconds to produce sustained increases in their output. It is safe to say, and it has been confirmed through EMT simulation, that without the two GFM plants, the entire grid would have experienced a blackout.

Coincidentally, an almost identical generator failure had occurred a couple of years earlier, on 21 November 2021. In this case, only one solar-battery plant had grid-forming inverters. As in the 2023 event, the three large solar-battery plants quickly ramped up power and prevented a blackout. However, the frequency and voltage throughout the grid began to oscillate around 20 times per second [the blue trace in the figure above], indicating a major grid stability problem and causing some customers to be automatically disconnected. NREL’s EMT simulations, hardware tests, and controls analysis all confirmed that the severe oscillation was due to a combination of grid-following inverters tuned for extremely fast response and a lack of sufficient grid strength to support those GFL inverters.

In other words, the 2021 event illustrates how too many conventional GFL inverters can erode stability. Comparing the two events demonstrates the value of GFM inverter controls—not just to provide fast yet stable responses to grid events but also to stabilize nearby GFL inverters and allow the entire grid to maintain operations without a blackout.

Australia Commissions Big GFM Projects

The next step for inverter-dominated power grids is to go big. Some of the most important deployments are in South Australia. As in Kauai, the South Australian grid now has such high levels of solar generation that it regularly experiences days in which the solar generation can exceed the peak demand during the middle of the day [see figure at left].

The most well-known of the GFM resources in Australia is the Hornsdale Power Reserve in South Australia. This 150-MW/194-MWh system, which uses Tesla’s Powerpack 2 lithium-ion batteries, was originally installed in 2017 and was upgraded to grid-forming capability in 2020.

Australia’s largest battery (500 MW/1,000 MWh) with grid-forming inverters is expected to start operating in Liddell, New South Wales, later this year. This battery, from AGL Energy, will be located at the site of a decommissioned coal plant. This and several other larger GFM systems are expected to start working on the South Australia grid over the next year.

The leap from power systems like Kauai’s, with a peak demand of roughly 80 MW, to ones like South Australia’s, at 3,000 MW, is a big one. But it’s nothing compared to what will come next: grids with peak demands of 85,000 MW (in Texas) and 742,000 MW (the rest of the continental United States).

In addition to specifications, we need computer models of GFM inverters to verify their performance in large-scale systems. Without such verification, grid operators won’t trust the performance of new GFM technologies. Using GFM models built by the UNIFI Consortium, system operators and utilities such as the Western Electricity Coordinating Council, American Electric Power, and ERCOT (the Texas’s grid-reliability organization) are conducting studies to understand how GFM technology can help their grids.

Getting to a Greener Grid

As we progress toward a future grid dominated by inverter-based generation, a question naturally arises: Will all inverters need to be grid-forming? No. Several studies and simulations have indicated that we’ll need just enough GFM inverters to strengthen each area of the grid so that nearby GFL inverters remain stable.

How many GFMs is that? The answer depends on the characteristics of the grid and other generators. Some initial studies have shown that a power system can operate with 100 percent inverter-based resources if around 30 percent are grid-forming. More research is needed to understand how that number depends on details such as the grid topology and the control details of both the GFLs and the GFMs.

Ultimately, though, electricity generation that is completely carbon free in its operation is within our grasp. Our challenge now is to make the leap from small to large to very large systems. We know what we have to do, and it will not require technologies that are far more advanced than what we already have. It will take testing, validation in real-world scenarios, and standardization so that synchronous generators and inverters can unify their operations to create a reliable and robust power grid. Manufacturers, utilities, and regulators will have to work together to make this happen rapidly and smoothly. Only then can we begin the next stage of the grid’s evolution, to large-scale systems that are truly carbon neutral.

  • 800,000 Microinverters Remotely Retrofitted on Oahu—in One Day ›
  • How Rooftop Solar Can Stabilize the Grid ›
  • Grid-Forming Inverters: Shaping the Future of Power Distribution ›
  • How one device could help transform our power grid ›

Ben Kroposki is the Director of the Power Systems Engineering Center at the National Renewable Energy Laboratory (NREL). The author of more than 150 articles on design, testing, and integration of renewable and distributed power systems, Kroposki is an IEEE Fellow and the recipient of the IEEE Power & Energy Society (PES) Ramakumar Family Renewable Energy Excellence Award, which recognizes outstanding contributions in the field of developing, utilizing and integrating renewable energy resources. Kroposki is also an adjunct professor at the Colorado School of Mines and the University of Colorado. He also serves as the director for the Universal Interoperability for Grid-forming Inverters ( UNIFI ) consortium, which is tackling the challenges of seamless integration of inverter-based resources and synchronous machines into power grids.

Andy Hoke is a senior engineer with the National Renewable Energy Laboratory in Colorado. He specializes in integrating renewable energy into the power grid. He is an unabashed champion of grid-forming inverter technology, which he believes will become a fundamental pillar of the renewable energy transition. “While it’s challenging to explain grid-forming control to non-specialists, it’s super important for everyone from traditional utility engineers to policymakers to understand. We’re in a critical window where we can deploy them now at little marginal cost and save ourselves a lot of headaches down the road.”

50 Years Later, This Apollo-Era Antenna Still Talks to Voyager 2

This blood-sampling cytometer is small enough for mars, tiny sensor aims to monitor tumors in real time.

Energy.gov Home

  • Solar Energy Technologies Office
  • Fellowships
  • Contact SETO
  • Funding Programs
  • National Laboratory Research and Funding
  • Solar Technical Assistance
  • Prizes and Challenges
  • Cross-Office Funding Programs
  • Concentrating Solar-Thermal Power Basics
  • Photovoltaic Technology Basics
  • Soft Costs Basics
  • Systems Integration Basics
  • Concentrating Solar-Thermal Power
  • Manufacturing and Competitiveness
  • Photovoltaics
  • Systems Integration
  • Equitable Access to Solar Energy
  • Solar Workforce Development
  • Solar Energy Research Database
  • Solar Energy for Consumers
  • Solar Energy for Government Officials
  • Solar Energy for Job Seekers
  • Solar Energy for Professionals
  • Success Stories

EERE SETO Postdoctoral Research Award 2018

The Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards are intended to be an avenue for significant energy efficiency and renewable energy innovation. The EERE Postdoctoral Research Awards are designed to engage early career postdoctoral recipients in research that will provide them opportunities to understand the mission and research the needs of EERE and make advances in research topics of importance to EERE programs. Research Awards will be provided to exceptional applicants interested in pursuing applied research to address topics listed by the EERE programs sponsoring the Research Awards.

Applicants may select one research proposal on one research topic. Proposals must be approved by the research mentor listed in the application. 

Solar Energy

S-501 Applying Data Science to Solar Soft Cost Reduction

Possible disciplines: Economics, computer science, business management

The emergence of new big data tools can revolutionize how solar technologies are researched, developed, demonstrated, and deployed. From computational chemistry and inverse material design to adoption, reliability, and correlation of insolation forecasts with load use patterns, data scientists have opportunities to dramatically impact the future scaling of solar energy.

EERE's Solar Energy Technologies Office (SETO) is seeking to support postdoctoral researchers to apply and advance cutting-edge data science to drive toward the national solar cost reduction goals.

Areas of interest include:

  • Novel analysis of Green Button (smart meter) and PV performance data with the Durable Module Materials (DuraMAT) Consortium.
  • Power system planning and operation modeling to better understand the performance of solar generation assets on both the transmission and distribution grid.
  • Quantification of direct and total system cost and benefits of distributed energy generation and storage, especially as related to reliability and resiliency.
  • Data analytics for prediction of solar generation and PV system performance.
  • Computational methods for revealing insights about diffusion of solar technologies at the residential, commercial, and utility scales that integrate large administrative, geospatial, economic, and financial datasets.
  • Data tools for advancing photovoltaic (PV) and concentrating solar power (CSP) to reduce the non-hardware-related costs for solar energy. Specifically this could include work related to transactive energy value, such as analysis of the potential for PV and CSP to act autonomously in response to different grid and market signals and/or creating software that can perform these activities, as well as other novel topics not included here.
  • Studies of the impact of federal government funding of solar technologies and programs (e.g. connecting scientific articles, patents, and commercial press releases to understand how federal R&D dollars in clean energy are communicated to and understood by the marketplace).

S-502 Solar Systems Integration

Possible disciplines: Power systems engineering, electrical engineering, computer science, mechanical engineering, atmospheric sciences

The Systems Integration program of SETO aims to address the technical and operational challenges associated with connecting solar energy to the electricity grid. We seek postdoctoral research projects that will help address significant challenges in the following areas:

  • Planning and operation models and software tools are essential to the safe, reliable and resilient operation of solar PV on the interconnected transmission and distribution grid, especially for understanding how power flows fluctuate due to clouds or other fast-changing conditions, as well as interacting with multiple inverter-based technologies.
  • Sensors and cybersecurity communication infrastructures and big data analytics enable visibility and situational awareness of solar resources for grid operators to better manage generation, transmission and distribution, and consumption of energy, especially in the face of man-made or natural threats.
  • Higher solar PV penetration will require more advanced protection systems in distribution grids given that normal power flow (and fault current) are no longer unidirectional. Directional and distance relays may no longer operate as expected with inverter-based distributed energy resources.
  • Cybersecurity for PV systems integration into utility operations, such as isolated layers of trust and mutual authentication. Advanced PV cybersecurity may be needed to ensure access control, authorization, authentication, confidentiality, integrity, and availability for the future smart grid.
  • Power electronic devices, such as PV inverters and relevant materials, are critical links between solar panels and the electric grid, ensuring reliable and efficient power flows from solar generation.
  • Integrating solar PV with energy storage would help to enable more flexible generation and grid and provide operators more control options to balance electricity generation and demand, while increasing resiliency. When combined with the capability to island from the area power grid, solar -- plus energy storage microgrids -- support facility resiliency. Resiliency is particularly needed for strengthening the security and resilience of the nation's critical infrastructure (e.g. for safety, public health and national security.)
  • The ability to better predict solar generation levels can help utilities and grid operators meet consumer demand for power and reliability.

S-503 Concentrating Solar Thermal for Electricity, Chemicals, and Fuels

Possible disciplines: Mechanical engineering, chemical engineering, materials science

Concentrating solar power (CSP) technologies use mirrors or other light collecting elements to concentrate and direct sunlight onto receivers.[1]  These receivers absorb the solar flux and convert it to heat. The heat energy may be stored until desired for dispatch to generate electricity, synthesize chemicals, desalinate water or produce fuels, among other applications. The dispatchable nature of solar thermal energy derives from the relative ease and cost-effectiveness of storing heat for later use, for example, when the sun does not shine or when customer demand increases or time value premiums warrant. Heat and/or extreme UV intensities from sunlight may also be used to synthesize chemicals or produce fuels. The ability to produce heat for chemical processes without the added cost of fuel and to shift electricity production to alternative energy forms can provide benefits. To realize these benefits operations must be efficient and cost-effective.

SETO seeks to develop processes that can occur at a competitive cost compared to traditional synthetic routes. Careful analysis of integrated solar thermochemical systems will be required due to the complexity of most chemical processes and the typically thin profit margins in commodity chemical markets.

Topics of interest include, but are not limited to:

  • Novel thermochemical materials or cycles for high volumetric energy density storage systems (with accessible thermal energy storage densities > 3000 MJ/m3 of storage media). Of particular interest are designs that are capable of cost-effective, simple, periodic recovery from performance degradation.
  • Novel concepts for using solar thermal sources to produce value-added chemicals, such as ammonia, methanol, dimethyl ether or other chemicals for which there is a sizeable market.
  • Innovative catalysts, materials, and reactor designs to enhance the thermochemical conversion processes.
  • Development of thermal transport systems and components. Generally, proposed innovations should support a 50% efficient power cycle (or other highly efficient end use), a 90% efficient receiver module, and multiple hours of thermal energy storage with 99% energetic efficiency and 95% exergetic efficiency, while minimizing parasitic losses. Novel concepts should also be compatible with 30 years of reliable operation at the targeted temperature conditions.

This is a broad call and postdoctoral applicants interested in using heat from solar installations to create value-added products at a national scale are encouraged to apply.

Stekli, J.; Irwin, L.; Pitchumani, R.  “Technical Challenges and Opportunities for Concentrating Solar Power With Thermal Energy Storage,” ASME Journal of Thermal Science Engineering and Applications; Vol. 5, No. 2; Article 021011; 2013; http://dx.doi.org/10.1115/1.4024143.

S-504 Photovoltaic Materials, Devices, Modules, and Systems

Possible disciplines: Materials science and engineering, electrical engineering, chemical engineering, applied physics, physics, chemistry

In photovoltaic hardware, substantial materials and system challenges remain in many current and near-commercial technologies.  Research projects are sought in applied and interdisciplinary science and engineering to improve the performance and reliability of photovoltaic materials, devices, modules, and systems in order to drive down energy costs.  Areas of interest include:

  • New module architectures, module components, and innovative cell designs that enable modules to produce more electricity at lower cost and improved reliability; modules that are compatible with higher system voltage and/or have improved shading tolerance especially in monolithically integrated thin-film modules.
  • Development or adaptation of new characterization techniques to evaluate defects and increase collection efficiency of absorber materials or interfaces. Projects should expand understanding of effective methods to control material quality in order to improve PV device efficiency and stability.
  • Scalable, high-speed measurement and characterization methods and tools for cells, modules, panels and systems.
  • Fundamental understanding of degradation mechanisms in PV devices, modules and systems. Development of models based on fundamental physics and material properties to predict PV device or module degradation and lifetime in order to enable shorter testing time and high-confidence performance prediction.
  • Cost-effective methods to recycle PV modules and related components that can be implemented into the current recycling infrastructure or module architectures designed for improved recyclability.
  • Stable, high-performance photovoltaic absorber materials and cell architectures to enable module efficiencies above 25% while reducing manufacturing costs.
  • Transparent electrodes and carrier selective contacts to enable low-cost cell and module architectures amenable to mass production.
  • Low-cost materials and high throughput, low cost processes for current collection and transport.

English Editing Research Services

research topics on alternative energy sources

Alternative Energy Research: 6 Areas for Your Science to Save the Planet

There’s little debate that our current use of energy is unsustainable. Science must create solutions for this. Alternative energy remains a very hot topic (no pun intended), and going down this research path offers a promising career for scientific researchers. Even among industry and academia competition , there’s no shortage of need in this area.

As pollution levels and global temperatures rise, the centuries of relying on fossil fuels appear to be winding down. This triggers alarm in society, but it also signals huge opportunities for researchers.

Edanz - Alternative Energy Research

This gives researchers a clear path to seeing their work have real-life impact.

Research is also urgently needed to help industry meet demand. This demand is not only driven by market forces. And most governments have policies encouraging renewables, because they are committed to fighting climate change, or at least demonstrating they are.

China , for example, is expected to consume 23% of the world’s energy by 2035. Yet it’s announced it has scrapped plans to build 85 proposed coal-fired power plants. Instead, by 2020, it will invest $360 million in renewable energy, while further trying to reduce its dependence on coal.

Indeed, many of the opportunities for research occur in countries that have set ambitious targets for increasing renewable energy. Industry, however, is border-independent, and also offers forums for researchers to continue their work, and be paid for it.

Here we’ll look at what it takes to make an impact in this area, and where that impact can be made.

What academic background do you need to do green research?

Renewable energy research is multi-disciplinary, and calls upon a range of abilities. A good place to start is an undergraduate degree in subjects such as physical sciences, engineering, environmental science, or statistics, from which point you can work up to a higher degree.

With great potential seen in a wide range of energy sources, there’s a lot for aspiring researchers to choose from. However, some themes are in particular need of attention. These areas are also attracting increased funding.

In most cases, the national governments direct funding universities and research institutes, as well as international collaborations. In advanced stages of research, collaboration involves companies in trying out models; in these cases you have the chance to work on industrial applications as well.

Some large corporations, such as Tesla, invest in their own labs and R&D departments for exploring technology they’ll need to keep pushing the boundaries. Large companies can be an excellent place to check for research posts.

The World Economic Forum has identified overwhelming emphasis on clean energy needs , and that sets the tone for these key areas.

Key areas for green research

1. improving storage of renewables.

At the present, the leading priority is improving storage of energy from renewable sources such as solar and wind. Intermittency is one of the biggest problems facing these two energy sources, as their production can fluctuate, even within a day, depending on the weather. Batteries used to store energy are also one of the most expensive components in the use of renewable energy.

These can vary from small units used with rooftop solar home installations or those for storing power at solar and wind generation plants.

Even though the capacity of lithium ion batteries is improving, you may be surprised at the number of alternatives being developed.

Advanced materials such as magnesium, vanadium, calcium, sulfur, and lithium-air batteries are receiving increasing attention, all making energy storage research a vast field.

Universities and institutes

Many of the universities that offer research programs in storage capacity are based in the United States.

  • At the Massachusetts Institute of Technology (MIT) and Virginia Tech , work continues on scalable sulfur batteries.
  • Texas A&M University is concentrating on magnesium batteries.
  • The governmental Argonne National Laboratory and the University of Illinois, both near Chicago, are working on lithium-oxygen batteries .

Industrial applications

The Chinese government is investing in manufacturers such as Contemporary Amperex Technology Ltd. and Lishen , which are the largest premier battery manufacturers in the country

Those interested could find jobs with these companies to continue research and technology development aimed at practical applications.

China is leading the way in investing in next generation batteries, and plans to install them to store the energy produced from new large-scale solar and wind capacities.

The country is expected to soon be a world leader in not only producing solar panels but also lithium batteries, and these can be then subsequently be used to generate electricity. For example, China’s vanadium flow batteries built by Pu Neng are the largest of their kind in the world.

Edanz - Alternative Energy Research

2. Stabilization of power grids

The second research priority is developing smart grids, especially micro-grids, to deal with intermittency. These rely heavily not only on digital technology, but also on compatible hardware. So if you are an engineer, a software specialist, or from the physical sciences, this area of study may suit for you.

Two types of grids are being studied: transmission grids and distribution grids. Since solar and wind sources are increasingly becoming decentralized, distribution grids are necessary to collect energy from multiple generation points.

As production of energy increases, it’s necessary to either expand the network or make it more flexible and smarter through digitalization.

Smart and better grids are needed to carry the increased loads of electricity, as well as balance supply and demand. For example, in Germany, the new wind power stations are in the north, while industries that need this energy are in the south.

If you’re interested in grids, there is probably an institute not too far away that offers a suitable research program, as this is such an important theme.

  • The UCLA Smart Grid Energy Research Center (or SMERC ), in Los Angeles, works with the US Department of Energy. Here you can work on improving grid flexibility and efficiency, integrating renewable energy and electric cars, reducing power outages, and making the pricing of electricity competitive.
  • The State Grid Smart Grid Research Institute ( SGRI) in China is a prominent research institute engaged in this field. SGRI is directly funded and controlled by the Chinese government.
  • Other universities where you can conduct research in smart grids are Boston University and University of Maryland in the US, Tianjin University in China, the University of Bradford and University of Birmingham in the UK; and the National Research Foundation in Singapore. The MSc Smart Electrical Networks and Systems program is a degree open to international students and is accredited by the European Institute of Innovation and Technology (EIT). This program is offered jointly by seven universities in France, Sweden, Belgium, the Netherlands, and Spain. Scholarships are available, regardless of your nationality.

One of the most important group promoting smart grids is the Institute of Electrical and Electronics Engineers (IEEE) Smart Grid . This is the largest global technical organization in the world. Their Grid Vision 2050 is to develop solid state transformers, wireless beamed power, quantum key distribution, network architectures, and overlays. The IEEE is involved in the development of new technology by building collaborations among different organizations, so it should be possible for you to work on practical applications through them.

Many regions across the globe are investing in grids, the prominent countries are the US, EU, China, and India. Other countries that are attractive markets for this technology include Japan, South Korea, Australia, Canada, Russia, and Singapore.

3. Electric vehicles (EVs)

Edanz - Alternative Energy Research

  • Research is conducted to optimizing battery performance in conditions specific to automobiles. Research at the University of Wisconsin (USA) looked at the effects of cold winter temperature on the thickness of the SEI layer. The findings could potentially prolong battery life if industry adopts them.
  • The U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) conducts consumer research. Study there is looking at the impact of domestic electricity withdrawal by plug-in cars on the electricity grid. NREL wants to model smart grids of the future using this information. If you have computer stimulation skills, you may wish to apply for this research.

The R&D department of Contemporary Amperex Technology has made China the largest supplier of automotive batteries. Research and engineering posts here will get you involved in practical applications

4. Concentrating solar power

Edanz - Alternative Energy Research

CSP is meant for large-scale solar energy productions. This technology produces energy using solar heat that can be stored. Instead of photovoltaic panels, CSP uses mirrors and reflectors to harness sunlight to produce heat, which in turn generates electricity.

Moreover, hybrid plants can combine CSP and other sources of energy to maintain a continuous supply of electricity for cities or an entire region.

This increases its appeal for immediate implementation. Because of the space needed, CSP plants are usually located in deserts where the incoming solar radiation is also optimum.

Universities

The University of Perpignan in France conducts research and also offers courses for post-graduate students on CSP.

Collaborations

The NREL is at the forefront in the US, bringing together universities and industries, to develop CSP. It’s interested in high-flux solar furnaces, large-payload solar trackers, advanced optical materials, advanced thermal storage materials, and optical characterization. So if you’re interested in hands-on work in producing new technology, NREL is worth considering.

The US has been a world leader in CSP with desert installations such as Mojave, Genesis, and Solana. Now nine other countries with abundant sunlight—Spain, Australia, China, India, Morocco, South Africa, Chile, Saudi Arabia, and UAE—also want to substantially invest in this technology.

5. Offshore wind power

The best wind resources are available offshore, but there are very few offshore wind power facilities in the world. This is because fixed structures are viable only in shallow seas. Therefore, floating wind turbines are being developed for deep seas, because these are the places where wind power is most abundant.

  • UK and Chinese scientists are cooperating on five projects to produce the next generation of floating wind turbines. They’re focusing on load reduction of floating offshore wind platforms by taking environmental conditions into consideration. The project is funded by UK’s EPSRC and the Natural Environment Research Council, and the National Natural Science Foundation of China .
  • The Technical University of Denmark offers a Dual Degree Programme in offshore wind energy engineering, with the Korean Advanced Institute of Science and Technology (KAIST). In this post-graduation course you get to spend one year in Denmark and one year in Korea, and get degrees from both universities.
  • The University of California (US), Durham Research Institute (UK), and The University of Tokyo are some other universities that can be considered for research on offshore wind turbines.

The UK has in many ways been the world leader in both research and use of floating wind turbine. Norway is now getting more involved. At Norway’s SINTEF Ocean’s SeaLab facility you’ll find researchers and industries working together conducting research and testing floating offshore wind power models, which are ready for the market.

Europe is by far the top market for offshore floating wind power . It’s using wind power to provide electricity, and move away from fossil fuels. In 2017, there was a 25% increase in this sector. The UK, Germany, Denmark, the Netherlands, and Belgium are countries that have most of the offshore installations.

6. Geothermal energy

research topics on alternative energy sources

These can be small, decentralized units for heating, cooling, and electricity generation at home or institutions. The energy can also be used at district level for heating, or to generate power for electricity. This energy source is stable and unaffected by climatic conditions, but is underused; the main reason is the high initial capital costs.

  • The University of Adelaide is part of the South Australian Centre for Geothermal Energy Research. Research is conducted here on fluid rock interactions, crustal stress characterization, development of geophysical tools, and fracture modelling to make this energy cost-effective.
  • Top institutions conducting research in geothermal energy are Durham University, Cranfield University, University of Exeter and University of Cambridge in the UK, the University of Bern in Switzerland, and the University of Portland in the US. Bern is studying aquifer-hosted, fracture-hosted, and petrothermal systems, as well as mineral scaling and corrosion in geothermal systems.
  • The Iceland School of Energy at Reykjavík University offers a master’s program in sustainable energy, where geothermal and other renewable energy are covered. Here you can study business solutions as well as the science of these energy sources.

The European Geothermal Energy Council funds research, innovation, and demonstrations of new techniques by involving not only research institutes but also consider tenders from industry, thereby encouraging their involvement. Since these funds are meant for European organizations, you would have to work or study in Europe to take advantage of these grants.

China and Turkey account for 80% of geothermal energy use, which is generated through small-scale units. Turkey uses 30% of its capacity in agriculture. The US, Indonesia, and the Philippines are other major users of this energy. The largest expansion will be in China, which is seeking to reduce air pollution. Germany, France, the Netherlands, and Hungary are investing in district-level geothermal plants for heating.

Expanding horizons is key for renewable energy research

The main research efforts concentrate on improving energy efficiency of established energy sources to meet the targets set by The Paris Agreement to limit climate change. However, that has not stopped exploration of new venues like using algae for energy.

If you have an idea that could produce clean energy, work on your elevator pitch . You just might get funded. When you’re ready to publish your research, we’re here to help you choose a journal , evaluate your work, and edit you to submission.

116 Renewable Energy Essay Topics

🏆 best essay topics on renewable energy, 🌶️ hot renewable energy essay topics, 👍 good renewable energy research topics & essay examples, 💡 simple renewable energy essay ideas, ❓ renewable energy research questions.

  • How Wind Turbines Convert Wind Energy into Electrical Energy?
  • Discussion of Renewable Energy Resources
  • Siemens Energy: Renewable Energy System
  • Solving the Climate Change Crisis by Using Renewable Energy Sources
  • Renewable Energy Technology in Egypt
  • The Use of Renewable Energy: Advantages and Disadvantages
  • Solar Energy and Its Impact on Environment
  • Renewable Energy Sources: Popularity and Benefits Renewable fuels are not as pollutive as fossil fuels; they can be reproduced quickly from domestic resources. They became popular because of the decreasing amount of fossil fuels.
  • Renewable Energy Usage: Advantages and Disadvantages This treatise attempts to support the statement that there are both advantages and disadvantages to the use of renewable energy with focus on hydroelectric power.
  • Wind Energy as an Alternative Source While energy is a must for our survival, wind energy as a seemingly perpetual source of energy is the potential answer to the energy security of our generations to come.
  • Renewable Energy in Japan: Clean Energy Transition Renewable energy in Japan became significantly important after the Fukushima Daiichi tsunami that struck Japan in 2011.
  • Solar Energy: Advantages and Disadvantages Renewable energy sources are being supported and invested in by governments to instigate a new environment-friendly technology.
  • Discussion of Realization of Solar Energy Company ABC is interested in creating a “solar” project which will fully install and staff solar panels to ensure the safe transformation of solar energy into electricity.
  • Renewable Energy Sources: Definition, Types and Stocks This research report analyzes the growing interest of the use renewable energy as an alternative to the non-renewable energy.
  • Environmental Degradation and Renewable Energy The global community relies on the surrounding environment for food production, transport, and economic development.
  • The Concept of Sustainability in Energy Plan for 2030-2040 The paper discusses the concept of sustainability takes a central role in the global discussion and presents of environment safety plan.
  • The G20 Countries’ Competitiveness in Renewable Energy Resources “Assessing national renewable energy competitiveness of the G20” by Fang et al. presents an assessment of competitiveness in renewable energy resources among G20 countries.
  • Future of 100% Renewable Energy This article explores the future of renewable green energy and a review the topical studies related to 100% renewable energy.
  • Full Renewable Energy Plan Feasibility for 2030-2040 This paper argues that green energy in its current state will struggle to meet humanity’s demand and the development of better hybrid, integrated grids is required.
  • Profitability of Onshore and Offshore Wind Energy in Australia Undoubtedly, the recent increase in popularity of campaigns to decarbonize the globe proves renewable energy to be a current and future trend globally.
  • Renewable Energy: The Use of Fossil Fuel The paper states that having a combination of renewable energy sources is becoming critical in the global effort to reduce the use of fossil fuels.
  • Is Nuclear Power Renewable Energy? Renewable energy is obtained from the naturally-occurring elements, implying that it can be easily accessed, cheaply generated, and conveniently supplied to consumers.
  • Solar Energy in China and Its Influence on Climate Change The influence of solar energy on climate change has impacted production, the advancement of solar energy has impacted climate change in the geography of China.
  • Full Renewable Energy Plan Feasibility: 2030-2040 The paper argues that green energy in its current state will struggle to meet the humanity’s demand and the development of better hybrid, integrated grids is required.
  • Energy Efficiency and Renewable Energy Utilization This paper aims at expounding the effectiveness of renewable energy and the utilization of energy efficiency in regard to climate change.
  • Utilization of Solar Energy for Thermal Desalination The following research is set to outline the prospects of utilization of solar energy for thermal desalination technologies.
  • A World With 100% Renewable Energy Large corporations, countries, and separate states have already transferred or put a plan into action to transfer to 100% renewable energy in a couple of decades.
  • Renewable Energy: Why Do We Need It? Renewable sources of energy such as solar, wind, or hydropower can bring multiple environmental benefits and tackle the problems of climate change and pollution in several ways.
  • Renewable Energy Programs in Five Countries Energy production is vital for the drive of the economy. The world at large should diversify the sources to reduce the over-usage of fossil energy that is a threat of depletion.
  • Wind Works Ltd.: Wind Energy Development Methodology Wind Works Ltd, as the company, which provides the alternative energy sources, and makes them available for the wide range of the population needs to resort to a particular assessment strategies.
  • Solar Power as the Best Source of Energy The concepts of environmental conservation and sustainability have forced many countries and organizations to consider the best strategies or processes for generating electricity.
  • Installing Solar Panels to Reduce Energy Costs The purpose of the proposal is to request permission for research to install solar panels to reduce energy costs, which represent a huge part of the company’s expenses.
  • Renewable Energy Sources for Saudi Arabia This paper will provide background information on the Kingdom of Saudi Arabia, its energy resources, and how it may become more modern and efficient.
  • Sunburst Renewable Energy Corporation: Business Structuring The proposed Sunburst Renewable Energy Corporation will function on a captivating value statement in product strategy and customer relationships as the core instruments of sustainable operations.
  • Renewable Energy: Economic and Health Benefits The US should consider the adoption of renewable sources of energy, because of the high cost of using fossil fuels and expenses related to health problems due to pollution.
  • Renewable Energy Systems Group and Toyota Company The application of the Lean Six Sigma to the key company processes, creates prerequisites for stellar success, as the examples of Toyota and the Renewable Energy Systems Group have shown.
  • Renewable Energy Systems: Australia’s Electricity
  • Accelerating Renewable Energy Electrification and Rural Economic Development With an Innovative Business Model
  • Renewable Energy Systems: Role of Grid Connection
  • Breaking Barriers Towards Investment in Renewable Energy
  • California Dreaming: The Economics of Renewable Energy
  • Marine Renewable Energy Clustering in the Mediterranean Sea: The Case of the PELAGOS Project
  • Differences Between Fossil Fuel and Renewable Energy
  • Addressing the Renewable Energy Financing Gap in Africa to Promote Universal Energy Access: Integrated Renewable Energy Financing in Malawi
  • Causality Between Public Policies and Exports of Renewable Energy Technologies
  • Achieving the Renewable Energy Target for Jamaica
  • Economic Growth and the Transition From Non-renewable to Renewable Energy
  • Between Innovation and Industrial Policy: How Washington Succeeds and Fails at Renewable Energy
  • Increasing Financial Incentive for Renewable Energy in the Third World
  • Does Financial Development Matter for Innovation in Renewable Energy?
  • Financing Rural Renewable Energy: A Comparison Between China and India
  • Alternative Energy for Renewable Energy Sources
  • Low-Carbon Transition: Private Sector Investment in Renewable Energy Projects in Developing Countries
  • Effective Renewable Energy Activities in Bangladesh
  • China’s Renewable Energy Policy: Commitments and Challenges
  • Analyzing the Dynamic Impact of Electricity Futures on Revenue and Risk of Renewable Energy in China
  • Driving Energy: The Enactment and Ambitiousness of State Renewable Energy Policy
  • Carbon Lock-Out: Advancing Renewable Energy Policy in Europe
  • Big Oil vs. Renewable Energy: A Detrimental Conflict With Global Consequences
  • Efficient Feed-In-Tariff Policies for Renewable Energy Technologies
  • Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans
  • Active and Reactive Power Control for Renewable Energy Generation Engineering
  • Mainstreaming New Renewable Energy Technologies
  • Carbon Pricing and Innovation of Renewable Energy
  • Economic Growth, Carbon Dioxide Emissions, Renewable Energy and Globalization
  • Figuring What’s Fair: The Cost of Equity Capital for Renewable Energy in Emerging Markets
  • Distributed Generation: The Definitive Boost for Renewable Energy in Spain
  • Biodiesel From Green Rope and Brown Algae: Future Renewable Energy
  • Electricity Supply Security and the Future Role of Renewable Energy Sources in Brazil
  • Contracting for Biomass: Supply Chain Strategies for Renewable Energy
  • Advanced Education and Training Programs to Support Renewable Energy Investment in Africa
  • Domestic Incentive Measures for Renewable Energy With Possible Trade Implications
  • Affordable and Clean Renewable Energy
  • Catalyzing Investment for Renewable Energy in Developing Countries
  • Better Health, Environment, and Economy With Renewable Energy Sources
  • Afghanistan Renewable Energy Development Issues and Options
  • How Economics Can Change the World With Renewable Energy?
  • Are Green Hopes Too Rosy? Employment and Welfare Impacts of Renewable Energy Promotion
  • Marketing Strategy for Renewable Energy Development in Indonesia Context Today
  • Biomass Residue From Palm Oil Industries is Used as Renewable Energy Fuel in Southeast Asia
  • Assessing Renewable Energy Policies in Palestine
  • Chinese Renewable Energy Technology Exports: The Role of Policy, Innovation, and Markets
  • Business Models for Model Businesses: Lessons From Renewable Energy Entrepreneurs in Developing Countries
  • Economic Impacts From the Promotion of Renewable Energy Technologies: The German Experience
  • Key Factors and Recommendations for Adopting Renewable Energy Systems by Families and Firms
  • Improving the Investment Climate for Renewable Energy
  • How Will Renewable Energy Play a Role in Future Economies?
  • What Are the Advantages of Renewable Energy?
  • What Is the Term for a Renewable Energy Source That Taps Into Heat Produced Deep Below Ground?
  • What Are the Basic Problems of Renewable Energy?
  • Why Is Solar Energy the Best Resource of Renewable Energy?
  • How Can You Make a Potentially Renewable Energy Resource Sustainable?
  • What Is a Possible Cost of Using Renewable Energy Resources?
  • What Is the Contribution of Renewable Energy Sources to Global Energy Consumption?
  • How Do Renewable Energy Resources Work?
  • What Is the Most Viable Renewable Energy Source for the US to Invest In?
  • Why Isn’t Renewable Energy More Widely Used Than It Is?
  • Is Coal Still a Viable Resource Versus Windpower Being Renewable Energy?
  • What Is the Difference Between Non-renewable and Renewable Energy?
  • Why Is It Necessary to Emphasize Renewable Energy Sources in Order to Achieve a Sustainable Society?
  • Is Aluminum an Example of a Renewable Energy Resource?
  • What Fraction of Our Energy Currently Comes From Renewable Energy Sources?
  • What Are the Disadvantages of Renewable Energy?
  • What Would Have to Happen to Completely Abandon Non-renewable Energy Sources?
  • Why Are Renewable Energy Better Than Fossil Fuels?
  • How Could a Renewable Energy Resource Become Non-renewable?
  • How Have Renewable Energy Resources Replaced a Percentage of Fossil Fuels in Different Countries?
  • How Can Water Be Used as a Renewable Energy Resource?
  • What Is the Most Practical Renewable Energy Source?
  • What Steps Are Necessary to Further the Use of Renewable Energy Resources in THE US?
  • Why Is Renewable Energy Use Growing?
  • What Type of Renewable Energy Should Businesses in Your Region Invest In?
  • How Does Renewable Energy Reduce Climate Change?
  • Can the Development of Renewable Energy Sources Lead To Increased International Tensions?
  • How Do Renewable Energy Resources Affect the Environment?
  • Why Have So Many Governments Decided to Subsidize Renewable Energy Initiatives?

Cite this post

  • Chicago (N-B)
  • Chicago (A-D)

StudyCorgi. (2022, October 26). 116 Renewable Energy Essay Topics. https://studycorgi.com/ideas/renewable-energy-essay-topics/

"116 Renewable Energy Essay Topics." StudyCorgi , 26 Oct. 2022, studycorgi.com/ideas/renewable-energy-essay-topics/.

StudyCorgi . (2022) '116 Renewable Energy Essay Topics'. 26 October.

1. StudyCorgi . "116 Renewable Energy Essay Topics." October 26, 2022. https://studycorgi.com/ideas/renewable-energy-essay-topics/.

Bibliography

StudyCorgi . "116 Renewable Energy Essay Topics." October 26, 2022. https://studycorgi.com/ideas/renewable-energy-essay-topics/.

StudyCorgi . 2022. "116 Renewable Energy Essay Topics." October 26, 2022. https://studycorgi.com/ideas/renewable-energy-essay-topics/.

These essay examples and topics on Renewable Energy were carefully selected by the StudyCorgi editorial team. They meet our highest standards in terms of grammar, punctuation, style, and fact accuracy. Please ensure you properly reference the materials if you’re using them to write your assignment.

This essay topic collection was updated on December 28, 2023 .

Banner

  • MJC Library & Learning Center
  • Research Guides

Renewable Energy

Start learning about your topic, create research questions to focus your topic, using and finding books, recommended books, find articles in library databases, find videos on renewable energy, find web resources, cite your sources, key search words.

Use the words below to search for useful information in books and articles .

  • biomass / biofuel
  • geo-thermal energy
  • green energy
  • hydropower / hydroelectricity
  • solar power / solar energy
  • sustainable energy

Background Reading:

It's important to begin your research learning something about your subject; in fact, you won't be able to create a focused, manageable thesis unless you already know something about your topic.

This step is important so that you will:

  • Begin building your core knowledge about your topic
  • Be able to put your topic in context
  • Create research questions that drive your search for information
  • Create a list of search terms that will help you find relevant information
  • Know if the information you’re finding is relevant and useful

If you're working from off campus , you'll need to sign in. Once you click on the name of a database, simply enter your student ID (without the W) and your six-digit birth date.

All of these resources are free for MJC students, faculty, & staff. 

  • CQ Researcher Online This link opens in a new window This is the resource for finding original, comprehensive reporting and analysis to get background information on issues in the news. It provides overviews of topics related to health, social trends, criminal justice, international affairs, education, the environment, technology, and the economy in America.
  • Issues & Controversies This link opens in a new window This is a great database to use when you want to explore different viewpoints on controversial or hot-button issues. It includes reports on more than 800 hot topics in business, politics, government, education, and popular culture. Use the search or browse topics by subject or A to Z.
  • Gale eBooks This link opens in a new window Use this database for preliminary reading as you start your research. You'll learn about your topic by reading authoritative topic overviews on a wide variety of subjects.
  • Gale In Context: Global Issues This link opens in a new window Use this database when you want to explore your topic from a global perspective or to analyze and understand the most important issues of the modern world with a global awareness. You'll find news, global viewpoints, reference materials, country information, primary source documents, videos, statistics, and more.
  • Alternative Energy This 3-volume encyclopedia is available as an eBook. Use the search box to find articles on specific alternative energy topics
  • What is renewable energy?
  • What are the different types of renewable energy?
  • What is the difference between renewable energy and clean energy?
  • What is the history of renewable energy in the United States?
  • What are the advantages of renewable energy?
  • What are the disadvantages of renewable energy?
  • What are the economic arguments for and against renewable energy?
  • What are the political arguments for and against renewable energy?
  • How should research into renewable energy be funded?
  • Should the U.S. government provide subsidies or tax breaks to renewable energy companies?
  • Based on what I have learned from my research, what do I think about the issue of renewable energy?

Why Use Books:

Use books to read broad overviews and detailed discussions of your topic. You can also use books to find  primary sources , which are often published together in collections.  

Where Do I Find Books?

You'll use the library catalog to search for books, ebooks, articles, and more.  

What if MJC Doesn't Have What I Need?

If you need materials (books, articles, recordings, videos, etc.) that you cannot find in the library catalog , use our  interlibrary loan service .

Cover Art

All of these resources are free for MJC students, faculty, & staff.

If you're working from off campus , you'll need to sign in. Once you click on the name of a database, simply enter your student ID (without the W) and your six-digit birth date.

  • GreenFILE This link opens in a new window Well-researched information covering all aspects of human impact to the environment. This collection of scholarly, government and general-interest titles includes content on global warming, green building, pollution, sustainable agriculture, renewable energy, recycling, and more.
  • Today's Science This link opens in a new window Covers a full range of current scientific developments.
  • Gale Databases This link opens in a new window Search over 35 databases simultaneously that cover almost any topic you need to research at MJC. Gale databases include articles previously published in journals, magazines, newspapers, books, and other media outlets.
  • Access World News This link opens in a new window Search the full-text of editions of record for local, regional, and national U.S. newspapers as well as full-text content of key international sources. This is your source for The Modesto Bee from January 1989 to the present. Also includes in-depth special reports and hot topics from around the country. To access The Modesto Bee , limit your search to that publication. more... less... Watch this short video to learn how to find The Modesto Bee .

Find videos and documentaries about renewable energy in Films on Demand.  These film resources are free for MJC students, faculty, & staff.  If you're working from off campus, you'll need to sign in , using your student ID (without the W) and your six-digit birth date.

Type renewable energy  in the search box to access videos on this topic.

  • Films on Demand This link opens in a new window Use Films on Demand when you want educational video content. This streaming video collection contains unlimited, 24/7 access to thousands of videos. Teachers can embed videos in Canvas. In addition, there are mobile options for iPad and Android. more... less... Instructions for embedding Films on Demand into Canvas .
  • Kanopy This link opens in a new window Kanopy is a video streaming database with a broad selection of over 26,000 documentaries, feature films and training videos from thousands of producers. Instructions for embedding Kanopy into Canvas .

Use Google Scholar to find scholarly literature on the Web:

Google Scholar Search

Browse Featured Web sites:

  • Modesto Irrigation District Electrical power and water utility
  • MIT Energy Initiative Use the search box or click on the Research and Studies tab to find information on energy from the Massachusetts Institute of Technology.
  • United States Department of Energy The U.S. Department of Energy's site has information on all aspects of energy use and production. Use the search box at the top of the page to access specific information.

Your instructor should tell you which citation style they want you to use. Click on the appropriate link below to learn how to format your paper and cite your sources according to a particular style.

  • Chicago Style
  • ASA & Other Citation Styles
  • Last Updated: Apr 18, 2024 12:03 PM
  • URL: https://libguides.mjc.edu/renewable_energy

Except where otherwise noted, this work is licensed under CC BY-SA 4.0 and CC BY-NC 4.0 Licenses .

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Reaching Ambitious Carbon Goals with Cost-Efficient Energy Storage

Sponsor content from REPT BATTERO.

research topics on alternative energy sources

The consensus on climate change—and on organizations’ responsibility for fighting it—has long been clear.

Enterprises’ ongoing efforts to alleviate the crisis through strategies including low-carbon manufacturing, upgrading supply and distribution chains, and strengthening the circular economy all support social responsibility as well as long-term business value.

While some organizations succeed in aligning sustainability goals with their mission, engaging employees and stakeholders, and measuring progress, many struggle to implement their ambitious strategies for reducing carbon emissions, which may require large investments in innovative technologies and infrastructure, changing processes, and staying in regulatory compliance.

To economically practice low-carbon design and manufacturing, circular economy life cycles, and sustainable partnerships across their supply and value chains, some enterprises are making strides by pairing with energy partners that introduce elevated sustainability expertise, strategies, and resources globally, regionally, and locally.

Better with Battery Power

One vital component of a carbon-reduction plan is use of lithium-ion energy storage batteries.

Renewable energy sources generate lower carbon emissions than traditional sources. And lithium-ion batteries help promote the use of renewable energy by increasing the efficiency of renewable energy, improving air quality, and promoting more widespread adoption of carbon-neutral policies.

Lithium-ion batteries can help organizations stabilize grids, reduce their reliance on fossil fuels for peak power needs, and enable wider use of electric vehicles. They can also help organizations that rely on intermittent renewable energy sources such as solar and wind power, helping them use such energy more effectively and minimize emissions from power generation and distribution.

And they offer sustainable mobile energy storage for electric vehicles, drones, and ships, reduce carbon dioxide emissions and air pollutants, and help reduce fuel consumption and air pollution from drones.

By storing power during peak hours and releasing it during peak demand, energy storage batteries can help companies balance the load on the power grid and provide reliable backup power with intelligent scheduling for real-time need, as well as provide critical backup energy in the event of a grid emergency.

As the technology continues to evolve and costs continue to fall, batteries’ adoption and application may become more widespread, boosting their role in fighting climate change.

Battery producer REPT Battero extends the accessibility of these products to more organizations. It offers a wide range of new energy applications, including standardized and customizable batteries for electric vehicles and energy storage systems, to fit specific operational needs and emissions targets. And its smart software control and forecasting tools help customers predict and manage their optimal storage capacity and discharge cycles, saving energy consumption and costs.

Regional and Global Expertise

Enterprises can boost their sustainability efforts by working with energy partners that bring both expertise and resources at the global and local levels.

Being part of a larger organization, Tsingshan Holding Group, amplifies REPT Battero’s research, development, and production of lithium-ion cells for vehicles and energy storage, giving enterprise customers access to powerful technology and engineering to improve their energy strategy, resource use, emissions, and costs.

REPT Battero’s Wending battery has higher energy density and efficiency than traditional cells do, holding 15% more energy, generating 10% less heat, and occupying a 15% smaller footprint.

Tsingshan’s investments in Indonesia’s nickel industry, stainless steel production, and other manufacturers help give its customers in the region a reliable supply of raw materials, more cost-effective production, and more opportunity to develop efficiency innovations. And with its large regional presence, its sustainable development practices help it boost energy conservation, carbon neutrality, and environmental protection.

In Indonesia, REPT Battero’s energy storage system has reduced customers’ power waste by 40%, providing the necessary amount of energy during peak and off-peak hours. Further, the company has upgraded its truck transportation of its batteries to an environmentally friendly monorail system that lowers its own carbon emissions.

Working with a global energy partner is particularly important for energy-dependent organizations with a global presence. Factors including geography, politics, and regulations for environmental and social governance and recycling encourage companies in some regions to emphasize sustainability innovations and others to focus on current market competition.

Accommodating such differences is critical for an organization that needs to scale its sustainability policies regionally or globally. Partnership with a large battery expert can be invaluable to advancing efforts to reduce carbon consumption.

A Battery Built for the Future

The health and well-being of the planet are every organization’s responsibility, both to the communities it serves and to the stakeholders in its business.

Partnering with a lithium-ion battery provider with an expansive reach and innovative spirit can help an organization boost its circularity and sustainability.

Organizations working with REPT Battero team up with a partner that prioritizes research for maximizing energy density and minimizing material usage, designing batteries for recyclability, collaborating with recyclers, and encouraging responsible disposal and circularity for a smarter, safer, more sustainable world.

Learn more about REPT Battero ’s partnership on sustainability and its energy-efficient Wending lithium-ion battery.

Alternative Energy/Paper

  • 1.1 Introduction
  • 1.2.1 a. Wind technologies
  • 1.2.2 b. Solar photovoltaic (PV) technology
  • 1.2.3 c. Concentrating Solar Power (CSP) Technology
  • 1.2.4 d. Tidal/wave technologies
  • 1.2.5 e. The Leading Companies in Wind, Solar, Tidal and Wave
  • 1.2.6 f. The Maturity of Solar, Wind and Tidal/Wave Technologies
  • 1.3 The Contributions of Software to Innovation in Alternative Energy Technologies
  • 1.4 A Rapidly Growing Market
  • 1.5.1 The Market in the United States
  • 1.5.2.1 Renewable Energy Policies and Technology Innovation
  • 1.5.2.2 Government and Non-Profit Organizations and Their Roles in the US Alternative Energy Market
  • 1.5.2.3.1 a. Public R&D Funding
  • 1.5.2.3.2 b. Private R&D Funding
  • 1.5.2.4 The Role of Government in providing information for technology development and diffusion
  • 1.5.2.5 End-user initiatives
  • 1.6.1 China’s Market Share
  • 1.7 The Sino - American Energy Geopolitical Relationship
  • 1.8.1.1 Distributed Innovation in Alternative Energy Technology: Denmark's offshore wind industry
  • 1.8.2 Japan
  • 1.9.1 IP and Alternative Energy Technologies
  • 1.9.2.1.1 Investment
  • 1.9.2.1.2 Human Resource
  • 1.9.2.2.1 Bibliometric Mesures
  • 1.9.2.2.2 International Trade and Competition
  • 1.9.2.2.3 Intellectual Property and Alternative Energy
  • 1.9.2.2.4 a.The growth of patents
  • 1.9.2.2.5 b. Relation between oil prices and growth of patents
  • 1.9.2.2.6 c.Relation between regulation/policy and growth of patents
  • 1.9.2.2.7 d. Patent Trends by technology
  • 1.9.2.3.1 The correlation between investment and patents in the USA
  • 1.9.2.3.2 The case of wind in the USA
  • 1.9.2.3.3 The Case of PV Solar in the USA
  • 1.9.2.4 The growth of patents in China
  • 1.9.3.1 I.D.E.A.
  • 1.9.3.2 The Role of Business Associations in Alternative Energy
  • 1.9.3.3 International Renewable Energy Agency (IRENA)
  • 1.9.3.4 International Energy Agency
  • 1.9.3.5 Cooperative Research and Development Agreement (CRADA)
  • 1.9.3.6 International Climate Change Information Programme (ICCIP)
  • 1.9.4 Technology Collaborations and the role of Intellectual Property
  • 1.9.5 Evidence from the Literature
  • 1.9.6 Compulsory Licensing
  • 1.10 Topics of Future Research
  • 2 Notes for further development into paper sections
  • 3 Footnotes
  • 4 Navigation

The Political Economy of Intellectual Property in the Emerging Alternative Energy Market

UNDER DEVELOPMENT - THE STRUCTURE MAY CHANGE

Introduction

(bring some info from: http://www.renewableenergyfocus.com/view/7166/global-clean-energy-investment-us145bn/ )

The alternative energy field represents a unique case for studying the trends regarding the political economy of intellectual property (IP) in an emerging market. Some of the technology can be considered mature; however many are the barriers - technical, socio-cultural, political or related to funding - that justify a young market in many countries. These issues are at the center of our research under the Industrial Cooperation Project at the Berkman Center for Internet and Society at Harvard University (ICP) . This research is part of a broader project being led by Yochai Benkler, Professor of Entrpreneurial Legal Studies at Harvard Law School. Within the ICP, we are seeking to understand the approaches to innovation in the alternative energy [1] sector looking specifically at wind, solar and tidal/wave technologies. The intention is to map the degree to which open and commons-based practices are being used compared to proprietary approaches.

In this sense, our research is guided by the definition of the “commons” molded by Prof. Benkler, who asserts: commons are a particular type of institutional arrangement for governing the use and disposition of resources. Their salient characteristic, which defines them in contradistinction to property, is that no single person has exclusive control over the use and disposition of any particular resource. Instead, resources governed by commons may be used or disposed of by anyone among some (more or less well defined) number of persons, under rules that may range from ‘anything goes’ to quite crisply articulated formal rules that are effectively enforced. Commons can be divided into four types based on two parameters: The first parameter is whether they are open to anyone or only to a defined group. The second parameter is whether a commons system is regulated or unregulated. Practically all well studied limited common property regimes are regulated by more or less elaborate rules - some formal, some social-conventional - governing the use of the resources. Open commons, on the other hand, vary widely. (Benkler, 2003, 6)

We began our research with the intention of limiting our scope to the US only, but given the global scope of the alternative energy market, and the fact that almost all the market leading companies have grown in foreign countries where the markets for this technology have been biggest and which can be considered historical centers of technology innovation, we chose to include Germany, Denmark, and Spain. Among the countries considered emerging economies, we decided to look at China for the geopolitical implications relating to its relationship with the United States. We did not look into other developing countries, however, these will be briefly addressed under the section related to international negotiations around climate change. Under this context, developing countries will appear as actors asking for technology transfer and technology cooperation models, under the justifications of the need for energy to fuel industrial growth and universal access to electricity.

The European countries represent three of the biggest markets for wind and solar technology, and are home to some of the biggest companies producing the technology. [2] China is the newest and biggest market entrant into the solar market, and could become the biggest producer of this technology over the next few years. [3]

We also decided to broaden the scope of the research by exploring the development of governmental policies for alternative energy technology development and innovation as they relate to the global debates about appropriate governmental responses to Climate Change.

Thus, our goal is to follow the alternative energy market and identify the levels of openness and closedness in the areas where innovations are happening, dialoguing with a bibliography that covers the political economy of intellectual property and how intellectual property impacts innovation. We will also be looking for the presence of commons-based arrangements of knowledge production within the alternative energy innovation process to determine if they appear, and if so, where and how they appear.

We chose wind, solar and tidal/wave technologies with the expectation that we would find variations among their approaches to openness and closedness, since the technologies represent different levels of maturity and patenting activity. The maturity can be measured both by the stage of development of the technology and the stage of development of the market. For instance, wind is considered a mature technology because it is fairly well understood, and the cost of generating electricity with wind turbines is closer to the cost of conventional sources of fossil fuel generated electricity (see Figure 10) - though it is still more expensive. [4] Solar photovoltaic (PV) technology is less mature and can be quite expensive, therefore the research and innovation around solar PV technologies is sure to play a critical role in bringing its costs down and generating more efficient technology. [5] Tidal/wave technology is relatively immature compared to wind and solar, and is mostly in the demonstration phase at this time. Only a few small projects around the world - such as a tidal barrage, which was constructed at La Rance in Brittany, France in the 1960s (Bryden 2004, 139) - are generating consumer electricity. We go into more detail on the maturity of these technologies in Section 1.2.5.e, The Maturity of Solar, Wind and Tidal/Wave Technologies.

These technologies are a subset of the many alternative energy technologies that exist, and they are all representative of energy supply technologies, meaning they are focused on bringing energy to a point of final use. [6] There is another set of technologies called energy end-use technologies that are part of our discussions of the cleantech industry as a whole. These technologies are concerned with the most efficient use of the supplied energy. Examples are home appliances, automobiles, and light bulbs.

Within our three focus technologies - wind, solar and tidal/wave - there are a variety of subset technologies. Figure 1 provides descriptions. These energy supply technologies should not be confused with their close relatives listed below, which are not part of our research:

  • Solar thermal - uses the suns energy to heat water for home and commercial use.
  • Solar heating and cooling - uses building design to take advantage of the sun’s direct heat and energy to efficiently heat and cool buildings at different times of the day and during different seasons.
  • Wind or tidal/wave technologies used for mechanical work rather than for conversion to electricity.

We excluded these technologies because they are less common than the energy supply technologies we are researching, and because energy supply technologies can have a bigger impact on reducing global carbon emissions by reducing the use of coal for electricity generation. Reducing the use of coal can facilitate the shift to a lower emissions electric plug-in vehicle market thereby reducing the world’s dependence on both coal and oil the biggest global climate change contributors - as shown in Figure 2.

Tech Descriptions.png

Alternative Energy Technology History

It is important to note that the term "alternative" energy sources is a contemporary moniker that stems from the fact that these energy technologies are alternatives to the mainstream energy sources such as coal, natural gas, oil, and nuclear fission. The 1973 oil crisis spurred the first global push for these alternative energy sources as high petroleum prices threatened the world's (and more specifically the developed world and the United States in particular) access to cheap and plentiful sources of energy. In October 1973, the Organization of Arab Petroleum Exporting Countries (OAPEC) announced an oil embargo that would limit or stop oil exports to the US and any other country that supported Israel during the Yom Kippur war. [3] The result was a steep increase in the price of oil, and oil shortages in the affected countries. Soon after the embargo began the 1973-74 stock market crash followed, which had debatable links to the embargo, but nonetheless influenced governments in their attempts to address their energy supply security concerns. The affected countries responded to the oil crisis by exploring policy and investment strategies to reduce their dependence on the Middle East for their oil, and alternative energy technologies secured a prominent role in these reactions. In the United States, the presidency of democrat Jimmy Carter marked a period of significant investment in alternative energy sources as well as the introduction of government policies that supported the development and diffusion of these technologies.

While the origins of alternative energy supply technologies are all based in the 1800's, the practice of using the wind, sun, and tides/waves as sources of energy for work, are much older. Wind was used to power sailboats up to 5,500 years ago, and there is evidence of windmills for mechanical work in India 2,500 years ago. (Sorenson 1991, 8) Solar energy is the basis of most energy on earth, including the energy in plants from photosynthesis, solar thermal heating, the fossil remains of organic material in oil and coal, and wind, which is created when air, heated by the sun, rises and cold air from another area moves into that space. (Carlin 2004, 348) Using moving water for power can be traced back to 250 BC. (Sorenson 1991, 8)

a. Wind technologies

Wind turbines for electrical generation were first developed simultaneously in the US and Scotland around 1887. Charles Brush was an American inventor who developed an electric arc light system in his home laboratory in Cleveland, Ohio. In order to test the lights he needed his own dedicated source of electricity, so he built a 60 foot wind turbine with an electric generator in it and wired it to a collection of batteries to store the energy. This wind turbine successfully powered his lab for 15 years. While Brush filed many patents for his lighting systems, he never patented his wind turbine. (Righter 1996, 52) The true reason for this is unknown, but some historians have theorized that Brush didn't see a market for wind turbines in Cleveland where the wind was inconsistent on the whole, or perhaps, as the article in Scientific American about his personal wind turbine stated, the capital cost and operations and maintenance costs were too high to make the technology marketable. (Righter 1996, 53) While Brush is credited with the first electrical wind turbine, a Danish inventor named Poul La Cour was concurrently inventing commercial scale turbines. By 1906 there were 40 windmills generating electricity in Denmark, which marked the beginning of the country’s relationship, and innovation edge, in wind technology. (Pasqueletti 2004, 422-423)

Soon afterward, both Germany and the UK started to experiment with wind electricity and install their own turbines. Meanwhile in the US, some small companies were marketing small turbines for electrical generation on rural farms, but the development and adoption of the technology did not match Europe. By the 1930’s the US had a burgeoning market for small rural off-grid wind turbines, but that changed in 1936. The Rural Electrification Act was passed that year, which was tasked with connecting rural areas to the electrical grid. It was so successful that every US electric wind turbine manufacturer had closed its doors by 1957. In Denmark during this same period, wind power was spreading throughout the rural areas providing off-grid electricity. (Pasqueletti 2004, 423)

In 1950, a Danish engineer named Johannes Juul began testing a prototype wind turbine for a Danish utility. The design used some technological elements from the earlier designs of F.L. Smidth, the founder of a successful Danish wind turbine manufacturing company, which had integrated aerodynamics into La Cour’s designs. Juul ultimately built a three-bladed wind turbine that was installed at Gedser, Denmark in 1956. It was in regular service from 1959 - 1967, and became the model for the wind turbines manufactured in Denmark in the late 1970’s after the oil crisis. The design is now referred to as the "Danish concept," which is defined as "a horizontal axis, three-bladed rotor, an upwind orientation, and an active yaw system to keep the rotor oriented into the wind." (Steele 2009, 156) A wind rush began in California in the 1980s, which was also in part due to reactions to the oil crisis, and Denmark was poised to dominate the market in the US. Denmark shipped thousands of wind turbines to California between 1980 and 1985, and after the market in California crashed, Denmark started selling thousands more to Germany. All of these turbines were technologically derived from Juul’s "Danish concept" turbine. (Pasqueletti 2004, 426; Steele 2009, 156) It has been observed that during these early days of wind development in Denmark, the companies did not follow formal R&D activities, but instead relied on practical experimentation and hands-on work to develop core competencies. Over time, traditional R&D functions emerged. (Andersen & Drejer 2005, 3)

In the US during the 1970s, NASA funded research at the Lewis Research Center in Cleveland, Ohio, to refine the design and function of electrical wind turbines. [4] Soon after the oil crisis, the US government started to fund the Federal Wind Energy Program, and research and development (R&D) funds were devoted to the cause. Research was also conducted at Sandia National Laboratories in California. In the 1980’s the government drastically reduced their R&D funding for wind and other alternative energy technologies (for reason that are explained later in this paper) and shifted the focus of alternative energy developments over to tax credits. (Weiss & Bonvillian 2009, 127-129; Lewis & Wiser 2007)

The wind technology market shows a high degree of consolidation with a small group of companies controlling the majority of the market for large commercial scale wind turbines (see Figure 7 later in the paper). Patent battles have been common, with GE, the largest US manufacturer of wind technology, asserting their patents aggressively in an attempt to keep other companies out of the US market. To date they successfully kept Germany's Enercon out of the market based on a patent infringement case for their variable speed wind turbine technology. They are currently suing Mitsubishi for patent infringement of the same variable speed turbine technology. (de Vries 2009, 1) In a recent report on patents in alternative energy technologies, the authors pointed out that the top four wind turbine manufacturers own 13% of the technology patents and control 57% of the market for wind turbines. (Lee et. al. 2009, viii) This is by far the most consolidated market within the various alternative energy technologies.

The market for wind turbine components is quite competitive. Various original equipment manufacturers (OEM's) may produce wind turbine blades, gearboxes, generators, bearings, towers, and electronic control equipment. This leads to a complicated interconnected market with lots of potential for new innovation in these various parts. Typically, the OEM market is limited to medium-scale turbines of less that 1 MW in peak capacity. (Lako 2008, 35)

Modern wind turbines are manufactured with three-bladed rotors with diameters of 70 to 80 meters mounted on top of towers with 60 to 80 meter heights. A typical turbine in the United States in 2008 produces more than 1.5 MW of electrical power. The power output of the turbine is controlled by rotating the rotor blades to change the angle of the wind hitting the blade. This is referred to as “controlling the blade pitch.” The turbine is pointed into the wind by rotating the nacelle about the tower, which is called “yaw control.” (Bosik 2008, 50)

There are four major component assemblies in modern wind turbines: the rotor, nacelle, tower, and balance of system. The rotor consists of blades used to harness wind energy and convert it into mechanical work, and a hub that supports the blades. In addition, most wind turbines have a pitch mechanism to rotate and change the angle of the blades based on the wind speed as described above. The nacelle is the structure that contains, encloses, and supports the components that convert mechanical work into electricity. These components include generators, gearboxes, and control electronics. The tower supports the rotor and nacelle, and raises them to a height where higher wind speeds maximize energy extraction. Additional balance-of-station components at ground height are required to gather, control, and transmit power to the grid interconnection. (Bosik 2008, 50)

There is no single component that dominates turbine cost, though, the rotor is usually the highest cost item on the turbine and must also be the most reliable. Towers are normally the heaviest component and weight reductions would benefit the price and performance, but lightening the rotor or tower-top weight has a multiplier effect throughout the system including the foundation. The nacelle refers to all of the wind turbine structures that house its generating components, and includes the following: measuring controlling, power transmission, circuits, fans/blowers, iron foundries, all other plastics, motors and generators. (Bosik 2008, 50)

  • An outer frame protecting machinery from the environment
  • An internal frame supporting and distributing weight of the machinery
  • A power train to transmit energy and to increase speeds of the shaft
  • A generator to convert mechanical energy into electricity
  • A yaw drive to rotate the nacelle on the tower
  • Electronics to control and monitor operation

(Bosik 2008, 50)

The top ten companies in the wind industry account for 85% of the global turbine market [5] The market leader is Vestas (Denmark) with 19.8% of the market but GE Energy (USA) is growing quickly and has nearly caught up with 18.6% of the market. [6] The biggest change to this distribution is likely to come from Chinese manufacturers who are expanding and bringing down the cost of manufacturing turbines. [7] Emerging market players like China and India are changing the make-up of turbine manufacturing since, as of 2005, eight of the top ten wind turbine manufacturers were in Europe and they represented 72% of the global market, or a value of US$23.3 billion. (Gallagher 2009, 93)

b. Solar photovoltaic (PV) technology

The solar photovoltaic (PV) effect was discovered in 1839 by Alexandre-Edmond Becquerel. He observed that when selenium was exposed to sun a small electrical current was created. In 1888 Edward Weston received the first U.S. patent for the solar cell, and in 1901 Nicola Tesla received a US patent for a "method of utilizing, and apparatus for the utilization of, radiant energy". [8] Solar PV panels remained undeveloped until 1953 when the first commercial panels were manufactured at Bell Laboratories after one of the lab’s scientists discovered that silicon could be used in place of selenium as a more efficient material for creating electricity. The US government took a keen interest in the technology for use in the space program, and funded PV developments for that purpose. (Sorenson 1991, 9; Perlin 2004, 616-617) Throughout the 1960s solar research was funded by governments and in research labs, mostly for applications in the space industry for satellites and space-based vehicles. When the oil crisis of the 1970s occurred the US government founded the Solar Energies Research Institute - later renamed the National Renewable Energy Laboratory (NREL) - to develop new, lower cost solar energy technologies. US President Jimmy Carter further supported the R&D efforts of the solar industry by allocating $3 billion for solar energy research, and installing a test solar water heater in the White House as well as a solar PV array on the roof. Image 1 below shows the solar installation on the White House roof during the Carter Administration. ( Is there any information on the IP policy in force by then? Or all the results were patented? If patented do we have numbers or examples?) These developments came to a halt in the 1980’s when President Ronald Reagan took office and drastically cut the R&D funding for solar energy, while also removing the solar PV array from the roof of the White House. (Bradford 2006, 98)

The US represented 80% of the global solar energy market at the time, and soon, the other industrialized countries followed the United States’ lead. (Bradford 2006, 98) Throughout the 1980’s and 1990’s solar research was limited to research universities, inventors and state energy agencies, and the assets and patents of the original solar energy technology companies were purchased by large oil companies like Mobil, Shell, and BP. (Bradford 2006, 98)

CarterSolar.jpg

Research conducted at the Belfer Center for Science and International Affairs at Harvard’s Kennedy School of Government [7] identified the source of funding for 14 of 20 key innovations in PV technology developed over the past three decades (1970s, 1980s, 1990s). It was discovered that only one of the 14 was fully funded by the private sector, and 9 of the remaining 13 were financed with public funding, while the other 3 were developed in public-private partnerships. The researchers assumed that the innovations for which they could not identify funding sources were developed in the private sector. (Norbeg-Bohm 2000, 134)

Over the last twenty years, the market for solar technology has grown in foreign countries while still moving slowly in the US. Other countries - especially Japan and Germany - have taken the lead in technology development and installation of solar technology. Solar is still an expensive technology with a small but growing global market share. Countries such as Spain and Germany have used generous renewable energy subsidy programs - referred to in this paper as demand-pull policies - to rapidly install massive amounts of solar PV technology. China, while a leading producer of solar PV technology (as shown in Figure 3), has only recently begun to implement solar PV subsidy programs that will help to encourage the adoption of the technology on a larger scale. (Gipe 2009, 1) Figure 3 shows a comparison of the countries with the top production share and the countries with the most installed PV capacity, while Figure 4 shows the percentage of PV cell and module production in IEA countries (excludes China).

Solar PV Comparison.png

The researchers at Harvard's Belfer Center came to the following conclusions on solar PV innovation in the US:

"In sum, the strengths of the U.S. Solar R&D program have been: (1) a parallel path strategy, (2) collaborations between industry, universities, and national labs including public-private partnerships with cost sharing, (3) attention to the full range of RD&D needed, from basic scientific work through to manufacturing, including attention to all components, materials, cells, and modules. Critiques of the solar PV R&D program include: (1) a lack of consistency in funding that created fits and starts in technological progress, and (2) concern that manufacturing R&D was not begun soon enough. Overall, the trend has been to increase attention to manufacturing issues and to increase public-private partnerships, including growth in the level of private sector cost sharing." (Norberg-Bohm, 2000, 135)

There are a few different types of Solar PV technologies, which vary in cost and efficiency. [8] The most commonly available PV panels on the market are crystalline silicon cells. Mono-crystalline cells make up 33% of the global market and can achieve up to 18% efficiency, while polycrystalline cells make up 56% of the global market and, while cheaper than mono-crystalline cells, they can achieve up to only 15% efficiency. (Lako 2008, 31) Future price drops are expected due to economies of scale, reductions in the price of silicon, R&D investment in the technology, and learning through project installation experience.

There are also thin-film solar PV cells which cost less than the cells mentioned above, but have lower efficiencies (8% - 12%), making the return on investment calculations difficult. Thin film silicon cells represented 8.8% of the global market in 2003, while thin-film copper iridium di-selenide cells held 0.7%. (Lako 2008, 31) R&D investments in experimental multi-layer cells and low-cost polymer based cells, as well as cells made with quantum dots and nano-structures, hold promises for more efficient and cheaper future cells, but will take time to reach market deployment. (Lako 2008, 31) Nanotechnologies are increasingly gaining ground in solar cell research, for instance, to produce dye-sensitized solar cells or multi-junction thin-film solar cells. (WIPO 2009, 51)

Electricity generated from PV panels is on average about $0.30 per kWh, much more expensive than the average retail price of electricity of ~$0.10 per kWh. [10] (Kammen 2004, 401)

Annual global Solar PV growth has been in the 40% - 60% range since 2000 and resulted in 3,800MW of PV capacity by 2007. (Cappello 2008, 6) Global Solar PV production almost doubled in 2008 rising to 7.3 GW an 80% increase over 2007. [11] After years of market domination in Japan, China is now the leading producer of solar cells, with an annual production of about 2.4 GW. China could secure about 32% of world-wide production capacity by 2012 if this trend continues. [12] Behind China's production prowess are Europe with 1.9 GW, Japan with 1.2 GW and Taiwan with 0.8 GW. [13] European PV production has grown on average by 50% per annum since 1999 and its market share has increased to 26% in 2008. [14] The US is the leader in thin film PV technology , which represents only 7% of global production (170MW). (Capello 2008, 6)

In 2009 the global economic crisis exacted a heavy toll on solar companies due to the high cost of the technology, and therefore the high cost of the projects. [15] The credit crunch slowed project developers acquisitions of loan money and caused a precipitous drop in tax equity investing [9]

c. Concentrating Solar Power (CSP) Technology

Solar PV’s lesser known and less common relative is Concentrating Solar Power (CSP). Solar thermal furnaces that generated sufficient heat to produce steam - the basis of a CSP plant - were first developed in the eighteenth century and used in small scale applications in the US and France during the 1860’s. (Sorenson 1991, 8) Today, the US is seeing renewed interest in CSP plants, while the current supply of CSP generated electricity comes from a number of 80MW (megawatt) plants in Southern California, which were built in the late 1980’s. (Luzzi & Lovegrove 2004,1)

Nevada, a state with very strong renewable energy support policies, [10] initiated the first long term power purchase agreement of concentrating solar electricity signed between two public utility companies and the US solar developer Solargenix (which is now owned by a Spanish solar company named Acciona). The developer built the second largest CSP plant in the world with 75 MWe (Megawatts of electricity) trough plant that was completed in 2007. It uses 760 parabolic troughs and has over 300,000 m2 (square meters) of mirrors and limited energy storage to guarantee the capacity. (Philibert, 2004, 14) ; [16]

In June 2004, the Governors of New Mexico, Arizona, Nevada, California, Utah, Texas and Colorado voted a resolution calling for the development of 30 GW of clean energy in the West by 2015. Of this alternative energy development, 1 GW would be of solar concentrating power technologies. The US Department of Energy decided to back this plan and to contribute to its financing in June of 2004. (Philibert, 2004, 14; Luzzi & Lovegrove, 2004, 669) CSP is a mature and very well understood technology with growing adoption in the US.

New innovations in CSP technology are enabling greater growth and cheaper power production. Much of the innovation in CSP technology has taken place in the heat transport material, of which a number currently exist: (Philibert, 2004, 14; Luzzi & Lovegrove, 2004, 669)

  • Synthetic heat transfer oil - Oil is effective, but suffers from decomposition due to high heat. Oil also creates an environmental and fire hazard if it leaks.
  • Air - Air is reportedly quite effective.
  • Molten Salt - very effective, especially for heat storage overnight in insulated tanks (this can allow electricity generation when the sun is down). The downside is that the salt can be corrosive and reacts with air or water.
  • Chemical - Thermochemical cycles with fluid reactants can provide very effective heat transport and storage for use when the sun is down.

CSP plants are very effective and quite cheap in comparison to PV, while still a bit more expensive than conventional gas and coal electricity plants. At 80MW, the plants in California are generating large quantities of electricity at a levelized electricity cost of $0.12 - $0.16 per kWh, a fairly competitive cost compared to a US "Average Retail Price of Electricity to Ultimate Customers" of ~$0.10 per kWh. [17]

d. Tidal/wave technologies

Tidal and wave technology are a subgroup of Ocean Technologies. [11] There are many different established tidal and wave technology designs in use or in various phases of testing. It is believed that the world could cover a significant portion of its electricity demand from tidal and wave energy sources. The potential global energy contribution to the electricity market from wave technology is estimated to be approximately 2000 TWh/year, which is equal to 10% of world electricity consumption. The global tidal range energy potential is estimated at approximately 3000 GW, with around 1000 GW (~3800 TWh/year) available in shallow waters. Tidal energy conversion technologies are predicted to supply up to 48 TWh/year from sites around Europe. While other large tidal current resources are yet to be explored worldwide. While research and development on ocean energy exploitation is being conducted in several countries around the world, the technologies for energy conversion have not yet progressed to the point of large scale electricity generation. This is partially due to the rough and unpredictable ocean conditions where these technologies have to operate. Meanwhile though, advances in ocean engineering have improved the technology for ocean energy conversion. Advances in some areas of the technology could achieve the goal of commercial power production by or even before 2010. (Lemonis 2004, 1)

Tidal energy generators are mainly divided into two categories: underwater turbines and hydrokinetic generators. Underwater turbines are simply freestanding turbines/propellors that can be grounded to the bottom of the ocean or the bottom of a tidal inlet. Hydrokinetic generators are more similar to existing hydroelectric power generation systems that are used in rivers throughout the world. However, rather than using a dam system or tidal barrage, which would create a structural barrier across a tidal inlet, hydrokinetic generators can be freestanding like the underwater turbines, and thereby are proven to have far fewer deleterious environmental impacts on marine ecosystems. (Perez, 2009, 2) The first bona-fide tidal energy plant was constructed in France, at La Rance in Brittany between 1961 and 1967. It consisted of a barrage across a tidal estuary that utilized the rise and fall in sea level induced by the tides to generate electricity from hydro turbines. (Bryden 2004, 142)

Wave power generators can be divided into four main technologies: Point absorbers, attenuators, terminator devices and overtopping devices. The most ideal conditions for wave power plants are in the Pacific Northwest. To date several international and domestic companies have filed applications with the Federal Energy Regulation Commission (FERC) for test projects off the coasts of California, Oregon and Washington. (Perez 2009, 3)

Internationally, wave power generators have received strong government support in Europe and Australia. Portugal is home to one of the first grid-connected, wave-power conversion farms, which began operation in September 2008. The technology used is an attenuator generator, which resembles linked sausages that float on top of the water and generate electricity by harnessing the power in the oscillation of the waves. (Perez 2009, 3) The same technology is being considered for test sites in Scotland, Hawaii, Oregon, California and Maine. A company called Energetech has been testing a full-scale, 500kW terminator device, which is “an oscillating water column (OWC) used in onshore or near-shore structures,” at Port Kembla, Australia and is developing another OWC project for Rhode Island. (Perez 2009, 4) In Wales, an overtopping device called the Wave Dragon is being tested for full-scale deployment. The overtopping device works by channeling waves into a reservoir structure that sits higher than the surrounding ocean; the water in the reservoir is released through turbines that generate electricity. (Perez 2009, 5) There are many different designs for wave energy conversion technology, even when compared with other alternative energy technologies. More than 1000 wave energy conversion techniques are patented worldwide. (Lemonis 2004,387 - 388)

Currently there are no tidal or wave grid-connected, full-scale commercial power plants in the US, and due to market concerns and regulatory agencies competing over jurisdiction of the US Outer Continental Shelf, it is expected that a working plant will not be feasible until 2020. Meanwhile in April 2009, the Federal Energy Regulatory Commission (FERC) signed an agreement to remove the regulatory barriers for hydrokinectic (ocean energy) development on the US Outer Continental Shelf, which opens the door for new developments. (Perez 2009, 10) In 2007 and 2008 FERC started to expedite permits for ocean energy projects and 2007 saw a marked increase in the number of permits for tidal energy projects.

The market for ocean technologies started to grow in 2004 and maintained healthy growth though 2007 when the total investment in the technologies including both public and private sources, was $76 million. In 2008 the investments dropped by $26 million. (Perez 2009, 7) Figure 4 shows the evolution of investment in the technology from 2004 onward. The future promise of tidal/wave technology is great both in terms of total amounts of energy that can be generated, and the predicted cost-competitiveness of the technologies.

Ocean Tech Inv.png

e. The Leading Companies in Wind, Solar, Tidal and Wave

(GRAPH/CHART COMING SOON)

For more information on particular companies, see This Page

f. The Maturity of Solar, Wind and Tidal/Wave Technologies

As mentioned above, each of these technologies is at a different stage of maturity, which influences its chances of commercialization, its cost of deployment, or - in the case of the most mature technologies - its market cost and the level of subsidies required to attain market competitiveness with incumbent energy technologies. In Figure 5 below, various alternative energy technologies are graphed on a time continuum, which maps the stages of technology development starting with basic research, moving to development, then demonstration, deployment and ultimately, maturity. The Y axis tracks the cost of the technologies showing that the research stage is typically a low cost, but the cost increases in the development stage and can peak between the development and demonstration phases, which then leads to a trip "down the hill" of decreasing costs as the technology approaches more far reaching deployment and maturity. (Lako 2008, 9) In economic terms this process can be referred to as reaching Economies of Scale, when the technology has a large enough market that the increasing deployment leads to reductions in the technology cost.

ICTSD Stages of Dev.RE energies.png

The graph demonstrates that tidal and wave technologies are still in the development stages, signaling both a high cost and a rising cost as they follow the curve towards demonstration. Further along the cost curve in the demonstration phase, central receiver STE, a version of concentrating solar power that uses tracking mirrors to concentrate the suns rays on a central heating tower, is at the highest cost point and just beginning move towards the deployment stage. Parabolic trough STE, a version of CSP that uses concave mirrors to heat pipes full of heat conducting liquid, thin-film PV, and silicon PV, round out solar technologies in the graph, and are all at various points in the deployment stage. Silicon PV is the furthest along in terms of affordable price, but in real terms it is still very expensive and requires generous subsidies to compete in the technology market. The final technology we are focusing our research on, wind, shows two vastly different costs for offshore and onshore deployed technology. Offshore wind is experiencing a growing market, but still suffers from high costs due to the shear size of the turbines - they are designed to produce up to 5MW per turbine and tend to be several hundred feet tall - the cost of designing turbines that can resist the increased pressures of high winds, rough water, and salt corrosion, and the difficult and costly underwater electrical transmission infrastructure - not to mention environmental permitting costs of offshore development. Additionally the difficulty of conducting regular maintenance raises costs as well. Onshore wind is the most competitively priced and most mature of the current alternative energy technologies. It is only eclipsed by hydropower, which has been used as a mainstream electricity source around the world for many years. Hydropower is not typically included in alternative energy technology growth studies due to its limited growth potential. There are very few river sites available, and in many cases rivers are experiencing reduced flows (in the US) and the required permitting to construct a dam is both complicated and expensive.

Concentrating solar power (CSP) technologies have been around for 25 years and measured approximately 400 MW of electrical capacity in 2008 with another 400 MW being built and 6GW in the planning stages. The market for CSP is being driven by government subsidies in Spain, the USA,and other countries. (Lako 2008) As mentioned above, parabolic trough and central receiver CSP technologies are on the path to maturity, though newer technologies referred to as solar dish and Fresnel-lens CSP, are less mature and are not noted in Figure 5.

Solar PV technologies are expensive as mentioned above, but they have benefited from generous subsidies in Germany, Spain, Japan and the US, which have greatly expanded their markets. The result has been a steady reduction in the cost of the technology. Developing economies like China and India are starting to build large PV manufacturing industries, which have similarly reduced the prices of PV panels. China's role in this growing market is explained in more detail in the Section 1.6.1 China's Market Share . While silicon PV panels are the most mature PV technology, new thin-film panels are coming down in price and beginning to benefit from increases in efficiency. Concentrating PV is another technology that is still in the development stages, but which shows great promise. (Lako 2008, 7)

Investments in on- and off-shore wind technology equaled € 27.5 Billion in 2007 and the technologies are considered mainstream. Know-how for onshore wind technology is more prevalent and has spread quickly, especially in Europe. Off-shore wind is experiencing growth in the UK, the USA, and South East Asia. Economies of scale have brought the price of wind technology down and onshore wind is approaching cost competitiveness incumbent fossil energy technologies. (Lako 2008, 7)

As discussed in the previous section 1.2.4 d Tidal/wave technologies , there is great potential for energy from the tides and waves, but currently, the technology is immature and will need time and development to enter the deployment stage and achieve economies of scale.

For detailed assessments of the development stages of these technologies, see Figure 6 below.

ICTSD Stateof art of RE sources.png

There are many reasons why we are conducting this research, most notably, because climate change has the potential to be one of the most difficult and dangerous forces that humankind will face. By understanding the markets, technology development and forces that accelerate or slow innovation, we can learn more about which policies aid climate change mitigation efforts, and which do not. Wind and solar technologies in particular were chosen due to their potential for major reductions in global carbon emissions. In a 2004 article in Science Magazine that has become the canonical text in climate change mitigation efforts, Stephan Pacala and Robert Socolow of Princeton University, discussed the necessary steps that should be taken to meet the carbon mitigation goals set out by the Intergovernmental Panel on Climate Change (IPCC). The article, entitled Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies unveils a plan to reduce carbon emissions and stabilize them at less than half the pre-industrial level using a portfolio of technologies that are already available and at commercial stages. (Pacala & Socolow 2004, 1) Among these technologies are on- and off-shore wind, solar PV and solar CSP. Wind technology and solar technology represent 1 wedge each out of a total 7 wedges. A wedge is defined as equaling a reduction of one gigaton of carbon equivalent per year from 2004 (the year the article was published) until 2054. Under this model, wind technologies would have to grow by fifty times the capacity in 2004 or by 2 million 1MW peak windmills, and offset coal power by this amount. Paul Lako of the Energy Research Centre of the Netherlands, assess the current and future growth of wind energy in the US, EU and the rest of the world and determines that Pacala and Socolow's wind growth prediction is within the realm of possibility. (Lako 2008, 16) Lako conducts a similar study of the growth of solar power and determines that it is plausible that an increase of 2000GW of peak PV (or 700 times the solar capacity in 2004) could take place by 2054 as deemed necessary in the Pacala & Socolow report. (Lako 2008, 17) It is assumed that after 2054, the R&D investments taking place now will pay off in the form of commercial scale innovative technologies that can further reduce emissions.

The Contributions of Software to Innovation in Alternative Energy Technologies

The inspiration for our research is derived from the past and current success of commons-based peer-production [18] - as defined by Yochai Benkler - which has been the source of innovation in online networks like Wikipedia and open-source software such as Linux. While the majority of this paper tackles the more complicated task of defining instances of commons-based peer production in the development of alternative energy technology, we would be remiss if we did not spend some time discussing the role of software, and more specifically open-source software, in the successful development and operation of alternative energy technologies and the interconnected role it will play in electrical transmission grids. The US Secretary of Energy, Steven Chu, has recognized the valuable contributions that open-source software can make to energy efficiency in buildings and has called for more development in the area. As it stands, the Lawrence Berkeley National Laboratory, where Chu used to be the director, has been working on EnergyPlus software, which is a free open-source building design software that allows the user to identify areas of the design that can be improved to increase energy efficiency. While the project has made good progress, it has suffered from lack of funding for many years. [19] Meanwhile, a new product called Open Studio is an open-source plug-in for the already free Google Sketch-Up , which allows the user to implement energy efficient design elements into their plans. As Chu has noted, the importance of providing free or low cost open-source software is that developing countries like China are in the midst of enormous build outs that could benefit immensely from access to software such as this to reduce the possible carbon emissions impact of the new buildings. [20]

While energy efficient building design presents one practical and high impact use of open-source software, the role of software in the world's energy economy will become much more pronounced with the further development of renewable energy technologies. Incumbent fossil fuel sources of electricity have created a centralized energy system, which is to say that large central electricity plants fueled by coal and natural gas, generate electricity, which is transported over the electrical transmission and distribution system to end-users. Variations in the amount of electricity needed based on the demand of consumers, are met by varying the electrical output at the plant. Renewable energy technologies such as solar PV panels, wind turbines, and tidal or wave generation plants, represent a distributed energy system, which means that many smaller and widely distributed plants will be generating electricity that will be fed back into the transmission and distribution grid. To add another layer of complexity, these energy sources are all intermittent which means that they will only produce electricity when the sun is shining, wind is blowing, or tides and waves are in movement, which is not necessarily happening in sync with the rising demand for electricity from consumers. [21] It will be necessary to have powerful and well designed software to record all of this data, and interpret it in order to provide efficient feedback to the transmission grid operators and energy plant operators about demand and supply of electricity. This type of software is an integral aspect of Smart Grid technology [22] , which tracks the supply and demand metrics of the grid and individual consumers appliances, to adjust for the most efficient use and delivery of electricity. Smart grid proponents see the vast potential for improved performace of such software through the power of open-source development. [23] This is an area where commons-based peer-production in the open-source community could have a huge impact on future energy efficiency efforts. One person posting on the O'Reilly Radar commented: "The alternative energy space is doing so much good for the world, and has such a great need for rapid innovation and change. It seems a shame that the norm is to shroud new alternative energy innovations in secrecy. Venture capitalists will always push for keeping the technology locked down until they squeeze every last dollar out of it, but in the software world they're gradually learning that open source is not only good for the progress of technology as a whole, but also good for their profits. I wonder how long it'll take the energy investors to catch on." [24]

A Rapidly Growing Market

(A BOX SUMMARIZING THE BIGGEST COMPANIES, THEIR MARKET SHARE, TECHNOLOGICAL FOCUS AND POSSIBLE PATENTS WILL BE INSERTED - GREAT DIFFICULTY IN FINDING THE EXACT RELEVANT PATENTS...NO CLEAR INFORMATION ON THIS RATHER THAN THE GROWTH INDEX AND THE TECHNOLOGICAL ALTERNATIVES - based on this IP Profile of Biggest for-profit companies in AE )

According to the United Nations Environment Programme (UNEP) and New Energy Finance, the cleantech industry grew to over $155 billion in 2008, up almost forty-eight percent from 2006, worldwide. (SEFIa 2009, 1) Figure 5 shows the gradual growth by financial quarter over the past few years. Its importance is not only environmental, but also geopolitical. The technologies that form alternative energy - and companies that explore them - vary immensely in type, innovation cycles, maturity and techno-economic readiness.

Cleantech Investment.png

In terms of constituencies, the presence and influence of actors vary among countries, imprinting different forms to the organization of alternative energy innovation. For instance, in Japan, the government has traditionally taken a strong role in coordinating such activities through its Ministry of Economy, Trade, and Industry; while European countries have stressed and exemplified cross-country collaboration and coordination. In the US, the private sector exercises greater autonomy, even after the emphasis on public-private partnerships since the 1990s. In developing countries, such as Brazil, the government typically takes a very strong role in funding and coordinating innovation in energy, as in the biomass efforts of Petrobras. The various entities collaborate in a range of combinations, within countries and internationally, and impacts the availability of funding for R&D. For instance, the private sector accounts for the majority of expenditures for energy R&D in International Energy Agency (IEA) member countries, although governments account for a large fraction as well. (Gallagher et. al. 2006, 206)

However, as long as the external costs and benefits related to climate change, fossil fuel depletion, and security of supply, are not fully included in the energy prices, the competition between renewable energy and conventional electricity supply is biased in favor of the latter. (Waltz, 2008) Thus it is correct to affirm that the global market for clean energy technologies relies on government support and regulation, which helps these technologies attain cost competitiveness with fossil fuel energy generation. Currently, as shown in Figure 6, the cost of generating electricity with alternative energy technologies is higher than with coal, which provides 50% of the electricity generated in the US and 80% of the electricity in China. [12] (Schell 2009, 1) Government support policies that subsidize the cost of deploying alternative energy technologies are referred to as demand-pull policies. The market leading companies, have generally developed in the areas of the world with the most generous demand-pull policies, and, predictably, under governments that have prioritized the growth of alternative energy technologies. The majority of the biggest and most successful wind and solar technology companies in the world are located outside of the US, with wind manufacturers being disproportionately grouped in Germany, Spain and Denmark, and solar companies being more widely distributed between Germany, Japan, China and the US. What distinguished these other countries from the US are their government's alternative energy policies. In Germany, Spain and Denmark a demand-pull policy called a Feed-in Tariff [13] (FiT) has been responsible for the rapid growth of their alternative energy technology markets, and has thus encouraged the development of many of the leading technology companies. (Rickerson & Grace 2007, 1) China, on the other hand, has taken advantage of the growing market for solar energy technologies, and has funded significant R&D to create cheap and efficient solar photovoltaic cells that are being sold in foreign markets, most notably the US and Europe. Only recently has China added its own FiT for wind and solar to help encourage their home market (Gipe(a) 2009, 1) . Like most FiTs, China’s includes a “buy local” provision, which gives better financial incentives to those who install clean technology produced by Chinese companies. (Martinot & Junfeng 2008, 1)

Technology prices.png

(PARAGRAPH INTRODUCING NEXT SECTIONS ON COUNTRIES...AND WHY WE GO DEEP INTO USA AND CHINA)

The Market in the United States

[INSERT PICTURE FROM "U.S. Primary Energy Consumption by Source and Sector, 2008 (Quadrillion Btu)" - http://www.eia.doe.gov/emeu/aer/pecss_diagram.html ]

[and Figures from http://www.eia.doe.gov/emeu/aer/ep/ep_frame.html#2 and " http://www.eia.doe.gov/emeu/aer/ep/ep_frame.html#15 "]

The market for alternative energy technologies in the United States has grown due to a myriad of indirect and direct factors. Indirectly, global climate change concerns and volatile fossil fuel prices, along with US energy security concerns tied to its dependence on unstable foreign sources of oil, have pushed alternative energy into a strategic position of importance. Direct factors affecting the growth of the market have been a recent increase in private VC funding for alternative energy technologies, and a growing public-sector opinion that supporting these technologies is in the best interest of the country. In 2008, $19.3 billion of venture capital and private equity funds were invested in renewable energy and energy efficiency firms, an increase of 43% compared with 2007. [15] Up to this point, the US has lagged behind other countries, mainly those in Europe, in terms of its technology deployment funding (demand-pull policies). This has been due to complicated political and economic factors that have not plagued European nations to the same degree, which allowed policies that encourage the adoption of renewable energy to flourish. In terms of its public research and development (R&D) and demonstration funding (supply-push policies), the US reduced its investment in the 1980s - like many other developed countries - and has only recently begun to increase the funding for alternative energy and cleantech developments. (Gallagher et al. 2006)

The current market growth comes after a long lull that followed the original US push toward energy independence and alternative energy technologies in the 1970’s. The 1973 oil embargo caused the US and Europe to prioritize alternative energy investment and development, providing a buffer from the volatility of supply and demand for oil. The supply-push and demand-pull policies targeting alternative energy technologies, which were initiated during this period, defined the market leaders (Germany and Denmark) and those left behind (the US). Ultimately, the US was able to take a haphazard approach to alternative energy policies due to its prodigious stores of coal, oil and natural gas and political leadership that favored these industries. Now, spurred in part by the increasing momentum of the cleantech movement, alternative energy producers, consumers, and various regulatory and advocacy bodies are each responding to and evolving with the field, and thereby creating new market demands and offerings. While these trends are complicated in their economics, politics, and other social factors/barriers, the gradual consolidation of the field’s largest producers is already perceptible in the wind market, for instance. Figure 7 shows the distribution of the wind market by market share.

Top wind turbine manufacturers by market share File:Windcompanies.png‎ Source: (Efiong & Crispin 2007)

As noted in Figure 6, wind energy technology is the most cost competitive of the available alternative energy technologies, and has thus far been the most successfully and widely adopted technology in both the US and abroad. (REN21 2009, 8) In 2007 US wind power generation capacity grew by 45% with the installation of 5244MW of new wind turbines, which brought the total capacity in the US to 16,819 MW. This growth equaled one third of the new electricity generating capacity in the country that year, and established the US as one of the fastest growing wind markets in the world. As of 2008, the US became the fastest growing and largest wind market in the world following 2007 with another 8,351MW of new wind capacity to bring the country's total to 25,170MW edging out Germany (23,903MW) for first place. (WWEA 2008, 5) The US wind market was valued at $151.3 billion in 2008. (Bosik 2009, 1)

In 2008, the White House started to explore ways to support better development of wind energy innovations. They announced a memorandum of understanding for a two-year collaboration with six leading wind energy manufacturers - GE Energy, Siemens Power Generation, Vestas Wind Systems, Clipper Turbine Works, Suzlon Energy, and Gamesa Corporation. The agreement was designed to promote wind energy in the U.S. through advanced technology research and development, and siting strategies aimed to advance industrial wind power manufacturing capabilities. [26] The specific areas of research that will be addressed by the DOE and the collaborating companies are:

  • 1) Turbine Reliability and Operability Research & Development to create more reliable components; improve turbine capacity factors; and reduce installation and operations and maintenance costs.
  • 2) Siting Strategies to address environmental and technical issues like radar interference in a standardized framework based on industry best practices. Standards Development for turbine certification and universal generator interconnection.
  • 3) Manufacturing advances in design, process automation and fabrication techniques to reduce product-to product variability and premature failure, while increasing the domestic manufacturing base.
  • 4) Workforce development including the development, standardization and certification of wind energy curricula for mechanical and power systems engineers and community college training programs.

DOE Assistant Secretary Andy Karsner made the following announcement:

“The MOU between DOE and the six major turbine manufacturers demonstrates the shared commitment of the federal government and the private sector to create the roadmap necessary to achieve 20 percent wind energy by 2030. To dramatically reduce greenhouse gas emissions and enhance our energy security, clean power generation at the gigawatt-scale will be necessary to expand the domestic wind manufacturing base and streamline the permitting process.” [27]

Programs like this show that the US government is beginning to understand two of the major barriers to increased development of affordable and efficient clean technology. First, the historical failures of the DOE labs to understand the private sector and how to successfully launch technologies in the market, and second, the importance of collaboration and information sharing towards the development of better technologies.

While the US is making a late entry into the global clean energy market, it has had a successful start in terms of technology deployment as evidenced by their installations of wind turbines. The US has fallen behind in technology development though, and is left in a position of being dependent on foreign nations for technology licenses. So far the Obama Administration and the Secretary of Energy, Steven Chu - a Nobel Prize winning physicist and renewable energy advocate - have made favorable progress toward regaining the country's lead in energy technology innovation. President Obama said: “Our investments have declined as a share of our national income, (and) as a result, other countries are now beginning to pull ahead in the pursuit of this generation’s great discoveries.” (Belsie 2009, 1) In response the President has pledged to increase government R&D funding for new technologies, including alternative energy technologies, to over 3% of GDP, a higher percentage than the US reached at the peak of the Space Race in 1964. (Belsie 2009, 1) (MORE AT: http://www.ases.org/index.php?option=com_myblog&show=Obama-boosts-R-D-spending-especially-on-energy.html&Itemid=27 )

Additionally, in February 2010, the Department of Energy (DOE) released new estimates of the U.S. potential for wind-generated electricity, tripling previous estimates of the size of the nation's wind resources. The new study, which was carried out by the National Renewable Energy Laboratory (NREL) and AWS Truewind, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt hours annually. By contrast, total U.S. electricity generation from all sources was roughly 4 million gigawatt hours in 2009. The estimates show the total energy yield that could be generated using current wind turbine technology on the nation's windy lands. (The estimates show what is possible, not what will actually be developed.)

The new estimates reflect substantial advances in wind turbine technology that have occurred since DOE's last national wind resource assessments were conducted in 1993. For example, previous wind resource maps showed predicted average wind speeds at a height of 50 meters, which was the height of most wind turbine towers at the time. The new maps show predicted average wind speeds at an 80-meter height, the height of today's turbines. Because wind speed generally increases with height, turbines built on taller towers can capture more energy and generate more electricity. The new estimates also incorporate updated capacity factors, reflecting improvements in wind turbine design and performance.

A financial commitment of this level plus the good news of the improved potential capacity in regard to specific types of technology - such as wind - will be needed as the challenges of encouraging growth in the cleantech industry are unlike any of the US's previous technological challenges. No single clean technology will be sufficient to replace conventional carbon emitting energy sources as professors Pacala and Socolow have demonstrated through their study of stabilization wedges. (Pacala & Socolow 2004, 1) Clean technologies will require cost-effective development to succeed. Direct competition with the powerful coal, natural gas and oil industries and their lobbyists will make balancing government funding difficult because the government is simultaneously and extensively subsidizing both fossil fuels and clean technologies.

Alternative Energy Policies in the United States

The United States has a deeply politicized energy policy history. While the environmental wing of American politics, now tied to the political left, has urged subsidies to renewable energy - specifically to sun and wind - for decades, they neglected support for geothermal energy. The political right has meanwhile been just as enthusiastic in its support of subsidies to oil, natural gas, and nuclear energy. The coal and oil industries have been protected by the congressional delegations in key states where they provide employment. Due to these pressures, and a long regulatory history, the role of the government in the energy sector has been intense and interventionist. Even with the growing geopolitical and climate change realities, neither political party has attempted a balanced, technology-neutral approach to energy policy. Even today this legislative policy debate is missing in the U.S. Congress; each energy technology, both alternative and incumbent, seeks its own separate legislative deal for federal backing. (Weiss and Bonvillian 2009) This leads to the government picking technology winners, which is a policy destined for failure in the new energy future where a wide array of new technologies will be necessary to address the climate change issue.

In the US, the first favorable government subsidy policy for alternative energy was introduced in 1978 - The Public Utilities Regulatory Policy Act (PURPA) [16] - which encouraged the installation of over 1400 MW of wind power capacity in California. (PURPA 2007; Gipe 1995) Most of the turbines installed were built in Denmark by the leading manufacturer at that time, Vestas, which is still the top manufacturer today. Figure 8 below shows other US demand-pull policies used to encourage deployment of alternative energy and clean technologies. Supply-push policies fall under the R&D investments in the US, and will be explained in the next section.

Demand pull policies.png

Currently, the US is considering a carbon cap and trade bill, referred to as the Waxman - Markey Bill or the American Clean Energy and Security Act of 2009. [28] The idea behind a cap and trade bill is to assign an artificial price for carbon through tradable carbon credits. A carbon credit market introduces chances of profit for those who reduce their carbon emissions and have credits to sell, whereas those who don't reduce their carbon emissions will be forced to buy credits. The economic theory behind assigning a price to carbon is called internalizing externalities, or what some call "polluters pay." The theory refers to internalizing the cost of the environmental damage caused by incumbent fossil fuel sources (coal mining, oil drilling, carbon emissions, air-quality, water quality, general public health and climate change) into the price of power from those sources. This negates the need for subsidies to reduce the cost of alternative sources of energy by raising the cost of incumbent sources of energy and creating price parity. The other policy that can be used to achieve this is a carbon tax, which is a government regulated price on the cost of carbon emissions through a pollution tax. This model, while economically more efficient, is much less popular, especially among financial conservatives as it gives the government the power to choose a carbon price.

Renewable Energy Policies and Technology Innovation

While a response to the global threat of climate change requires an unprecedented response in terms of the large variety of GHG mitigation technologies and government policies to encourage the development and adoption of these technologies (Pacala and Socolow, 2006, 1) , the necessary innovation to meet the challenge will not necessarily be met through the policies currently in use. There is an erroneous assumption among many stakeholders that policies that promote technology diffusion will also promote technology innovation. The way in which various energy policies affect the drive for higher efficiencies and energy outputs of myriad renewable energy technologies are the subject of heated debates. It is beyond the scope of this paper to analyze the full portfolio of energy policies being used around the globe to encourage renewable energy diffusion and, by some estimates, innovation, but a short discussion of the subject is necessary to frame the issue. As Nemet (Nemet 2006, 4) argued in a paper on demand-pull policies and the California wind energy market, when demand-pull policies are used to grow the market for a renewable energy technology through subsidies or other payments - “Increasing the expected profitability of investment in innovation may not provide sufficient incentives to induce efforts toward innovation.” His argument is that incentives for technology diffusion are not automatically synonymous with pushes for new efficiency innovations in the technology. The discussion can be simplified into a debate between two possible drivers of technology innovation - changes in market demand or advances in science and technology. (Nemet 2006, 5)

Advances in science and technology can determine the rate and direction of innovation, or so the argument goes. This is linked to the theory of Vannevar Bush (Bush 1945) referred to as the “post-war paradigm” in which the model of technology transfer was described as a progression from basic science to applied research to product development to commercial products. It was later theorized that this paradigm gained prominence in part due to the apparently strong correlation between R&D and innovation output. (Nemet 2006, 6) A principle argument against the theory was that it ignores the economic conditions, such as price, that can affect the profitability of technology innovations. Overall though, the theory stands that companies would need to invest in the science through R&D funding in order to have the knowledge to exploit opportunities emerging from the research. (Nemet 2006, 6)

The central discussion around the demand-pull innovation theory is that changes in the market demand create investment opportunities for firms to invest in innovation to meet new technology needs. Demand-pull energy technology policies are based on the idea that by subsidizing renewable energy technology and making these technologies competitive with the incumbent fossil fuels and nuclear energy sources, firms will be driven to innovate and create cheaper and better technologies to try and compete more effectively in the market. Other factors that can affect this demand-pull theory are the prices of fuel for energy plants, or the geographic variations in demand. In general, the argument against this theory is skepticism that firms can identify the technology needs from a fairly vast number of them, that their ability to then meet those specific needs with the existing technology abilities that the firms have is probably fairly limited, and that the firms will be unlikely to deviate from their existing R&D paths to fill a needed technology niche if it’s not a technology they have significant experience with. (Nemet 2006, 8)

There are ongoing debates about these two theories of innovation and how they interact. Many people have tackled the discussion. In some cases theories have developed around the idea that technology-push and demand-pull complement each other and innovation arises out of a complementary intersection of the two. In theory, certain market demands intersect with ongoing private technology pushes creating economic factors that accelerate the development of a particular developing technology. While there is still ample debate around this theory, a number of government supply-push and demand-pull policies have developed over the years in order to attempt to encourage innovation by reducing the cost to firms of producing innovations, and increasing the payoffs in the market for successful innovations. In the US, the political debates around the approval of these policies on state and federal level has led to continuous political wrangling. Despite the recognition that both of these policies are necessary to encourage innovation, especially in renewable energy technologies where barriers to profitable development are high, political debates continue.

In (Nemet 2006) exploration of the demand-pull policies, he uses a case study of the California wind market from the 1970’s through 1995. His study affirms that demand-pull policies increased the profitability of wind power and stimulated the diffusion of the technology, and that diffusion created opportunities for learning by doing. At the same time, his study found little evidence that the policies stimulated inventive activity. (Nemet 2006, 11,16)

Government and Non-Profit Organizations and Their Roles in the US Alternative Energy Market

The US Department of Energy (DOE) laboratories are the main centers of government funded research in the US. There are seventeen labs in all, and each has a different mix of research focuses, though none except for the National Renewable Energy Laboratory, are exclusively focused on alternative energies. Many combine research in fossil energy and weapons, with particular topics of research in alternative energy sources.

Among the seventeen labs, the following twelve have the most prominent roles in non-nuclear alternative energy research:

  • Los Alamos National Laboratory

Located in Los Alamos, New Mexico, Los Alamos is most well known for its secret nuclear bomb research during World War II, or the "Manhattan Project." [29] Today, the Manhattan Project is often used as an example of the level of R&D funding and government support that should be the model for devotion to alternative energy research if the US is to address global warming with the urgency many feel is needed. It is one of the largest science and technology institutions in the world and conducts multidisciplinary research in national security, the space program, alternative energy, medicine, nanotechnology, and supercomputing. [30]

Los Alamos started a commons-based information project called the “Global Energy Observatory” ] or “GEO,” which is a "wikipedia-like mass editable online database of energy sources and energy flows."It is an open but moderated Wiki.

  • NREL, National Renewable Energy Laboratory

NREL is the flagship renewable energy lab of the national laboratory system, and is managed for the DOE by the Alliance for Sustainable Energy, LLC. It is located in Golden, Colorado with prime siting for research in solar technology, wind technology and geothermal technology. The lab focuses on renewable electricity conversion and delivery systems, renewable fuels formulation and delivery, efficient and integrated energy systems and strategic energy analysis. One example of free information that they provide are the GIS maps on its website that have the renewable resource measurements for solar, wind, geothermal, and biomass across the US. These maps are used to determine what types of renewable energies are viable options for different areas of the US, and to encourage development of new alternative energy plants. NREL collects the data through national wind speed measurements and categorizes the information in a Wind Power Class (WPC) measurement of 1 - 7 from least desirable to most. The lab also collects measurements of solar insolation - the amount and intensity of the sun, averaged over a period of years, that is hitting the US in various areas. Insolation data is crucial for determining how much electricity a PV panel is likely to produce over a year or years.

  • Lawrence Berkeley National Laboratory

Located in Berkeley, CA, Berkeley Lab is managed by the University of California (UC). The lab is charged with conducting unclassified research across a wide range of scientific disciplines," and sustainable energy is one of their main disciplines. [31] The lab focuses mainly on solar energy used to produce biofuels through a simulated photosynthetic process, and bioenergy and biofuels for transportation. The lab's Helios Solar Energy Research Center collects data on solar energy for biofuels production. Berkeley Lab was formerly directed by the current Secretary of Energy, Steven Chu. The lab works with China through their China Energy Group , which works "collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to better understand the dynamics of energy use in China, to develop and enhance the capabilities of Chinese institutions that promote energy efficiency, and to create links between Chinese and international institutions." [32]

  • Argonne National Laboratory

Located just outside of Chicago, the lab's energy research focuses on energy storage, alternative energy & efficiency and nuclear energy. Their energy storage research looks at systems for electric-drive vehicles and a green-energy grid.They are also working on promoting energy independence through improved chemical fuels, advanced biofuels, and solar energy systems, as well as through the optimization of fuel and engine dynamics. Their nuclear energy research looks at advanced reactor and fuel cycle systems to enable the safe and sustainable generation of nuclear energy. [33]

  • Brookhaven National Laboratory

Located on Long Island, New York, the lab does research on solar energy, efficiency, energy modeling and analyses tools, water/energy issues, and nuclear technologies. The lab is home to the National Photovoltaics (PV) Environmental Research Center. [34]

  • Idaho National Laboratory

Located in Idaho Falls, Idaho, the lab conducts research in biofuels and renewable energy, energy storage and transportation, energy efficiency and energy resource recovery. [35]

  • Lawrence Livermore National Laboratory

Located in Livermore, CA, the lab conducts a broad range of scientific research in national and global security including nuclear and renewable energy fields. [36]

  • National Energy Technology Laboratory

The lab has mutiple locations, in Morgantown, West Virginia; Pittsburgh, Pennsylvania; Houston, Texas; Albany, Oregon; and Fairbanks, Alaska. It conducts a great deal of research into the reduction of environmental damage from fossil sources of energy, looking at the following technologies: turbines and fuel cell hybrids, fuel cells, fuel processing for fuel cells, gasification, carbon dioxide capture for pulverized coal and for integrated gasification combined cycle (IGCC) systems, reciprocating engines, sensor/control methods for all these energy systems, and carbon capture and sequestration. [37]

  • Oak Ridge National Laboratory

Located in Oak Ridge, Tennessee, the lab conducts research in bioenergy, energy efficiency, and transportation. [38]

  • Pacific Northwest National Laboratory

Located in Richland, WA, the lab does research in energy efficiency such as: advanced fuel-efficient transportation, including vehicle electrification and hydrogen technology, processes to convert biomass to fuels and chemicals, improving the energy-efficiency of residential and commercial buildings, enabling the effective use of renewable resources. [39]

  • Sandia National Laboratories

With locations in Albuquerque, NM and Livermore, CA, the lab conducts research in: Solar photovoltaics, concentrating solar power, solar thermal energy, wind energy, fuel cells, geothermal energy, energy storage, and bioenergy. The lab is currently conducting collaborative work with the Dutch on wind energy through an MOU signed with the Technical University of Delft in the Netherlands. "The MOU will allow Sandia's Wind Energy Technology Dept. 6333 to work closely with the Dutch institution, helping the two entities share knowledge and do joint research." Dutch Agreement [40]

  • Savannah River National Laboratory

Located near Savannah, Georgia on the Georgia/South Carolina border the lab's research areas include: biofuels, fuel cells, hydrogen, and nuclear production of hydrogen. [41]

Policy and Technology Non-Profits and Advocacy Groups

  • ACORE, American Council on Renewable Energy

"ACORE is an organization of member companies and institutions that are dedicated to moving renewable energy into the mainstream of America’s economy, ensuring the success of the renewable energy industry while helping to build a sustainable and independent energy future for the nation." [42] ACORE is home to the Center for Economic Research, which is: "aimed at communications and data development for policy makers, media and thought leaders to promote all renewable energy options and to talk about their significant role in the U.S. economy." [43] The website provides free information about various alternative energy technologies for the benefit of the general public. ACORE organizes three major conferences each year that focus on the three major areas that shape and advance renewable energy innovation and development in America: Policy, Markets and Finance. The conferences convene companies, institutions, and individuals who will share information and advances in driving renewable energy forward. [44]

  • New Energy Congress

The New Energy Congress (NEC) is a global association of of experts who review the most promising new and emerging energy technologies. [45] Each year they publish a list of the top 100 most promising global alternative energy technologies. The NEC and Pure Energy Systems, a website powered by Media Wiki and published under a GNU Free Doc License, were founded by a scientist named Sterling Allen, and are meant to provide free access to the public on promising alternative energy technologies, and to encourage sharing and collaboration on the technologies, including improvements and upgrades. [46]

  • The Rocky Mountain Institute (RMI)

RMI is an independent, entrepreneurial, non-profit organization that focuses on consulting for energy efficiency in the built environment, energy resources, mobility & vehicle efficiency and sustainable cities. RMI operates like a for-profit consultancy keeping its research and data closed to the public and open to their clients. Website includes an RMI library that provides free publications from RMI on various topics of research including energy, buildings and land, climate, energy security, and energy efficiency. [47]

  • U.S. Department of Energy: Office of Energy Efficiency and Renewable Energy (EERE)

EERE is the DOE's main office for energy efficiency and renewable energy and it handles the commercialization and deployment process for all of the DOE energy labs alternative energy technologies. The office bridges the gap between R&D, venture capital funding and marketing and identifies interested investors. [48]

  • American Wind Energy Association (AWEA)

The AWEA is a national trade association that works as an advocate in the US government for wind power developers, equipment suppliers, services providers, parts manufacturers, utilities, researchers, and others involved in the wind industry. The AWEA tries to ensure that wind energy gets fair treatment and equal consideration in renewable energy policy discussions. [49] In addition, AWEA represents wind energy advocates from around the world, and provides up-to-date information on wind projects being constructed, companies that work in the field, technology developments and policy developments.

  • California Energy Commission (CEC)

The California Energy Commission supports public interest energy research that advances energy science and technology through research, development, and demonstration programs. The commission's RD&D Division administers a total of $83.5 million in public interest energy research funds annually - $62.5 million for electricity and $21 million for natural gas. Some portion (un-disclosed) of this money goes toward renewable energies. [50]

  • Solar Energy Industries Association (SEIA)

Located in Washington, DC, the SEIA is the biggest trade organization in the US for solar technologies. The organization works to expand markets, strengthen research and development, remove market barriers and improve education and outreach for solar energy professionals. Their main role is advocacy for solar energy within the US government, but they also coordinate with state and regional chapters and other groups including the American Solar Energy Society, Solar Alliance, Solar Electric Power Association, Solar Nation and Vote Solar as well as numerous renewable energy, business and environmental groups. [51]

R&D Investment in the United States

As of 2007, federal support for energy R&D had fallen by more than half since a high point in 1978, and private-sector energy R&D has similarly fallen. (Gallagher, et. al. 2006) Since 2007, with the renewed interest in clean technologies and most recently, the economic meltdown and subsequent American Recovery and Reinvestment Act (ARRA), which designated billions of dollars for energy R&D, the landscape has changed. Figure 9 shows the overall expenditures for US government energy research, development and deployment (RD&D). (Anadon et. al. 2009)

US Energy RD&D spending.png

While the ARRA funds have raised R&D and demonstration funding back to its 1979 level, the FY2010 request drops back down to previous levels which compare poorly to other major federal R&D efforts that met challenges of similar magnitude: the Manhattan Project, the Apollo Project, the Carter-Reagan defense buildup, and the doubling of the budget of the National Institutes of Health. Advances in energy technology will not occur on the scale required without significantly increased investment by both government and business, and in the years after 2009, the challenge will be to find that money in the government’s coffers.

a. Public R&D Funding

Most of these funds are being given to the 17 U.S. Department of Energy laboratories, which have historically been an ineffective model for cleantech development and commercialization. The main reason for this ineffectiveness is that most of the labs do weapons research, which is developed for one guarantied client - the U.S. Government - and is considered a high priority given the size of U.S. military forces and their active involvement in two wars. Of the 12,400 PhD scientists employed in the DOE's labs, 5000 of them work at the top three weapons labs despite the US's shrinking arsenal, and far fewer PhD scientists work at the energy labs. The largest alternative energy lab, The National Renewable Energy Laboratory, employs 350 PhD scientists, and there is no system in the DOE that encourages collaboration between the public and private sectors. (Weiss & Bonvillian 2009, 152 - 153) As a result the lab system knows how to develop products for the military, but as a whole, lacks the experience and private sector business acumen to launch energy technologies from initial innovation through demonstration across the “valley of death” [17] and into commercialization. (Weiss & Bonvillian 2009, 31)

While energy technology innovation experts often note that it will take an R&D effort similar to historical US technology pushes like the Manhattan Project or the Apollo Project, this challenge differs fundamentally. The former projects had sole technological outputs and the government was the only user of that output. There wasn't a private market involved and the funding for the projects was unlimited. (Ogden et. al. 2008) In contrast, the current energy technology push requires a more logically designed innovation system that brings the publicly funded R&D labs closer to the private sector and the private market to ensure an effective technology transfer of multiple technologies. The recent release of ARRA funding has increased the US energy R&D funding a great deal as noted in Figure 9 above, but sound policies that avoid selecting technology winners and encourage all promising technology development, must follow. Figure 10 shows the historic investment in R&D for wind, solar and ocean technologies, and gives a clear indication that funding has stagnated since the 1970s allowing countries like Japan and China to make significant inroads in alternative energy and cleantech development. In tandem with this funding reduction has been an ineffective patchwork of energy policies that lack fundamental stability and consistency. (Weiss & Bonvillian 2009) Other issues that have plagued the US DOE lab system, have been a tendency for individual technologies' R&D funding to fluctuate significantly. It has been observed by researchers at Harvard's Kennedy School of Government that between 1978 and 2009 the average standard deviation of the variation across six fossil energy and energy efficiency technology areas was 27% meaning that there was a one in three chance that a particular technology area's funding would increase or decrease by more than 27%. (Narayanamurti et. al. 2009, 8) Additionally, over the years funding to the labs has changed to involve more small grants to individual investigators for basic research, rather than large project investments. This model is effective for universities, but tends to be ineffective when trying to integrate basic and applied science. (Narayanamurti et. al. 2009, 9)

Renewable RD Budgets.png

The same graph, limited to data from 1985 to 2007, is displayed in Figure 11.

Total renewable RD from 1985.png

In Figure 12 the R&D spending on solar, wind and ocean energy technologies is displayed as a percentage of each country’s GDP. Given the overall size of the United States and Japan’s GDP’s it is not surprising that alternative energy technology is such a small percentage. Alternative energy technologies form a much larger percentage of Denmark, Germany and Spain’s GDP.

Renewables RD perc of GDP.png

It is apparent that the investment level of the ARRA funds in 2009 will need to be sustained for more than a year to provide the type of funding that will be needed for this clean technology revolution. These graphs show that allowing the R&D funding to drop back to the levels it has been at for the past 25 years will result in the stagnant development we have seen over that period.

Another portion of public R&D funding goes to universities. The US Department of Energy funds 46 research centers through its Energy Frontier Research Centers (EFRCs), which are designed to address energy and science “grand challenges.” The 46 EFRCs are to be funded at $2 - $5 million a year for 5 years, and were chosen from over 260 applicant institutions. In total the program represents $777 million in DOE funding over five years, and 31 of the centers are led by Universities. In August, Secretary Chu announced the selection of the new EFRC centers and said:

Meeting the challenge to reduce our dependence on imported oil and curtail greenhouse gas emissions will require significant scientific advances. These centers will mobilize the enormous talents and skills of our nation’s scientific workforce in pursuit of the breakthroughs that are essential to expand the use of clean and renewable energy.

Figure 13 shows the 46 EFRC centers. See EFRC's Map .

EFRC.png

Each institution received funding for a particular center doing research on a particular type of clean technology, and in some cases more than one center at a particular institution was awarded funding, as is the case with the Massachusetts Institute of Technology (MIT), which receive EFRC funding for the Solid-State Solarthermal Energy Conversion Center, and American Reinvestment and Recovery Act of 2009 (ARRA) funding for the Center for Excitonics, which is also conducting research into solar PV technology. The EFRC represents an increased emphasis on the importance of university based research, and expands the R&D funding for this research.

The newest edition to the government's energy technology innovation efforts is a program sponsored by the DOE's Advanced Research Project Agency called ARPA-E. It has been modeled after the US Department of Defense's successful DARPA program, which funds research in defense technology [52] . ARPA-E is handing out $151 million to 37 energy projects that it has termed bold and transformational. (Madrigal 2009) The DOE noted that:

The grants will go to projects with lead researchers in 17 states. Of the lead recipients, 43% are small businesses, 35% are educational institutions, and 19% are large corporations. In supporting these teams, ARPA-E seeks to bring together America's brightest energy innovators to pioneer a low cost, secure, and low carbon energy future for the nation. [53]

The program has proven to be extremely selective given that of the applicants, 99% received letters of denial for their funding request. This exemplifies the financial risk factor of the program's stated goal "to overcome the long-term and high-risk technological barriers in the development of energy technologies." [54]

The role that universities play in innovation and development of new energy technologies varies with each institution, and it can sometimes be hard to determine which universities are having the biggest impact, but a recent article published by the Cleantech Group, LLC. makes an attempt to rank the top 10 cleantech universities in the US for 2010.

Here are the rankings and their justifications: 1. Massachusetts Institute of Technology (MIT) - MIT has inspired myriad cleantech spinoffs. The institution is the home of the MIT Clean Energy Prize, which is regarded as the premier student clean energy innovation and venture creation competition in the country. Each year a $200,000 prize is awarded to the top student energy venture as determined by the award selection committee. This Prize has helped launch several energy ventures, including FloDesign, FastCap Systems, Levant Power, Husk Insulation, and Covalent Solar. MIT also hosts the MIT Energy Initiative, an institute-wide initiative designed to help transform the global energy system to meet the needs of the future and to help build a bridge to that future by improving today's energy systems.

2. University of California at Berkeley - UC Berkeley is to connected to the Lawrence Berkeley National Laboratory, one of the premier US DOE labs, which provides additional research access and exposure to both students and the business community. Berkeley also hosts several partnerships with big players in the cleantech industry. The most important ones are the Energy and Biosciences Institute—a partnership of UC Berkeley, Berkeley Lab, and the University of Illinois, funded by BP with $500 million over ten years and the Bio Energy Institute, which is a partnership of three national labs and three research universities in the San Francisco Bay Area, funded by the U.S. Department of Energy with $125 million over five years. Berkeley's proximity to Silicon Valley and the East Bay Cleantech Corridor provides students with access to the entrepreneurs, venture capitalists and consulting companies that are defining the new cleantech sector.

3. The University of Texas at Austin - The University of Texas at Austin is a historical leader in energy innovation, R&D and teaching, especially with the oil and gas industry, but the university is using its leadership of the conventional energy industry as a launching pad for continued leadership in the cleantech sector. Many oil and gas companies with historic relationships to UT are investing aggressively into cleantech and they are continuing their affiliations with UT for R&D in these new technologies. John Goodenough, the inventor of the lithium-ion battery, is a professor of mechanical engineering at UT, and the university has also established itself as a leader in algae based biofuels. UT is a part of a multimillion dollar DARPA-sponsored project to produce jet fuels from algae, and was awarded $35 million by the Department of Energy to conduct research on carbon sequestration.

4. Stanford University - Stanford established the Precourt Institute for Energy, a $100 million research institute focused on energy issues, and independently invests more than $30 million each year in energy research. The School of Engineering hosts the Stanford Technology Ventures Program (STVP), which is is focused on accelerating high-technology entrepreneurship education and creating scholarly research on technology-based firms. Independent of energy research, Stanford has developed an ambitious $250 million initiative to sharply reduce the university's energy consumption and greenhouse gas emissions.

5. University of Michigan, Ann Arbor - "With research expenditures of over $1 billion and an innovation pipeline unparalleled among the nation’s public universities, the University of Michigan can rightly take its place among the leading Cleantech universities in the U.S. Student engagement in Cleantech Entrepreneurship is at a all-time high, driven by the Zell Lurie Institute for Entrepreneurial Studies in the Business School, the Center for Entrepreneurship in the College of Engineering, and the student organization MPowered. The student-led Wolverine Venture Fund and the Frankel Commercialization Fund managed by the Zell Lurie Institute made recent investments in Environmental Operating Systems, and Accio Energy. The Universities TechArb program is poised to leverage a rich entrepreneurial ecosystem to stake out a leadership position in the emerging green economy." [55]

6. University of Colorado at Boulder - CU Boulder has created a new joint energy institute with the National Renewable Energy Laboratory (NREL) called the Renewable and Sustainable Energy Institute (RASEI). The institute partners leading researchers from CU-Boulder and NREL on cross discipline research across multiple areas. Among the 19 major corporations that comprise the RASEI leadership council are Xcel Energy, ConocoPhilips, Toyota, SAIC, Good Energies, Wells Fargo and Vestas. In addition, dozens of companies are involved in collaborative research with the university and its partners across several major cleantech initiatives. [56] With more than $350 million of annual research funding, the University of Colorado at Boulder leads the Rocky Mountain region in world class research. In addition, the university was recently recognized by Sierra Magazine as the No. 1 sustainable campus in the United States.

7. University of Wisconsin at Madison - University of Wisconsin's Solar Energy Lab, founded in 1954, is the oldest of its kind, and more recently, the university has begun to focus research on bio-energy and is home to one of three Department of Energy-funded Bioenergy Research Centers, the only one based at an academic institution. In 2009, the College of Engineering entered into a long-term partnership with the wind turbine manufacturer, Vestas. In May, the University snagged 10 of 71 funding awards from the U.S. Department of Energy for advanced nuclear research, totaling more than $5 million. To coordinate the energy-related research and education, a group of professors came together in 2006 to create the Energy Institute, focused on sustainability opportunities through “real world” design and engineering practices. [57]

8. Cornell University - Cornell is known for world-class research in the physical sciences, engineering and nanotechnology fields, and is a natural spawning ground for cleantech research. Cornell's campuswide Center for a Sustainable Future is unique in fostering innovative multi-disciplinary research into new energy sources, environmental and biodiversity initiatives, and economic development projects for global implementation of these programs. [58]

9. Georgia Institute of Technology - While Georgia Tech is one of the nation's top research universities with over $500 million of current sponsored research activity, their VentureLab program is leading the Institute's march into cleantech. The Advanced Technology Development Center is a nationally recognized science and technology incubator that helps Georgia entrepreneurs launch and build successful companies, and their Commercialization Services moves the innovations out of Georgia Tech laboratories and into the marketplace. The Commercialization Services office assesses the commercial potential of research results and assists in the development of new companies through the VentureLab program.

10. Washington State University - Washington State University has legacy expertise in agriculture, power and applied engineering, and their Clean Technology program is rapidly growing. The university's new Bioproducts Science and Engineering Laboratory was opened last year in partnership with the Pacific Northwest National Laboratory and the recently funded Washington State Algae Alliance. [59] One of the main objectives is the commercialization of aviation biofuels with partner Boeing Commercial Airlines.

Further, within the AE the innovation pipeline, the Obama Administration announced, in February 2010, a multi-agency initiative to spur regional economic growth while making buildings more energy efficient. Seven federal agencies today issued a combined Funding Opportunity Announcement of up to $129.7 million over five years to create a regional research center that will develop new building efficiency technologies and work with local partners to implement the technologies in area buildings.

The agencies are working together to leverage funding and resources to promote regional growth through an Energy Regional Innovation Cluster (E-RIC) that is centered around an Energy Innovation Hub focused on developing new technologies to improve the design of energy-efficient building systems. This Energy Innovation Hub, one of three proposed by the Administration and funded by Congress in the FY10 budget, will bring together a multidisciplinary team of researchers, ideally working under one roof, to conduct research and work to solve priority technology challenges that span work from basic research to engineering development to commercialization readiness.

The E-RIC will work to disseminate new technologies into the local marketplace and share best practices with the public and private sectors. It will be supported through agency investments in technology and business development, and will include support for workforce education and training. By linking researchers at the Hub with local businesses and supporting specialized workforce education and training in the area, the initiative will create an economically dynamic region focused on building efficiency technologies.

b. Private R&D Funding

Private investment in R&D for alternative energy technologies to replace the incumbent fossil fuel technology has been discouraged by the history of wild oscillations in the price of energy. In relation to transportation related alternative energy technologies, oil has been particularly volatile over the past two years during which time it rose to over $140 a barrel, then dropped precipitously, and has since begun to rise again. These peaks and valleys make private investors ambivalent about investing in alternative energy technologies because only sustained high prices for oil will provide the appropriate economic climate in which alternative energies can be profitable. Research has shown though that the rising prices for oil are tied to increased demand from developed and emerging economies, which, if sustained, could change the private investment climate for new technologies in the future. (Weiss & Bonvillian 2009, 7)

Based on a study conducted by the National Research Council in 2001, it has been estimated that between 1978 and 1999 almost two thirds of the total energy R&D expenditures in the United States were made by industry. (Comm. on Benefits of DOE 2001; Gallagher et al. 2006, 216) Due to this research and the assessments of experts at the Kennedy School of Government at Harvard University, it is believed that the private sector provides a larger portion of the R&D funding for clean technologies. A more detailed assessment of this estimate is very difficult to accomplish due to the proprietary nature of the funding information within private companies. (Gallagher et al. 2006, 216) The access to information is limited starting from early stage angel investing and continuing through mature venture capital contributions, though, as detailed in the numbers above, there are market reports that quantify the venture capital and private equity portions of private sector investment. (can we check how much cias are investing? For example X % to R&D…even if it is not clear what “R&D” they are doing? Maybe in the market reports? We should try to interview people ate cias urgently)

Since 2007, Cleantech companies have begun negotiating strategic alliances with Fortune 100 companies like Chevron Texaco Technology Ventures - which invested in BrightSource Energy Inc., a developer of utility-scale solar plants - Konarka Technologies, Inc., a developer of photovoltaic materials, and Southwest Windpower, a producer of small wind turbines. The alternative energy sector is experiencing a more competitive commercial environment due to non-financial drivers such as regulation, political will, and fears over energy supplies, which present unique challenges for technologies such as wind energy, solar energy, and biofuels. (Ward et al. 2008, 243)

In the first quarter of 2009, venture capital (VC) investment in alternative energy technologies, which drives a disproportionate amount of financing in new energy technologies, retracted drastically. There was only $154 million of VC investment in 33 young companies, a drop of 84 percent from the last quarter of 2008 when, according to PricewaterhouseCoopers and the National Venture Capital Association, they invested $971 million in 67 start-ups. This was the lowest level of VC investment in alternative energy since 2005, before these technologies became a popular new trend in the Silicon Valley. [60] Venture capital professionals note that the credit crunch has been a major factor in this precipitous drop-off. Private funding in onshore wind technology has been focused more recently on marketing and growth as opposed to technology R&D. This is due to wind technology’s maturity and the fact that it has become the least-cost renewable technology, spurring increased development of new wind farms. Offshore wind technology still presents a developing technology sector that requires significant private and public R&D investment. Market analysts have expressed their opinion that most of the private sector investment in alternative energies is coming from VC firms followed by private equity firms, banks, brokers and finally institutional funds. In 2007 there were at least 100 VC firms investing in alternative energies. (Capello 2007)

The Role of Government in providing information for technology development and diffusion

{LOOK FOR TERMS OF USE AND IP POLICY IN WEBSITES}

In certain cases the government is providing free open access to information that is helpful to individuals and businesses interested in renewable energy, energy efficiency and sustainability. A few of the most well known resources are listed below with explanations of the resource and its uses. These sources are of interest to us as they are examples of open access information and the US government's attempts at openness rather than enclosure.

  • Dynamic Maps, GIS Data and Analysis Tools from NREL

This site provides free renewable energy resource maps that provide measures of potential energy in particular regions of the country. The maps consist of wind, solar, geothermal and biomass resource maps. [61] These maps are of the entire US and typically will provide detail down to 1km x 1km squares that rank the level of sun insolation in that area, the speed and consistency of wind in that area, the presence of biomass materials for harvest, or the existence of geothermal heat wells. This information is critical to developers or individuals who want to assess the viability of installing alternative energy technology in a particular location. The government believes that by providing this information for free it is encouraging the development of new alternative energy plants. This type of information informs which regions in the US are appropriate for alternative energy developments, but the level of detail is fairly general. There is a burgeoning consultant market for more detailed regional analysis, especially for wind and geothermal resources which can require specific tools - and in the case of wind, measurements over time - to determine the best location for certain alternative energy technologies.

  • Wind Maps and Wind Resource Potential Estimates

Wind Powering America provides high-resolution state wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. Here you will find an 80-meter wind resource map for the contiguous United States with links to individual state wind maps and a chart showing the wind resource potential for the contiguous United States. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader.

  • Open Energy Information (OpenEI)

The OpenEI website states its mission as: "Open Energy Info is a platform to connect the world’s energy data. It is a linked open data platform bringing together energy information to provide improved analyses, unique visualizations, and real-time access to data. OpenEI follows guidelines set by the White House’s Open Government Initiative , which is focused on transparency, collaboration, and participation. OpenEI strives to provide open access to this energy information, which will spur creativity and drive innovation in the energy sector."

This website is the first substantive effort by the US government to encourage open access to energy information, and is backed by the Obama Administration's pledges for increased transparency in the federal government. The government hopes OpenEI will drive innovation (as stated in the mission), and encourage the private sector and individuals to come up with novel solutions to problems that the US government does not have the time, budget or staff to address.

  • U.S. OpenLabs

The Open Labs are an offshoot of the OpenEI wiki, which state their mission as the following: "Recognizing the need for comprehensive technical assistance to support clean energy pathway development across the globe, the U.S. Government is establishing a network of U.S. National Laboratory experts to provide both targeted and cross-cutting technical assistance to developing country partners. The goal of this effort is to ensure that U.S. technical resources can be readily accessed to support global efforts to combat climate change.

In its full implementation, this U.S. Government initiative will employ a multi-Agency approach to providing needed technical assistance to developing countries on clean energy and responding to new and emerging global climate change policies, priorities and commitments."

  • Database of State Incentives for Renewables & Efficiency (DSIRE)

"Established in 1995, the Database of State Incentives for Renewables & Efficiency (DSIRE) is an ongoing project of the North Carolina Solar Center (based at North Carolina State University) and the Interstate Renewable Energy Council (IREC). It is funded by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE), primarily through the Office of Planning, Budget and Analysis (PBA). The site is administered by the National Renewable Energy Laboratory (NREL), which is operated for DOE by the Alliance for Sustainable Energy, LLC. DSIRE is a comprehensive source of information on state, local, utility, and federal incentives and policies that promote renewable energy and energy efficiency."

The DSIRE site is the primary information hub for all federal, state and local policies, and is offered as an open access resource free to the public. It also includes maps that identify policies by regions and states, and many helpful sources of information that allow individual and business investors and citizens in general, make educated decisions on the purchase and use of renewable energy and energy efficiency technologies and upgrades.

End-user initiatives

There are numerous examples of user driven technology, or more specifically, individual innovations that provide alternative energy solutions to situations where lack of electricity is a hindrance to development or adequate living conditions. Examples include the following:

  • Build it Solar

Build it Solar is an online information commons where plans and ideas on various energy conservation, water conservation, solar electric, solar thermal, bio-fuel, and assorted other solar projects are shared for individuals with an interest in building the technologies. The site focuses on residential scale developments, and is similar to sites that cater to people with other technological hobbies that share technical know-how. Sites like these can be most helpful to those in rural areas who are not tied to the electrical grid, people in states that do not offer competitive rebate or subsidy programs for alternative energy adoption, or those who do not have access to these types of technology through local businesses.

  • Discover Solar Energy

Discover Solar Energy defines itself as: "a comprehensive resource of more than 9,000+ renewable energy links to relevant websites of individuals, governments and organizations. The links are cross-referenced to help homeowners, engineers, hobbyists, teachers and students find quick answers to issues relating to alternative energy."

Similar to Build it Solar, this site can be defined as an online information commons where individuals share information about do-it-yourself alternative energy projects that run the gamut from solar projects to wind, hydro, and bio-energy.

  • William Kamkwamba's Homemade Wind Turbine

William Kamkwamba is a popular example of an inventive solution for a lack of interconnected electricity in the developing world. At the age of fourteen he built a small electric producing wind turbine from scraps he found in his village in Malawi. He followed the information he found in a library book called Using Energy, and was able to successfully generate enough electricity to run four lights and two radios in his family's home. His story caught the attention of TEDGlobal Conference Director Emeka Okafor, who found William and has since invited him to speak at multiple TED conferences and has helped William find a school where he can build on his talents and help others.

  • Solar Panels Made from Human Hair

While the feasibility of this invention has been questioned, it was reported in September of 2009 that a teenager in rural Nepal had invented a solar panel that used human hair, rather than silicon, to convert the sun's energy into electricity. The individual price was estimated at ₤23 per panel, but it is believed that economies of scale could reduce the price significantly given the ubiquity and affordability of human hair.

  • Co-op Power

Co-op Power is an example of numerous other co-ops in the US and abroad that rely on the strength of communities to install and pay for alternative energy infrastructure. By creating their own financing structures, raising their own capital, and doing their own installations, these co-ops are able to construct collaboratively owned alternative energy facilities that provide electricity to numerous people. While the network affect is more localized than and online network, the results impact many people.

China’s Market Share

China now ranks among the top countries in respect of the number of its patents for renewable energy technologies. The Government of China had to implement diverse policies to overcome such barriers to renewable energy development as: (a) the high cost of developing renewable energy; (b) the difficulty of connecting renewable energy to the grid; (c) institutional impediments; (d) the lack of international investment; (e) a weak legal and regulatory frame- work; and (f) an uncertain level of future demand and thus of prices for renewable energy. (UN-WESS2009 p.121)

The New York Times reported recently that China’s solar PV industry is growing rapidly led by Suntech Power Holdings Ltd., the leading producer of PV panels in China and fourth largest global producer. (Bradsher 2009; Capello 2008) Currently, China is backing their solar industry with significant subsidies, which are enabling Suntech to sell their panels on the American market for less than the cost of the materials, assembly and shipping. (Bradsher 2009) While the Obama administration plans to give $2.3 billion in tax credits to cleantech manufacturers in the U.S., it may be too late. China is able to produce the technology at a much lower cost in large part due to the cheap labor they can hire, paying recent engineering graduates around $7000 a year. In addition to Suntech there are a number of Chinese companies ready to enter the solar market backed by the governments deep pockets. (Bradsher 2009) However China still faces trade restrictions, but this can change if they achieve the plan of building assembly plants in the US.

The emerging competitive threat presented by China may provide some insight into Secretary Chu’s push for US/China energy technology collaboration. While a vast number of developing countries will contribute to carbon emissions, China is now the largest global carbon emitter (See Figure 13). It also has an enormous brain trust devoted to the cleantech field. It will benefit the US to create collaborative partnerships with China to encourage their adoption of these technologies, and to ensure that the US doesn’t fall behind in the development of new innovative technologies.

Global Carbon Emitters.png

There is no panacea to the climate change issue, and a broad spectrum of technologies must be used to address carbon emissions reductions. The particular technologies that are appropriate for certain countries are specific to the needs of that country based on their overall emissions, their pace of growth, their natural resources, and their alternative energy resources (sun, wind, tides, rivers, etc.), among other factors. It can reasonably be argued that for the least developed countries that produce far less carbon emissions than developing countries or the emerging economies like China, India and Brazil, the most economically efficient way to meet their carbon emissions reduction targets would be through non-IPR protected means such as re-forestation or reduced de-forestation plans. (Copenhagen Economics & The IPR Company 2009)

More from here: http://www.energy.gov/news2009/7642.htm

The Sino - American Energy Geopolitical Relationship

The US and China have a tenuous political relationship and their current battle over the appropriate policies and technological innovations for climate change action has added new complexity. While the US has been a long-term leader in global carbon emissions, China doubled their energy consumption from 2000 to 2007, and surpassed the US claiming the top global carbon emitter mantle at 24% of global emissions. These two countries are now responsible for roughly half of the world’s yearly carbon emissions. The culprit is coal, which provides 80% and 50% of China and the US’s energy respectively. It is the cheapest fuel available - cheaper than oil, natural gas, or any of the commercially available renewable energy sources - and the US has 27% of global coal reserves while China has 13%. As the countries discuss their role in climate change mitigation and the carbon reductions they will agree to, China has held a firm stance that the reductions and policies must be led by the US. This is based on the fact that the US per capita carbon emissions are five times greater than China’s and, when calculating the total carbon emissions since the beginning of the industrial revolution, the US is responsible for 28% while China can claim only 8.5%. (Schell 2009)

While their is ample focus on the alternative energy markets in the US and China throughout this paper the following figures (XXX and XXX) are meant to provide points of comparison to the similar graphs in the sections on Europe and Japan .

Notable points in Figures XXX and XXX include the relatively small percentage of electricity that the US and China are generating with alternative energies, despite their large total amounts of wind generation capacity as measured globally. This can be easily explained by the vast quantities of energy that each country consumes. They hold the top two global spots for energy consumption, and therefore, as pointed out in Figure 14 , the top two spots for carbon dioxide emissions due to burning fossil fuels, since the vast majority of their energy comes from fossil sources.

It should also be noted that while our research has indicated that there is a great deal of innovation happening in alternative energy development in China, the patent totals displayed in Figure XXX below, do not seem to support this conclusion. The report which published these patent totals was from 2008, and all the most recent articles and reports on China that have discussed their increasing innovation have been from 2009. We assume that given this time difference, and the time lapse in the patent application process, that the total patent application numbers would be higher today than when these numbers were assembled.

US RE table.png

Other Countries

In this section we aim outline the role each of our focus countries has played in the development and diffusion of alternative energy sources, as well as the patent application activity that has taken place among our focus technologies. Under the name of each country analyzed, we present a table with the generation capacity of each alternative energy technology, the consumption of electricity, consumption of renewable electricity and the number of patent application for each technology. The patent statistics are measures of the number of patent applications by technology by patent office. It should be noted that the patent applications may not be exclusively from nationals. Other sections of the paper may present the data on the top applicants around the world in regard to a specific studied technology.

European Countries: Denmark, Germany and Spain

The US and China may eventually play the most prominent roles in addressing global GHG reductions due to their high levels of greenhouse gas emissions and the growing political momentum supporting emissions reductions. Historically though, the role of the US and China in the development of critical GHG reduction technologies has not been as prominent or impactful as other countries. As noted in the section above, A Rapidly Growing Market , Germany, Spain and Denmark, three countries which have used demand-pull policies called feed-in tariffs (described in footnote 12) to build markets for alternative energy technology, have become homes for some of the globe's most successful alternative energy technology companies. As exemplified in figures 3 and 7 the top global wind and solar companies are commonly found in these particular European countries. While Germany has been a dominant player in the wind energy market, both in terms of the total amount of installed wind capacity in the country and the number of top global companies based in Germany that are manufacturing wind turbines, Denmark's Vestas is the top global wind turbine manufacturer and as detailed in the wind technologies history above, Denmark and Vestas were the first innovators in the modern wind industry, holding many critical patents. As of 2008 though, Germany had moved ahead in wind patenting activity accounting for 39% of the wind technology patents received by the European Patenting Office (EPO). The United States was in second place with a 16% share of patent applications, and Denmark was third with 9% of patent applications. [69]

As noted in Figure XXX below, Germany, Denmark and Spain have a good deal of wind energy capacity and solar PV capacity, and while Denmark's wind capacity is dwarfed by Germany and Spain, as a percentage of total energy consumption within the country, it far outweighs Germany and Spain. Spain is the only country of the three that is generating electricity from solar CSP plants, and none of the countries have tidal or wave installations generating commercial energy, despite the fact that each country has ocean coastline. It should be noted that Denmark has several wave energy pilot plants that may produce commercial electricity in the future. (Jensen et. al. 2009)

Europe RE table.png

Overall, Europe still dominates the global alternative energy market with $49.7 billion of new investment in 2008 as compared to $30.1 billion in North America (As shown in Figure XXX below). These totals represented a 2% increase over 2007 in Europe and an 8% decrease in North America. (SEFI 2009, 19) Developing countries showed increases in alternative energy investment as well. Not surprisingly, the leader in this group was China with an 18% increase in alternative energy investment to a total of $15.6 billion. South America was led by Brazil's sugar cane ethanol production and rose 63% over 2007 to $12.3 billion. India also showed steady gains with a 12% increase over 2007 to $3.7 billion. (SEFI 2009, 19)

Global energy investment 2008.png

Distributed Innovation in Alternative Energy Technology: Denmark's offshore wind industry

As mentioned earlier in the paper, Denmark's wind industry developed as one of the first and most successful in the world and in those early years, they relied on practical hands-on approaches to innovation rather than more formal R&D practices. The result was a stepwise and distributed process of innovation, which differed from the US approach where the focus is on large technological breakthroughs. The design and production of various wind turbine components were undertaken by numerous small to medium enterprises and dedicated research institutes, which enabled the Danish wind industry to benefit from collaborations in a distributed innovation network. (Andersen & Drejer 2005, 3) It has been observed that the dominant market position of the Danish wind industry is not accompanied by increased patent activity, in fact their patent activity is quite low in comparison to other countries that rely on patents, like the United States, signaling that the appropriability regime is different in Denmark. (Andersen & Drejer 2005) argue that contrary to more common systems of innovation, Denmark may focus on the importance of local customs and the necessity of alliance formation and collaboration in order to preserve the political trust in the wind industry as coordination mechanisms in their wind industry (P. 8 and p. 18). Using case studies from various offshore wind companies in Denmark, they observed the collaboration practices and appropriability regimes of a group of complimentary wind turbine component manufacturers. Among other findings, it became clear in their discussions with these companies that patents were not the preferred form of appropriation, as they were a form of individual appropriation which was regarded as an attempt to profit on the shared competencies of the industry. Patenting could lead to collective sanctioning within the industry to exclude that company from future learning possibilities and damage the individual company's reputation. Sharing of information and design principles enables the various component part companies to work together on solutions to the complicated design of offshore wind turbines. In addition, many of these companies have experience gained from complementary industries such as the automobile industry or the oil industry, and the knowledge developed to create solutions in the offshore wind turbine industry is formed from these complementary business experiences. Specifically, the reasons for collaboration as observed by (Andersen & Drejer 2005) were:

  • Need of knowledge economies - communities spanning across organizational borders, where knowledge is continuously embedded in practice (p. 17) - in order to foster the new industry of off-shore wind. In this case, the innovation became much more "team oriented" than company owned.
  • Need for solving specific problems no one could solve alone. (p.18)
  • Need for testing new concepts which could be too risky to be tested alone, but whose solution would benefit the industry as a whole.
  • Need for development of new technology and solutions through annual conferences and meetings.

The authors pointed out that the knowledge companies obtained in the wind industry could be appropriated in "complementary branches of the industry"; In other words, "the knowledge obtained solving specific problems related to offshore wind turbine plants was useful in other settings as well" (p. 21) This facilitated collaboration and innovation among companies in the off-shore wind industry.

Japan has historically been the global leader in installed solar PV due to it's residential subsidies from 1999 - 2005. During this period, their boom in installations allowed Japanese solar manufacturers like Mitsubishi, Sharp, Sanyo and Kyocera (See Figure 3) to grab significant portions of the global market. In 2006 Japan lost its top spot for installed solar PV capacity to Germany due to the generous German FIT. In 2008 Germany fell to second place after Spain's generous FIT pushed their installed solar PV capacity to 2.6 GW, which represents half the global installed capacity. (REN21 2009, 11) In 2008 Japan unveiled a $9 billion solar subsidy program that is designed to get them back on top, help them meet their 2012 Kyoto Protocol goal of greenhouse gas emissions 6% below their 1990 level, and help them solve their energy security issue by reducing fossil energy imports. (SEFI 2009, 19-20)

In Figure XXX below it is clear that Japan does not have the same amount of alternative energy generation capacity as the European countries, the US or even China, but their patent application totals, which are tabulated from the Japanese Patent Office, are much higher than any other country. Also see Figure 3 for an example of the strong positioning of Japanese solar manufacturers in the global market. These examples show how Japan's R&D investments and high patenting rates have led to their global leadership in the solar market.

Japan RE table.png

Political Economy of Intellectual Property in Alternative Energy

Ip and alternative energy technologies.

As global climate change continues to dominate international negotiations around capping carbon emissions, as evidenced by the contentious discussions leading up to the UNFCCC [18] Copenhagen Summit, the Intellectual Property rights of the technologies that will facilitate the carbon reductions and how those impact in innovation diffusion process and technology transfer, have become a hotly debated topic.

Patents represent the most significant IP tool involved in this field, and until recently, the IP factor did not parallel the usual IP debate found elsewhere in regards to access, sharing or balance. Many IP issues emerging from the Climate Change debate did not come to the center of attention of the traditional IP observers or civil society. This may be because the debate over clean and renewable technologies has been politicized and linked to long-term discussions around climate change, but not linked to innovation and IP as in other fields such as pharmaceuticals, software, and cultural works (Carol: insert footnote expanding this comparison?). Additionally, the public good perceived by innovation in renewable energy (energy efficiency and low carbon emissions to mitigate climate change) is less immediate and tangible than the specific need of access to an AIDS related medicine.

In this sense, political strategies from cleantech and alternative energy industry associations were much more focused on policies to foster the adoption of these technologies such as supply-push and demand-pull policies as explained in this paper - over fossil fuel-based energy. Thus, it appears that few in the international IP community have paid attention to the crescendo of patents in the alternative energy market as evidenced in Figure 4 and its effects into innovation and tech transfer.

State of Technology: measuring innovation in Alternative Energy

The concept of Innovation has disputed meanings. For Schumpeter, in his Theory of Economic Development, innovation is “the commercial or industrial application of something new—a new product, process or method of production; a new market or sources of supply; a new form of commercial business or financial organization.” The Advisory Committee on Measuring Innovation in the 21st Century Economy states that innovation is “[t]he design, invention, development and/or implementation of new or altered products, services, processes, systems, organizational structures, or business models for the purpose of creating new value for customers and financial returns for the firm.” (ACMI, 2008, 1) [19] The direct effect of this dispute around innovation concept is also translated in the absence of common public measures of the scope of innovation or even agreement on its source. [20] As presented by the 2008 OECD Report Environmental Innovation and Global Markets:

Innovation has been defined as the introduction of new products, processes, or services into the market. The innovation process is commonly divided into three stages: invention, innovation, and diffusion, though, in practice, the process is not linear. Two models dominate the academic technology innovation literature. According to the ‘technology push’ view, technological change occurs mostly as the result of autonomous trends and public policy. The proponents of this view emphasize the need for governmental support for the development of technologies, most commonly through publicly-funded R&D programs. The ‘market-pull’ view holds that technological change comes primarily from the business sector and depends mostly on corporate investments in response to demand. This view emphasizes the importance of government policies such as technology-based regulatory limitations, emission caps, or charges. The recent literature and the case studies developed in this report lend support to the idea that, in practice, both push and pull factors affect technology development. (OECD, 2008a, 6)

It is also important to consider that innovation is meaningless if not considered in the larger context of growth and capacity of growth, which together should point to the innovation capacity of a certain country. In this sense, [t]he great majority of energy innovation worldwide takes place in industrialized countries, although many developing countries – such as Brazil, China and India – also have active efforts to develop and deploy new energy technologies. (Gallagher et al. 2006, 214)

More recently, other stages were added (Grubb, 2006; Foxon and Carbon Trust, 2003) in the innovation chain: basic research, applied research, development, mark demonstration, commercialization and diffusion, resulting in the following figure, which correlates policy and innovation phase. This division of the innovation value chain into several steps helps to organize the discussion in regard to the emergency or not of commons-based models in Renewables, but in practice the process is not linear.

{(INSERT FIGURE 1 PG 14 OECD 2008a)/INSERT/COMPARE WITH FIGURE 1, P201, Gallagher et al. (2006)}

While innovation is difficult to quantify, some aspects related to key dimensions of inputs and outputs can still be measured (Smith 2006, in Oxford Handbook of Innovation) . Measuring innovation is even more important for emerging industries, such as the renewable energy sector, receiving large amounts of governmental spending both for research and development (R&D) as well as for market expansion.

Innovation can be captured through quantitative and qualitative metrics. For instance, quantitative metrics include spending or investments for innovation; the number of programs and partnerships; the number of technical publications; the number of patents filed, granted, and cited; and the use of life-cycle or S-curves; the number of process innovations; the number of new technology generated; the calculation of learning rates, etc. (Gallagher et al., 2006) Specifically, within the renewable energy, innovation has been caputered through the growth of patents (WIPO, 2009; Cleantech Group at Heslin Rothenberg Farley & Mesiti P.C.; Waltz et al., 2008; Lee el all, 2009; and the Brazil Patent Office’s Technology Alerts 2009) ; using bibliomethric technics and focusing on the Solar sector (Vidican et al., 2009) ; mesuring investment, including R&D investment (public & private) and venture capital (VC) investment (SEFI 2009) ; and the success in international trade (Waltz et al., 2008) and success international competition (Brunnermeier and Cohen 2003) . Additionally, within specific types of renewable energy technology it is also correct to affirm that better efficiency comes from some grade of innovation, as Watanabe et al. (Watanabe et al, 2000) have discussed in regard to the development of PV technology in Japan. In a similar sense, the raise of the Capacity Factor may demonstrates efficiency within Wind technology originated from possible incremental innovations (Nemet, 2006) .

Over the past few years, all of the above indicators have been pointing toward increasing innovation within the renewable energy industry. However, as Gallagher et al. (2006) have pointed: “There are numerous ways to measure Energy Technology Innovation, but unfortunately no metric adequately encompasses the processes of innovation, spanning basic research to broad commercial deployment. Some metrics capture efforts on basic energy R&D, for example, whereas others serve as better indicators of technological deployment. Still, it is worthwhile to consider the different ways that innovation can be assessed through indicators, so long as one is explicit about what each indicator actually measures without taking liberties and assuming that a given indicator is indicative of innovation more generally.” (p. 210) It is also clear that none of these metrics capture new modalities of innovation, such as distributive innovation, open innovation or common-based arrangements for innovation. Or also other innovation inputs such as open databases, open access publications, inputs from clients and so on. As specifically pointed by the ACMI (2008) report, for instance, when commenting the role of patents on measuring innovation, asserts: “But, in many firms and industries, significant amounts of investments in innovation are made outside of these categories - patents and others [21] - and go consistently unmeasured or unconnected by the current statistical system.”

Innovation Input Metrics

“Input metrics try to measure both tangible and intangible contributions to the innovation process. For the earlier stages of innovation, these inputs include, but are by no means limited to, financial investments into energy RD&D, existing scientific and knowledge (“old stock”), and the practical problems and ideas from which new inventions arise. In later stages of innovation, inputs include funding for demonstration and deployment programs, materials and fuels to run demonstration projects, and the developed inventions that are moving into the phases of demonstration and deployment. Human resources are essential to the inputs because many of the tacit contributions to innovation are embedded in people’s minds owing to education, training, and learning from past innovative efforts.” (Gallangher et al., 2006, 210)

The obvious benefit of using investment to track potential innovation is that government spending data tend to be readily available and can be tracked year by year, however this is true in general when the data being tracked is government spending in early R&D phases on research on renewable. There is no comprehensive data for later stages such as demonstration or deployment. When investment data are inclusive of the later stages of innovation, it is frequently impossible to ascertain how they are allocated among the different stages. It is also exceedingly difficult to obtain detailed data about private sector spending because such information is usually considered proprietary. (Gallangher et al., 2006, 210)

In other parts of this discussion we have already pointed to the patterns of government spend in R&D in the past of USA. It worth noticing, however, the policy changes occurred with the 2009 Recovery Act. A recent White House Report affirms that “the energy components of the Recovery Act represent the largest single investment in clean energy in American history and are leveraging private investment and fostering American innovation and ingenuity. The Recovery Act investments of $80 billion for clean energy aim to produce as much as $150 billion in clean energy projects. Existing investment programs could produce up to $90 billion in additional clean energy projects. These investments are designed to accelerate investment in clean energy projects and pull private investment off the sidelines.” [[Alternative Energy/Bibliography by Research Question| (White House, 2009)] These investments include growth in the generation of renewable sources of energy, enhanced manufacturing capacity for clean energy technology, advanced vehicle and fuel technologies, and smart electric grids.

Specifically, Obama committed to the target of 3% of GDP on research and development, including a major commitment to energy projects – such as ARPA-E - the Advanced Research Projects Agency for Energy - and doubling the budgets for the National Science Foundation and the National Institute of Standards and Technology, among other agencies. Particularly, between 2009 and 2016, the enacted and proposed budgets would add $42.6 billion to the 2008 budgets for these basic research agencies, with a special emphasis on encouraging high-risk, high-return research and supporting researchers at the beginning of their careers.

Because of these investments made through the economic stimulus bill, Vice President Joe Biden believes that the United States is on track to double renewable energy generation by 2012 and that, additionally, USA also will double its capacity to manufacture wind turbines, solar panels and other clean energy components in three years, according to the report. One of government motivation is cutting carbon emissions 80% by 2050. The current level of research spending in the U.S. amounts to about 2.6%, compared to 4% in Japan and 1.4% in China. The European Union has a target of 3% by 2010. [[Alternative Energy/Bibliography by Research Question| ( BBC, 2009)] Examples of investment policies to foster deployment and public-private partnerships are the case of the Japanese program for dissemination of PV technology (US$ 200 million in subsidies, from 1993-1998, stimulated market actors to invest $300 million) and the German “100/250” wind power program the government gave subsidies of DM330 million (1995DM), and market actors provided another DM650 million (1995DM). (Gallangher et al., 2006, 219)

Later in this paper, we will discuss the specific case of USA in regard to how R&D investments have impacted in the number of patents in alternative-energy related areas, specifically in regard to PV solar technology. In this sense, to metrics will be correlated, an input metric, investments, and an output metric, patents.

Human Resource

“Measuring human resources is the other frequently used input metric for innovation in general. Human resources are often measured in terms of the number of scientists and engineers in aggregate, by sector, or on a per capita basis. Data are often collected in terms of the highest degree attained (e.g., bachelor’s, master’s, doctorate). This measure of R&D personnel is useful in a number of ways. The main drawback to using data on the number of people engaged in R&D activities is that this metric does not account for the quality or efficiency of the work. Also, when comparing the number of people engaged internationally, one must be especially careful because there can be many more people employed in a developing-country setting where the cost of labor may be cheap, but the research infrastructure may be much poorer. This input metric is difficult in an energy context because it is hard to ascertain when scientists and engineers are working purely in the energy domain.” (Gallangher et al., 2006, 211)

In regard to Alternative Energy, David Cahen comments “We face, after over two decades of not-so-benign neglect, a serious deficit of alternative-energy (AE)-oriented basic science researchers. Indeed, a major problem in meeting the global energy challenge may well be the paucity of top scientists pursuing AE-related research problems. This deficit has the potential to self-proliferate, because a limited core of experienced researchers will encourage a limited group of talented students and post-docs to seek research opportunities in AE research in the future.” (Cohen, 2008)

Obama tries to change this reality with major efforts of creating new jobs. In this sense, the Recovery Act investments in renewable generation and advanced energy manufacturing of $23 billion will likely create 253,000 jobs and leverage over $43 billion in additional investment that could support up to 469,000 more job, putting us on track to meet the goal of doubling our renewable energy generation, including solar, wind and geothermal, in just 3 years.

Innovation Output Metrics

Bibliometric mesures.

Vidican et al. (2009) , in a novel research, analyzed information and trends in the publication of text documents seeking to explore the relationship between joint publication patterns and trends, R&D funding, technology development choices, and the viability and effectiveness of industry-university collaborations with emphasis on the solar photovoltaic (PV) sector in the U.S. By doing that, they aimed to elucidate patterns and trends in technological innovation and the role of public research institutions (research universities and national laboratories) in the development of new industries in order to inform policy-making.

Before Vidican et al. (2009), Zimmerman et al. (2009) used bibliometrics to examine national research collaborations. Tsay (2008) traced the evolution of hydrogen energy literature worldwide. Godo et al. (2003) covered national and international collaboration patterns in the fuel cell technology in Norway, and Larsen (2008) outlined co-authorship networks in the area of nanostructured solar cells using bibliometric and also social network analysis.

Vidican et al. (2009) observed that, generally speaking, the number of publications started off high with peaks in the early to mid-80s'. However, as we move into the 90s', there was a marked decline in the number of papers, which continued until around 1995, after which publication counts were observed to increase again. The authors, however, point out that this trend acquire specificities when they analyze specific combination of publication coming out of collaborations between national-laboratories and universities; national-laboratories and companies; and universities-companies. They also see a tendency of decentralization of publications over the decades from two core centers – California and Massachusetts – to other regions of USA, due, in their opinion, to the localization of NREL in Colorado [22] , and the specialization of those initial areas in IT and biotechnology, after the decrease of funding to research in energy. Related, the authors also observe that the publication pattern follows the public investment in R&D in USA.

Finally, they observe that, despite of the Department of energy (DOE) has initiated several funding schemes to foster research collaborations between public research institutions and the private sector, such as the PV Manufacturing Technology Project (in 1991) [23] , the Thin-Film PV Partnership (in 1994) [24] , or the Industry Alliance Project (in 2007).

They authors conclude that: “using bibliometrics offers valuable insights for understanding the outcomes of government research expenditures, the institutional players involved in the emergence of an industry, the technological trajectories over the years, and in general the level of interest in a particular domain of knowledge. The results from our analysis point to the close association between federal investment in R&D and knowledge production, as measured by number of publications. Especially in the early stages of industry development, 1970s and 80s, R&D funding programs proved to be critical for advancing science in solar photovoltaic technologies.” (Vidican et al. 2009, p.11) However, the authors were not able “to identify the impact that publications are having on the field of solar technologies as a whole”. (Idem, p.12)

International Trade and Competition

Waltz (2008) develop an interesting exercise of analyzing innovation based on comparisons of patent and international trade data, and comparing the relative competition position of countries internationally, and finding which countries are innovating and on what they are specializing.

In aggregated terms, and with date from 1991-2004, the author finds that “Germany has emerged as a leader in patents, while Japan leads in exports [of renewable energy technologies]. The US is now trailing behind Germany and Japan. The other major OECD-countries, such as UK, France, and Italy, each only account for less that 5% of world trade of international patents of renewable energy technologies. The ten OECD countries most active in renewable technology together account for 80% of all international patent in the world.” (Waltz, 2008, p. 11) However, the grade of specialization on renewable energy in comparison to other technologies varies immensely by country.

The author then finds that “among the 6 largest OECD economies, both Germany and Japan have been specializing on renewable energy technologies. The US, UK, France and Italy, on the other hand, have been specializing on other technologies. Both their patent activity and export performance is below average for renewable energy technologies”. (Waltz, 2008, p. 11) Finally, the author also points to his findings that even among the specialized countries, the specialization varies among renewable energy technologies. Thus, while Japan is highly specialized in Photovoltaics and very below average in regard to wind technologies, Germany is highly specialized in wind and close to average in PV. (Idem, p. 11) The author concludes that there are clear differences and clear specialization patterns among the leading countries, which have been changing over time. Furthermore, there are clear differences within countries in regard to levels of specialization within different renewables. The author believes that these differences are consequence of the different regulations adopted in each country.

Intellectual Property and Alternative Energy

As global climate change continues to dominate international negotiations, the Intellectual Property rights of alternative energy technologies (and climate change related technologies) and its impact in innovation diffusion have become a recent hotly debated topic.

Patents represent the most significant Intellectual Property (IP) tool involved in this field. “Patents are intended to act as incentives for innovation – providing exclusive rights to the use of particular inventions for a fixed period. The expectation is that the exclusivity will enable the firm holding the patent to charge a price above the marginal cost of production and thus to recoup the investment. In return, inventors are required to disclose sufficient information in their patents, so that society can benefit from the increased knowledge about technologies. Traditional economic analyses have frequently taken for granted that patents are liquid and tradable goods, and have not explored intersectoral differences in how they are used in practice.” (Lee et al., 2009, 5) In this sense, “In addition to attracting VC, a patent portfolio is also a currency for use in strategic alliances and protection against litigation, as well as in opportunities for mergers and acquisitions. The interplay between financing and access to patents is a critical issue for the new entrants – in developed and developing countries alike.” (Lee et al., 2009, 8)

Until recently, the debate around the effects of IP in innovation in Renewables did not parallel the usual IP debate found elsewhere in regard to access and sharing of knowledge. Consequently, until very recently (2009-2010), you did not use to see much of the traditional IP observers, civil society or the Access to Knowledge Movement focusing on this topic or the incredible growing rate of patents within this technology field. This may be because the debate over clean and renewable technologies has been politicized and linked to long-term discussions around the environmental movement, climate change and the need of dependency reduction of fossil fuels, but not linked to new modes of innovation and access such as in fields like pharmaceuticals, software, or cultural works. Other causes of this thematic disconnection may be (a) the fact that the public good perceived from innovation in renewable energy (climate change mitigation) is less immediate and tangible than the specific need of access to an AIDS related medicine and (b) that the role played by cleantech and alternative energy industry associations were much more focused on policies to foster the adoption of these technologies such as supply-push and demand-pull policies over fossil fuel-based energy, than in explicitly increasing IP standards for renewable and cleantech technology.

However, (i) the conclusion of the 4th Assessment Report of the IPCC that for the rise in average global temperatures to keep within 2oC above pre-industrial levels, global emissions must peak before 2020 and be reduced to 50–85 per cent below 2000 levels by 2050 and (ii) the increasing data showing a great concentration of patents and R&D investment within the world richest nations have changed this scenario, since “in all cases these proposed targets far exceed the current rate of deployment and in most cases they will require a rate far higher than the greatest ever annual deployment of the particular technology” (Lee et al., 2009, 10) The understanding of this reality has caused a domino chain reaction: a crescent international pressure for technology transfer is taking place and saw its peak just before Copenhagen 2009 with the pressures for compulsory license and proposals from least developed countries (LDCs) to be exempted from patent protection of climate-related technologies for adaptation and mitigation.

a.The growth of patents

Patents provide an attractive way to measure inventive activity, since they provide a wealth of information of the invention and the applicant, reflecting the innovative performance of a firm or an economy (Johnstone et al, 2008, 6) . However, is important to acknowledge that studies have revealed that patent counts are an imperfect way to represent the rate of invention. For instance:

“Patents provide an attractive way to measure inventive activity for several reasons: comprehensive data is publicly available, the technical characteristics are described in detail, the definition of what constitutes a patent in the U.S. has changed little for over 200 years, and every patent is categorized by experts using a standard classification scheme (Griliches, 1990; Watanabe et al., 2001; Jaffe and Trajtenberg, 2002; Hall et al., 2005; Popp, 2005) . Studies have revealed that patent counts are an imperfect way to represent the rate of invention. All patents are not equally important, not all inventions are patentable, firms use alternative means to protect their intellectual property, and sometimes they patent strategically (Harhoff et al., 1999; Bessen, 2005).” (Nemet, 2006, 16)

“Patents filed, granted, or cited are another metric of innovation in general and also for ETI more specifically. As with R&D investments, the main advantage of measuring patents is that data tend to be readily available, at least in industrialized countries. It is important to note that patents filed and granted are usually considered to be an output indicator of R&D (or invention) activity, not of wider innovative success because the invention might not be widely deployed. As noted by Archibugi & Coco, international comparisons in patents are problematic because the quality of patents varies substantially across countries, as does the propensity to patent in foreign countries. The same problem one encounters with respect to defining an energy technology when considering which patents are energy related and which are not (and when patents filed in a nonenergy sector might have implications for the energy sector) occurs in the patent realm. In addition, certain industries tend to patent more frequently than others and thus will vary in the energy context, depending on which industry is doing the innovation.” (Gallagher et al. 2006, 214)

Additionally, specifically in regard to alternative energy, one might encounters problems with respect to defining an energy technology when considering which patents are energy related and which are not (and when patents filed in a non-energy sector might have implications for the energy sector). In addition, certain industries tend to patent more frequently than others and thus will vary in the energy context, depending on which industry is doing the innovation. ((Gallagher et al. 2006, 214) . Likewise, as pointed by (Reichman (2008) , another barrier to studies of patents in green technologies (defined by Reichman those to cover technologies that facilitate carbon abatement, both energy supply and energy efficiency technologies) is that the U.S. Patent and Trademark Office (PTO) does not recognize green technology as a class, making it difficult to assemble quantitative information about patents in the sector. Waltz also point to the same problem remembering that renewable anergy technologies are neither a patent class nor a classification in the HS-2002 classification of trade data from the UN-CAMTRAD DATABANK. (Waltz, 2008)

This realization posed a great challenge to the present research, since the review of the literature bringing data on the growth of patents if far from unified in regard to the types of patented technology the literature covers. This problem is not just caused by the lack of specific classes, but actually to the core characteristic of multidisciplinary of innovation process within alternative energy technologies. “Most energy technologies are part of complex technology systems. Individual companies may specialize in manufacturing one or several components, or in their assembly and operation, while companies from other industries may try to adapt existing technologies to novel applications.” (Lee et al., 2009, 21)

In any case, and independently of the methodologies in use [25] , firstly, all literature covered points to a crescendo of patents since the 90s, and secondly, the goal of bringing data on patents in this section is actually to provide us insights in regard to the trends of a culture of enclosure within the renewable energy technology field and where this is mainly happening, and not to be precise in regard to how many patents within the technologies we analyze actually exists.

An interesting and recent WIPO report [26] found that overall patenting activity in alternative energy technologies has risen from the 1970s to the present, as evidenced by applications filed at the USPTO, JPO , EPO , KIPO and SIPO and also through the PCT system . Specifically, the total patent filings have increased at a rate of 10 percent per year starting in the 1990s and at a rate of 25 percent from 2001. (WIPO, 2009) Taking this data into consideration, KIPI (2005) would affirm that the alternative energy technology appears to be in a growth phase, and for many of the specific technologies, in a “maturity period” [27] .

However, this increasing number of patents filled does not always reflect adoption or deployment rates of the technology they cover, since “many of the innovations that began in the 1970s and 1980s are only now coming onto the market.” (Lee et al., 2009, 12)

b. Relation between oil prices and growth of patents

Some studies also try to relate changes in oil prices to patent activity. “Changes in the price of oil and increasing awareness of the issue of climate change can be considered significant factors in driving patenting activity during (certain) periods. During the late 1970s, the price of oil increased dramatically, increasing the impetus for alternative energy technologies. This momentum subsided in the 1980s, when the oil price dropped down again to around 20 dollars a barrel. In the 1990s, worries over global warming led to the conclusion of international environmental agreements calling for the restriction of greenhouse gas emissions into the atmosphere. OECD countries in particular focused on alternative energy research as a means of reducing their greenhouse gas emissions. The late 1990s heralded the beginning of a new surge in oil prices, which a number of major countries addressed by establishing national energy strategies as part of which energy research and development budgets were strengthened.” [[Alternative Energy/Bibliography by Research Question|(WIPO, 2009, 13)]

(INSERT GRAPHIC OF PAG 14, BUT INCLUDE PRICE OIL X PATENTS)

However, this relation should not be considered immediate or direct. As observed, it is true that the sensitiveness of governments in regard to the need of renewable energy technology innovation and diffusion raises in times of oil prices peaks. But the immediate effect is much more related to the development or broadening of a series of policies on the supply and demand side of renewable energy value chain, then a peak of patents. No study, however, try to measure the times of these cycles.

c.Relation between regulation/policy and growth of patents

In other sections of this paper, we have analyzed the effect of specific policies and regulation in regard to innovation and diffusion of the renewable energy technologies. In this part, we develop a brief literature review of a couple of authors who developed a high level analysis of how policies impact in innovation in renewable energy, in general using data on patent (positive or negative) growth.

For instance, Waltz et al. (2008) , taking patents as an intermediary measure for innovation and international trade (exports) as a final measure for innovation, analyze the impact of regulation in generating innovation. The author use the term “regulation” in a broad sense, to include subsidies on the supply side of the technology markets, such R&D subsidies, but also various instruments used on the demand side, such as feet-in-tariffs or tax subsidies. He identifies a triple regulation challenge in regard to fostering innovation within renewable energy technology: what Waltz call “traditional aspects of regulation” (such as standardization, intellectual property, spillover effect of R&D), affirming these are not specific to Renewables; economic and antitrust issues (such as access to the grid and monopolist behavior); and environment and safety issues. To deal with those, the author focus on regulation in the supply side, specifically R&D investment, and demand side, related to diffusion of technology and affirms “the level of diffusion of renewable technologies in different countries also serves as a rough proxy on the stringency of demand regulation”. (Idem, p.16) .

Waltz et al. (2008) then bring a clean classification of what he called “promotion strategies” and separate countries among those policies:

Promotion strategies.png

The author concludes that all the regulations above plus R&D subsides are an important to justify growth in patents and technology diffusion. Waltz et al. then attempt to use econometrics to classify those policies into an “innovation friendless” index.

Other authors, opted, however, to develop specific case studies to understand the correlation among a certain policy and the growth of patents. Margolis (2002) , for instance, go deeper into this and present a PV case study, comparing cases of USA, Japan and Germany.

d. Patent Trends by technology

Wind power is a mature technology and as evolved into a mainstream multi-billion-dollar market, with the emergence of highly specialized companies such as Vestas and Enercon, in parallel to global equipment manufactures such as General Electrics, Siemens and Mitsubishi. The field of onshore wind power has slowed in development and barriers to innovation largely remain at the development stage due to complex public policy and permitting involved with constructing power plants based on wind technologies. The field of offshore is a faster growing and more innovative field than onshore wind. Developments in adjustable blade angle and composite technologies have been crucial to the development of near shore wind. Deep-water wind is the most experimental area of wind. Deep-water installations take advantage of powerful winds and avoid NIMBY problems but they also require sophisticated moorings, which are currently being developed and tested (Walter Musial of the National Renewable Energy Laboratory speaking at the renewables-UMaine-V2.pdf Power of the Gulf Conference June 12, 2008 in Northport, Maine). Another advantage of offshore is that it allows the turbines to be larger due to fewer transportation limits. The larger turbines are more economical. "Reliability problems and turbine shortages have discouraged early boom in development."

As mentioned before, there is not one credible source of patent data, but many. However, due to the lack of uniformity in terms of methodology, each study or report bring different counts of patents.

In the patent landscape exercise performed by Lee et al. (2009) – who used data from ThomsonReuters in addition to publicly available databases from US, EU, Germany, Japan, and the WIPO-PCT and recognized that critical areas of innovation may be missing from the study (Lee et al., 2009, p. 62-63) – investigated the increasing number of patents concluding that: “The early focus of innovation in wind was in blades (harnessing mechanical energy from the air), the generator (efficient conversion of mechanical energy into electricity) and the gearbox, a frequent cause of breakdowns. These three sub-spaces continued to dominate patent trends after the rapid growth in patenting in the late 1990s. In recent years, wind has become a conventional energy source – placing a greater premium on effective integration with the grid, accurately modeling wind patterns and building in more difficult locations with high wind speeds. Investment in innovation has spread to software and control systems, short-term energy storage and offshore technologies. Across the whole technology space there has also been a trend towards larger-scale turbines.” (Lee et al. 2009, p 23)

Figure31.png

It is also interesting to observe that, in wind, the top 20 players are assignee of an average of 25% of patents in all related technologies and that are concentrated in OECD countries. Specifically, the top four wind patent owners, which are also leading manufactures, collectively own 13% of all wind patents and have a 48% share of the global wind turbine market. Exceptions are the increasing role played by China in wind in the last 5 years and a multinational company with origin in India – Suzlon – which the key strategy has been to acquire European companies. (Lee, 25)

  • ‘‘‘Solar’’’

Photovoltaic power has developed rapidly with active government support policies, reductions in costs, and improvements in technology. The size of the world market for photovoltaic technology has increased strongly, at an average rate of over 30 percent, led by countries such as Japan, Germany, and the United States. Worldwide solar power capacity has increased from 110MW in 1992 to 1809MW in 2003, out of which Japan, Germany, and the United States accounted for 85 percent of the total (IEA 2006) .

By 2008, global installed capacity of solar PV grew up to 15.2 GW and this growth has also been accompanied by the growth of patents and portfolio complexity, patent litigation and patent licensing in regard to 2nd and 3th generation of PV technology. Interesting to observe that 1st generation technology has not been patented as heavily as the emerging thin-film PV technologies. (Lee 2009, 28)

Some of the identified innovation hotspots within Solar PV based on its patent counts are (Lee, 2009, 21) : Nano-related innovations, High temperature tolerance, Solar concentrators, Integration with buildings, fabrics and other materials; while within CSP we find: High Temperature Collectors, Convergence between CSP and Concentrated Photovoltaic, Heat transfer liquids (air, hydrogen, molten salt), Heat storage (molten salt), batteries, plus hydrogen as a by-product. Second and third generation technologies are focused on using emerging non-silicon technologies to improve thin film efficiency.

Today, there are different and competing technology approaches to next generation PV, and none has gained dominance or full market acceptance. While some of these technology approaches may end up dominating the next phase in PV deployment, as yet the key players in these subsectors do not appear in the overall top 20 patent ranking. For instance, in clear contrast to wind, only two of the top 10 manufacturers of PV modules7 (Sharp and Kyocera) are among the top 20 patent holders. (Lee, 2009, 27)

The United States and Japan are leading locations for patent filing in solar PV energy, followed by WIPO and the EPO. In the USA, for example, solar patents went up sixty percent in 2009 in comparison to 2008. (CEPGI, 2009) . While the trend broadly reflects current markets and R&D capacity, emerging markets such as China are also seeing increasing patenting rates.

Specifically, Japanese companies led the field in terms of applications for solar energy technologies, with Canon (leader within the US since 2002 (CEPGI, 2009) , Sanyo Electric, Sharp, Matsushita Electric, and Kyocera holding top positions. (WIPO, 2009, 77)

Based on data from the USPTO, Solar patents may be the most evenly distributed with 20 percent of patents in the top one percent of patent owners, fifteen percent in the next 4 percent, twenty two percent in the next 15 percent and forty four percent of patents in the bottom 80 percent of patent owners. (CEPGI, 2009)

  • The case of Solar in Japan

Japan has taking a leading role in PV power generation. Watanabe et al. (2000) argue that Japan’s Ministry for International Trade and Industry (MITI) played an essential role is securing this position to Japan due to the R&D policies implemented since the 1974 Sunshine Project and increased with the New Sunshine Project from 1993, specifically: encouraging the broad involvement of cross-sector industry (from textiles, chemicals, petroleum and coal products, ceramics, iron and steel, non-ferrous metals, electrical machinery, and public institutes have participated in PV development in Japan), fostering inter-technology developments, and inducing vigorous industry investment in PV R&D, which lead to a great knowledge stock.

Wata1.png

Watanabe et al. (2000) demonstrate a “double boost effects” of the virtuous cycle to solar cell production coming from both increased technology knowledge stock of PV R&D and decreased solar cell production prices. Similar “double boost effects” can be observed in PV R&D, which is the source of technology knowledge stock, coming from both increased solar cell production and MITI’s PV R&D budget. (Idem, p.310)

JVC.png

  • ‘‘‘Tidal/Ocean’’’

Peter Asmus, President of Pathfinder Communications, affirmed “Consider these simple facts: waves, tides and ocean currents are 800 times more powerful than the thin air that is wind. Tides can be predicted decades in advance, while the wind resource shifts so suddenly, forecasts are good for only a few hours at a time. The sun never shines at night.”

However, as pointed before in this paper, ocean energy has a great potential [29] but still is a small portion of the current renewable energy market - the total installed capacity of emerging “second generation” marine hydrokinetic resources (a category that includes wave, tidal stream, ocean current, ocean thermal and river hydrokinetic resources) was less than 10 MW at the end of 2008.

The sector presents relative high patent activity with strong presence of start-ups and universities, but also traditional oil companies, such as Shell and Chevron. [30] However, the patent activity does not equal to advanced states of development of the hundreds of technologies conceived and documented.

Specifically, tidal power plants currently in operation include installations in Rance in France (completed in 1967 with a capacity of 400 kilowatts), Kislaya Guba in the Russian Federation (completed in 1968 with a capacity of 800 kilowatts), Annapolis in the United States (completed in 1986 with a capacity of 20 000 kilowatts), and Jiang Xia in China (completed in 1980 with a capacity of 3000 kilowatts) (KEMCO 2007) .

One of the key technical challenges for these are the unknown operations and maintenance (O&M) costs, which can reach almost 40% of total project costs in Tidal and Ocean technologies and also technical issues of energy transfer from offshore to onshore. For Peter Asmus “the next five years will be 'make or break' for ocean energy business”, adding “each of five major marine energy technologies remains unproven beyond small pilot projects”.

Wave and tidal technologies, our focus, have been object of major research and development from the1970s, decreased on the1980s and start to raise again in the 1990s with the focus on generators and turbine design. The WIPO 2009 report shows that the patent trends on this field have followed this movement. Patent applications for wave power technologies are larger in number than applications for tidal power, accounting for 61 percent of the combined total. (WIPO 2009)

Figure32.png

Top applicants in this field are Mitsubishi, followed by Ocean Power Technologies [31] - which, is supported by the US Navy, developing R&D on the PowerBuoy 40 (a wave energy converter that is 16 meters high and 14 meters in diameter, most of which is submerged in the ocean), the Hitachi Zosen Corporation, Mitsui Engineering and the NKK Corporation. Northeastern University, from USA, holds the largest number of triad patent families in the field. This University is followed by Energetech Australia, mainly in the field of tidal power.

The growth of patents in USA

(UNDER DEVELOPMENT)

The correlation between investment and patents in the USA

The case of wind in the usa, the case of pv solar in the usa, the growth of patents in china, stakeholders intellectual property discourse.

However, this lack of attention from the IP community changed dramatically in the spring and summer of 2009 with the advent of the Obama administration making public statements about sharing technology related to energy. (Revkin & Galbraith 2009) In late March during a speech at Brookhaven National Laboratory, Secretary Chu was asked by a reporter whether he thought there should be more international collaboration in some areas of energy research. Secretary Chu replied:

Since power plants are built in the home country, most of the investments are in the home country. You don’t build a power plant, put it in a boat and ship it overseas, similar to with buildings. So developing technologies for much more efficient buildings is something that can be shared in each country. If countries actively helped each other, they would also reap the home benefits of using less energy. So any area like that I think is where we should work very hard in a very collaborative way - by very collaborative I mean share all intellectual property as much as possible. And in my meetings with my counterparts in other countries, when we talk about this they say, yes, we really should do this. But there hasn’t been a coordinated effort. And so it’s like all countries becoming allies against this common foe, which is the energy problem.

These comments earned a quick response from the United States Chamber of Commerce, a leading lobby representing businesses, which expressed its concern that sharing the intellectual property of new alternative energy technologies with developing countries could erode the IP rights that have driven commercial efforts to innovate for generations. (Green Patent Blog 2009)

Consequently, late in May 2009, the Chamber of Commerce and representatives of General Electric, Microsoft and Sunrise Solar gathered in Washington to launch the Innovation, Development & Employment Alliance, or I.D.E.A. (Green Patent Blog 2009) The initiative is aimed at pressing Congress and the Obama administration to ensure that global climate-treaty talks do not weaken protections on who can profit from new technologies that provide abundant energy without abundant pollution (Burgos 2009) The creation of I.D.E.A. has been widely noted, with some alarm, in the IP “watchers” community, and likely means the status of alternative energy as a less-observed IP sector is finished for good.

Private industry views the patents on these technologies as necessary to ensure a return on their R&D investment. Steve Fludder, the director of the green “Ecomagination” division of General Electric, which plans to invest $1.5 billion next year in research and development, expressed his concern over Secretary Chu’s comments about sharing IP. “Why would we invest $1.5 billion a year in innovation that just slips through (our) fingers? I mean, why would anybody invest in anything that they would have to just give away?” he added “Stifling investments in innovation is going to basically work against the very goal that everyone is trying to achieve.” (Revkin & Galbraith 2009)

The Role of Business Associations in Alternative Energy

While the alternative energy sector is flush with business associations, intellectual property rights do not appear to play a role in the advocacy activities of these associations. The majority of the associations are focused on being advocates for government support for their particular technology, as most alternative energy technologies are reliant of government subsidies, tax credits, and other preferential support to enjoy market competitiveness with incumbent fossil fuel energy sources - as mentioned earlier in this paper. For a partial list of business associations in the alternative energy sector see these Associations . This profile may change with the formation of I.D.E.A..

International Renewable Energy Agency (IRENA)

IRENA is an international alliance of 82 countries that have agreed to collaborate to promote a rapid transition to renewable energy on a global scale. Among the states that have signed the Statute of Agency are 30 African, 27 European, 17 Asian and 8 Latin-American countries. The agency aspires to provide access to relevant information such as reliable data on the potentials for renewable energy, best practices, effective financial mechanisms, and state-of-the-art technological expertise. [77] IRENA will provide advice and support to governments worldwide on renewable energy policy, capacity building, and technology transfer. IRENA will also improve the flow of financing and know-how and collaborate with existing renewable energy organizations. IRENA’s goal is ultimately to increase the share of renewable energy worldwide. A multilateral agency for renewable energy has been missing from the international community, and the founding of IRENA reflects a growing concern among governments around the world of the need to support renewable energy technologies. (REN21 2009, 17) It is still unclear how IRENA plans to address issues involving intellectual property rights.

International Energy Agency

The International Energy Agency (IEA) is an intergovernmental organization which acts as energy policy advisor to 28 member countries in their effort to ensure reliable, affordable and clean energy for their citizens. The IEA runs one of the largest collaborative technology development efforts in the world through their Technology Implementing Agreements . The agreements provide a legal framework for both IEA and OECD member and non-member countries to collaboratively develop technology through coordinated research, development, demonstration and deployment. For over 30 years, this international technology collaboration has been a fundamental building block in facilitating progress of new or improved energy technologies. [78]

In Addition the IEA runs three open databases for free searches of renewable energy, energy efficiency ans climate change policies and measures. These are the Energy Efficiency Policies and Measures , the Global Renewable Energy Policies and Measures , and the Climate Change Policies and Measures databases. These databases are among the most comprehensive amalgamation of national-level policies on renewable energy, energy efficiency and climate change policies and measures in IEA member countries as well as several non-member countries, such as Brazil, China, India, Mexico, Russia and South Africa. [79]

Cooperative Research and Development Agreement (CRADA)

An innovative program designed to facilitate collaboration between the National Renewable Energy Lab (NREL) and outside entities is a CRADA or Cooperative Research and Development Agreement. NREL uses a CRADA when a partner and the lab intend to collaborate on a project. The CRADA protects a company's and NREL's existing intellectual property, and allows the company to negotiate for an exclusive field-of-use license to subject inventions that arise during the CRADA's execution. [80] The CRADA agreements can be:

  • "Shared-resources" which means the research is funded by the government and is part of ongoing research at NREL. In this case no funds change hands.
  • "Funds-in" which means the partner will pay for all or part of the research, but NREL does not provide the partner with any funds. [81]

International Climate Change Information Programme (ICCIP)

The ICCIP is a program based on the partnership among universities and governments with the following stated goals: [82]

  • To disseminate the latest findings from scientific research on climate change, including elements related to its environmental, social, economic and policy aspects in a way that allow them to be understood by the non-specialist audience. This will take place by means of books, book chapters, journal articles and information via the media;
  • To undertake education, communication and awareness-raising projects on matters related to climate change in both industrialised and developing countries in cooperation with UN agencies, universities, scientific institutions, government bodies, NGOs and other stakeholders;
  • To network people and organisations ways to discuss the problems, barriers, challenges and chances and potentials related to communication on climate change.

The site is maintained and run by Hamburg University of Applied Sciences in Germany, and works in cooperation with a wide number of organizations, most notably the United Nations Environment Programme (UNEP).

The ICCIP also strives to help to meet the demand for climate-friendly and climate-neutral events through on-line events, which will be organized on a regular basis. These are not meant to replace conventional, presence events, but rather to complement them; and the ICCIP will encourage more networking and information exchange with an aim to catalyse new cooperation initiatives and possibly new projects.

Technology Collaborations and the role of Intellectual Property

International technology collaborations could hold the key to significant future advances in alternative energy development. International energy technology collaborations are not new, as has been demonstrated by the International Thermonuclear Experimental Reactor (ITER) and the Carbon Sequestration Leadership Forum (CSLF). The first is an international research collaboration on nuclear fusion, and the second is an international climate change initiative designed to improve carbon capture and sequestration technologies with coordinated R&D funds from international partners and private industry. The barriers to international collaboration include the high transactions costs, and perceived difficulties protecting intellectual property rights. (Gallagher et. al. 2006)

As noted above, Secretary Chu has publicly supported collaborating with developing countries - in particular China - and sharing all IP rights of the resulting technologies. (Revkin & Galbraith 2009) He has already pushed forward with a new U.S.-China Clean Energy Research Center, which will provide the financial and infrastructure needs to enable joint research and development of energy efficient and renewable energy technologies between the US and China. The initial five years of the program will be supported with $150 million dollars of funding split equally between both countries. [83] After meeting with the Chinese Science and Technology Minister Wan Gang in the Great Hall of the People in central Beijing, Secretary Chu said: "I know we can accomplish more by working together than by working alone." (McDonald 2009) After US President Barack Obama's visit to China in Mid-November 2009, he and Chinese president Hu Jintao, made joint announcements about a host of other cooperative climate change and renewable energy technology programs. The programs, as announced by the US White House, are [84] :

  • The US-China Electric Vehicles Program - "The initiative will include joint standards development, demonstration projects in more than a dozen cities, technical roadmapping and public education projects."
  • The US-China Energy Efficiency Action Plan - "Under the new plan, the two countries will work together to improve the energy efficiency of buildings, industrial facilities, and consumer appliances. U.S. and Chinese officials will work together and with the private sector to develop energy efficient building codes and rating systems, benchmark industrial energy efficiency, train building inspectors and energy efficiency auditors for industrial facilities, harmonize test procedures and performance metrics for energy efficient consumer products, exchange best practices in energy efficient labeling systems, and convene a new U.S.-China Energy Efficiency Forum to be held annually, rotating between the two countries."
  • The US-China Renewable Energy Partnership - "Under the Partnership, the two countries will develop roadmaps for wide-spread renewable energy deployment in both countries. The Partnership will also provide technical and analytical resources to states and regions in both countries to support renewable energy deployment and will facilitate state-to-state and region-to-region partnerships to share experience and best practices."
  • 21st Century Coal - "Through the new U.S.-China Clean Energy Research Center, the two countries are launching a program of technical cooperation to bring teams of U.S. and Chinese scientists and engineers together in developing clean coal and CCS technologies. The two governments are also actively engaging industry, academia, and civil society in advancing clean coal and CCS solutions."
  • The Shale Gas Initiative - "Under the Initiative, the U.S. and China will use experience gained in the United States to assess China’s shale gas potential, promote environmentally-sustainable development of shale gas resources, conduct joint technical studies to accelerate development of shale gas resources in China, and promote shale gas investment in China through the U.S.-China Oil and Gas Industry Forum, study tours, and workshops."
  • The US-China Energy Cooperation Program - "The program will leverage private sector resources for project development work in China across a broad array of clean energy projects, to the benefit of both nations. "

As mentioned earlier, Secretary Chu is advocating for the development of open-source building energy-efficiency software that will make it cheaper and easier for developers to implement energy saving measures in new buildings, both in the U.S. and in emerging economies like China and India. He said “We should be inventing a new way of designing buildings — just like we engineered airplanes.” He offered an example of software that helps design integrated passive shading into a building, which is similar to other non open-source software applications that are able to pinpoint design elements like the most efficient window orientation for a particular building site, that takes advantage of the sun’s heat to maximize a building’s energy performance. (Garthwaite 2009a) While other open-source energy efficiency software projects have been undertaken in the past, their success has been limited by insufficient development funding. (Garthwaite 2009a)

In reaction to these new developments, I.D.E.A.’s first official act was to back the Larsen-Kirk Amendment (H.Amdt. 187) to the Foreign Relations Authorization Act (H.R. 2410). The amendment calls on the President, the Secretary of State and the Permanent Representative of the United States to the United Nations to uphold the existing international legal requirements for IP rights and avoid any weakening of them for the UNFCCC in the context of energy and environmental technology. The Amendment passed the House with a 432-0 vote. It was described as an amendment to protect U.S. green jobs and U.S. technology innovation. (Larsen & Kirk 2009)

Evidence from the Literature

The existing literature on the IP landscape in clean technology and the debates around the use of compulsory licensing make two points clear. First, there is a need for more research into the effects of IP in the nascent cleantech industry. None of the existing technology innovation models match the complexity of the industry, which involves myriad technologies (as noted earlier) and competitive markets. Second, the literature points to a preliminary finding that IP does not create a barrier to technology transfer - in the case of clean technology as a whole - from developed to developing countries. The weaknesses in these findings are the lack of detailed empirical evidence assembled from the various technologies that comprise the cleantech industry.

In a paper by Prof. John Barton of Stanford Law School (Barton 2007) , he argued that the patent and industry license practices are both warranted and crucial to technology innovation. The report focuses on the role of IP in alternative energy technology transfer for solar, wind and bio-mass technologies to China, India and Brazil. He asserts that competition between clean technologies and the competition in the electricity, fuel, automobile, and housing efficiency markets, reduce the ability of companies to charge a premium for their technology leaving manufacturing and capital cost as the greatest costs for clean technologies. Using the wind-turbine manufacturer Vestas as an example, he points out that R&D is only a small portion of overall cost of their turbines, resulting in a mark-up of only 0.20 on the manufacturing cost. This leads to low royalties - on the order of 1% of the sales price for the turbines. Therefore, there is very little wiggle room for differential pricing between the developed world and the developing world, which - he argues - means that compulsory licensing is unlikely to be an effective way to disseminate the clean technologies in developing countries since there will be very little financial benefit. He goes on to discuss the different issues observed in each of his three focus technologies.

  • The wind market tends to be quite consolidated with the four top companies controlling 75% of the market. IP issues are not expected to be a big issue here due to the easy access to the technology, though there may be future issues with cartel behavior. Developing countries like China and India have been successful in gaining a foothold in the wind market by buying developed nation firms and acquiring their patents.
  • The PV industry suffers from a difficult market existence due to the high cost of the technology. The market is somewhat consolidated, though there are numerous companies that manufacture various parts of the PV installation, which breeds a high level of competition. Thin film technologies may create a bigger IP barrier for developing nations due to the advanced nature of the technology, and the developed nation control over these technologies at the current time.
  • The biomass industry does not currently suffer from any IP barriers, but the promise of cellulosic ethanol, could create a battle over patents for the enzymes that will break down the lignin for sugar. The biggest barrier in this sector will probably be trade tariffs like the US tariff on Brazilian ethanol.

Barton notes that in all three technology sectors developing nations firm’s have succeeded in entering industry leadership and in some cases patents may have aided technology transfer. Patent disputes have usually been resolved by cross-licenses or product modifications in a pattern common in non-monopoly industries.

In a later paper, Barton (Barton 2008a) takes a closer look at the economic and policy challenges of meeting the emissions reduction targets of the UNFCCC through technology development and dissemination in developed and developing countries. He focuses on renewable electricity sources, carbon capture & storage and other mitigation technologies, biofuels, industrial efficiency, consumer conservation, and nuclear energy; he outlines the emissions reduction potentials, the modes of encouragement for the technologies, and the special issues in international technology transfer, making three points about the process that will be undertaken to disseminate these technologies. First, the financial heart of technology diffusion will be physical investment in the form of subsidies or regulatory incentives. Second, public-sector support for R&D is important. Third, his examples imply that the costs specifically assignable to technology will be very small when compared with the overall capital and investment costs.

There is general agreement within the literature that innovation in cleantech will only happen with appropriate and consistent carbon pricing systems to create a stable market for new technologies. In particular, a report from Chatham House (Reichman et. al. 2008) , an independent research organization in the UK, asserts that these market incentives will create an atmosphere where innovation can happen and R&D funds will flow into the clean energy technology industry. The authors believe that the nascent stage of clean energy technology development leaves very little empirical evidence to support the argument that IPR does or does not create barriers. Their report focuses on bio-fuels, solar PV, hybrid cars, fuel-cells and wind energy. Among their observations, the authors report that:

  • Bio-fuels do not seem to have a patent barrier. Small firms working on the enzymes for cellulosic ethanol are collaborating with larger firms and the patents seem to be generating a market for small firms. In the PV sector the authors refer back to Barton’s report (Barton 2007) and note that interchangeable patented technologies that work in the PV modules create a fairly competitive market and reduce any barriers.
  • Hybrid cars, fuel cells and the wind industry all represent incremental innovation, which is to say that the basic technology is off-patent and well known, while new improvements are being patented - but not exclusively - by certain market entities. This means there is competition among the manufacturers of these patented improvements.
  • There is a possible copyright IPR barrier that could develop around microbial agent research for ethanol enzymes, which is protected under EU Database Law.

The report suggests alternatives to traditional patenting and licensing in order to encourage innovation in green technologies.

  • Technology pools (patent pools) - licensing the combination of patents that make up a particular technology in an affordable pool of patents. The Eco-Patent Commons does this in a royalty free manner, but is not currently offering any alternative energy technology patents. This could be the basis of a Global Fund that buys up patent pools for critical carbon-abatement technologies and offers them to developing countries.
  • Prizes - rather than offering grants for R&D research, prizes can be offered for the most innovative solution to a particular problem.

The most current and controversial debates taking place around IP and technology transfer have been connected to the UNFCCC Copenhagen Summit, where developing nations such as China, India and Brazil hope to convince developed nations such as the US and the EU, to include a compulsory licensing option in the next version of the Kyoto Protocol climate change treaty. This model is borrowed from the biotech/pharma industry where governments are allowed to mandate that a company license patents for drugs that are critical to public health, at low or no cost, to generic drug companies in developing nations. The US government and the US Chamber of Commerce, in particular, have been quite unhappy with the idea of loosening IP protections for developing nations and have been vociferous in their objections.

A group of US companies who are concerned about the weakening of IP protections at the Copenhagen Summit have joined forces with the US Chamber of Commerce and created the Innovation, Development and Deployment Alliance (IDEA) asserting that “robust IP protection is needed to encourage investment in clean tech research and development, create green jobs and find solutions to the world’s energy and environmental challenges.” (Green Patent Blog 2009) Members of IDEA include large companies with strong patent portfolios like GE and Microsoft. An article by Josie Garthwaite of Earth2Tech explored the development of IDEA. In interviews for the article a venture capitalist and a lawyer opined that compulsory licenses are unlikely to have any affect on the deployment of critical carbon-mitigation technologies in developing countries due to the comparatively larger economic and infrastructure barriers in these countries. They believe that these issues will trump the assumed patent barrier issue.

In a direct challenge to the US Secretary of Energy, Steven Chu, David Hirschmann, the President & CEO of the Global Intellectual Property Center, asserted his belief of the importance of keeping IPR strong rather than loosening the rights as Secretary Chu had suggested in his speech at Brookhaven National Lab. (Revkin & Galbraith 2009; Hirschmann 2009) In an article he wrote for the Intellectual Property Watch blog, he notes that loosening IP protections could result in lost jobs and points out that this would be counterproductive to President Obama’s mission to create green collar jobs. (Hirschmann 2009)

In a 2008 paper by the International Centre for Trade and Sustainable Development (ICTSD), the authors suggested that compulsory licensing could provide the necessary framework for effective tech transfer to developing countries, while also suggesting other options such as financial mechanisms like a “Multilateral Technology Acquisition Fund,” which would buy IP rights for transfer to developing countries; prizes as incentives for alternative energy technology innovation; and institutional arrangements for open or collaborative innovation similar to the USA-China collaboration recently finalized by the Secretary Chu. (ICTSD 2008) In a partial contradiction, Frederick Abbott, a professor at Florida State University Law School, wrote about the Copenhagen Summit IP debates in a report for the ICTSD in June of 2009 (Abbott 2009) . He agrees with the general consensus in the literature that there is insufficient information available on the effect of IPR on clean technology innovation and transfer. His report uses the biotech/pharma industry as a comparison model for the cleantech industry, drawing his assessment of future success in the cleantech industry from the current progress of the biotech industry. He asserts that compulsory licensing has influenced the biotech/phharma industry on the margin, but the structure and behavior in the industry have remained largely constant. He notes that research has shown that the industry has consolidated rather than expanded due to compulsory licensing, and more companies (not less) are located in OECD countries. This evidence leads to his conclusion that compulsory licensing will have a similar impact in the cleantech industry. Abbott suggests that a solution to the tech transfer issues faced by the cleantech industry is patent pooling, which could encourage technology sharing at the R&D and commercialization stages.

In similar support of the use of patent pools, Kevin Closson wrote in the IP Strategist in 2009 (Closson 2009) , that the wait time for patent approval is currently too long, and that inventors in the US should use the “petition to make special,” which covers sustainable technologies, and can reduce the time to approval. Making a case for patent pools instead of patent thickets, he argued that while these are not a panacea, they will allow more effective access to the technology since sustainability technologies tend to involve a large number of different technologies combined with many of them being out of patent protection and in the public domain.

Copenhagen Economics and The IPR Company, two independent research companies, were contracted to assemble a report on the role of IPR in technology transfer in the lead-up to the Copenhagen Summit, and tried to assert a definitive conclusion on this complicated issue. The report presented data showing that patent protection in emerging markets has been on the rise. They noted that in 1998, 1 in 20 patents were protected in developing countries, while, by 2008, the number was 1 in 5. Within those developing countries, 99.4% of the patents were in a small group of emerging markets (China, India, Brazil, etc.). The authors determined - based on this trend - that patents are not a barrier to tech transfer to the majority of these developing countries since there are hardly any alternative energy patents registered in these countries. The authors also found that within emerging economies, the country with the largest number of wind technology patents only accounted for about 40% of all wind patents protected in emerging economies and the second, third and fourth largest patent holding countries accounted for only 30% of all wind technology patents protected in emerging economies. This indicates that there is a great deal of competition among wind technology manufacturers in emerging economies, which means that the price mark-up due to a patent monopoly cannot be very high. The authors argue that if wind technology is too expensive for developing nations to buy, it is not due to the IPR protections, but rather, more likely due to the additional cost of alternative energy technologies as compared to conventional fossil-fuel based energy technologies, which are often subsidized to create artificially low prices. They conclude that emerging markets could benefit from greater IP protection regimes since they have the market size and technological capacity to innovate locally, and foreign patent holders would be more willing to transfer technology if they knew their patents were protected. The authors suggest that transferring technology to developing countries could consist of financial support to compensate low-income developing countries for the economic burden of carbon abatement while preserving the countries’ incentive to minimize the costs of that abatement.

Mark Weisbrot of the Guardian Newspaper in the UK, offered his support for compulsory licensing in a short article in May of 2009. (Weisbrot 2009) He discusses the World Trade Organization rules that led to compulsory licensing in the biotech/pharma industry, comparing the mandate to the proposed model in the cleantech industry. The author views the WTO rules as protectionist and supporting a fundamentalist view of IPR, and he asserts that the cost of WTO trade restrictions has been $220bn a year when compared to liberalized trade. The article states that the Doha Declaration is one of the few victories to NGO’s fighting for a loosening of the WTO trade restrictions that keep crucial medicines from the populations in developing nations. Based on this historical background, Weisbrot asserts that compulsory licensing would be a positive policy in the cleantech industry.

So while the literature provides a helpful background on the issue, the relative scarcity of academic articles on this topic and the general assessment among the researchers that more research is necessary, leave an opportunity for others to step in and try to complete a more comprehensive study of the field.

Compulsory Licensing

Since the model for compulsory licensing has been borrowed from the biotech/pharma industry, the broader discussion among IP scholars has been whether the biotech industry is a good model for the IP challenges faced in the cleantech industry and whether compulsory licensing will encourage technology transfer to developing countries (Barton 2007) . Since the compulsory license addition to TRIPS was designed to provide developing nations with the ability to produce generic versions of patented drugs that are critical to public health, the comparison to the cleantech industry is appropriate since these technologies can also be critical to the future health of many countries that stand to be negatively affected by climate change. In practical terms, the two industries differ in many ways. While the biotech/pharma industry deals with high R&D and clinical trial costs to develop a cheaply duplicated product (often a drug) that usually has limited competition in the marketplace, the cleantech industry faces numerous more complicated factors. While the cleantech industry also has high R&D and demonstration costs, its products are typically very expensive to reproduce given their size and the amount of materials required to build them (take a wind turbine for example). Cleantech products are sold on a market that is full of other cleantech competitors, as well as competitors from the traditional fossil fuel energy markets, and, in the case of alternative energy technology, the strictly economic market for the least-cost technology based on price per kilowatt hour (kWh) - the demand-pull policies mentioned earlier can change the metrics of this economic market, which is one of the reasons it is so complicated.

The differences between the cleantech industry and biotech/pharma industry are substantial, and point to reasons why a system of compulsory licensing like the TRIPS model may not be effective for clean technologies. It is alluded to above that there are many different cleantech products, and this is yet another reason why the cleantech industry does not resemble the biotech/pharma industry. The cleantech industry includes alternative energy technologies such as the following - biomass & biofuels, geothermal, hydrogen fuel cells, ocean energy (wave, tidal, and ocean thermal), solar PV, CSP, wind (onshore and offshore), and smartgrid technology. Some energy industry members argue that nuclear technologies and high efficiency/low-carbon combined-cycle natural gas turbines can also be considered alternative energy. In the larger cleantech industry, technologies cover energy efficiency, carbon capture and storage, and the automobile industry. Technologies include - hybrid vehicle technology, advanced batteries, solar thermal technologies, energy efficient home appliances, lighting, and industrial machines, building energy efficiency software & hardware, electrical transmission & distribution software and hardware, and myriad energy storage technologies. It goes without saying that the different areas of scientific research involved with these technologies covers the full spectrum from biology to chemistry, engineering, nanotechnology, materials science, optics, etc. The only industry that can come close to matching the complexity of cleantech is the automobile industry, and it is still much more consolidated in its scientific spectrum.

Within the literature that addresses the issues related to IP in the cleantech industry, there are a number of conflicting views and a clear opinion that, overall, there has not been enough study of the IP factor in this nascent industry. The following is a review of the pertinent reports and their findings.

Topics of Future Research

Through the process of researching and writing this paper we have developed a number of questions that are appropriate topics for further research which will shed greater light on the issues we have chosen to address. Among these questions are the following:

  • While appropriability regimes have been shown to differ between firms operating in different countries, not just between different industries, we wonder if their is a difference in the patenting rate of the same company depending on the country in which their international operations are taking place.

Notes for further development into paper sections

FREE NOTES FOR FUTURE DEVELOPMENT

  • Hair based solar panels
  • Wind turbine in Africa
  • Explore patent pool proposals
  • Explore the opposition to compulsory license based on trade issues under the CO2 goals
  • Open Source development could be big here: http://www.cleantech.com/news/5268/software-glue-will-hold-cleantech-t
  • Many governments around the globe have identified the challenge of climate change as worthy of compulsory licenses for critical technologies, which is modeled on the World Trade Organization’s (WTO) Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS). TRIPS allows compulsory licensing in critical cases related to issues of public health. (ICTSD 2008) The United Nations Framework Convention on Climate Change (UNFCCC) has been the host of these discussions as member nations are trying to design the Post-Kyoto regime, which will be voted on in December of 2009 in Copenhagen, Denmark. China, India and Brazil have, for example, been advocating for the compulsory license provision in order to provide technologies at a reduced price to developing nations. (Weisbrot 2009) The United States has been divided on the issue and has powerful entities working on both sides.
  • ↑ For the purposes of this paper we will use two different terms for the two similar but different industries addressed in our research. The “alternative energy” industry refers specifically to energy supply technologies like the wind, solar and tidal/wave technologies that are the focus of our larger research project. The “clean technology” or “cleantech” industry refers generally to all energy supply, energy efficiency and carbon abatement technologies.
  • ↑ For instance, wind power dominates the European Renewables Deals (an annual review conducted by PriceWaterhouseCoopers), more so than any other major region, accounting for 60% of total European renewables deal value. Hydro accounted for the largest North American deal value in 2008, but this was almost entirely attributable to one deal. After hydropower, wind and solar power delivered the highest value deal segments, accounting for $1.4 billion and $1.3 billion of deal value respectively. (TFL 2009)
  • ↑ China is developing aggressive market strategies and investing heavily in solar technologies, in an attempt to gain control of the global market. Additionally, they are planning to open new assembly plants in the United States in order to avoid international trade restrictions. (Bradsher 2009)
  • ↑ The majority of the leading large wind turbine manufacturing companies in the market today were, in part, born from the wind power technology research and development that began in the late 1970s, most notably in Denmark, the Netherlands, Germany and the United States. (Lewis, Wiser 2007, 1)
  • ↑ The efficiency rating of solar PV panels is measured by the percentage of the solar energy hitting the surface area of the solar panel that is converted to electrical energy. Panels on the market today tend to be in the 8% - 20% efficiency range. (Hegedus 2003)
  • ↑ Other alternative energy-supply technologies include: biomass and biofuel technologies, geothermal technologies, hydrogen fuel-cell technologies and ocean thermal technologies.
  • ↑ http://belfercenter.ksg.harvard.edu/
  • ↑ For instance, "Solar cells are relatively inefficient economically relative to conventional thermal power generation, at a price of 3-4 dollars per watt (Smestad 2008). Given that wafer-type crystalline silicon is the most widely used material for producing solar cells and that the supply of high-purity silicon is expected to become increasingly tight, reducing the price of solar power will be a significant challenge." (WIPO 2009, 51) PV solar panel energy conversion efficiencies refer to the percentage of potential energy in the rays of sun hitting a PV panel that are converted into electricity for use by the consumer. The standard test conditions for a solar panel give the sun a potential energy content of 1000W per square meter. This is the sun under perfect conditions hitting the panel directly at high noon. PV panels have standard energy conversion efficiencies of 8% - 17% depending on their design, and the material used in the panel construction. If a PV panel's energy conversion efficiency is 12% then the actual electrical output of a 1 square meter panel will be 120 Watts. [1]
  • ↑ Tax Equity Investing - The government tax credits offered for solar developments can be sold to large banks which apply them to their own tax liability. As a result the bank becomes a partial funder of a solar energy development. Given the drastically shrinking bank profits, they are aren't buying the tax credits from solar developers at the same level they were prior to the economic downturn. This has resulted in a large shortfall in capital investment for new solar developments.
  • ↑ Nevada uses a Renewable Portfolio Standard (RPS) policy, which exists in different forms in about half of the states in the US. Nevada's policy calls for 25% of its electricity to come from renewable sources by 2025, with a 5% carve-out for electricity from solar installations. In congress with this policy are Nevada's aggressive solar and wind access laws, which "disallow the adoption of any covenant, deed, contract, ordinance or other legal instrument which affects the transfer or sale of real property that unreasonably restrict a landowner from installing solar or wind energy systems on their land." [2]
  • ↑ Ocean technologies as a classification, include tidal, wave and ocean thermal power generation. Our research is only focusing on tidal and wave technologies, but not ocean thermal. The following graphs and statistics unfortunately do not differentiate between investments in tidal, wave and ocean thermal, but according to a market report by SBI international (Perez, 2009) there is a great deal more investment and development happening in the market for tidal and wave technologies than for ocean thermal.
  • ↑ The US and China are the two largest GHG producers in the world.
  • ↑ A Feed-in Tariff is a government statute that requires electric utilities to buy renewable energy from producers at a premium per kWh price and guarantees these prices in long-term contracts of 10-20 years. The result is a low-risk investment structure for alternative energy plants since income can be predicted with a high degree of accuracy, and income is guaranteed due to the long-term contract.
  • ↑ The cost of generation for these various types of technology can vary depending on the location of the plant and the local cost of fuel or local quality of the renewable resource.
  • ↑ As a result of the global financial crisis, VC and private equity investment fell to $1.8 billion in the first quarter of 2009, a 22% drop from the fourth quarter of 2008. (SEFI 2009, 28)
  • ↑ The Public Utilities and Regulatory Policy Act of 1978 (PURPA) was the first US policy that gave alternative energy a competitive advantage (Carlin 2004, 351) : It required utilities to buy energy from alternative energy producers; It paid premium prices for each kilowatt hour of electricity produced; It guaranteed the prices for the entirety of 20 year contracts; and It was ultimately unpopular because the high prices created windfall profits for alternative energy producers, and the PURPA contracts were paid for by the electric utility, raising the price of electricity for all consumers.
  • ↑ The Valley of Death is the period between technology research and late stage development where many innovations have historically been lost or “fallen” into the Valley, rather than being funded and marketed properly to reach the commercial market. (Weiss & Bonvillian 2009)
  • ↑ See footnote XX
  • ↑ This “definition recognizes that the innovation to be measured is more than simply something new; it has the added component of adding value for both customers and firms. The definition also recognizes that innovation measurement needs to extend beyond simply measuring inputs. While it is important to track inputs to innovation – such as research and development spending – that is not enough. Outcomes of innovative activity need to be tracked and measured to determine fully the impact of innovation on the economy.” (ACMI, 2008, 1)
  • ↑ “Following recognition of the role that technology plays in economic growth (Solow, 1956) and early work characterizing the process of innovation (Schumpeter, 1947; Usher, 1954) , a debate emerged in the 1970s about whether the rate and direction of technological change has been more heavily influenced by changes in market demand or by advances in science and technology.” (Nemet, 2006, 5) The core of the science and technology push argument is that advances in scientific understanding determine the rate and direction of innovation, while changes in demand as a source for innovation is justified since it generates opportunities for firms to invest in innovation to satisfy unmet needs. (Nemet, 2006, 5-8)
  • ↑ “Others” here should be understood as research and development spending; number of engineers, scientists, and technicians employed; some other categories of investments, such as expenditures on information technology equipment. (ACMI, 2008, xi)
  • ↑ On September 16,1991 the Solar Energy Institute was designated a national laboratory, and its name was changed to the National Renewable Energy Laboratory
  • ↑ The PV Manufacturing Technology (PVMaT) project begins in 1990. The activity is a partnership between the US Department of Energy and members of the US photovoltaic industry. PVMaT is designed to improve manufacturing processes, accelerate manufacturing cost reductions for photovoltaic modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of manufacturing capacity (EIA). C.E. Witt et al., (1998), Manufacturing Improvements in the Photovoltaic Manufacturing Technology (PVMaT) Project, NREL/CP-520-24923 http://www.nrel.gov/docs/legosti/fy98/24923.pdf
  • ↑ The Thin Film Partnership Program works within focused research areas: amorphous silicon (a-Si), copper indium diselenide (CuInSe2 or CIS) and related materials, cadmium telluride (CdTe), environment, safety, and health (ES&H), and module reliability. Each of these research areas has an active National Research Team associated with it. The teams of manufacturers, academia, and NREL experts focus their efforts on materials, processes, devices, and manufacturing scale-up, coming together to discuss issues common to a each technology. More at: http://www.nrel.gov/pv/thin_film/about.html
  • ↑ Some perform searches with key words in the patent titles, other went deeper and tried to identify key technological concepts and segments.
  • ↑ The report investigates patent filing trends for various alternative technologies across the globe. Changes in the price of oil and increasing awareness of the issue of climate change can be considered factors in driving patenting activity, which is generally increasing. The distribution of applications among different areas of technology appears to be related strongly to the countries’ geographic and resource situation as well as the distribution of research and development budgets and supporting policies.
  • ↑ KIPI (2005) establishes 5 stages of technology development: introduction; rapid growth of R&D, patent applications and patent applicants (maturity period); stable technology renovation or stagnate and decrease of applications and applicants; re-discovery of technology usefulness and returning of increase of patent applications and applicants.
  • ↑ Variable speed control allows maximize energy collection while keeping the minimizing the load on the drive train. Unique wind volt-amp-reactive is a "dynamic power conversion system" used to maintain "defined grid voltage levels and power quality." The technology uses "a voltage controller placed at the point of interconnect measures utility line voltage, compares it to the desired level and computes the amount of reactive power needed to bring the line voltage back to the specified range." This reduces grid impact of wind, which is a variable input technology. Low voltage ride-thru technology is an enhancement to WindVAR. The technology that allows reaction to system events but does not require full system shut down during event recovery. The advanced electronics developed by GE Wind Power allow turbines to continually adjust blade pitch angle to maintain optimum efficiency for every wind speed. Lastly, active damping technology helps to reduce tower oscillation.
  • ↑ The United Nations (UN) estimates that the total “technically exploitable” potential for waterpower (including marine renewables) is 15 trillion kilowatt-hours (kWh), equal to half of the projected global electricity use in the year 2030. Of this vast resource potential, roughly 15 percent has been developed so far. The UN and World Energy Council projects 250 gigawatts (GW) of hydropower will be developed by 2030. If marine renewables capture just 10 percent of this forecasted hydropower capacity, that figure represents 25 GW, a figure Pike Research believes is a valid possibility and the likely floor on market scope. Hydrokinetic and Ocean Energy Renewable Power Generation from Ocean Wave, Tidal Stream, River Hydrokinetic, Ocean Current, and Ocean Thermal Technologies. Research Report. Published 2Q 2009. Pike research Cleanteach Market Intelligence. http://www.pikeresearch.com/research/hydrokinetic-and-ocean-energy
  • ↑ “Literally hundreds of technology designs from more than 100 firms are competing for attention as they push a variety emerging marine renewable options. Most are smaller upstart firms, but a few larger players – Scottish Power, Lockheed Martin and Pacific Gas & Electric – are engaged and seeking new business opportunities in the marine renewables space. Oil companies Chevron, BP and Shell are also investing in the sector.” (Pike research, 2009)
  • ↑ Ocean Power Technologies has assumed a leadership position in field of wave-activated turbine power generation, having developed a device for converting wave energy into electric power while submerged one meter below the ocean surface. Patent applications related to this device have been filed in many countries worldwide, and the company is seeking to extend its business into Australia and Spain with the assistance of the US Navy (WIPO 2009) .
  • Pages with broken file links
  • Alternative Energy

Navigation menu

research topics on alternative energy sources

Study shows renewable energy could partially replace diesel fuel to power instruments, provide heat at South Pole

A recent analysis shows that renewable energy could be a viable alternative to diesel fuel for science at the South Pole. The analysis deeply explores the feasibility of replacing part of the energy production at the South Pole with renewable sources.

For almost as long as humans have spent time in Antarctica, the continent has been a home for science. One of the research outposts located there is the Amundsen-Scott South Pole Station. The science done there includes studies of climate change and cosmology.

Currently, this site exclusively uses nonrenewable energy sources, specifically diesel fuel, to power the instruments and provide warmth for staff. A recent analysis by scientists at U.S. Department of Energy's (DOE) Argonne National Laboratory and National Renewable Energy Laboratory (NREL) shows that renewable energy could be a viable alternative. Their analysis, published in Renewable and Sustainable Energy Reviews , explores the feasibility of replacing part of the energy production at the South Pole with renewable sources.

"All of the energy at the South Pole currently is generated by diesel fuel and a generator," said Amy Bender, a physicist in Argonne's High Energy Physics division. "We were asking if it is possible to transition to renewables. This study is the beginning of trying to make that case."

Bender, who has spent time working at the South Pole, is the paper's corresponding author. The analysis illustrates the first steps for how renewable energy sources could be implemented at the South Pole, as well as details of what energy could be generated by these sources and the potential carbon savings that this program could enable.

To begin with, according to Ralph Muehleisen, chief building scientist and group manager for Buildings & Industrial Technologies at Argonne, the team wanted to know if using solar energy sources during the austral summer (November-February) would be feasible as a means of substantially reducing diesel fuel usage at the South Pole.

"Just having diesel as a backup during the summer, you could reduce the carbon footprint," says Muehleisen. "Even if we aren't eliminating the use of diesel completely, being able to avoid having to buy that diesel fuel for the summer cuts back on its use significantly."

Sue Babinec, the program lead for stationary storage at Argonne, described the team's focus on the type of energy storage required to make the project possible. She pointed out that renewable energy needs different energy storage than everyday battery applications such as transportation or consumer electronics. Demands specific to the South Pole make the differences even more stark.

"The types of batteries that you need for power with renewable energy don't just have to last for years, they have to provide energy for a very long period of time," she said. "We did a detailed analysis of what type of battery works best depending on whether you're using either solar or wind or both for power."

"When I got into renewables, no one talked about deploying solar in Alaska or in Canada because it was very expensive and it's not very sunny up there," says Nate Blair, a group manager in the Integrated Applications Center at NREL. "A renewable component, paired with existing diesel generators, provides greater reliability and resilience. If one piece breaks, the other components in the system can help get you through until that can get repaired. We see continuing cost declines for solar and wind and batteries into the future."

To complete their study, the team had to compile a substantial amount of data and then crunch the numbers to see the possibilities. Using NREL's Renewable Energy Integration and Optimization software, they concluded that replacing 95% of the diesel fuel needed to supply 170 kW of power at the South Pole station would save approximately $57 million over 15 years, after an initial investment of $9.7 million.

What's more, the time before the investment would pay itself back through fuel cost savings would be just over two years. These results alone make it clear that the concept of replacing nonrenewable energy sources at the South Pole with renewable ones presents a worthy topic for further discussion.

Implementing any such plan will take considerable effort. That includes getting the equipment across the Southern Ocean, then across hundreds of kilometers of icy tundra to the South Pole. Also, the infrastructure would need to be built to make renewable energy use a reality.

As Muehleisen puts it, "The DOE and universities all over the world have been trying to decarbonize our six continents. They're only starting to reach Antarctica, so we are now truly, for the first time, talking about decarbonizing the world." As he sees it, if we can begin to roll back use of nonrenewable energy sources at the last frontier on Earth, where only a few thousand people live and work at any one time, then there is no reason we can't do it everywhere else.

In addition to Bender, Babinec, Blair and Muehleisen, the paper's authors include Ian Baring-Gould, Xiangkun Li, Dan Olis and Silvana Ovaitt.

More information: Susan Babinec et al, Techno-economic analysis of renewable energy generation at the South Pole, Renewable and Sustainable Energy Reviews (2024). DOI: 10.1016/j.rser.2023.114274

Provided by Argonne National Laboratory

The arrangement of solar panel arrays sketched out in the study. The panels are aligned to catch sunlight along the horizon at virtually any time of day during austral summer. Credit: Argonne National Laboratory and National Renewable Energy Laboratory.)

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Two-thirds of Americans give priority to developing alternative energy over fossil fuels

research topics on alternative energy sources

President Donald Trump is promising major changes on climate and energy policy, including efforts to increase production from fossil fuel energy sources such as coal. But a new Pew Research Center survey finds that 65% of Americans give priority to developing alternative energy sources, compared with 27% who would emphasize expanded production of fossil fuel sources.

Support for concentrating on alternative energy is up slightly since December 2014. At that time, 60% said developing alternative energy sources was the more important priority.

There continue to be wide political differences on energy priorities. While a 2016 Pew Research Center survey found large majorities of Democrats and Republicans supported expanding both wind and solar energy, the new survey shows that Democrats remain far more likely than Republicans to stress that developing alternative energy should take priority over developing fossil fuel sources.

research topics on alternative energy sources

Report: The politics of climate change in the United State s

About eight-in-ten (81%) Democrats and independents who lean to the Democratic Party favor developing alternative sources instead of expanding production from fossil fuel sources. Republicans and Republican-leaning independents are closely divided: 45% say the more important priority should be developing alternative sources, while 44% say expanding production of oil, coal and natural gas should be given more priority.

research topics on alternative energy sources

There is an ideological divide in these views within the GOP. Among moderate and liberal Republicans and Republican leaners — who account for 36% of all Republicans and Republican leaners sampled – 65% prioritize developing alternative energy sources, compared with fewer (28%) who prioritize expanding production from fossil fuel sources. By contrast, conservative Republicans back the expansion of fossil fuels over developing alternative energy sources by a margin of 54% to 33%. Large majorities of both liberal Democrats (88%) and conservative and moderate Democrats (77%) prioritize alternative sources.

Political differences over energy priorities are broadly in keeping with polarized views on a wide range of climate and energy issues. For example, Pew Research Center has found that 88% of liberal Democrats and Democratic leaners say climate change is a major threat to the well-being of the United States , compared with just 12% of conservative Republicans and Republican leaners.

Fact Tank: Most Americans favor stricter environmental laws and regulations

research topics on alternative energy sources

There also are differences in public priorities about energy by age. Americans under the age of 50 are especially likely to support alternative energy sources over expanding fossil fuels. About seven-in-ten (73%) of those ages 18 to 49 say developing alternative sources of energy should be the more important priority, while 22% say expanding production of fossil fuels should be the more important priority. Older adults are more divided in their views, though they also give more priority to alternatives. Among those 50 and older, 55% say alternative energy development is more important, while 34% say it’s more important to expand production of fossil fuel energy sources.

Note: These findings are based on a Pew Research Center survey conducted Jan. 4-9, 2017 with a nationally representative sample of 1,502 U.S. adults. The full methodology can be found here , and the questionnaire wording and topline are here (PDF) .

Related posts:

Clinton, Trump supporters deeply divided over use of fossil fuel energy sources

Americans strongly favor expanding solar power to help address costs and environmental concerns

Most Popular

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

Despite High Potential, 75 Vulnerable Economies Face ‘Historic Reversal’

In Half of IDA Countries, Income Gap with Wealthiest Economies is Widening

WASHINGTON, April 15, 2024 — Despite their high potential to advance global prosperity, one-half of the world’s 75 most vulnerable countries are facing a widening income gap with the wealthiest economies for the first time in this century, a new World Bank report has found . Taking full advantage of their younger populations, their rich natural resources, and their abundant solar-energy potential can help them overcome the setback.

The report, The Great Reversal: Prospects, Risks, and Policies in International Development Association Countries , offers the first comprehensive look at the opportunities and risks confronting the 75 countries eligible for grants and zero to low-interest loans from the World Bank’s International Development Association (IDA). These countries are home to a quarter of humanity—1.9 billion people. At a time when populations are aging nearly everywhere else, IDA countries will enjoy a growing share of young workers through 2070—a huge potential “demographic dividend.” These countries are also rich in natural resources, enjoy high potential for solar-energy generation, and boast a large reservoir of mineral deposits that could be crucial for the world’s transition to clean energy.

Yet a historic reversal is underway for them. Over 2020-24, average per capita incomes in half of IDA countries—the largest share since the start of this century—have been growing more slowly than those of wealthy economies. This is widening the income gap between these two groups of countries. One out of three IDA countries is poorer, on average, than it was on the eve of the COVID-19 pandemic . The extreme-poverty rate is more than eight times the average in the rest of the world: one in four people in IDA countries struggles on less than $2.15 a day. These countries now account for 90% of all people facing hunger or malnutrition. Half of these countries are either in debt distress or at high risk of it. Still, except for the World Bank Group and other multilateral development donors, foreign lenders—private as well as government creditors—have been backing away from them.

“The world cannot afford to turn its back on IDA countries,” said Indermit Gill, the World Bank Group’s Chief Economist and Senior Vice President . “The welfare of these countries has always been crucial to the long-term outlook for global prosperity. Three of the world’s economic powerhouses today—China, India, and South Korea—were all once IDA borrowers. All three prospered in ways that whittled down extreme poverty and raised living standards. With help from abroad, today’s batch of IDA countries has the potential to do the same.”

More than half of all IDA countries—39 in all—are in Sub-Saharan Africa. Fourteen of them—mainly small island states—are in East Asia, and eight are in Latin America and the Caribbean. In South Asia, all countries except for India are IDA countries. Thirty-one IDA countries have per capita incomes of less than $1,315 a year. Thirty-three are fragile and conflict-affected states.

IDA countries share similar opportunities. The “demographic dividend”—a deep and growing reserve of young workers—is one of them. Abundant natural resources is another. These countries account for about 20% of global production of tin, copper, and gold. In addition, some IDA countries possess critical mineral deposits essential for the global energy transition. Because of their abundant sunshine, most IDA countries are well situated to take advantage of solar energy. On average, their long-term daily solar-electricity generation potential is among the highest in the world.

This potential, however, comes with risks that must be managed. To reap the demographic dividend, IDA governments will need to undertake policies to improve education and health outcomes and make sure that jobs are available for the rising number of young people who will enter the workforce in the coming decades. To seize the full potential of their natural-resource wealth, IDA countries will need to improve policy frameworks and build stronger institutions capable of better economic management. All of this will require ambitious domestic policy reforms—and significant financial support from the international community.

“IDA countries have incredible potential to deliver strong, sustainable, and inclusive growth. Realizing this potential will require them to implement an ambitious set of policies centered on boosting investment,” said Ayhan Kose, the World Bank’s Deputy Chief Economist and Director of the Prospects Group . “ This means improving fiscal, monetary, and financial policy frameworks and advancing an array of structural reforms to strengthen institutions and enhance human capital."

IDA countries today have large investment needs. In the poorest of them, closing existing development and infrastructure gaps and building resilience to climate change will require investment that amounts to nearly 10% of GDP. The costs of climate disasters have doubled in IDA countries over the past decade: Economic losses from natural disasters average 1.3% of GDP a year—four times the average of other emerging market and developing economies. Such needs will require IDA countries to generate sustained investment booms—the type that boosts productivity and incomes and reduces poverty. Historically, such investment booms have often been sparked by a comprehensive package of policy measures—to bolster fiscal and monetary frameworks, ramp up cross-border trade and financial flows, and improve the quality of institutions. Such reforms are never easy, the report notes. They need careful sequencing and implementation. But previous IDA countries have shown they are possible.

IDA countries will need significant international financial support to make progress and lower the risk of “protracted stagnation,” the report notes . Stronger cooperation on global policy issues—including fighting climate change, facilitating more timely and effective debt restructurings, and supporting cross-border trade and investment—will also be crucial to help IDA countries avert a lost decade in development .

Website: https://www.worldbank.org/en/research/publication/prospects-risks-and-policies-in-IDA-countries

Facebook: http://www.facebook.com/worldbank

X (Twitter):  http://www.twitter.com/worldbank

YouTube: http://www.youtube.com/worldbank

This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here .

ScienceDaily

From defects to order: Spontaneously emerging crystal arrangements in perovskite halides

A new hybrid layered perovskite featuring elusive spontaneous defect ordering has been found, report scientists at Tokyo Tech. By introducing specific concentrations of thiocyanate ions into FAPbI 3 (FA = formamidinium), they observed that ordered columnar defects appeared in the stacked crystalline layers, taking up one-third of the lattice space. These findings could pave the way to an innovative strategy for adjusting the properties of hybrid perovskites, leading to practical advances in optoelectronics and energy generation.

Perovskites are among the most extensively studied materials in modern materials science. Their often unique and exotic properties, which stem from perovskite's peculiar crystal structure, could find revolutionary applications in various cutting-edge fields. One intriguing way of realizing such properties is through the precise ordering of a perovskite's defects, such as vacancies or substitutions.

In oxide chemistry, scientists have known for a long time that oxide defects can spontaneously and consistently arrange themselves throughout the crystal lattice, once they reach certain concentrations (e.g. integer ratio). This emerging order can give rise to attractive properties. While defect ordering has been observed numerous times in perovskite oxides, the same cannot be said about hybrid halide perovskites, composed of an organic cation, a metal cation, and a halide anion.

Interestingly, in a recent study published in ACS Materials Letters , a research team including Associate Professor Takafumi Yamamoto from Tokyo Institute of Technology discovered a new defect-ordered layered halide perovskite, shedding light on how order can emerge through defects in these compounds. This work was inspired by a previous finding reported by the researchers, namely the formation of 'defect columns' obtained by introducing thiocyanate ion (SCN − ) into the crystal lattice of FAPbI 3 to obtain FA 6 Pb 4 I 13.5 (SCN) 0.5 . "We hypothesized that, if the concentration of SCN in the lattice increased, the amount of the PbI columnar defects would also increase, leading to different types of defect ordering, as seen in vacancy-ordered perovskite oxides," explains Dr. Yamamoto.

The team synthesized FAPbI 3 perovskite powders and single crystals via solid-state reactions using precisely defined concentrations of starting materials, including specific ratios of SCN - . They found that when an appropriately high ratio of SCN - was used, the obtained perovskite was represented by the formula FA 4 Pb 2 I 7.5 (SCN) 0.5 . This layered compound, like the previously reported one, also exhibited columnar defects spanning all stacked layers. However, unlike FA 6 Pb 4 I 13.5 (SCN) 0.5 , in which one-fifth of the PbI columns were orderly defected, one-third of all columns in the new FA 4 Pb 2 I 7.5 (SCN) 0.5 were defects.

The main novelty of this discovery is that the new compound, alongside the previous one, forms what's known as a 'homologous series.' This means that systematic variations of the compound's chemical formula, which can be represented using integer variables, result in systematic changes in its properties. In this case, the researchers found that the optical bandgap of the material increased with the concentration of ordered defects in the lattice.

Worth noting, this work presents the first homologous series based on defect ordering found for hybrid organic-inorganic perovskites. "This study provides a new playground for defect engineering in organic-inorganic hybrid perovskite compounds. We believe that this new field has the potential to develop by an analogy to the defect-ordering already seen in perovskite oxides," remarks Dr. Yamamoto. "We have also provided a new strategy to control the defect orderings for tuning a perovskite's optical properties by incorporating SCN - ."

  • Materials Science
  • Engineering and Construction
  • Inorganic Chemistry
  • Nature of Water
  • Organic Chemistry
  • Construction
  • Hybrid vehicle
  • Alternative fuel vehicle
  • Battery electric vehicle
  • Photoelectric effect

Story Source:

Materials provided by Tokyo Institute of Technology . Note: Content may be edited for style and length.

Journal Reference :

  • Takuya Ohmi, James R. Neilson, Wataru Taniguchi, Tomoya Fukui, Teppei Nagase, Yuki Haruta, Makhsud I. Saidaminov, Takanori Fukushima, Masaki Azuma, Takafumi Yamamoto. FA4Pb2I7.5(SCN)0.5: n = 3 Member of Perovskite Homologous Series FAn+1Pbn−1I3n−1.5(SCN)0.5 with Columnar Defects . ACS Materials Letters , 2024; 1913 DOI: 10.1021/acsmaterialslett.3c01514

Cite This Page :

Explore More

  • How 3D Printers Can Give Robots a Soft Touch
  • Combo of Multiple Health Stressors Harming Bees
  • Methane Emission On a Cold Brown Dwarf
  • Remarkable Memories of Mountain Chickadees
  • Predicting Future Marine Extinctions
  • Drain On Economy Due to Climate Change
  • 'Tube Map' Around Planets and Moons
  • 'Bizarre' Evolutionary Pattern: Homo Lineage
  • Largest Known Marine Reptile
  • Neolithic Humans Lived in Lava Tube Caves

Trending Topics

Strange & offbeat.

COMMENTS

  1. Renewable energy

    A new study finds that strategically integrating floating solar panels on reservoirs could substitute 20-100% of Africa's planned hydropower by 2050. For the Zambezi watercourse, this approach ...

  2. Clean energy can fuel the future

    Renewable energy's share of total global energy consumption was just 19.1% in 2020, according to the latest UN tracking report, but one-third of that came from burning resources such as wood.

  3. Towards Sustainable Energy: A Systematic Review of Renewable Energy

    The use of renewable energy resources, such as solar, wind, and biomass will not diminish their availability. Sunlight being a constant source of energy is used to meet the ever-increasing energy need. This review discusses the world's energy needs, renewable energy technologies for domestic use, and highlights public opinions on renewable energy. A systematic review of the literature was ...

  4. Top 10 areas of green energy research

    Hydrogen energy, green hydrogen economy, and hydrogen storage. Hydrogen has emerged as a promising alternative to fossil fuels, being more environmentally friendly, having higher energy per given weight than gasoline, and more applicable in many energy-related fields. Liquid hydrogen storage: Hydrogen has three times the gravimetric density of ...

  5. Full article: A review of renewable energy sources, sustainability

    Research into alternate sources of energy dated back in the late 90s when the world started receiving shock from oil produces in terms of price hiking (Abbasi et al., ... Renewable energy sources used in energy generation helps to reduce greenhouse gases which mitigates climate change, reduce environmental and health complications associated ...

  6. Renewable energy

    In contrast, renewable energy sources accounted for nearly 20 percent of global energy consumption at the beginning of the 21st century, largely from traditional uses of biomass such as wood for heating and cooking.By 2015 about 16 percent of the world's total electricity came from large hydroelectric power plants, whereas other types of renewable energy (such as solar, wind, and geothermal ...

  7. Alternative Energy Sources in Developing and Developed Regions

    Dear Colleagues, Reliable access to energy is an essential pre-requisite for any suitable living standard. A globally growing population, worldwide increasing claims for improving living-standards and undesirable environmental impacts of winning, converting and using conventional energy sources, increase the pressure for identifying alternative energy sources.

  8. Recent Advances in Energy Systems for Sustainable Development

    Being the primary engine of global economic activity, energy obtained from non-renewable sources plays a large role in environmental damage. To move toward clean and green energy and achieve net-zero carbon emissions, it is crucial to develop reliable and sustainable alternatives to fossil fuels as well as smart and sustainable energy technology. The seventh Sustainable Development Goal (SDG 7 ...

  9. Energy Innovation: Research & Analysis

    As the world continues to look for alternative energy sources, new technologies and innovative energy developments raise hopes globally of significant investments and revenues that will drive economic growth and development. The Energy Security and Climate Change Program analyzes data from global energy analysts, representatives from oil and gas companies, NGOs and advocacy groups, and ...

  10. Hybrid Renewable Energy Systems for Power, Heating, and Cooling

    In line with the target of limiting the world's average temperature rise to well below 2 ℃ above pre-industrial levels, power, heating and cooling with net-zero greenhouse gas emissions are becoming increasingly important. With the severe shortage of fossil fuel and constant increase in energy demand, it is imperative that renewable energy sources play a critical role in future energy systems.

  11. Grid-forming electric inverters will unleash renewable energy

    Following topics is a feature exclusive for IEEE Members ... and the Electric Power Research Institute, ... utilizing and integrating renewable energy resources. Kroposki is also an adjunct ...

  12. Frontiers in Energy Research

    572 Research Topics Guest edit your own article collection Suggest a topic. Submission. null. ... Advancements in Sustainable Waste-to-Energy Technologies for Climate Change Mitigation and Renewable Energy Integration. Mohamed Farghali; Afzal Husain Khan; Nadeem Ahmad Khan; Viola Vambol; 294 views

  13. Research Topics

    EERE's Solar Energy Technologies Office (SETO) is seeking to support postdoctoral researchers to apply and advance cutting-edge data science to drive toward the national solar cost reduction goals. Areas of interest include: Novel analysis of Green Button (smart meter) and PV performance data with the Durable Module Materials (DuraMAT) Consortium.

  14. Energy

    Americans Largely Favor U.S. Taking Steps To Become Carbon Neutral by 2050. Majorities of Americans say the United States should prioritize the development of renewable energy sources and take steps toward the country becoming carbon neutral by the year 2050. But just 31% want to phase out fossil fuels completely, and many foresee unexpected ...

  15. 2. Public opinion on renewables and other energy sources

    The United States is producing more energy from fossil fuels and has ticked up production of renewable sources such as wind and solar. A large majority of Americans (72%) say the United States is producing more energy than it did 20 years ago. Far smaller shares say the U.S. is producing the same level (17%) or less energy (10%) than it did 20 ...

  16. 60 Renewable Energy Research Topics: Alternative Energy Topics Ideas in

    Qatar explores alternative energy sources to ensure Brunei's economic prosperity in the light of its depleting oil and gas reserves. An alternative energy program that could be the answer to the nation's energy problems. The economic arguments for and against bio fuels as a method of alternative energy.

  17. Pyrite, also known as fool's gold, may contain valuable lithium, a key

    The technology revolution and development of new renewable energy resources is driving demand for lithium to new heights, but it is not a common mineral. Scientists say they have found lithium in ...

  18. Alternative Energy Research: 6 Areas for Your Science to Save the

    1. Improving storage of renewables. At the present, the leading priority is improving storage of energy from renewable sources such as solar and wind. Intermittency is one of the biggest problems facing these two energy sources, as their production can fluctuate, even within a day, depending on the weather.

  19. How Americans view transitioning from fossil fuels to renewable energy

    While the public prioritizes renewable energy development, just 31% say they are ready to phase out the use of oil, coal and natural gas completely. A much larger share (68%) say the U.S. should continue to use fossil fuels, alongside renewables, as part of the mix of energy sources the country relies on. The roughly two-thirds of Americans who ...

  20. Informing Clean Energy Planning in California's San Joaquin Valley

    Decisionmakers in the San Joaquin Valley (SJV) are interested in understanding how the region might harness its land, water, and other resources to participate in California's transition to a clean energy economy to bring broad prosperity and improve well-being in the SJV. This report describes a SJV Clean Energy Portfolio Toolkit that RAND ...

  21. 116 Renewable Energy Essay Topics & Research Titles at StudyCorgi

    This research report analyzes the growing interest of the use renewable energy as an alternative to the non-renewable energy. Environmental Degradation and Renewable Energy The global community relies on the surrounding environment for food production, transport, and economic development.

  22. 5 alternative energy sources to speed our transition away from fossil

    Hydropower is one of the oldest sources of energy used for electricity generation, and until 2019, according to the EIA, it was the largest source of total annual US renewable electricity ...

  23. Renewable Energy

    This collection of scholarly, government and general-interest titles includes content on global warming, green building, pollution, sustainable agriculture, renewable energy, recycling, and more. Today's Science. Covers a full range of current scientific developments. Gale Databases.

  24. Reaching Ambitious Carbon Goals with Cost-Efficient Energy Storage

    REPT Battero's Wending battery has higher energy density and efficiency than traditional cells do, holding 15% more energy, generating 10% less heat, and occupying a 15% smaller footprint.

  25. Alternative Energy/Paper

    It is important to note that the term "alternative" energy sources is a contemporary moniker that stems from the fact that these energy technologies are alternatives to the mainstream energy sources such as coal, natural gas, oil, and nuclear fission. ... Many combine research in fossil energy and weapons, with particular topics of research in ...

  26. Study shows renewable energy could partially replace diesel fuel to

    A recent analysis shows that renewable energy could be a viable alternative to diesel fuel for science at the South Pole. The analysis deeply explores the feasibility of replacing part of the ...

  27. Most in US say alternative energy takes priority ...

    But a new Pew Research Center survey finds that 65% of Americans give priority to developing alternative energy sources, compared with 27% who would emphasize expanded production of fossil fuel sources. Support for concentrating on alternative energy is up slightly since December 2014. At that time, 60% said developing alternative energy ...

  28. The Great Reversal: Prospects, Risks, and Policies in International

    Despite their high potential to advance global prosperity, one-half of the world's 75 most vulnerable countries are facing a widening income gap with the wealthiest economies for the first time in this century, a new World Bank report has found. Taking advantage of their younger populations, their rich natural resources, and their abundant solar-energy potential can help them overcome the ...

  29. MizzouForward Keynote: Valorization of Sustainable Resources for Multi

    Join us for "Valorization of Sustainable Resources for Multi-industry Decarbonization", a keynote presentation by Dr. Xianglan Bai, College of Engineering Mechanical and Aerospace, ChBME, MizzouForward faculty candidate. Dr. Bai will present on her research for approximately 40-minutes with a 20-minute question and answer session to follow. Dr. Xianglan Bai is an Associate Professor in the ...

  30. From defects to order: Spontaneously emerging crystal ...

    A new hybrid layered perovskite featuring elusive spontaneous defect ordering has been found, report scientists. By introducing specific concentrations of thiocyanate ions into FAPbI3 (FA ...