• Research Questions: Definitions, Types + [Examples]

busayo.longe

Research questions lie at the core of systematic investigation and this is because recording accurate research outcomes is tied to asking the right questions. Asking the right questions when conducting research can help you collect relevant and insightful information that ultimately influences your work, positively. 

The right research questions are typically easy to understand, straight to the point, and engaging. In this article, we will share tips on how to create the right research questions and also show you how to create and administer an online questionnaire with Formplus . 

What is a Research Question? 

A research question is a specific inquiry which the research seeks to provide a response to. It resides at the core of systematic investigation and it helps you to clearly define a path for the research process. 

A research question is usually the first step in any research project. Basically, it is the primary interrogation point of your research and it sets the pace for your work.  

Typically, a research question focuses on the research, determines the methodology and hypothesis, and guides all stages of inquiry, analysis, and reporting. With the right research questions, you will be able to gather useful information for your investigation. 

Types of Research Questions 

Research questions are broadly categorized into 2; that is, qualitative research questions and quantitative research questions. Qualitative and quantitative research questions can be used independently and co-dependently in line with the overall focus and objectives of your research. 

If your research aims at collecting quantifiable data , you will need to make use of quantitative research questions. On the other hand, qualitative questions help you to gather qualitative data bothering on the perceptions and observations of your research subjects. 

Qualitative Research Questions  

A qualitative research question is a type of systematic inquiry that aims at collecting qualitative data from research subjects. The aim of qualitative research questions is to gather non-statistical information pertaining to the experiences, observations, and perceptions of the research subjects in line with the objectives of the investigation. 

Types of Qualitative Research Questions  

  • Ethnographic Research Questions

As the name clearly suggests, ethnographic research questions are inquiries presented in ethnographic research. Ethnographic research is a qualitative research approach that involves observing variables in their natural environments or habitats in order to arrive at objective research outcomes. 

These research questions help the researcher to gather insights into the habits, dispositions, perceptions, and behaviors of research subjects as they interact in specific environments. 

Ethnographic research questions can be used in education, business, medicine, and other fields of study, and they are very useful in contexts aimed at collecting in-depth and specific information that are peculiar to research variables. For instance, asking educational ethnographic research questions can help you understand how pedagogy affects classroom relations and behaviors. 

This type of research question can be administered physically through one-on-one interviews, naturalism (live and work), and participant observation methods. Alternatively, the researcher can ask ethnographic research questions via online surveys and questionnaires created with Formplus.  

Examples of Ethnographic Research Questions

  • Why do you use this product?
  • Have you noticed any side effects since you started using this drug?
  • Does this product meet your needs?

ethnographic-research-questions

  • Case Studies

A case study is a qualitative research approach that involves carrying out a detailed investigation into a research subject(s) or variable(s). In the course of a case study, the researcher gathers a range of data from multiple sources of information via different data collection methods, and over a period of time. 

The aim of a case study is to analyze specific issues within definite contexts and arrive at detailed research subject analyses by asking the right questions. This research method can be explanatory, descriptive , or exploratory depending on the focus of your systematic investigation or research. 

An explanatory case study is one that seeks to gather information on the causes of real-life occurrences. This type of case study uses “how” and “why” questions in order to gather valid information about the causative factors of an event. 

Descriptive case studies are typically used in business researches, and they aim at analyzing the impact of changing market dynamics on businesses. On the other hand, exploratory case studies aim at providing answers to “who” and “what” questions using data collection tools like interviews and questionnaires. 

Some questions you can include in your case studies are: 

  • Why did you choose our services?
  • How has this policy affected your business output?
  • What benefits have you recorded since you started using our product?

case-study-example

An interview is a qualitative research method that involves asking respondents a series of questions in order to gather information about a research subject. Interview questions can be close-ended or open-ended , and they prompt participants to provide valid information that is useful to the research. 

An interview may also be structured, semi-structured , or unstructured , and this further influences the types of questions they include. Structured interviews are made up of more close-ended questions because they aim at gathering quantitative data while unstructured interviews consist, primarily, of open-ended questions that allow the researcher to collect qualitative information from respondents. 

You can conduct interview research by scheduling a physical meeting with respondents, through a telephone conversation, and via digital media and video conferencing platforms like Skype and Zoom. Alternatively, you can use Formplus surveys and questionnaires for your interview. 

Examples of interview questions include: 

  • What challenges did you face while using our product?
  • What specific needs did our product meet?
  • What would you like us to improve our service delivery?

interview-questions

Quantitative Research Questions

Quantitative research questions are questions that are used to gather quantifiable data from research subjects. These types of research questions are usually more specific and direct because they aim at collecting information that can be measured; that is, statistical information. 

Types of Quantitative Research Questions

  • Descriptive Research Questions

Descriptive research questions are inquiries that researchers use to gather quantifiable data about the attributes and characteristics of research subjects. These types of questions primarily seek responses that reveal existing patterns in the nature of the research subjects. 

It is important to note that descriptive research questions are not concerned with the causative factors of the discovered attributes and characteristics. Rather, they focus on the “what”; that is, describing the subject of the research without paying attention to the reasons for its occurrence. 

Descriptive research questions are typically closed-ended because they aim at gathering definite and specific responses from research participants. Also, they can be used in customer experience surveys and market research to collect information about target markets and consumer behaviors. 

Descriptive Research Question Examples

  • How often do you make use of our fitness application?
  • How much would you be willing to pay for this product?

descriptive-research-question

  • Comparative Research Questions

A comparative research question is a type of quantitative research question that is used to gather information about the differences between two or more research subjects across different variables. These types of questions help the researcher to identify distinct features that mark one research subject from the other while highlighting existing similarities. 

Asking comparative research questions in market research surveys can provide insights on how your product or service matches its competitors. In addition, it can help you to identify the strengths and weaknesses of your product for a better competitive advantage.  

The 5 steps involved in the framing of comparative research questions are: 

  • Choose your starting phrase
  • Identify and name the dependent variable
  • Identify the groups you are interested in
  • Identify the appropriate adjoining text
  • Write out the comparative research question

Comparative Research Question Samples 

  • What are the differences between a landline telephone and a smartphone?
  • What are the differences between work-from-home and on-site operations?

comparative-research-question

  • Relationship-based Research Questions  

Just like the name suggests, a relationship-based research question is one that inquires into the nature of the association between two research subjects within the same demographic. These types of research questions help you to gather information pertaining to the nature of the association between two research variables. 

Relationship-based research questions are also known as correlational research questions because they seek to clearly identify the link between 2 variables. 

Read: Correlational Research Designs: Types, Examples & Methods

Examples of relationship-based research questions include: 

  • What is the relationship between purchasing power and the business site?
  • What is the relationship between the work environment and workforce turnover?

relationship-based-research-question

Examples of a Good Research Question

Since research questions lie at the core of any systematic investigations, it is important to know how to frame a good research question. The right research questions will help you to gather the most objective responses that are useful to your systematic investigation. 

A good research question is one that requires impartial responses and can be answered via existing sources of information. Also, a good research question seeks answers that actively contribute to a body of knowledge; hence, it is a question that is yet to be answered in your specific research context.

  • Open-Ended Questions

 An open-ended question is a type of research question that does not restrict respondents to a set of premeditated answer options. In other words, it is a question that allows the respondent to freely express his or her perceptions and feelings towards the research subject. 

Examples of Open-ended Questions

  • How do you deal with stress in the workplace?
  • What is a typical day at work like for you?
  • Close-ended Questions

A close-ended question is a type of survey question that restricts respondents to a set of predetermined answers such as multiple-choice questions . Close-ended questions typically require yes or no answers and are commonly used in quantitative research to gather numerical data from research participants. 

Examples of Close-ended Questions

  • Did you enjoy this event?
  • How likely are you to recommend our services?
  • Very Likely
  • Somewhat Likely
  • Likert Scale Questions

A Likert scale question is a type of close-ended question that is structured as a 3-point, 5-point, or 7-point psychometric scale . This type of question is used to measure the survey respondent’s disposition towards multiple variables and it can be unipolar or bipolar in nature. 

Example of Likert Scale Questions

  • How satisfied are you with our service delivery?
  • Very dissatisfied
  • Not satisfied
  • Very satisfied
  • Rating Scale Questions

A rating scale question is a type of close-ended question that seeks to associate a specific qualitative measure (rating) with the different variables in research. It is commonly used in customer experience surveys, market research surveys, employee reviews, and product evaluations. 

Example of Rating Questions

  • How would you rate our service delivery?

  Examples of a Bad Research Question

Knowing what bad research questions are would help you avoid them in the course of your systematic investigation. These types of questions are usually unfocused and often result in research biases that can negatively impact the outcomes of your systematic investigation. 

  • Loaded Questions

A loaded question is a question that subtly presupposes one or more unverified assumptions about the research subject or participant. This type of question typically boxes the respondent in a corner because it suggests implicit and explicit biases that prevent objective responses. 

Example of Loaded Questions

  • Have you stopped smoking?
  • Where did you hide the money?
  • Negative Questions

A negative question is a type of question that is structured with an implicit or explicit negator. Negative questions can be misleading because they upturn the typical yes/no response order by requiring a negative answer for affirmation and an affirmative answer for negation. 

Examples of Negative Questions

  • Would you mind dropping by my office later today?
  • Didn’t you visit last week?
  • Leading Questions  

A l eading question is a type of survey question that nudges the respondent towards an already-determined answer. It is highly suggestive in nature and typically consists of biases and unverified assumptions that point toward its premeditated responses. 

Examples of Leading Questions

  • If you enjoyed this service, would you be willing to try out our other packages?
  • Our product met your needs, didn’t it?
Read More: Leading Questions: Definition, Types, and Examples

How to Use Formplus as Online Research Questionnaire Tool  

With Formplus, you can create and administer your online research questionnaire easily. In the form builder, you can add different form fields to your questionnaire and edit these fields to reflect specific research questions for your systematic investigation. 

Here is a step-by-step guide on how to create an online research questionnaire with Formplus: 

  • Sign in to your Formplus accoun t, then click on the “create new form” button in your dashboard to access the Form builder.

what is specific research questions

  • In the form builder, add preferred form fields to your online research questionnaire by dragging and dropping them into the form. Add a title to your form in the title block. You can edit form fields by clicking on the “pencil” icon on the right corner of each form field.

online-research-questionnaire

  • Save the form to access the customization section of the builder. Here, you can tweak the appearance of your online research questionnaire by adding background images, changing the form font, and adding your organization’s logo.

formplus-research-question

  • Finally, copy your form link and share it with respondents. You can also use any of the multiple sharing options available.

what is specific research questions

Conclusion  

The success of your research starts with framing the right questions to help you collect the most valid and objective responses. Be sure to avoid bad research questions like loaded and negative questions that can be misleading and adversely affect your research data and outcomes. 

Your research questions should clearly reflect the aims and objectives of your systematic investigation while laying emphasis on specific contexts. To help you seamlessly gather responses for your research questions, you can create an online research questionnaire on Formplus.  

Logo

Connect to Formplus, Get Started Now - It's Free!

  • abstract in research papers
  • bad research questions
  • examples of research questions
  • types of research questions
  • busayo.longe

Formplus

You may also like:

How to Write An Abstract For Research Papers: Tips & Examples

In this article, we will share some tips for writing an effective abstract, plus samples you can learn from.

what is specific research questions

Research Summary: What Is It & How To Write One

Introduction A research summary is a requirement during academic research and sometimes you might need to prepare a research summary...

How to Write a Problem Statement for your Research

Learn how to write problem statements before commencing any research effort. Learn about its structure and explore examples

How to do a Meta Analysis: Methodology, Pros & Cons

In this article, we’ll go through the concept of meta-analysis, what it can be used for, and how you can use it to improve how you...

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Privacy Policy

Research Method

Home » Research Questions – Types, Examples and Writing Guide

Research Questions – Types, Examples and Writing Guide

Table of Contents

Research Questions

Research Questions

Definition:

Research questions are the specific questions that guide a research study or inquiry. These questions help to define the scope of the research and provide a clear focus for the study. Research questions are usually developed at the beginning of a research project and are designed to address a particular research problem or objective.

Types of Research Questions

Types of Research Questions are as follows:

Descriptive Research Questions

These aim to describe a particular phenomenon, group, or situation. For example:

  • What are the characteristics of the target population?
  • What is the prevalence of a particular disease in a specific region?

Exploratory Research Questions

These aim to explore a new area of research or generate new ideas or hypotheses. For example:

  • What are the potential causes of a particular phenomenon?
  • What are the possible outcomes of a specific intervention?

Explanatory Research Questions

These aim to understand the relationship between two or more variables or to explain why a particular phenomenon occurs. For example:

  • What is the effect of a specific drug on the symptoms of a particular disease?
  • What are the factors that contribute to employee turnover in a particular industry?

Predictive Research Questions

These aim to predict a future outcome or trend based on existing data or trends. For example :

  • What will be the future demand for a particular product or service?
  • What will be the future prevalence of a particular disease?

Evaluative Research Questions

These aim to evaluate the effectiveness of a particular intervention or program. For example:

  • What is the impact of a specific educational program on student learning outcomes?
  • What is the effectiveness of a particular policy or program in achieving its intended goals?

How to Choose Research Questions

Choosing research questions is an essential part of the research process and involves careful consideration of the research problem, objectives, and design. Here are some steps to consider when choosing research questions:

  • Identify the research problem: Start by identifying the problem or issue that you want to study. This could be a gap in the literature, a social or economic issue, or a practical problem that needs to be addressed.
  • Conduct a literature review: Conducting a literature review can help you identify existing research in your area of interest and can help you formulate research questions that address gaps or limitations in the existing literature.
  • Define the research objectives : Clearly define the objectives of your research. What do you want to achieve with your study? What specific questions do you want to answer?
  • Consider the research design : Consider the research design that you plan to use. This will help you determine the appropriate types of research questions to ask. For example, if you plan to use a qualitative approach, you may want to focus on exploratory or descriptive research questions.
  • Ensure that the research questions are clear and answerable: Your research questions should be clear and specific, and should be answerable with the data that you plan to collect. Avoid asking questions that are too broad or vague.
  • Get feedback : Get feedback from your supervisor, colleagues, or peers to ensure that your research questions are relevant, feasible, and meaningful.

How to Write Research Questions

Guide for Writing Research Questions:

  • Start with a clear statement of the research problem: Begin by stating the problem or issue that your research aims to address. This will help you to formulate focused research questions.
  • Use clear language : Write your research questions in clear and concise language that is easy to understand. Avoid using jargon or technical terms that may be unfamiliar to your readers.
  • Be specific: Your research questions should be specific and focused. Avoid broad questions that are difficult to answer. For example, instead of asking “What is the impact of climate change on the environment?” ask “What are the effects of rising sea levels on coastal ecosystems?”
  • Use appropriate question types: Choose the appropriate question types based on the research design and objectives. For example, if you are conducting a qualitative study, you may want to use open-ended questions that allow participants to provide detailed responses.
  • Consider the feasibility of your questions : Ensure that your research questions are feasible and can be answered with the resources available. Consider the data sources and methods of data collection when writing your questions.
  • Seek feedback: Get feedback from your supervisor, colleagues, or peers to ensure that your research questions are relevant, appropriate, and meaningful.

Examples of Research Questions

Some Examples of Research Questions with Research Titles:

Research Title: The Impact of Social Media on Mental Health

  • Research Question : What is the relationship between social media use and mental health, and how does this impact individuals’ well-being?

Research Title: Factors Influencing Academic Success in High School

  • Research Question: What are the primary factors that influence academic success in high school, and how do they contribute to student achievement?

Research Title: The Effects of Exercise on Physical and Mental Health

  • Research Question: What is the relationship between exercise and physical and mental health, and how can exercise be used as a tool to improve overall well-being?

Research Title: Understanding the Factors that Influence Consumer Purchasing Decisions

  • Research Question : What are the key factors that influence consumer purchasing decisions, and how do these factors vary across different demographics and products?

Research Title: The Impact of Technology on Communication

  • Research Question : How has technology impacted communication patterns, and what are the effects of these changes on interpersonal relationships and society as a whole?

Research Title: Investigating the Relationship between Parenting Styles and Child Development

  • Research Question: What is the relationship between different parenting styles and child development outcomes, and how do these outcomes vary across different ages and developmental stages?

Research Title: The Effectiveness of Cognitive-Behavioral Therapy in Treating Anxiety Disorders

  • Research Question: How effective is cognitive-behavioral therapy in treating anxiety disorders, and what factors contribute to its success or failure in different patients?

Research Title: The Impact of Climate Change on Biodiversity

  • Research Question : How is climate change affecting global biodiversity, and what can be done to mitigate the negative effects on natural ecosystems?

Research Title: Exploring the Relationship between Cultural Diversity and Workplace Productivity

  • Research Question : How does cultural diversity impact workplace productivity, and what strategies can be employed to maximize the benefits of a diverse workforce?

Research Title: The Role of Artificial Intelligence in Healthcare

  • Research Question: How can artificial intelligence be leveraged to improve healthcare outcomes, and what are the potential risks and ethical concerns associated with its use?

Applications of Research Questions

Here are some of the key applications of research questions:

  • Defining the scope of the study : Research questions help researchers to narrow down the scope of their study and identify the specific issues they want to investigate.
  • Developing hypotheses: Research questions often lead to the development of hypotheses, which are testable predictions about the relationship between variables. Hypotheses provide a clear and focused direction for the study.
  • Designing the study : Research questions guide the design of the study, including the selection of participants, the collection of data, and the analysis of results.
  • Collecting data : Research questions inform the selection of appropriate methods for collecting data, such as surveys, interviews, or experiments.
  • Analyzing data : Research questions guide the analysis of data, including the selection of appropriate statistical tests and the interpretation of results.
  • Communicating results : Research questions help researchers to communicate the results of their study in a clear and concise manner. The research questions provide a framework for discussing the findings and drawing conclusions.

Characteristics of Research Questions

Characteristics of Research Questions are as follows:

  • Clear and Specific : A good research question should be clear and specific. It should clearly state what the research is trying to investigate and what kind of data is required.
  • Relevant : The research question should be relevant to the study and should address a current issue or problem in the field of research.
  • Testable : The research question should be testable through empirical evidence. It should be possible to collect data to answer the research question.
  • Concise : The research question should be concise and focused. It should not be too broad or too narrow.
  • Feasible : The research question should be feasible to answer within the constraints of the research design, time frame, and available resources.
  • Original : The research question should be original and should contribute to the existing knowledge in the field of research.
  • Significant : The research question should have significance and importance to the field of research. It should have the potential to provide new insights and knowledge to the field.
  • Ethical : The research question should be ethical and should not cause harm to any individuals or groups involved in the study.

Purpose of Research Questions

Research questions are the foundation of any research study as they guide the research process and provide a clear direction to the researcher. The purpose of research questions is to identify the scope and boundaries of the study, and to establish the goals and objectives of the research.

The main purpose of research questions is to help the researcher to focus on the specific area or problem that needs to be investigated. They enable the researcher to develop a research design, select the appropriate methods and tools for data collection and analysis, and to organize the results in a meaningful way.

Research questions also help to establish the relevance and significance of the study. They define the research problem, and determine the research methodology that will be used to address the problem. Research questions also help to determine the type of data that will be collected, and how it will be analyzed and interpreted.

Finally, research questions provide a framework for evaluating the results of the research. They help to establish the validity and reliability of the data, and provide a basis for drawing conclusions and making recommendations based on the findings of the study.

Advantages of Research Questions

There are several advantages of research questions in the research process, including:

  • Focus : Research questions help to focus the research by providing a clear direction for the study. They define the specific area of investigation and provide a framework for the research design.
  • Clarity : Research questions help to clarify the purpose and objectives of the study, which can make it easier for the researcher to communicate the research aims to others.
  • Relevance : Research questions help to ensure that the study is relevant and meaningful. By asking relevant and important questions, the researcher can ensure that the study will contribute to the existing body of knowledge and address important issues.
  • Consistency : Research questions help to ensure consistency in the research process by providing a framework for the development of the research design, data collection, and analysis.
  • Measurability : Research questions help to ensure that the study is measurable by defining the specific variables and outcomes that will be measured.
  • Replication : Research questions help to ensure that the study can be replicated by providing a clear and detailed description of the research aims, methods, and outcomes. This makes it easier for other researchers to replicate the study and verify the results.

Limitations of Research Questions

Limitations of Research Questions are as follows:

  • Subjectivity : Research questions are often subjective and can be influenced by personal biases and perspectives of the researcher. This can lead to a limited understanding of the research problem and may affect the validity and reliability of the study.
  • Inadequate scope : Research questions that are too narrow in scope may limit the breadth of the study, while questions that are too broad may make it difficult to focus on specific research objectives.
  • Unanswerable questions : Some research questions may not be answerable due to the lack of available data or limitations in research methods. In such cases, the research question may need to be rephrased or modified to make it more answerable.
  • Lack of clarity : Research questions that are poorly worded or ambiguous can lead to confusion and misinterpretation. This can result in incomplete or inaccurate data, which may compromise the validity of the study.
  • Difficulty in measuring variables : Some research questions may involve variables that are difficult to measure or quantify, making it challenging to draw meaningful conclusions from the data.
  • Lack of generalizability: Research questions that are too specific or limited in scope may not be generalizable to other contexts or populations. This can limit the applicability of the study’s findings and restrict its broader implications.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Gap

Research Gap – Types, Examples and How to...

Survey Instruments

Survey Instruments – List and Their Uses

Data collection

Data Collection – Methods Types and Examples

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

Background of The Study

Background of The Study – Examples and Writing...

Research Process

Research Process – Steps, Examples and Tips

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • Writing Strong Research Questions | Criteria & Examples

Writing Strong Research Questions | Criteria & Examples

Published on October 26, 2022 by Shona McCombes . Revised on November 21, 2023.

A research question pinpoints exactly what you want to find out in your work. A good research question is essential to guide your research paper , dissertation , or thesis .

All research questions should be:

  • Focused on a single problem or issue
  • Researchable using primary and/or secondary sources
  • Feasible to answer within the timeframe and practical constraints
  • Specific enough to answer thoroughly
  • Complex enough to develop the answer over the space of a paper or thesis
  • Relevant to your field of study and/or society more broadly

Writing Strong Research Questions

Table of contents

How to write a research question, what makes a strong research question, using sub-questions to strengthen your main research question, research questions quiz, other interesting articles, frequently asked questions about research questions.

You can follow these steps to develop a strong research question:

  • Choose your topic
  • Do some preliminary reading about the current state of the field
  • Narrow your focus to a specific niche
  • Identify the research problem that you will address

The way you frame your question depends on what your research aims to achieve. The table below shows some examples of how you might formulate questions for different purposes.

Research question formulations
Describing and exploring
Explaining and testing
Evaluating and acting is X

Using your research problem to develop your research question

Example research problem Example research question(s)
Teachers at the school do not have the skills to recognize or properly guide gifted children in the classroom. What practical techniques can teachers use to better identify and guide gifted children?
Young people increasingly engage in the “gig economy,” rather than traditional full-time employment. However, it is unclear why they choose to do so. What are the main factors influencing young people’s decisions to engage in the gig economy?

Note that while most research questions can be answered with various types of research , the way you frame your question should help determine your choices.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Research questions anchor your whole project, so it’s important to spend some time refining them. The criteria below can help you evaluate the strength of your research question.

Focused and researchable

Criteria Explanation
Focused on a single topic Your central research question should work together with your research problem to keep your work focused. If you have multiple questions, they should all clearly tie back to your central aim.
Answerable using Your question must be answerable using and/or , or by reading scholarly sources on the to develop your argument. If such data is impossible to access, you likely need to rethink your question.
Not based on value judgements Avoid subjective words like , , and . These do not give clear criteria for answering the question.

Feasible and specific

Criteria Explanation
Answerable within practical constraints Make sure you have enough time and resources to do all research required to answer your question. If it seems you will not be able to gain access to the data you need, consider narrowing down your question to be more specific.
Uses specific, well-defined concepts All the terms you use in the research question should have clear meanings. Avoid vague language, jargon, and too-broad ideas.

Does not demand a conclusive solution, policy, or course of action Research is about informing, not instructing. Even if your project is focused on a practical problem, it should aim to improve understanding rather than demand a ready-made solution.

If ready-made solutions are necessary, consider conducting instead. Action research is a research method that aims to simultaneously investigate an issue as it is solved. In other words, as its name suggests, action research conducts research and takes action at the same time.

Complex and arguable

Criteria Explanation
Cannot be answered with or Closed-ended, / questions are too simple to work as good research questions—they don’t provide enough for robust investigation and discussion.

Cannot be answered with easily-found facts If you can answer the question through a single Google search, book, or article, it is probably not complex enough. A good research question requires original data, synthesis of multiple sources, and original interpretation and argumentation prior to providing an answer.

Relevant and original

Criteria Explanation
Addresses a relevant problem Your research question should be developed based on initial reading around your . It should focus on addressing a problem or gap in the existing knowledge in your field or discipline.
Contributes to a timely social or academic debate The question should aim to contribute to an existing and current debate in your field or in society at large. It should produce knowledge that future researchers or practitioners can later build on.
Has not already been answered You don’t have to ask something that nobody has ever thought of before, but your question should have some aspect of originality. For example, you can focus on a specific location, or explore a new angle.

Chances are that your main research question likely can’t be answered all at once. That’s why sub-questions are important: they allow you to answer your main question in a step-by-step manner.

Good sub-questions should be:

  • Less complex than the main question
  • Focused only on 1 type of research
  • Presented in a logical order

Here are a few examples of descriptive and framing questions:

  • Descriptive: According to current government arguments, how should a European bank tax be implemented?
  • Descriptive: Which countries have a bank tax/levy on financial transactions?
  • Framing: How should a bank tax/levy on financial transactions look at a European level?

Keep in mind that sub-questions are by no means mandatory. They should only be asked if you need the findings to answer your main question. If your main question is simple enough to stand on its own, it’s okay to skip the sub-question part. As a rule of thumb, the more complex your subject, the more sub-questions you’ll need.

Try to limit yourself to 4 or 5 sub-questions, maximum. If you feel you need more than this, it may be indication that your main research question is not sufficiently specific. In this case, it’s is better to revisit your problem statement and try to tighten your main question up.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

what is specific research questions

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis —a prediction that will be confirmed or disproved by your research.

As you cannot possibly read every source related to your topic, it’s important to evaluate sources to assess their relevance. Use preliminary evaluation to determine whether a source is worth examining in more depth.

This involves:

  • Reading abstracts , prefaces, introductions , and conclusions
  • Looking at the table of contents to determine the scope of the work
  • Consulting the index for key terms or the names of important scholars

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (“ x affects y because …”).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses . In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Writing Strong Research Questions

Formulating a main research question can be a difficult task. Overall, your question should contribute to solving the problem that you have defined in your problem statement .

However, it should also fulfill criteria in three main areas:

  • Researchability
  • Feasibility and specificity
  • Relevance and originality

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 21). Writing Strong Research Questions | Criteria & Examples. Scribbr. Retrieved September 16, 2024, from https://www.scribbr.com/research-process/research-questions/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to define a research problem | ideas & examples, how to write a problem statement | guide & examples, 10 research question examples to guide your research project, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Research: From selecting a topic to writing the bibliography

  • Selecting a Topic
  • Developing a Research Question
  • What Type of Source Do I Need?
  • Selecting the Best Place to Search
  • Search Like a Pro
  • Evaluating Information

Research Questions Worth Asking

This video from the UMD, Global Campus gives a good introduction to research questions.

What is a research question?

Once you have selected a topic, you need to develop a research question. You may be used to working with a thesis statement, but a thesis statement is an answer. If you start your research with an answer, you might miss something important or your paper might be too one-sided. Starting with a question allows you to explore your topic while still having it clearly defined. 

A good research question is specific and focused.

Topic : Netflix

Research Question : How has the rise of streaming television changed the nature of advertising during television shows?

Topic : the environmental impact of fracking

Research Question : What are some of the most effective ways of protecting local ground water from the waste water produced by fracking?

Tip: Beware of research questions that are too broad or too narrow.

Too Broad:  Why is reality television so popular?

Too Narrow:  What are the economic and social consequences of the popularity of Jersey Shore on the lives of teenagers living in Omaha, Nebraska? 

Tip: be willing to tweak your research question as you go.

Research Question:  How has the rise of streaming television changed the nature of advertising during television shows?

Potential Research Finding:  Advertising during television hasn't changed much recently.

New Research Question:  Why has advertising on television been able to remain the same when how we watch television has changed so much?

Examples of Research Questions

The assignment is a 10-15 page paper relying primarily on scholarly resources.

  • How is malaria treated?
  • Will tablet computing replace the need for laptops?
  • How much has the popularity of Harry Potter improved the reading scores of second graders in Missouri?
  • At what point in time will the need for nurses in pedatric wards outpace the graduation rates from nursing schools?
  • In what ways have online communities changed the nature of support systems available for people with Attention Deficit Disorder?
  • How has mountaintop removal mining in western Kentucky impacted the migratory habits of the local bird population?
  • << Previous: Selecting a Topic
  • Next: What Type of Source Do I Need? >>
  • Last Updated: Jul 2, 2024 9:28 AM
  • URL: https://libguides.gwu.edu/research

Enago Academy

How to Develop a Good Research Question? — Types & Examples

' src=

Cecilia is living through a tough situation in her research life. Figuring out where to begin, how to start her research study, and how to pose the right question for her research quest, is driving her insane. Well, questions, if not asked correctly, have a tendency to spiral us!

Image Source: https://phdcomics.com/

Questions lead everyone to answers. Research is a quest to find answers. Not the vague questions that Cecilia means to answer, but definitely more focused questions that define your research. Therefore, asking appropriate question becomes an important matter of discussion.

A well begun research process requires a strong research question. It directs the research investigation and provides a clear goal to focus on. Understanding the characteristics of comprising a good research question will generate new ideas and help you discover new methods in research.

In this article, we are aiming to help researchers understand what is a research question and how to write one with examples.

Table of Contents

What Is a Research Question?

A good research question defines your study and helps you seek an answer to your research. Moreover, a clear research question guides the research paper or thesis to define exactly what you want to find out, giving your work its objective. Learning to write a research question is the beginning to any thesis, dissertation , or research paper. Furthermore, the question addresses issues or problems which is answered through analysis and interpretation of data.

Why Is a Research Question Important?

A strong research question guides the design of a study. Moreover, it helps determine the type of research and identify specific objectives. Research questions state the specific issue you are addressing and focus on outcomes of the research for individuals to learn. Therefore, it helps break up the study into easy steps to complete the objectives and answer the initial question.

Types of Research Questions

Research questions can be categorized into different types, depending on the type of research you want to undergo. Furthermore, knowing the type of research will help a researcher determine the best type of research question to use.

1. Qualitative Research Question

Qualitative questions concern broad areas or more specific areas of research. However, unlike quantitative questions, qualitative research questions are adaptable, non-directional and more flexible. Qualitative research question focus on discovering, explaining, elucidating, and exploring.

i. Exploratory Questions

This form of question looks to understand something without influencing the results. The objective of exploratory questions is to learn more about a topic without attributing bias or preconceived notions to it.

Research Question Example: Asking how a chemical is used or perceptions around a certain topic.

ii. Predictive Questions

Predictive research questions are defined as survey questions that automatically predict the best possible response options based on text of the question. Moreover, these questions seek to understand the intent or future outcome surrounding a topic.

Research Question Example: Asking why a consumer behaves in a certain way or chooses a certain option over other.

iii. Interpretive Questions

This type of research question allows the study of people in the natural setting. The questions help understand how a group makes sense of shared experiences with regards to various phenomena. These studies gather feedback on a group’s behavior without affecting the outcome.

Research Question Example: How do you feel about AI assisting publishing process in your research?

2. Quantitative Research Question

Quantitative questions prove or disprove a researcher’s hypothesis through descriptions, comparisons, and relationships. These questions are beneficial when choosing a research topic or when posing follow-up questions that garner more information.

i. Descriptive Questions

It is the most basic type of quantitative research question and it seeks to explain when, where, why, or how something occurred. Moreover, they use data and statistics to describe an event or phenomenon.

Research Question Example: How many generations of genes influence a future generation?

ii. Comparative Questions

Sometimes it’s beneficial to compare one occurrence with another. Therefore, comparative questions are helpful when studying groups with dependent variables.

Example: Do men and women have comparable metabolisms?

iii. Relationship-Based Questions

This type of research question answers influence of one variable on another. Therefore, experimental studies use this type of research questions are majorly.

Example: How is drought condition affect a region’s probability for wildfires.  

How to Write a Good Research Question?

good research question

1. Select a Topic

The first step towards writing a good research question is to choose a broad topic of research. You could choose a research topic that interests you, because the complete research will progress further from the research question. Therefore, make sure to choose a topic that you are passionate about, to make your research study more enjoyable.

2. Conduct Preliminary Research

After finalizing the topic, read and know about what research studies are conducted in the field so far. Furthermore, this will help you find articles that talk about the topics that are yet to be explored. You could explore the topics that the earlier research has not studied.

3. Consider Your Audience

The most important aspect of writing a good research question is to find out if there is audience interested to know the answer to the question you are proposing. Moreover, determining your audience will assist you in refining your research question, and focus on aspects that relate to defined groups.

4. Generate Potential Questions

The best way to generate potential questions is to ask open ended questions. Questioning broader topics will allow you to narrow down to specific questions. Identifying the gaps in literature could also give you topics to write the research question. Moreover, you could also challenge the existing assumptions or use personal experiences to redefine issues in research.

5. Review Your Questions

Once you have listed few of your questions, evaluate them to find out if they are effective research questions. Moreover while reviewing, go through the finer details of the question and its probable outcome, and find out if the question meets the research question criteria.

6. Construct Your Research Question

There are two frameworks to construct your research question. The first one being PICOT framework , which stands for:

  • Population or problem
  • Intervention or indicator being studied
  • Comparison group
  • Outcome of interest
  • Time frame of the study.

The second framework is PEO , which stands for:

  • Population being studied
  • Exposure to preexisting conditions
  • Outcome of interest.

Research Question Examples

  • How might the discovery of a genetic basis for alcoholism impact triage processes in medical facilities?
  • How do ecological systems respond to chronic anthropological disturbance?
  • What are demographic consequences of ecological interactions?
  • What roles do fungi play in wildfire recovery?
  • How do feedbacks reinforce patterns of genetic divergence on the landscape?
  • What educational strategies help encourage safe driving in young adults?
  • What makes a grocery store easy for shoppers to navigate?
  • What genetic factors predict if someone will develop hypothyroidism?
  • Does contemporary evolution along the gradients of global change alter ecosystems function?

How did you write your first research question ? What were the steps you followed to create a strong research question? Do write to us or comment below.

Frequently Asked Questions

Research questions guide the focus and direction of a research study. Here are common types of research questions: 1. Qualitative research question: Qualitative questions concern broad areas or more specific areas of research. However, unlike quantitative questions, qualitative research questions are adaptable, non-directional and more flexible. Different types of qualitative research questions are: i. Exploratory questions ii. Predictive questions iii. Interpretive questions 2. Quantitative Research Question: Quantitative questions prove or disprove a researcher’s hypothesis through descriptions, comparisons, and relationships. These questions are beneficial when choosing a research topic or when posing follow-up questions that garner more information. Different types of quantitative research questions are: i. Descriptive questions ii. Comparative questions iii. Relationship-based questions

Qualitative research questions aim to explore the richness and depth of participants' experiences and perspectives. They should guide your research and allow for in-depth exploration of the phenomenon under investigation. After identifying the research topic and the purpose of your research: • Begin with Broad Inquiry: Start with a general research question that captures the main focus of your study. This question should be open-ended and allow for exploration. • Break Down the Main Question: Identify specific aspects or dimensions related to the main research question that you want to investigate. • Formulate Sub-questions: Create sub-questions that delve deeper into each specific aspect or dimension identified in the previous step. • Ensure Open-endedness: Make sure your research questions are open-ended and allow for varied responses and perspectives. Avoid questions that can be answered with a simple "yes" or "no." Encourage participants to share their experiences, opinions, and perceptions in their own words. • Refine and Review: Review your research questions to ensure they align with your research purpose, topic, and objectives. Seek feedback from your research advisor or peers to refine and improve your research questions.

Developing research questions requires careful consideration of the research topic, objectives, and the type of study you intend to conduct. Here are the steps to help you develop effective research questions: 1. Select a Topic 2. Conduct Preliminary Research 3. Consider Your Audience 4. Generate Potential Questions 5. Review Your Questions 6. Construct Your Research Question Based on PICOT or PEO Framework

There are two frameworks to construct your research question. The first one being PICOT framework, which stands for: • Population or problem • Intervention or indicator being studied • Comparison group • Outcome of interest • Time frame of the study The second framework is PEO, which stands for: • Population being studied • Exposure to preexisting conditions • Outcome of interest

' src=

A tad helpful

Had trouble coming up with a good research question for my MSc proposal. This is very much helpful.

This is a well elaborated writing on research questions development. I found it very helpful.

Rate this article Cancel Reply

Your email address will not be published.

what is specific research questions

Enago Academy's Most Popular Articles

Graphical Abstracts vs. Infographics: Best Practices for Visuals - Enago

  • Promoting Research

Graphical Abstracts Vs. Infographics: Best practices for using visual illustrations for increased research impact

Dr. Sarah Chen stared at her computer screen, her eyes staring at her recently published…

10 Tips to Prevent Research Papers From Being Retracted - Enago

  • Publishing Research

10 Tips to Prevent Research Papers From Being Retracted

Research paper retractions represent a critical event in the scientific community. When a published article…

2024 Scholar Metrics: Unveiling research impact (2019-2023)

  • Industry News

Google Releases 2024 Scholar Metrics, Evaluates Impact of Scholarly Articles

Google has released its 2024 Scholar Metrics, assessing scholarly articles from 2019 to 2023. This…

retractions and research integrity

  • Trending Now
  • Understanding Ethics

Understanding the Impact of Retractions on Research Integrity – A global study

As we reach the midway point of 2024, ‘Research Integrity’ remains one of the hot…

What is Academic Integrity and How to Uphold it [FREE CHECKLIST]

Ensuring Academic Integrity and Transparency in Academic Research: A comprehensive checklist for researchers

Academic integrity is the foundation upon which the credibility and value of scientific findings are…

How to Optimize Your Research Process: A step-by-step guide

Setting Rationale in Research: Cracking the code for excelling at research

what is specific research questions

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • Reporting Research
  • AI in Academia
  • Career Corner
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer Review Week 2024
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Thought Leadership
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

what is specific research questions

Which among these features would you prefer the most in a peer review assistant?

Educational resources and simple solutions for your research journey

How to craft a strong research question (with research question examples)

How to Craft a Strong Research Question (With Research Question Examples)

A sound and effective research question is a key element that must be identified and pinned down before researchers can even begin their research study or work. A strong research question lays the foundation for your entire study, guiding your investigation and shaping your findings. Hence, it is critical that researchers spend considerable time assessing and refining the research question based on in-depth reading and comprehensive literature review. In this article, we will discuss how to write a strong research question and provide you with some good examples of research questions across various disciplines.

Table of Contents

The importance of a research question

A research question plays a crucial role in driving scientific inquiry, setting the direction and purpose of your study, and guiding your entire research process. By formulating a clear and focused research question, you lay the foundation for your investigation, ensuring that your research remains on track and aligned with your objectives so you can make meaningful contribution to the existing body of knowledge. A well-crafted research question also helps you define the scope of your study and identify the appropriate methodologies and data collection techniques to employ.

Key components of a strong research question

A good research question possesses several key components that contribute to the quality and impact of your study. Apart from providing a clear framework to generate meaningful results, a well-defined research question allows other researchers to understand the purpose and significance of your work. So, when working on your research question, incorporate the following elements:

  • Specificity : A strong research question should be specific about the main focus of your study, enabling you to gather precise data and draw accurate conclusions. It clearly defines the variables, participants, and context involved, leaving no room for ambiguity.
  • Clarity : A good research question is clear and easily understood, so articulate the purpose and intent of your study concisely without being generic or vague. Ensuring clarity in your research question helps both you and your readers grasp the research objective.
  • Feasibility : While crafting a research question, consider the practicality of conducting the research and availability of necessary data or access to participants. Think whether your study is realistic and achievable within the constraints of time, resources, and ethical considerations.

How to craft a well-defined research question

A first step that will help save time and effort is knowing what your aims are and thinking about a few problem statements on the area or aspect one wants to study or do research on. Contemplating these statements as one undertakes more progressive reading can help the researcher in reassessing and fine-tuning the research question. This can be done over time as they read and learn more about the research topic, along with a broad literature review and parallel discussions with peer researchers and supervisors. In some cases, a researcher can have more than one research question if the research being undertaken is a PhD thesis or dissertation, but try not to cover multiple concerns on a topic.

A strong research question must be researchable, original, complex, and relevant. Here are five simple steps that can make the entire process easier.

  • Identify a broad topic from your areas of interest, something that is relevant, and you are passionate about since you’ll be spending a lot of time conducting your research.
  • Do a thorough literature review to weed out potential gaps in research and stay updated on what’s currently being done in your chosen topic and subject area.
  • Shortlist possible research questions based on the research gaps or see how you can build on or refute previously published ideas and concepts.
  • Assess your chosen research question using the FINER criteria that helps you evaluate whether the research is Feasible, Interesting, Novel, Ethical, and Relevant. 1
  • Formulate the final research question, while ensuring it is clear, well-written, and addresses all the key elements of a strong research question.

Examples of research questions

Remember to adapt your research question to suit your purpose, whether it’s exploratory, descriptive, comparative, experimental, qualitative, or quantitative. Embrace the iterative nature of the research process, continually evaluating and refining your question as you progress. Here are some good examples of research questions across various disciplines.

Exploratory research question examples

  • How does social media impact interpersonal relationships among teenagers?
  • What are the potential benefits of incorporating mindfulness practices in the workplace?

Descriptive research question examples

  • What factors influence customer loyalty in the e-commerce industry?
  • Is there a relationship between socioeconomic status and academic performance among elementary school students?

Comparative research question examples

  • How does the effectiveness of traditional teaching methods compare to online learning platforms in mathematics education?
  • What is the impact of different healthcare policies on patient outcomes in various countries?

Experimental research question examples

  • What are the effects of a new drug on reducing symptoms of a specific medical condition?
  • Does a dietary intervention have an impact on weight loss among individuals with obesity?

Qualitative research question examples

  • What are the lived experiences of immigrants adapting to a new culture?
  • What factors influence job satisfaction among healthcare professionals?

Quantitative research question examples

  • Is there a relationship between sleep duration and academic performance among college students?
  • How effective is a specific intervention in reducing anxiety levels among individuals with phobias?

With these simple guidelines and inspiring examples of research questions, you are equipped to embark on your research journey with confidence and purpose. Here’s wishing you all the best for your future endeavors!

References:

  • How to write a research question: Steps and examples. Indeed Career Guide. Available online at https://www.indeed.com/career-advice/career-development/how-to-write-research-questions

R Discovery is a literature search and research reading platform that accelerates your research discovery journey by keeping you updated on the latest, most relevant scholarly content. With 250M+ research articles sourced from trusted aggregators like CrossRef, Unpaywall, PubMed, PubMed Central, Open Alex and top publishing houses like Springer Nature, JAMA, IOP, Taylor & Francis, NEJM, BMJ, Karger, SAGE, Emerald Publishing and more, R Discovery puts a world of research at your fingertips.  

Try R Discovery Prime FREE for 1 week or upgrade at just US$72 a year to access premium features that let you listen to research on the go, read in your language, collaborate with peers, auto sync with reference managers, and much more. Choose a simpler, smarter way to find and read research – Download the app and start your free 7-day trial today !  

Related Posts

trends in science communication

What is Research Impact: Types and Tips for Academics

Research in Shorts

Research in Shorts: R Discovery’s New Feature Helps Academics Assess Relevant Papers in 2mins 

what is specific research questions

How to Write a Research Question: Types and Examples 

research quetsion

The first step in any research project is framing the research question. It can be considered the core of any systematic investigation as the research outcomes are tied to asking the right questions. Thus, this primary interrogation point sets the pace for your research as it helps collect relevant and insightful information that ultimately influences your work.   

Typically, the research question guides the stages of inquiry, analysis, and reporting. Depending on the use of quantifiable or quantitative data, research questions are broadly categorized into quantitative or qualitative research questions. Both types of research questions can be used independently or together, considering the overall focus and objectives of your research.  

What is a research question?

A research question is a clear, focused, concise, and arguable question on which your research and writing are centered. 1 It states various aspects of the study, including the population and variables to be studied and the problem the study addresses. These questions also set the boundaries of the study, ensuring cohesion. 

Designing the research question is a dynamic process where the researcher can change or refine the research question as they review related literature and develop a framework for the study. Depending on the scale of your research, the study can include single or multiple research questions. 

A good research question has the following features: 

  • It is relevant to the chosen field of study. 
  • The question posed is arguable and open for debate, requiring synthesizing and analysis of ideas. 
  • It is focused and concisely framed. 
  • A feasible solution is possible within the given practical constraint and timeframe. 

A poorly formulated research question poses several risks. 1   

  • Researchers can adopt an erroneous design. 
  • It can create confusion and hinder the thought process, including developing a clear protocol.  
  • It can jeopardize publication efforts.  
  • It causes difficulty in determining the relevance of the study findings.  
  • It causes difficulty in whether the study fulfils the inclusion criteria for systematic review and meta-analysis. This creates challenges in determining whether additional studies or data collection is needed to answer the question.  
  • Readers may fail to understand the objective of the study. This reduces the likelihood of the study being cited by others. 

Now that you know “What is a research question?”, let’s look at the different types of research questions. 

Types of research questions

Depending on the type of research to be done, research questions can be classified broadly into quantitative, qualitative, or mixed-methods studies. Knowing the type of research helps determine the best type of research question that reflects the direction and epistemological underpinnings of your research. 

The structure and wording of quantitative 2 and qualitative research 3 questions differ significantly. The quantitative study looks at causal relationships, whereas the qualitative study aims at exploring a phenomenon. 

  • Quantitative research questions:  
  • Seeks to investigate social, familial, or educational experiences or processes in a particular context and/or location.  
  • Answers ‘how,’ ‘what,’ or ‘why’ questions. 
  • Investigates connections, relations, or comparisons between independent and dependent variables. 

Quantitative research questions can be further categorized into descriptive, comparative, and relationship, as explained in the Table below. 

 
Descriptive research questions These measure the responses of a study’s population toward a particular question or variable. Common descriptive research questions will begin with “How much?”, “How regularly?”, “What percentage?”, “What time?”, “What is?”   Research question example: How often do you buy mobile apps for learning purposes? 
Comparative research questions These investigate differences between two or more groups for an outcome variable. For instance, the researcher may compare groups with and without a certain variable.   Research question example: What are the differences in attitudes towards online learning between visual and Kinaesthetic learners? 
Relationship research questions These explore and define trends and interactions between two or more variables. These investigate relationships between dependent and independent variables and use words such as “association” or “trends.  Research question example: What is the relationship between disposable income and job satisfaction amongst US residents? 
  • Qualitative research questions  

Qualitative research questions are adaptable, non-directional, and more flexible. It concerns broad areas of research or more specific areas of study to discover, explain, or explore a phenomenon. These are further classified as follows: 

   
Exploratory Questions These question looks to understand something without influencing the results. The aim is to learn more about a topic without attributing bias or preconceived notions.   Research question example: What are people’s thoughts on the new government? 
Experiential questions These questions focus on understanding individuals’ experiences, perspectives, and subjective meanings related to a particular phenomenon. They aim to capture personal experiences and emotions.   Research question example: What are the challenges students face during their transition from school to college? 
Interpretive Questions These questions investigate people in their natural settings to help understand how a group makes sense of shared experiences of a phenomenon.   Research question example: How do you feel about ChatGPT assisting student learning? 
  • Mixed-methods studies  

Mixed-methods studies use both quantitative and qualitative research questions to answer your research question. Mixed methods provide a complete picture than standalone quantitative or qualitative research, as it integrates the benefits of both methods. Mixed methods research is often used in multidisciplinary settings and complex situational or societal research, especially in the behavioral, health, and social science fields. 

What makes a good research question

A good research question should be clear and focused to guide your research. It should synthesize multiple sources to present your unique argument, and should ideally be something that you are interested in. But avoid questions that can be answered in a few factual statements. The following are the main attributes of a good research question. 

  • Specific: The research question should not be a fishing expedition performed in the hopes that some new information will be found that will benefit the researcher. The central research question should work with your research problem to keep your work focused. If using multiple questions, they should all tie back to the central aim. 
  • Measurable: The research question must be answerable using quantitative and/or qualitative data or from scholarly sources to develop your research question. If such data is impossible to access, it is better to rethink your question. 
  • Attainable: Ensure you have enough time and resources to do all research required to answer your question. If it seems you will not be able to gain access to the data you need, consider narrowing down your question to be more specific. 
  • You have the expertise 
  • You have the equipment and resources 
  • Realistic: Developing your research question should be based on initial reading about your topic. It should focus on addressing a problem or gap in the existing knowledge in your field or discipline. 
  • Based on some sort of rational physics 
  • Can be done in a reasonable time frame 
  • Timely: The research question should contribute to an existing and current debate in your field or in society at large. It should produce knowledge that future researchers or practitioners can later build on. 
  • Novel 
  • Based on current technologies. 
  • Important to answer current problems or concerns. 
  • Lead to new directions. 
  • Important: Your question should have some aspect of originality. Incremental research is as important as exploring disruptive technologies. For example, you can focus on a specific location or explore a new angle. 
  • Meaningful whether the answer is “Yes” or “No.” Closed-ended, yes/no questions are too simple to work as good research questions. Such questions do not provide enough scope for robust investigation and discussion. A good research question requires original data, synthesis of multiple sources, and original interpretation and argumentation before providing an answer. 

Steps for developing a good research question

The importance of research questions cannot be understated. When drafting a research question, use the following frameworks to guide the components of your question to ease the process. 4  

  • Determine the requirements: Before constructing a good research question, set your research requirements. What is the purpose? Is it descriptive, comparative, or explorative research? Determining the research aim will help you choose the most appropriate topic and word your question appropriately. 
  • Select a broad research topic: Identify a broader subject area of interest that requires investigation. Techniques such as brainstorming or concept mapping can help identify relevant connections and themes within a broad research topic. For example, how to learn and help students learn. 
  • Perform preliminary investigation: Preliminary research is needed to obtain up-to-date and relevant knowledge on your topic. It also helps identify issues currently being discussed from which information gaps can be identified. 
  • Narrow your focus: Narrow the scope and focus of your research to a specific niche. This involves focusing on gaps in existing knowledge or recent literature or extending or complementing the findings of existing literature. Another approach involves constructing strong research questions that challenge your views or knowledge of the area of study (Example: Is learning consistent with the existing learning theory and research). 
  • Identify the research problem: Once the research question has been framed, one should evaluate it. This is to realize the importance of the research questions and if there is a need for more revising (Example: How do your beliefs on learning theory and research impact your instructional practices). 

How to write a research question

Those struggling to understand how to write a research question, these simple steps can help you simplify the process of writing a research question. 

Topic selection Choose a broad topic, such as “learner support” or “social media influence” for your study. Select topics of interest to make research more enjoyable and stay motivated.  
Preliminary research The goal is to refine and focus your research question. The following strategies can help: Skim various scholarly articles. List subtopics under the main topic. List possible research questions for each subtopic. Consider the scope of research for each of the research questions. Select research questions that are answerable within a specific time and with available resources. If the scope is too large, repeat looking for sub-subtopics.  
Audience When choosing what to base your research on, consider your readers. For college papers, the audience is academic. Ask yourself if your audience may be interested in the topic you are thinking about pursuing. Determining your audience can also help refine the importance of your research question and focus on items related to your defined group.  
Generate potential questions Ask open-ended “how?” and “why?” questions to find a more specific research question. Gap-spotting to identify research limitations, problematization to challenge assumptions made by others, or using personal experiences to draw on issues in your industry can be used to generate questions.  
Review brainstormed questions Evaluate each question to check their effectiveness. Use the FINER model to see if the question meets all the research question criteria.  
Construct the research question Multiple frameworks, such as PICOT and PEA, are available to help structure your research question. The frameworks listed below can help you with the necessary information for generating your research question.  
Framework Attributes of each framework
FINER Feasible 
Interesting 
Novel 
Ethical 
Relevant 
PICOT Population or problem 
Intervention or indicator being studied 
Comparison group 
Outcome of interest 
Time frame of the study  
PEO Population being studied 
Exposure to preexisting conditions 
Outcome of interest  

Sample Research Questions

The following are some bad and good research question examples 

  • Example 1 
Unclear: How does social media affect student growth? 
Clear: What effect does the daily use of Twitter and Facebook have on the career development goals of students? 
Explanation: The first research question is unclear because of the vagueness of “social media” as a concept and the lack of specificity. The second question is specific and focused, and its answer can be discovered through data collection and analysis.  
  • Example 2 
Simple: Has there been an increase in the number of gifted children identified? 
Complex: What practical techniques can teachers use to identify and guide gifted children better? 
Explanation: A simple “yes” or “no” statement easily answers the first research question. The second research question is more complicated and requires the researcher to collect data, perform in-depth data analysis, and form an argument that leads to further discussion. 

References:  

  • Thabane, L., Thomas, T., Ye, C., & Paul, J. (2009). Posing the research question: not so simple.  Canadian Journal of Anesthesia/Journal canadien d’anesthésie ,  56 (1), 71-79. 
  • Rutberg, S., & Bouikidis, C. D. (2018). Focusing on the fundamentals: A simplistic differentiation between qualitative and quantitative research.  Nephrology Nursing Journal ,  45 (2), 209-213. 
  • Kyngäs, H. (2020). Qualitative research and content analysis.  The application of content analysis in nursing science research , 3-11. 
  • Mattick, K., Johnston, J., & de la Croix, A. (2018). How to… write a good research question.  The clinical teacher ,  15 (2), 104-108. 
  • Fandino, W. (2019). Formulating a good research question: Pearls and pitfalls.  Indian Journal of Anaesthesia ,  63 (8), 611. 
  • Richardson, W. S., Wilson, M. C., Nishikawa, J., & Hayward, R. S. (1995). The well-built clinical question: a key to evidence-based decisions.  ACP journal club ,  123 (3), A12-A13 

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Scientific Writing Style Guides Explained
  • Ethical Research Practices For Research with Human Subjects
  • 8 Most Effective Ways to Increase Motivation for Thesis Writing 
  • 6 Tips for Post-Doc Researchers to Take Their Career to the Next Level

Transitive and Intransitive Verbs in the World of Research

Language and grammar rules for academic writing, you may also like, how to cite in apa format (7th edition):..., how to write your research paper in apa..., how to choose a dissertation topic, how to write a phd research proposal, how to write an academic paragraph (step-by-step guide), research funding basics: what should a grant proposal..., how to write the first draft of a..., mla works cited page: format, template & examples, academic editing: how to self-edit academic text with..., measuring academic success: definition & strategies for excellence.

  • Our Mission
  • Code of Conduct
  • The Consultants
  • Hours and Locations
  • Apply to Become a Consultant
  • Make an Appointment
  • Face-to-Face Appointments
  • Zoom Appointments
  • Written Feedback Appointments
  • Support for Writers with Disabilities
  • Policies and Restrictions
  • Upcoming Workshops
  • Class Workshops
  • Meet the Consultants
  • Writing Center Quick Guides
  • Citation Resources
  • Helpful Links
  • Video Resources
  • Login or Register
  • Graduate Writing Consultations
  • Thesis and Dissertation Consultations
  • Weekly Write-Ins
  • ESOL Graduate Peer Feedback Groups
  • Setting Up Your Own Writing Group
  • Writing Resources for Graduate Students
  • Support for Multilingual Students
  • ESOL Opt-In Program
  • About Our Consulting Services
  • Promote Us to Your Students
  • Recommend Consultants

How to Write a Research Question

What is a research question? A research question is the question around which you center your research. It should be:

  • clear : it provides enough specifics that one’s audience can easily understand its purpose without needing additional explanation.
  • focused : it is narrow enough that it can be answered thoroughly in the space the writing task allows.
  • concise : it is expressed in the fewest possible words.
  • complex : it is not answerable with a simple “yes” or “no,” but rather requires synthesis and analysis of ideas and sources prior to composition of an answer.
  • arguable : its potential answers are open to debate rather than accepted facts.

You should ask a question about an issue that you are genuinely curious and/or passionate about.

The question you ask should be developed for the discipline you are studying. A question appropriate for Biology, for instance, is different from an appropriate one in Political Science or Sociology. If you are developing your question for a course other than first-year composition, you may want to discuss your ideas for a research question with your professor.

Why is a research question essential to the research process? Research questions help writers focus their research by providing a path through the research and writing process. The specificity of a well-developed research question helps writers avoid the “all-about” paper and work toward supporting a specific, arguable thesis.

Steps to developing a research question:

  • Choose an interesting general topic. Most professional researchers focus on topics they are genuinely interested in studying. Writers should choose a broad topic about which they genuinely would like to know more. An example of a general topic might be “Slavery in the American South” or “Films of the 1930s.”
  • Do some preliminary research on your general topic. Do a few quick searches in current periodicals and journals on your topic to see what’s already been done and to help you narrow your focus. What issues are scholars and researchers discussing, when it comes to your topic? What questions occur to you as you read these articles?
  • Consider your audience. For most college papers, your audience will be academic, but always keep your audience in mind when narrowing your topic and developing your question. Would that particular audience be interested in the question you are developing?
  • Start asking questions. Taking into consideration all of the above, start asking yourself open-ended “how” and “why” questions about your general topic. For example, “Why were slave narratives effective tools in working toward the abolishment of slavery?” or “How did the films of the 1930s reflect or respond to the conditions of the Great Depression?”
  • Is your research question clear? With so much research available on any given topic, research questions must be as clear as possible in order to be effective in helping the writer direct his or her research.
  • Is your research question focused? Research questions must be specific enough to be well covered in the space available.
  • Is your research question complex? Research questions should not be answerable with a simple “yes” or “no” or by easily-found facts.  They should, instead, require both research and analysis on the part of the writer. They often begin with “How” or “Why.”
  • Begin your research . After you’ve come up with a question, think about the possible paths your research could take. What sources should you consult as you seek answers to your question? What research process will ensure that you find a variety of perspectives and responses to your question?

Sample Research Questions

Unclear: How should social networking sites address the harm they cause? Clear: What action should social networking sites like MySpace and Facebook take to protect users’ personal information and privacy? The unclear version of this question doesn’t specify which social networking sites or suggest what kind of harm the sites might be causing. It also assumes that this “harm” is proven and/or accepted. The clearer version specifies sites (MySpace and Facebook), the type of potential harm (privacy issues), and who may be experiencing that harm (users). A strong research question should never leave room for ambiguity or interpretation. Unfocused: What is the effect on the environment from global warming? Focused: What is the most significant effect of glacial melting on the lives of penguins in Antarctica?

The unfocused research question is so broad that it couldn’t be adequately answered in a book-length piece, let alone a standard college-level paper. The focused version narrows down to a specific effect of global warming (glacial melting), a specific place (Antarctica), and a specific animal that is affected (penguins). It also requires the writer to take a stance on which effect has the greatest impact on the affected animal. When in doubt, make a research question as narrow and focused as possible.

Too simple: How are doctors addressing diabetes in the U.S.? Appropriately Complex:   What main environmental, behavioral, and genetic factors predict whether Americans will develop diabetes, and how can these commonalities be used to aid the medical community in prevention of the disease?

The simple version of this question can be looked up online and answered in a few factual sentences; it leaves no room for analysis. The more complex version is written in two parts; it is thought provoking and requires both significant investigation and evaluation from the writer. As a general rule of thumb, if a quick Google search can answer a research question, it’s likely not very effective.

Last updated 8/8/2018

George Mason University Logo

The Writing Center

4400 University Drive, 2G8 Fairfax, VA 22030

Quick Links

  • Register with us

© Copyright 2024 George Mason University . All Rights Reserved. Privacy Statement | Accessibility

Instant insights, infinite possibilities

  • Examples of good research questions

Last updated

Reviewed by

Tanya Williams

However, developing a good research question is often challenging. But, doing appropriate data analysis or drawing meaningful conclusions from your investigation with a well-defined question make it easier.

So, to get you on the right track, let’s start by defining a research question, what types of research questions are common, and the steps to drafting an excellent research question.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • What is a research question?

The definition of a research question might seem fairly obvious.

 At its simplest, a research question is a question you research to find the answer.

Researchers typically start with a problem or an issue and seek to understand why it has occurred, how it can be solved, or other aspects of its nature.

As you'll see, researchers typically start with a broad question that becomes narrower and more specific as the research stages are completed.

In some cases, a study may tackle more than one research question.

  • Research question types

Research questions are typically divided into three broad categories: qualitative, quantitative, and mixed-method.

These categories reflect the research type necessary to answer the research question.

Qualitative research

When you conduct qualitative research, you're broadly exploring a subject to analyze its inherent qualities.

There are many types of qualitative research questions, which include:

Descriptive: describing and illuminating little-known or overlooked aspects of a subject

Emancipatory: uncovering data that can serve to emancipate a particular group of people, such as disadvantaged or marginalized communities

Evaluative:  assessing how well a particular research approach or method works

Explanatory: answering “how” or “why” a given phenomenon occurs 

Exploratory:  identifying reasons behind certain behaviors and exploring motivations (also known as generative research because it can generate solutions to problems)

Ideological: researching ideologies or beliefs, such as political affiliation

Interpretive: understanding group perceptions, decision-making, and behavior in a natural setting

Predictive: forecasting a likely outcome or scenario by examining past events 

While it's helpful to understand the differences between these qualitative research question types, writing a good question doesn't start with determining the precise type of research question you'll be asking.

It starts with determining what answers you're seeking.

Quantitative research

Unlike broad, flexible qualitative research questions, quantitative research questions are precise. They also directly link the research question and the proposed methodology.

So, in a quantitative research question, you'll usually find

The study method 

An independent variable (or variables)

A dependent variable

The study population 

Quantitative research questions can also fall into multiple categories, including:

Comparative research questions compare two or more groups according to specific criteria and analyze their similarities and differences.

Descriptive questions measure a population's response to one or more variables.

Relationship (or relationship-based) questions examine how two or more variables interact.

Mixed-methods research

As its name suggests, mixed-methods research questions involve qualitative and quantitative components.

These questions are ideal when the answers require an evaluation of a specific aspect of a phenomenon that you can quantify and a broader understanding of aspects that can't.

  • How to write a research question

Writing a good research question can be challenging, even if you're passionate about the subject matter.

A good research question aims to solve a problem that still needs to be answered and can be solved empirically. 

The approach might involve quantitative or qualitative methodology, or a mixture of both. To write a well-developed research question, follow the four steps below:

1. Select a general topic

Start with a broad topic. You may already have one in mind or get one assigned to you. If you don't, think about one you're curious about. 

You can also use common brainstorming techniques , draw on discussions you've had with family and friends, take topics from the news, or use other similar sources of inspiration.

Also, consider a subject that has yet to be studied or addressed. If you're looking to tackle a topic that has already been thoroughly studied, you'll want to examine it from a new angle.

Still, the closer your question, approach, and outcomes are to existing literature, the less value your work will offer. It will also be less publishing-worthy (if that’s your goal).

2. Conduct preliminary research

Next, you'll want to conduct some initial research about your topic. You'll read coverage about your topic in academic journals, the news, and other credible sources at this stage.

You'll familiarize yourself with the terminology commonly used to describe your topic and the current take from subject matter experts and the general public. 

This preliminary review helps you in a few ways. First, you'll find many researchers will discuss challenges they found conducting their research in their "Limitations," "Results," and "Discussion" sections of research papers.

Assessing these sections also helps you avoid choosing the wrong methodological approach to answering your question. Initial research also enables you to avoid focusing on a topic that has already been covered. 

You can generate valuable research questions by tracking topics that have yet to be covered.

3. Consider your audience

Next, you'll want to give some thought to your audience. For example, what kinds of research material are they looking for, and what might they find valuable?

Reflect on why you’re conducting the research. 

What is your team looking to learn if your research is for a work assignment?

How does what they’re asking for from you connect to business goals?

Understanding what your audience is seeking can help you shape the direction of your research so that the final draft connects with your audience.

If you're writing for an academic journal, what types of research do they publish? What kinds of research approaches have they published? And what criteria do they expect submitted manuscripts to meet?

4. Generate potential questions

Take the insights you've gained from your preliminary research and your audience assessment to narrow your topic into a research question. 

Your question should be one that you can answer using the appropriate research methods. Unfortunately, some researchers start with questions they need more resources to answer and then produce studies whose outcomes are limited, limiting the study's value to the broader community. 

Make sure your question is one you can realistically answer.

  • Examples of poor research questions

"How do electronics distract teen drivers?"

This question could be better from a researcher's perspective because it is overly broad. For instance, what is “electronics” in this context? Some electronics, like eye-monitoring systems in semi-autonomous vehicles, are designed to keep drivers focused on the road.

Also, how does the question define “teens”? Some states allow you to get a learner's permit as young as 14, while others require you to be 18 to drive. Therefore, conducting a study without further defining the participants' ages is not scientifically sound.

Here's another example of an ineffective research question:

"Why is the sky blue?"

This question has been researched thoroughly and answered. 

A simple online search will turn up hundreds, if not thousands, of pages of resources devoted to this very topic. 

Suppose you spend time conducting original research on a long-answered question; your research won’t be interesting, relevant, or valuable to your audience.

Alternatively, here's an example of a good research question:

"How does using a vehicle’s infotainment touch screen by drivers aged 16 to 18 in the U.S. affect driving habits?"

This question is far more specific than the first bad example. It notes the population of the study, as well as the independent and dependent variables.

And if you're still interested in the sky's color, a better example of a research question might be:

"What color is the sky on Proxima Centauri b, based on existing observations?"

A qualitative research study based on this question could extrapolate what visitors on Proxima Centauri b (a planet in the closest solar system to ours) might see as they look at the sky.

You could approach this by contextualizing our understanding of how the light scatters off the molecules of air resulting in a blue sky, and the likely composition of Proxima Centauri b's atmosphere from data NASA and others have gathered.

  • Why the right research question is critical

As you can see from the examples, starting with a poorly-framed research question can make your study difficult or impossible to complete. 

Or it can lead you to duplicate research findings.

Ultimately, developing the right research question sets you up for success. It helps you define a realistic scope for your study, informs the best approach to answer the central question, and conveys its value to your audience. 

That's why you must take the time to get your research question right before you embark on any other part of your project.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

what is specific research questions

Research Aims, Objectives & Questions

The “Golden Thread” Explained Simply (+ Examples)

By: David Phair (PhD) and Alexandra Shaeffer (PhD) | June 2022

The research aims , objectives and research questions (collectively called the “golden thread”) are arguably the most important thing you need to get right when you’re crafting a research proposal , dissertation or thesis . We receive questions almost every day about this “holy trinity” of research and there’s certainly a lot of confusion out there, so we’ve crafted this post to help you navigate your way through the fog.

Overview: The Golden Thread

  • What is the golden thread
  • What are research aims ( examples )
  • What are research objectives ( examples )
  • What are research questions ( examples )
  • The importance of alignment in the golden thread

What is the “golden thread”?  

The golden thread simply refers to the collective research aims , research objectives , and research questions for any given project (i.e., a dissertation, thesis, or research paper ). These three elements are bundled together because it’s extremely important that they align with each other, and that the entire research project aligns with them.

Importantly, the golden thread needs to weave its way through the entirety of any research project , from start to end. In other words, it needs to be very clearly defined right at the beginning of the project (the topic ideation and proposal stage) and it needs to inform almost every decision throughout the rest of the project. For example, your research design and methodology will be heavily influenced by the golden thread (we’ll explain this in more detail later), as well as your literature review.

The research aims, objectives and research questions (the golden thread) define the focus and scope ( the delimitations ) of your research project. In other words, they help ringfence your dissertation or thesis to a relatively narrow domain, so that you can “go deep” and really dig into a specific problem or opportunity. They also help keep you on track , as they act as a litmus test for relevance. In other words, if you’re ever unsure whether to include something in your document, simply ask yourself the question, “does this contribute toward my research aims, objectives or questions?”. If it doesn’t, chances are you can drop it.

Alright, enough of the fluffy, conceptual stuff. Let’s get down to business and look at what exactly the research aims, objectives and questions are and outline a few examples to bring these concepts to life.

Free Webinar: How To Find A Dissertation Research Topic

Research Aims: What are they?

Simply put, the research aim(s) is a statement that reflects the broad overarching goal (s) of the research project. Research aims are fairly high-level (low resolution) as they outline the general direction of the research and what it’s trying to achieve .

Research Aims: Examples  

True to the name, research aims usually start with the wording “this research aims to…”, “this research seeks to…”, and so on. For example:

“This research aims to explore employee experiences of digital transformation in retail HR.”   “This study sets out to assess the interaction between student support and self-care on well-being in engineering graduate students”  

As you can see, these research aims provide a high-level description of what the study is about and what it seeks to achieve. They’re not hyper-specific or action-oriented, but they’re clear about what the study’s focus is and what is being investigated.

Need a helping hand?

what is specific research questions

Research Objectives: What are they?

The research objectives take the research aims and make them more practical and actionable . In other words, the research objectives showcase the steps that the researcher will take to achieve the research aims.

The research objectives need to be far more specific (higher resolution) and actionable than the research aims. In fact, it’s always a good idea to craft your research objectives using the “SMART” criteria. In other words, they should be specific, measurable, achievable, relevant and time-bound”.

Research Objectives: Examples  

Let’s look at two examples of research objectives. We’ll stick with the topic and research aims we mentioned previously.  

For the digital transformation topic:

To observe the retail HR employees throughout the digital transformation. To assess employee perceptions of digital transformation in retail HR. To identify the barriers and facilitators of digital transformation in retail HR.

And for the student wellness topic:

To determine whether student self-care predicts the well-being score of engineering graduate students. To determine whether student support predicts the well-being score of engineering students. To assess the interaction between student self-care and student support when predicting well-being in engineering graduate students.

  As you can see, these research objectives clearly align with the previously mentioned research aims and effectively translate the low-resolution aims into (comparatively) higher-resolution objectives and action points . They give the research project a clear focus and present something that resembles a research-based “to-do” list.

The research objectives detail the specific steps that you, as the researcher, will take to achieve the research aims you laid out.

Research Questions: What are they?

Finally, we arrive at the all-important research questions. The research questions are, as the name suggests, the key questions that your study will seek to answer . Simply put, they are the core purpose of your dissertation, thesis, or research project. You’ll present them at the beginning of your document (either in the introduction chapter or literature review chapter) and you’ll answer them at the end of your document (typically in the discussion and conclusion chapters).  

The research questions will be the driving force throughout the research process. For example, in the literature review chapter, you’ll assess the relevance of any given resource based on whether it helps you move towards answering your research questions. Similarly, your methodology and research design will be heavily influenced by the nature of your research questions. For instance, research questions that are exploratory in nature will usually make use of a qualitative approach, whereas questions that relate to measurement or relationship testing will make use of a quantitative approach.  

Let’s look at some examples of research questions to make this more tangible.

Research Questions: Examples  

Again, we’ll stick with the research aims and research objectives we mentioned previously.  

For the digital transformation topic (which would be qualitative in nature):

How do employees perceive digital transformation in retail HR? What are the barriers and facilitators of digital transformation in retail HR?  

And for the student wellness topic (which would be quantitative in nature):

Does student self-care predict the well-being scores of engineering graduate students? Does student support predict the well-being scores of engineering students? Do student self-care and student support interact when predicting well-being in engineering graduate students?  

You’ll probably notice that there’s quite a formulaic approach to this. In other words, the research questions are basically the research objectives “converted” into question format. While that is true most of the time, it’s not always the case. For example, the first research objective for the digital transformation topic was more or less a step on the path toward the other objectives, and as such, it didn’t warrant its own research question.  

So, don’t rush your research questions and sloppily reword your objectives as questions. Carefully think about what exactly you’re trying to achieve (i.e. your research aim) and the objectives you’ve set out, then craft a set of well-aligned research questions . Also, keep in mind that this can be a somewhat iterative process , where you go back and tweak research objectives and aims to ensure tight alignment throughout the golden thread.

The importance of strong alignment 

Alignment is the keyword here and we have to stress its importance . Simply put, you need to make sure that there is a very tight alignment between all three pieces of the golden thread. If your research aims and research questions don’t align, for example, your project will be pulling in different directions and will lack focus . This is a common problem students face and can cause many headaches (and tears), so be warned.

Take the time to carefully craft your research aims, objectives and research questions before you run off down the research path. Ideally, get your research supervisor/advisor to review and comment on your golden thread before you invest significant time into your project, and certainly before you start collecting data .  

Recap: The golden thread

In this post, we unpacked the golden thread of research, consisting of the research aims , research objectives and research questions . You can jump back to any section using the links below.

As always, feel free to leave a comment below – we always love to hear from you. Also, if you’re interested in 1-on-1 support, take a look at our private coaching service here.

what is specific research questions

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

41 Comments

Isaac Levi

Thank you very much for your great effort put. As an Undergraduate taking Demographic Research & Methodology, I’ve been trying so hard to understand clearly what is a Research Question, Research Aim and the Objectives in a research and the relationship between them etc. But as for now I’m thankful that you’ve solved my problem.

Hatimu Bah

Well appreciated. This has helped me greatly in doing my dissertation.

Dr. Abdallah Kheri

An so delighted with this wonderful information thank you a lot.

so impressive i have benefited a lot looking forward to learn more on research.

Ekwunife, Chukwunonso Onyeka Steve

I am very happy to have carefully gone through this well researched article.

Infact,I used to be phobia about anything research, because of my poor understanding of the concepts.

Now,I get to know that my research question is the same as my research objective(s) rephrased in question format.

I please I would need a follow up on the subject,as I intends to join the team of researchers. Thanks once again.

Tosin

Thanks so much. This was really helpful.

Ishmael

I know you pepole have tried to break things into more understandable and easy format. And God bless you. Keep it up

sylas

i found this document so useful towards my study in research methods. thanks so much.

Michael L. Andrion

This is my 2nd read topic in your course and I should commend the simplified explanations of each part. I’m beginning to understand and absorb the use of each part of a dissertation/thesis. I’ll keep on reading your free course and might be able to avail the training course! Kudos!

Scarlett

Thank you! Better put that my lecture and helped to easily understand the basics which I feel often get brushed over when beginning dissertation work.

Enoch Tindiwegi

This is quite helpful. I like how the Golden thread has been explained and the needed alignment.

Sora Dido Boru

This is quite helpful. I really appreciate!

Chulyork

The article made it simple for researcher students to differentiate between three concepts.

Afowosire Wasiu Adekunle

Very innovative and educational in approach to conducting research.

Sàlihu Abubakar Dayyabu

I am very impressed with all these terminology, as I am a fresh student for post graduate, I am highly guided and I promised to continue making consultation when the need arise. Thanks a lot.

Mohammed Shamsudeen

A very helpful piece. thanks, I really appreciate it .

Sonam Jyrwa

Very well explained, and it might be helpful to many people like me.

JB

Wish i had found this (and other) resource(s) at the beginning of my PhD journey… not in my writing up year… 😩 Anyways… just a quick question as i’m having some issues ordering my “golden thread”…. does it matter in what order you mention them? i.e., is it always first aims, then objectives, and finally the questions? or can you first mention the research questions and then the aims and objectives?

UN

Thank you for a very simple explanation that builds upon the concepts in a very logical manner. Just prior to this, I read the research hypothesis article, which was equally very good. This met my primary objective.

My secondary objective was to understand the difference between research questions and research hypothesis, and in which context to use which one. However, I am still not clear on this. Can you kindly please guide?

Derek Jansen

In research, a research question is a clear and specific inquiry that the researcher wants to answer, while a research hypothesis is a tentative statement or prediction about the relationship between variables or the expected outcome of the study. Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.

Saen Fanai

Exactly what I need in this research journey, I look forward to more of your coaching videos.

Abubakar Rofiat Opeyemi

This helped a lot. Thanks so much for the effort put into explaining it.

Lamin Tarawally

What data source in writing dissertation/Thesis requires?

What is data source covers when writing dessertation/thesis

Latifat Muhammed

This is quite useful thanks

Yetunde

I’m excited and thankful. I got so much value which will help me progress in my thesis.

Amer Al-Rashid

where are the locations of the reserch statement, research objective and research question in a reserach paper? Can you write an ouline that defines their places in the researh paper?

Webby

Very helpful and important tips on Aims, Objectives and Questions.

Refiloe Raselane

Thank you so much for making research aim, research objectives and research question so clear. This will be helpful to me as i continue with my thesis.

Annabelle Roda-Dafielmoto

Thanks much for this content. I learned a lot. And I am inspired to learn more. I am still struggling with my preparation for dissertation outline/proposal. But I consistently follow contents and tutorials and the new FB of GRAD Coach. Hope to really become confident in writing my dissertation and successfully defend it.

Joe

As a researcher and lecturer, I find splitting research goals into research aims, objectives, and questions is unnecessarily bureaucratic and confusing for students. For most biomedical research projects, including ‘real research’, 1-3 research questions will suffice (numbers may differ by discipline).

Abdella

Awesome! Very important resources and presented in an informative way to easily understand the golden thread. Indeed, thank you so much.

Sheikh

Well explained

New Growth Care Group

The blog article on research aims, objectives, and questions by Grad Coach is a clear and insightful guide that aligns with my experiences in academic research. The article effectively breaks down the often complex concepts of research aims and objectives, providing a straightforward and accessible explanation. Drawing from my own research endeavors, I appreciate the practical tips offered, such as the need for specificity and clarity when formulating research questions. The article serves as a valuable resource for students and researchers, offering a concise roadmap for crafting well-defined research goals and objectives. Whether you’re a novice or an experienced researcher, this article provides practical insights that contribute to the foundational aspects of a successful research endeavor.

yaikobe

A great thanks for you. it is really amazing explanation. I grasp a lot and one step up to research knowledge.

UMAR SALEH

I really found these tips helpful. Thank you very much Grad Coach.

Rahma D.

I found this article helpful. Thanks for sharing this.

Juhaida

thank you so much, the explanation and examples are really helpful

BhikkuPanna

This is a well researched and superbly written article for learners of research methods at all levels in the research topic from conceptualization to research findings and conclusions. I highly recommend this material to university graduate students. As an instructor of advanced research methods for PhD students, I have confirmed that I was giving the right guidelines for the degree they are undertaking.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

what is specific research questions

  • Print Friendly

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Research process
  • Writing Strong Research Questions | Criteria & Examples

Writing Strong Research Questions | Criteria & Examples

Published on 30 October 2022 by Shona McCombes . Revised on 12 December 2023.

A research question pinpoints exactly what you want to find out in your work. A good research question is essential to guide your research paper , dissertation , or thesis .

All research questions should be:

  • Focused on a single problem or issue
  • Researchable using primary and/or secondary sources
  • Feasible to answer within the timeframe and practical constraints
  • Specific enough to answer thoroughly
  • Complex enough to develop the answer over the space of a paper or thesis
  • Relevant to your field of study and/or society more broadly

Writing Strong Research Questions

Table of contents

How to write a research question, what makes a strong research question, research questions quiz, frequently asked questions.

You can follow these steps to develop a strong research question:

  • Choose your topic
  • Do some preliminary reading about the current state of the field
  • Narrow your focus to a specific niche
  • Identify the research problem that you will address

The way you frame your question depends on what your research aims to achieve. The table below shows some examples of how you might formulate questions for different purposes.

Research question formulations
Describing and exploring
Explaining and testing
Evaluating and acting

Using your research problem to develop your research question

Example research problem Example research question(s)
Teachers at the school do not have the skills to recognize or properly guide gifted children in the classroom. What practical techniques can teachers use to better identify and guide gifted children?
Young people increasingly engage in the ‘gig economy’, rather than traditional full-time employment. However, it is unclear why they choose to do so. What are the main factors influencing young people’s decisions to engage in the gig economy?

Note that while most research questions can be answered with various types of research , the way you frame your question should help determine your choices.

Prevent plagiarism, run a free check.

Research questions anchor your whole project, so it’s important to spend some time refining them. The criteria below can help you evaluate the strength of your research question.

Focused and researchable

Criteria Explanation
Focused on a single topic Your central research question should work together with your research problem to keep your work focused. If you have multiple questions, they should all clearly tie back to your central aim.
Answerable using Your question must be answerable using and/or , or by reading scholarly sources on the topic to develop your argument. If such data is impossible to access, you likely need to rethink your question.
Not based on value judgements Avoid subjective words like , , and . These do not give clear criteria for answering the question.

Feasible and specific

Criteria Explanation
Answerable within practical constraints Make sure you have enough time and resources to do all research required to answer your question. If it seems you will not be able to gain access to the data you need, consider narrowing down your question to be more specific.
Uses specific, well-defined concepts All the terms you use in the research question should have clear meanings. Avoid vague language, jargon, and too-broad ideas.

Does not demand a conclusive solution, policy, or course of action Research is about informing, not instructing. Even if your project is focused on a practical problem, it should aim to improve understanding rather than demand a ready-made solution.

Complex and arguable

Criteria Explanation
Cannot be answered with or Closed-ended, / questions are too simple to work as good research questions—they don’t provide enough scope for robust investigation and discussion.

Cannot be answered with easily-found facts If you can answer the question through a single Google search, book, or article, it is probably not complex enough. A good research question requires original data, synthesis of multiple sources, and original interpretation and argumentation prior to providing an answer.

Relevant and original

Criteria Explanation
Addresses a relevant problem Your research question should be developed based on initial reading around your . It should focus on addressing a problem or gap in the existing knowledge in your field or discipline.
Contributes to a timely social or academic debate The question should aim to contribute to an existing and current debate in your field or in society at large. It should produce knowledge that future researchers or practitioners can later build on.
Has not already been answered You don’t have to ask something that nobody has ever thought of before, but your question should have some aspect of originality. For example, you can focus on a specific location, or explore a new angle.

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis – a prediction that will be confirmed or disproved by your research.

As you cannot possibly read every source related to your topic, it’s important to evaluate sources to assess their relevance. Use preliminary evaluation to determine whether a source is worth examining in more depth.

This involves:

  • Reading abstracts , prefaces, introductions , and conclusions
  • Looking at the table of contents to determine the scope of the work
  • Consulting the index for key terms or the names of important scholars

An essay isn’t just a loose collection of facts and ideas. Instead, it should be centered on an overarching argument (summarised in your thesis statement ) that every part of the essay relates to.

The way you structure your essay is crucial to presenting your argument coherently. A well-structured essay helps your reader follow the logic of your ideas and understand your overall point.

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, December 12). Writing Strong Research Questions | Criteria & Examples. Scribbr. Retrieved 16 September 2024, from https://www.scribbr.co.uk/the-research-process/research-question/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a research proposal | examples & templates, how to write a results section | tips & examples, what is a research methodology | steps & tips.

  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Good Research Question (w/ Examples)

what is specific research questions

What is a Research Question?

A research question is the main question that your study sought or is seeking to answer. A clear research question guides your research paper or thesis and states exactly what you want to find out, giving your work a focus and objective. Learning  how to write a hypothesis or research question is the start to composing any thesis, dissertation, or research paper. It is also one of the most important sections of a research proposal . 

A good research question not only clarifies the writing in your study; it provides your readers with a clear focus and facilitates their understanding of your research topic, as well as outlining your study’s objectives. Before drafting the paper and receiving research paper editing (and usually before performing your study), you should write a concise statement of what this study intends to accomplish or reveal.

Research Question Writing Tips

Listed below are the important characteristics of a good research question:

A good research question should:

  • Be clear and provide specific information so readers can easily understand the purpose.
  • Be focused in its scope and narrow enough to be addressed in the space allowed by your paper
  • Be relevant and concise and express your main ideas in as few words as possible, like a hypothesis.
  • Be precise and complex enough that it does not simply answer a closed “yes or no” question, but requires an analysis of arguments and literature prior to its being considered acceptable. 
  • Be arguable or testable so that answers to the research question are open to scrutiny and specific questions and counterarguments.

Some of these characteristics might be difficult to understand in the form of a list. Let’s go into more detail about what a research question must do and look at some examples of research questions.

The research question should be specific and focused 

Research questions that are too broad are not suitable to be addressed in a single study. One reason for this can be if there are many factors or variables to consider. In addition, a sample data set that is too large or an experimental timeline that is too long may suggest that the research question is not focused enough.

A specific research question means that the collective data and observations come together to either confirm or deny the chosen hypothesis in a clear manner. If a research question is too vague, then the data might end up creating an alternate research problem or hypothesis that you haven’t addressed in your Introduction section .

What is the importance of genetic research in the medical field?
How might the discovery of a genetic basis for alcoholism impact triage processes in medical facilities?

The research question should be based on the literature 

An effective research question should be answerable and verifiable based on prior research because an effective scientific study must be placed in the context of a wider academic consensus. This means that conspiracy or fringe theories are not good research paper topics.

Instead, a good research question must extend, examine, and verify the context of your research field. It should fit naturally within the literature and be searchable by other research authors.

References to the literature can be in different citation styles and must be properly formatted according to the guidelines set forth by the publishing journal, university, or academic institution. This includes in-text citations as well as the Reference section . 

The research question should be realistic in time, scope, and budget

There are two main constraints to the research process: timeframe and budget.

A proper research question will include study or experimental procedures that can be executed within a feasible time frame, typically by a graduate doctoral or master’s student or lab technician. Research that requires future technology, expensive resources, or follow-up procedures is problematic.

A researcher’s budget is also a major constraint to performing timely research. Research at many large universities or institutions is publicly funded and is thus accountable to funding restrictions. 

The research question should be in-depth

Research papers, dissertations and theses , and academic journal articles are usually dozens if not hundreds of pages in length.

A good research question or thesis statement must be sufficiently complex to warrant such a length, as it must stand up to the scrutiny of peer review and be reproducible by other scientists and researchers.

Research Question Types

Qualitative and quantitative research are the two major types of research, and it is essential to develop research questions for each type of study. 

Quantitative Research Questions

Quantitative research questions are specific. A typical research question involves the population to be studied, dependent and independent variables, and the research design.

In addition, quantitative research questions connect the research question and the research design. In addition, it is not possible to answer these questions definitively with a “yes” or “no” response. For example, scientific fields such as biology, physics, and chemistry often deal with “states,” in which different quantities, amounts, or velocities drastically alter the relevance of the research.

As a consequence, quantitative research questions do not contain qualitative, categorical, or ordinal qualifiers such as “is,” “are,” “does,” or “does not.”

Categories of quantitative research questions

Attempt to describe the behavior of a population in regard to one or more variables or describe characteristics of those variables that will be measured. These are usually “What?” questions.Seek to discover differences between groups within the context of an outcome variable. These questions can be causal as well. Researchers may compare groups in which certain variables are present with groups in which they are not.Designed to elucidate and describe trends and interactions among variables. These questions include the dependent and independent variables and use words such as “association” or “trends.”

Qualitative Research Questions

In quantitative research, research questions have the potential to relate to broad research areas as well as more specific areas of study. Qualitative research questions are less directional, more flexible, and adaptable compared with their quantitative counterparts. Thus, studies based on these questions tend to focus on “discovering,” “explaining,” “elucidating,” and “exploring.”

Categories of qualitative research questions

Attempt to identify and describe existing conditions.Attempt to describe a phenomenon.
Assess the effectiveness of existing methods, protocols, theories, or procedures.
Examine a phenomenon or analyze the reasons or relationships between subjects or phenomena.
Focus on the unknown aspects of a particular topic.

Quantitative and Qualitative Research Question Examples

Descriptive research question
Comparative research question
Correlational research question
Exploratory research question
Explanatory research question
Evaluation research question

stacks of books in black and white; research question examples

Good and Bad Research Question Examples

Below are some good (and not-so-good) examples of research questions that researchers can use to guide them in crafting their own research questions.

Research Question Example 1

The first research question is too vague in both its independent and dependent variables. There is no specific information on what “exposure” means. Does this refer to comments, likes, engagement, or just how much time is spent on the social media platform?

Second, there is no useful information on what exactly “affected” means. Does the subject’s behavior change in some measurable way? Or does this term refer to another factor such as the user’s emotions?

Research Question Example 2

In this research question, the first example is too simple and not sufficiently complex, making it difficult to assess whether the study answered the question. The author could really only answer this question with a simple “yes” or “no.” Further, the presence of data would not help answer this question more deeply, which is a sure sign of a poorly constructed research topic.

The second research question is specific, complex, and empirically verifiable. One can measure program effectiveness based on metrics such as attendance or grades. Further, “bullying” is made into an empirical, quantitative measurement in the form of recorded disciplinary actions.

Steps for Writing a Research Question

Good research questions are relevant, focused, and meaningful. It can be difficult to come up with a good research question, but there are a few steps you can follow to make it a bit easier.

1. Start with an interesting and relevant topic

Choose a research topic that is interesting but also relevant and aligned with your own country’s culture or your university’s capabilities. Popular academic topics include healthcare and medical-related research. However, if you are attending an engineering school or humanities program, you should obviously choose a research question that pertains to your specific study and major.

Below is an embedded graph of the most popular research fields of study based on publication output according to region. As you can see, healthcare and the basic sciences receive the most funding and earn the highest number of publications. 

what is specific research questions

2. Do preliminary research  

You can begin doing preliminary research once you have chosen a research topic. Two objectives should be accomplished during this first phase of research. First, you should undertake a preliminary review of related literature to discover issues that scholars and peers are currently discussing. With this method, you show that you are informed about the latest developments in the field.

Secondly, identify knowledge gaps or limitations in your topic by conducting a preliminary literature review . It is possible to later use these gaps to focus your research question after a certain amount of fine-tuning.

3. Narrow your research to determine specific research questions

You can focus on a more specific area of study once you have a good handle on the topic you want to explore. Focusing on recent literature or knowledge gaps is one good option. 

By identifying study limitations in the literature and overlooked areas of study, an author can carve out a good research question. The same is true for choosing research questions that extend or complement existing literature.

4. Evaluate your research question

Make sure you evaluate the research question by asking the following questions:

Is my research question clear?

The resulting data and observations that your study produces should be clear. For quantitative studies, data must be empirical and measurable. For qualitative, the observations should be clearly delineable across categories.

Is my research question focused and specific?

A strong research question should be specific enough that your methodology or testing procedure produces an objective result, not one left to subjective interpretation. Open-ended research questions or those relating to general topics can create ambiguous connections between the results and the aims of the study. 

Is my research question sufficiently complex?

The result of your research should be consequential and substantial (and fall sufficiently within the context of your field) to warrant an academic study. Simply reinforcing or supporting a scientific consensus is superfluous and will likely not be well received by most journal editors.  

reverse triangle chart, how to write a research question

Editing Your Research Question

Your research question should be fully formulated well before you begin drafting your research paper. However, you can receive English paper editing and proofreading services at any point in the drafting process. Language editors with expertise in your academic field can assist you with the content and language in your Introduction section or other manuscript sections. And if you need further assistance or information regarding paper compositions, in the meantime, check out our academic resources , which provide dozens of articles and videos on a variety of academic writing and publication topics.

Vappingo

How to Write a Research Question the SMART Way

Crafting a research question is the foundational step in any research endeavor. A well-structured research question not only guides your study but also sets the stage for a successful research project. In this guide, we’ll explore how to write a research question using the SMART criteria, ensuring that it is Specific, Measurable, Achievable, Relevant, and Time-bound.

If you know how to write a research question, you are well placed to progress to developed a well-defined thesis structure that presents your study in the best possible light.

If you’re struggling to write a SMART research question, try our free research question generator .

Understanding SMART Research Questions

Throughout this article, we are going to explore a specific example of a thesis statement. As such, before delving into the process of creating a SMART research question, it’s worth setting the context for our example.

Our general topic idea is as follows:

General Topic Idea for a Psychology Student: The Impact of Technology on Mental Well-being of Young Adults

This type of research will involve examining the relationship between the use of social media platforms and the prevalence of anxiety or depression symptoms in young adults. It will consider factors like the frequency of use, the type of interactions (positive vs. negative), and the nature of the content consumed.

Now we have a broad example to work with, let’s take a look at how we can write a research question that fulfils the SMART criteria.

What Does SMART MEAN?

Specific (s).

A specific research question is clear and concise, leaving no room for ambiguity. It focuses on a single topic or issue, making it easier to address.

Measurable (M)

Measurable research questions allow for the collection of data and evidence that can be quantified. This enables researchers to gauge the progress and success of their study.

Achievable (A)

An achievable research question considers the practicality of research methods and resources. It should be within reach and not overly ambitious.

Relevant (R)

A relevant research question aligns with the goals and objectives of the study. It should address a significant issue within the field of research.

Time-bound (T)

A time-bound research question includes a clear timeframe for when the study will take place and when results can be expected.

Formulating a SMART research question can help inform your research plan and methodology. Take a look at this research plan generator to see for yourself how you can quickly and easily generate a solid research plan once you have defined a succinct research question.

Link to dissertation proofreading sales page

What is the Difference Between a Research Question and a Thesis Statement?

A thesis statement and a research question are foundational elements in academic writing, but they serve distinct purposes and are structured differently.

A thesis statement presents the main point or argument that you intend to make within your paper, succinctly conveying your stance on the topic. It’s declarative and takes a definitive position. You can learn more here: How to write a thesis statement .

Conversely, a research question poses a query about a topic you intend to explore. It’s interrogative and invites investigation to find an answer.

For a study on the relationship between the use of social media platforms and the prevalence of anxiety or depression symptoms in young adults, a thesis statement might assert a particular correlation or effect, while the research question would probe into the nature or degree of that relationship.

Aspect Thesis Statement Research Question
Purpose Presents the main point or argument. Poses a query about a topic to be explored.
Structure Declarative; takes a definitive position. Interrogative; invites investigation.
Working Example Increased use of social media platforms is significantly linked with a rise in anxiety and depression symptoms in young adults. How does the use of social media platforms correlate with the prevalence of anxiety or depression symptoms in young adults?

For more expert advice, see our guide to writing a thesis .

Steps to Creating a SMART Research Question

Now that we understand the SMART criteria, let’s proceed with the steps to craft a research question that meets these criteria.

Step 1: Identify Your Research Topic

Start by selecting a broad research topic that interests you. This will serve as the foundation for your research question.

For this example, our topic is as follows: The impact of technology on mental wellbeing.

Step 2: Narrow Down Your Focus

To make your question specific, narrow down your research topic. Consider the “who,” “what,” “where,” “when,” “why,” and “how” aspects related to your topic.

For our example, we are concerned with

Step 3: Ensure Measurability

Ask yourself how you can measure or quantify the variables in your research question. What data or evidence can you collect to support your study?

Step 4: Assess Achievability

Evaluate whether your research question is achievable given the available resources, time, and expertise. Ensure that it’s realistic within the scope of your project.

Step 5: Establish Relevance

Confirm that your research question addresses a relevant issue within your field of study. It should contribute to existing knowledge or address a pressing concern.

Step 6: Add a Time Frame

Include a specific timeframe for your research. When will you start and finish your study? When do you anticipate obtaining results?

An Example of a SMART Research Question

Research Question : “Within the next 12 months, to what extent does daily usage of social media platforms (measured in hours) correlate with the severity of self-reported anxiety and depression symptoms (using the Generalized Anxiety Disorder 7-item scale and the Patient Health Questionnaire-9, respectively) in U.S. young adults aged 18-25?”

Explanation :

Specific : The question targets a specific group (U.S. young adults aged 18-25) and a defined topic (the correlation between daily social media usage and anxiety/depression symptoms).

Measurable : The research question focuses on measurable aspects:

  • Social media usage is quantified in hours.
  • Anxiety is measured with the Generalized Anxiety Disorder 7-item (GAD-7) scale.
  • Depression is measured with the Patient Health Questionnaire-9 (PHQ-9).

Achievable : While broad studies can be challenging, this question targets a specific age group and uses well-established measurement tools. Depending on resources and access, surveying or sourcing this data within the U.S. demographic should be feasible.

Relevant : Given the increasing concerns around the psychological impact of social media, this research is pertinent. It addresses a timely issue that can influence mental health policies, interventions, and even platform design.

Time-bound : The study aims to be conducted “within the next 12 months,” providing a clear timeframe for data collection and analysis.

This research question’s structure provides a clear roadmap for the necessary steps and ensures that the results will be actionable and meaningful.

More Examples of SMART Research Questions

Let’s take a look at some examples of SMART research questions to illustrate the concept:

Not SMART Questions SMART Questions
How does climate change affect the environment? To what extent does a 1-degree Celsius increase in average global temperature over the next decade impact the migratory patterns of North American bird species?
What are the factors influencing consumer behavior? How does a 10% increase in product price during the holiday season affect the purchasing decisions of online shoppers aged 25-35 in the United States within a six-month period?
How do urban areas influence health? How does living in urban environments with green spaces larger than 1 acre, compared to those without, affect the cardiovascular health of residents aged 40-60 in Toronto over a 5-year period?
Do diets affect learning capabilities? How does a ketogenic diet, followed for three months, influence the cognitive test scores of college students aged 19-24 in California universities compared to those on a balanced diet?
What’s the impact of advertising on children? To what extent does exposure to more than 5 hours of television advertisements weekly influence the food choices of children aged 6-10 in New York City schools over one academic year?
Does technology improve learning? How does the integration of augmented reality (AR) tools in physics classes affect the final exam scores of high school students in Berlin during a single academic semester?
Is exercise beneficial for mental health? What impact does engaging in aerobic exercises, 3 times a week for 45 minutes each, have on the self-reported anxiety levels (using the GAD-7 scale) of office workers aged 30-45 in Sydney over a 6-month period?
How does globalization affect industries? Over a 2-year period, how does a 15% increase in international trade agreements influence the production rates of the automotive industry in Mexico?
What effect do pets have on well-being? Over an 18-month period, how does owning a pet dog impact the recovery rates and hospital readmission of heart attack patients aged 50-70 in London?
How do forest fires impact ecosystems? Following a major forest fire, to what extent are the population sizes of medium-sized mammals (like raccoons and foxes) affected in the affected region of the California forests over three consecutive seasons?
Is organic farming better? How does the yield of tomato crops differ between organic and non-organic farming methods in the Mediterranean regions of Spain over two harvesting seasons?
Do video games affect behavior? Over a year, how does playing violent video games for more than 15 hours a week correlate with aggressive behaviors (measured using the Buss-Perry Aggression Questionnaire) in teenagers aged 13-17 in Tokyo?

Writing a SMART research question is an essential skill for researchers across various disciplines. A well-crafted question sets the stage for a focused, measurable, and achievable research project that contributes to the body of knowledge in your field. Remember to keep your question specific, measurable, achievable, relevant, and time-bound to maximize the success of your research endeavor.

Not sure how to log in to access library resources? Click here to learn how!

Library Home

  • Library Website
  • Research Basics

Developing a Research Question

  • Introduction
  • The Research Process
  • Scholarly & Peer-Reviewed
  • Primary vs. Secondary Sources
  • Quantitative vs. Qualitative
  • Evaluating Sources

What is a research question?

A research question is an essential tool to help guide your research paper, project, or thesis. It poses a specific question that you are seeking to answer in your paper. Research questions can be broad or narrow, and can change throughout the research process.

A good research question should be:

  • Focused on a single issue
  • Specific enough to answer thoroughly in your paper
  • Feasible to answer within the length of your paper
  • Researchable using the resources available to you
  • Relevant to your field of study and/or to society at large

The length of your paper and the research you're able to locate will help to shape your research question. A longer paper, like a thesis or dissertation, may require multiple research questions.

The answer to your research question develops into your thesis statement .

Writing Your Research Question

Chose a Topic

You should choose a research topic that is interesting to you. This will make the research and writing process much more bearable.

A good way to begin brainstorming research questions is to list all the questions you would like to see answered, or topics you would like to learn more about. You may have been provided a list of potential topics by your professor, if none are interesting to you ask if you can develop your own.

It is better to start broad and narrow down your focus as you go.

Do Preliminary Research

graphic depicting an upside down triangle showing the process of narrowing a research subject

Reference materials like encyclopedias can also be good for this purpose.

Narrow Your Topic

Now that you have a basic idea of what research exists on your topic, you can begin to narrow your focus.

Make sure that your question is specific enough that it can be answered thoroughly in the length of your paper.

Developing a Research Question Video Tutorial

Using Keywords Video Tutorial

  • << Previous: Introduction
  • Next: The Research Process >>
  • Last Updated: Aug 15, 2023 3:47 PM
  • URL: https://library.ndnu.edu/researchbasics

Academic Success Center

Emergency Information

NDNU home

© 2023 Notre Dame de Namur University. All rights reserved.

Notre Dame de Namur University 1500 Ralston Avenue Belmont, CA 94002 Map

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.53(4); 2010 Aug

Logo of canjsurg

Research questions, hypotheses and objectives

Patricia farrugia.

* Michael G. DeGroote School of Medicine, the

Bradley A. Petrisor

† Division of Orthopaedic Surgery and the

Forough Farrokhyar

‡ Departments of Surgery and

§ Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ont

Mohit Bhandari

There is an increasing familiarity with the principles of evidence-based medicine in the surgical community. As surgeons become more aware of the hierarchy of evidence, grades of recommendations and the principles of critical appraisal, they develop an increasing familiarity with research design. Surgeons and clinicians are looking more and more to the literature and clinical trials to guide their practice; as such, it is becoming a responsibility of the clinical research community to attempt to answer questions that are not only well thought out but also clinically relevant. The development of the research question, including a supportive hypothesis and objectives, is a necessary key step in producing clinically relevant results to be used in evidence-based practice. A well-defined and specific research question is more likely to help guide us in making decisions about study design and population and subsequently what data will be collected and analyzed. 1

Objectives of this article

In this article, we discuss important considerations in the development of a research question and hypothesis and in defining objectives for research. By the end of this article, the reader will be able to appreciate the significance of constructing a good research question and developing hypotheses and research objectives for the successful design of a research study. The following article is divided into 3 sections: research question, research hypothesis and research objectives.

Research question

Interest in a particular topic usually begins the research process, but it is the familiarity with the subject that helps define an appropriate research question for a study. 1 Questions then arise out of a perceived knowledge deficit within a subject area or field of study. 2 Indeed, Haynes suggests that it is important to know “where the boundary between current knowledge and ignorance lies.” 1 The challenge in developing an appropriate research question is in determining which clinical uncertainties could or should be studied and also rationalizing the need for their investigation.

Increasing one’s knowledge about the subject of interest can be accomplished in many ways. Appropriate methods include systematically searching the literature, in-depth interviews and focus groups with patients (and proxies) and interviews with experts in the field. In addition, awareness of current trends and technological advances can assist with the development of research questions. 2 It is imperative to understand what has been studied about a topic to date in order to further the knowledge that has been previously gathered on a topic. Indeed, some granting institutions (e.g., Canadian Institute for Health Research) encourage applicants to conduct a systematic review of the available evidence if a recent review does not already exist and preferably a pilot or feasibility study before applying for a grant for a full trial.

In-depth knowledge about a subject may generate a number of questions. It then becomes necessary to ask whether these questions can be answered through one study or if more than one study needed. 1 Additional research questions can be developed, but several basic principles should be taken into consideration. 1 All questions, primary and secondary, should be developed at the beginning and planning stages of a study. Any additional questions should never compromise the primary question because it is the primary research question that forms the basis of the hypothesis and study objectives. It must be kept in mind that within the scope of one study, the presence of a number of research questions will affect and potentially increase the complexity of both the study design and subsequent statistical analyses, not to mention the actual feasibility of answering every question. 1 A sensible strategy is to establish a single primary research question around which to focus the study plan. 3 In a study, the primary research question should be clearly stated at the end of the introduction of the grant proposal, and it usually specifies the population to be studied, the intervention to be implemented and other circumstantial factors. 4

Hulley and colleagues 2 have suggested the use of the FINER criteria in the development of a good research question ( Box 1 ). The FINER criteria highlight useful points that may increase the chances of developing a successful research project. A good research question should specify the population of interest, be of interest to the scientific community and potentially to the public, have clinical relevance and further current knowledge in the field (and of course be compliant with the standards of ethical boards and national research standards).

FINER criteria for a good research question

Feasible
Interesting
Novel
Ethical
Relevant

Adapted with permission from Wolters Kluwer Health. 2

Whereas the FINER criteria outline the important aspects of the question in general, a useful format to use in the development of a specific research question is the PICO format — consider the population (P) of interest, the intervention (I) being studied, the comparison (C) group (or to what is the intervention being compared) and the outcome of interest (O). 3 , 5 , 6 Often timing (T) is added to PICO ( Box 2 ) — that is, “Over what time frame will the study take place?” 1 The PICOT approach helps generate a question that aids in constructing the framework of the study and subsequently in protocol development by alluding to the inclusion and exclusion criteria and identifying the groups of patients to be included. Knowing the specific population of interest, intervention (and comparator) and outcome of interest may also help the researcher identify an appropriate outcome measurement tool. 7 The more defined the population of interest, and thus the more stringent the inclusion and exclusion criteria, the greater the effect on the interpretation and subsequent applicability and generalizability of the research findings. 1 , 2 A restricted study population (and exclusion criteria) may limit bias and increase the internal validity of the study; however, this approach will limit external validity of the study and, thus, the generalizability of the findings to the practical clinical setting. Conversely, a broadly defined study population and inclusion criteria may be representative of practical clinical practice but may increase bias and reduce the internal validity of the study.

PICOT criteria 1

Population (patients)
Intervention (for intervention studies only)
Comparison group
Outcome of interest
Time

A poorly devised research question may affect the choice of study design, potentially lead to futile situations and, thus, hamper the chance of determining anything of clinical significance, which will then affect the potential for publication. Without devoting appropriate resources to developing the research question, the quality of the study and subsequent results may be compromised. During the initial stages of any research study, it is therefore imperative to formulate a research question that is both clinically relevant and answerable.

Research hypothesis

The primary research question should be driven by the hypothesis rather than the data. 1 , 2 That is, the research question and hypothesis should be developed before the start of the study. This sounds intuitive; however, if we take, for example, a database of information, it is potentially possible to perform multiple statistical comparisons of groups within the database to find a statistically significant association. This could then lead one to work backward from the data and develop the “question.” This is counterintuitive to the process because the question is asked specifically to then find the answer, thus collecting data along the way (i.e., in a prospective manner). Multiple statistical testing of associations from data previously collected could potentially lead to spuriously positive findings of association through chance alone. 2 Therefore, a good hypothesis must be based on a good research question at the start of a trial and, indeed, drive data collection for the study.

The research or clinical hypothesis is developed from the research question and then the main elements of the study — sampling strategy, intervention (if applicable), comparison and outcome variables — are summarized in a form that establishes the basis for testing, statistical and ultimately clinical significance. 3 For example, in a research study comparing computer-assisted acetabular component insertion versus freehand acetabular component placement in patients in need of total hip arthroplasty, the experimental group would be computer-assisted insertion and the control/conventional group would be free-hand placement. The investigative team would first state a research hypothesis. This could be expressed as a single outcome (e.g., computer-assisted acetabular component placement leads to improved functional outcome) or potentially as a complex/composite outcome; that is, more than one outcome (e.g., computer-assisted acetabular component placement leads to both improved radiographic cup placement and improved functional outcome).

However, when formally testing statistical significance, the hypothesis should be stated as a “null” hypothesis. 2 The purpose of hypothesis testing is to make an inference about the population of interest on the basis of a random sample taken from that population. The null hypothesis for the preceding research hypothesis then would be that there is no difference in mean functional outcome between the computer-assisted insertion and free-hand placement techniques. After forming the null hypothesis, the researchers would form an alternate hypothesis stating the nature of the difference, if it should appear. The alternate hypothesis would be that there is a difference in mean functional outcome between these techniques. At the end of the study, the null hypothesis is then tested statistically. If the findings of the study are not statistically significant (i.e., there is no difference in functional outcome between the groups in a statistical sense), we cannot reject the null hypothesis, whereas if the findings were significant, we can reject the null hypothesis and accept the alternate hypothesis (i.e., there is a difference in mean functional outcome between the study groups), errors in testing notwithstanding. In other words, hypothesis testing confirms or refutes the statement that the observed findings did not occur by chance alone but rather occurred because there was a true difference in outcomes between these surgical procedures. The concept of statistical hypothesis testing is complex, and the details are beyond the scope of this article.

Another important concept inherent in hypothesis testing is whether the hypotheses will be 1-sided or 2-sided. A 2-sided hypothesis states that there is a difference between the experimental group and the control group, but it does not specify in advance the expected direction of the difference. For example, we asked whether there is there an improvement in outcomes with computer-assisted surgery or whether the outcomes worse with computer-assisted surgery. We presented a 2-sided test in the above example because we did not specify the direction of the difference. A 1-sided hypothesis states a specific direction (e.g., there is an improvement in outcomes with computer-assisted surgery). A 2-sided hypothesis should be used unless there is a good justification for using a 1-sided hypothesis. As Bland and Atlman 8 stated, “One-sided hypothesis testing should never be used as a device to make a conventionally nonsignificant difference significant.”

The research hypothesis should be stated at the beginning of the study to guide the objectives for research. Whereas the investigators may state the hypothesis as being 1-sided (there is an improvement with treatment), the study and investigators must adhere to the concept of clinical equipoise. According to this principle, a clinical (or surgical) trial is ethical only if the expert community is uncertain about the relative therapeutic merits of the experimental and control groups being evaluated. 9 It means there must exist an honest and professional disagreement among expert clinicians about the preferred treatment. 9

Designing a research hypothesis is supported by a good research question and will influence the type of research design for the study. Acting on the principles of appropriate hypothesis development, the study can then confidently proceed to the development of the research objective.

Research objective

The primary objective should be coupled with the hypothesis of the study. Study objectives define the specific aims of the study and should be clearly stated in the introduction of the research protocol. 7 From our previous example and using the investigative hypothesis that there is a difference in functional outcomes between computer-assisted acetabular component placement and free-hand placement, the primary objective can be stated as follows: this study will compare the functional outcomes of computer-assisted acetabular component insertion versus free-hand placement in patients undergoing total hip arthroplasty. Note that the study objective is an active statement about how the study is going to answer the specific research question. Objectives can (and often do) state exactly which outcome measures are going to be used within their statements. They are important because they not only help guide the development of the protocol and design of study but also play a role in sample size calculations and determining the power of the study. 7 These concepts will be discussed in other articles in this series.

From the surgeon’s point of view, it is important for the study objectives to be focused on outcomes that are important to patients and clinically relevant. For example, the most methodologically sound randomized controlled trial comparing 2 techniques of distal radial fixation would have little or no clinical impact if the primary objective was to determine the effect of treatment A as compared to treatment B on intraoperative fluoroscopy time. However, if the objective was to determine the effect of treatment A as compared to treatment B on patient functional outcome at 1 year, this would have a much more significant impact on clinical decision-making. Second, more meaningful surgeon–patient discussions could ensue, incorporating patient values and preferences with the results from this study. 6 , 7 It is the precise objective and what the investigator is trying to measure that is of clinical relevance in the practical setting.

The following is an example from the literature about the relation between the research question, hypothesis and study objectives:

Study: Warden SJ, Metcalf BR, Kiss ZS, et al. Low-intensity pulsed ultrasound for chronic patellar tendinopathy: a randomized, double-blind, placebo-controlled trial. Rheumatology 2008;47:467–71.

Research question: How does low-intensity pulsed ultrasound (LIPUS) compare with a placebo device in managing the symptoms of skeletally mature patients with patellar tendinopathy?

Research hypothesis: Pain levels are reduced in patients who receive daily active-LIPUS (treatment) for 12 weeks compared with individuals who receive inactive-LIPUS (placebo).

Objective: To investigate the clinical efficacy of LIPUS in the management of patellar tendinopathy symptoms.

The development of the research question is the most important aspect of a research project. A research project can fail if the objectives and hypothesis are poorly focused and underdeveloped. Useful tips for surgical researchers are provided in Box 3 . Designing and developing an appropriate and relevant research question, hypothesis and objectives can be a difficult task. The critical appraisal of the research question used in a study is vital to the application of the findings to clinical practice. Focusing resources, time and dedication to these 3 very important tasks will help to guide a successful research project, influence interpretation of the results and affect future publication efforts.

Tips for developing research questions, hypotheses and objectives for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Develop clear and well-defined primary and secondary (if needed) objectives.
  • Ensure that the research question and objectives are answerable, feasible and clinically relevant.

FINER = feasible, interesting, novel, ethical, relevant; PICOT = population (patients), intervention (for intervention studies only), comparison group, outcome of interest, time.

Competing interests: No funding was received in preparation of this paper. Dr. Bhandari was funded, in part, by a Canada Research Chair, McMaster University.

Logo for Open Educational Resources

Chapter 4. Finding a Research Question and Approaches to Qualitative Research

We’ve discussed the research design process in general and ways of knowing favored by qualitative researchers.  In chapter 2, I asked you to think about what interests you in terms of a focus of study, including your motivations and research purpose.  It might be helpful to start this chapter with those short paragraphs you wrote about motivations and purpose in front of you.  We are now going to try to develop those interests into actual research questions (first part of this chapter) and then choose among various “traditions of inquiry” that will be best suited to answering those questions.  You’ve already been introduced to some of this (in chapter 1), but we will go further here.

Null

Developing a Research Question

Research questions are different from general questions people have about the social world.  They are narrowly tailored to fit a very specific issue, complete with context and time boundaries.  Because we are engaged in empirical science and thus use “data” to answer our questions, the questions we ask must be answerable by data.  A question is not the same as stating a problem.  The point of the entire research project is to answer a particular question or set of questions.  The question(s) should be interesting, relevant, practical, and ethical.  Let’s say I am generally interested in the problem of student loan debt.  That’s a good place to start, but we can’t simply ask,

General question: Is student loan debt really a problem today?

How could we possibly answer that question? What data could we use? Isn’t this really an axiological (values-based) question? There are no clues in the question as to what data would be appropriate here to help us get started. Students often begin with these large unanswerable questions. They are not research questions. Instead, we could ask,

Poor research question: How many people have debt?

This is still not a very good research question. Why not? It is answerable, although we would probably want to clarify the context. We could add some context to improve it so that the question now reads,

Mediocre research question: How many people in the US have debt today? And does this amount vary by age and location?

Now we have added some context, so we have a better idea of where to look and who to look at. But this is still a pretty poor or mediocre research question. Why is that? Let’s say we did answer it. What would we really know? Maybe we would find out that student loan debt has increased over time and that young people today have more of it. We probably already know this. We don’t really want to go through a lot of trouble answering a question whose answer we already have. In fact, part of the reason we are even asking this question is that we know (or think) it is a problem. Instead of asking what you already know, ask a question to which you really do not know the answer. I can’t stress this enough, so I will say it again: Ask a question to which you do not already know the answer . The point of research is not to prove or make a point but to find out something unknown. What about student loan debt is still a mystery to you? Reviewing the literature could help (see chapter 9). By reviewing the literature, you can get a good sense of what is still mysterious or unknown about student loan debt, and you won’t be reinventing the wheel when you conduct your research. Let’s say you review the literature, and you are struck by the fact that we still don’t understand the true impact of debt on how people are living their lives. A possible research question might be,

Fair research question: What impact does student debt have on the lives of debtors?

Good start, but we still need some context to help guide the project. It is not nearly specific enough.

Better research question: What impact does student debt have on young adults (ages twenty-five to thirty-five) living in the US today?

Now we’ve added context, but we can still do a little bit better in narrowing our research question so that it is both clear and doable; in other words, we want to frame it in a way that provides a very clear research program:

Optimal research question: How do young adults (ages twenty-five to thirty-five) living in the US today who have taken on $30,000 or more in student debt describe the impact of their debt on their lives in terms of finding/choosing a job, buying a house, getting married, and other major life events?

Now you have a research question that can be answered and a clear plan of how to answer it. You will talk to young adults living in the US today who have high debt loads and ask them to describe the impacts of debt on their lives. That is all now in the research question. Note how different this very specific question is from where we started with the “problem” of student debt.

Take some time practicing turning the following general questions into research questions:

  • What can be done about the excessive use of force by police officers?
  • Why haven’t societies taken firmer steps to address climate change?
  • How do communities react to / deal with the opioid epidemic?
  • Who has been the most adversely affected by COVID?
  • When did political polarization get so bad?

Hint: Step back from each of the questions and try to articulate a possible underlying motivation, then formulate a research question that is specific and answerable.

It is important to take the time to come up with a research question, even if this research question changes a bit as you conduct your research (yes, research questions can change!). If you don’t have a clear question to start your research, you are likely to get very confused when designing your study because you will not be able to make coherent decisions about things like samples, sites, methods of data collection, and so on. Your research question is your anchor: “If we don’t have a question, we risk the possibility of going out into the field thinking we know what we’ll find and looking only for proof of what we expect to be there. That’s not empirical research (it’s not systematic)” ( Rubin 2021:37 ).

Researcher Note

How do you come up with ideas for what to study?

I study what surprises me. Usually, I come across a statistic that suggests something is common that I thought was rare. I tend to think it’s rare because the theories I read suggest it should be, and there’s not a lot of work in that area that helps me understand how the statistic came to be. So, for example, I learned that it’s common for Americans to marry partners who grew up in a different class than them and that about half of White kids born into the upper-middle class are downwardly mobile. I was so shocked by these facts that they naturally led to research questions. How do people come to marry someone who grew up in a different class? How do White kids born near the top of the class structure fall?

—Jessi Streib, author of The Power of the Past and Privilege Lost

What if you have literally no idea what the research question should be? How do you find a research question? Even if you have an interest in a topic before you get started, you see the problem now: topics and issues are not research questions! A research question doesn’t easily emerge; it takes a lot of time to hone one, as the practice above should demonstrate. In some research designs, the research question doesn’t even get clearly articulated until the end of data collection . More on that later. But you must start somewhere, of course. Start with your chosen discipline. This might seem obvious, but it is often overlooked. There is a reason it is called a discipline. We tend to think of “sociology,” “public health,” and “physics” as so many clusters of courses that are linked together by subject matter, but they are also disciplines in the sense that the study of each focuses the mind in a particular way and for particular ends. For example, in my own field, sociology, there is a loosely shared commitment to social justice and a general “sociological imagination” that enables its practitioners to connect personal experiences to society at large and to historical forces. It is helpful to think of issues and questions that are germane to your discipline. Within that overall field, there may be a particular course or unit of study you found most interesting. Within that course or unit of study, there may be an issue that intrigued you. And finally, within that issue, there may be an aspect or topic that you want to know more about.

When I was pursuing my dissertation research, I was asked often, “Why did you choose to study intimate partner violence among Native American women?” This question is necessary, and each time I answered, it helped shape me into a better researcher. I was interested in intimate partner violence because I am a survivor. I didn’t have intentions to work with a particular population or demographic—that came from my own deep introspection on my role as a researcher. I always questioned my positionality: What privileges do I hold as an academic? How has public health extracted information from institutionally marginalized populations? How can I build bridges between communities using my position, knowledge, and power? Public health as a field would not exist without the contributions of Indigenous people. So I started hanging out with them at community events, making friends, and engaging in self-education. Through these organic relationships built with Native women in the community, I saw that intimate partner violence was a huge issue. This led me to partner with Indigenous organizations to pursue a better understanding of how Native survivors of intimate partner violence seek support.

—Susanna Y. Park, PhD, mixed-methods researcher in public health and author of “How Native Women Seek Support as Survivors of Intimate Partner Violence: A Mixed-Methods Study”

One of the most exciting and satisfying things about doing academic research is that whatever you end up researching can become part of the body of knowledge that we have collectively created. Don’t make the mistake of thinking that you are doing this all on your own from scratch. Without even being aware of it, no matter if you are a first-year undergraduate student or a fourth-year graduate student, you have been trained to think certain questions are interesting. The very fact that you are majoring in a particular field or have signed up for years of graduate study in a program testifies to some level of commitment to a discipline. What we are looking for, ideally, is that your research builds on in some way (as extension, as critique, as lateral move) previous research and so adds to what we, collectively, understand about the social world. It is helpful to keep this in mind, as it may inspire you and also help guide you through the process. The point is, you are not meant to be doing something no one has ever thought of before, even if you are trying to find something that does not exactly duplicate previous research: “You may be trying to be too clever—aiming to come up with a topic unique in the history of the universe, something that will have people swooning with admiration at your originality and intellectual precociousness. Don’t do it. It’s safer…to settle on an ordinary, middle-of-the-road topic that will lend itself to a nicely organized process of project management. That’s the clever way of proceeding.… You can always let your cleverness shine through during the stages of design, analysis, and write-up. Don’t make things more difficult for yourself than you need to do” ( Davies 2007:20 ).

Rubin ( 2021 ) suggests four possible ways to develop a research question (there are many more, of course, but this can get you started). One way is to start with a theory that interests you and then select a topic where you can apply that theory. For example, you took a class on gender and society and learned about the “glass ceiling.” You could develop a study that tests that theory in a setting that has not yet been explored—maybe leadership at the Oregon Country Fair. The second way is to start with a topic that interests you and then go back to the books to find a theory that might explain it. This is arguably more difficult but often much more satisfying. Ask your professors for help—they might have ideas of theories or concepts that could be relevant or at least give you an idea of what books to read. The third way is to be very clever and select a question that already combines the topic and the theory. Rubin gives as one example sentencing disparities in criminology—this is both a topic and a theory or set of theories. You then just have to figure out particulars like setting and sample. I don’t know if I find this third way terribly helpful, but it might help you think through the possibilities. The fourth way involves identifying a puzzle or a problem, which can be either theoretical (something in the literature just doesn’t seem to make sense and you want to tackle addressing it) or empirical (something happened or is happening, and no one really understands why—think, for example, of mass school shootings).

Once you think you have an issue or topic that is worth exploring, you will need to (eventually) turn that into a good research question. A good research question is specific, clear, and feasible .

Specific . How specific a research question needs to be is somewhat related to the disciplinary conventions and whether the study is conceived inductively or deductively. In deductive research, one begins with a specific research question developed from the literature. You then collect data to test the theory or hypotheses accompanying your research question. In inductive research, however, one begins with data collection and analysis and builds theory from there. So naturally, the research question is a bit vaguer. In general, the more closely aligned to the natural sciences (and thus the deductive approach), the more a very tight and specific research question (along with specific, focused hypotheses) is required. This includes disciplines like psychology, geography, public health, environmental science, and marine resources management. The more one moves toward the humanities pole (and the inductive approach), the more looseness is permitted, as there is a general belief that we go into the field to find what is there, not necessarily what we imagine we are looking for (see figure 4.2). Disciplines such as sociology, anthropology, and gender and sexuality studies and some subdisciplines of public policy/public administration are closer to the humanities pole in this sense.

Natural Sciences are more likely to use the scientific method and be on the Quantitative side of the continuum. Humanities are more likely to use Interpretive methods and are on the Qualitative side of the continuum.

Regardless of discipline and approach, however, it is a good idea for beginning researchers to create a research question as specific as possible, as this will serve as your guide throughout the process. You can tweak it later if needed, but start with something specific enough that you know what it is you are doing and why. It is more difficult to deal with ambiguity when you are starting out than later in your career, when you have a better handle on what you are doing. Being under a time constraint means the more specific the question, the better. Questions should always specify contexts, geographical locations, and time frames. Go back to your practice research questions and make sure that these are included.

Clear . A clear research question doesn’t only need to be intelligible to any reader (which, of course, it should); it needs to clarify any meanings of particular words or concepts (e.g., What is excessive force?). Check all your concepts to see if there are ways you can clarify them further—for example, note that we shifted from impact of debt to impact of high debt load and specified this as beginning at $30,000. Ideally, we would use the literature to help us clarify what a high debt load is or how to define “excessive” force.

Feasible . In order to know if your question is feasible, you are going to have to think a little bit about your entire research design. For example, a question that asks about the real-time impact of COVID restrictions on learning outcomes would require a time machine. You could tweak the question to ask instead about the long-term impacts of COVID restrictions, as measured two years after their end. Or let’s say you are interested in assessing the damage of opioid abuse on small-town communities across the United States. Is it feasible to cover the entire US? You might need a team of researchers to do this if you are planning on on-the-ground observations. Perhaps a case study of one particular community might be best. Then your research question needs to be changed accordingly.

Here are some things to consider in terms of feasibility:

  • Is the question too general for what you actually intend to do or examine? (Are you specifying the world when you only have time to explore a sliver of that world?)
  • Is the question suitable for the time you have available? (You will need different research questions for a study that can be completed in a term than one where you have one to two years, as in a master’s program, or even three to eight years, as in a doctoral program.)
  • Is the focus specific enough that you know where and how to begin?
  • What are the costs involved in doing this study, including time? Will you need to travel somewhere, and if so, how will you pay for it?
  • Will there be problems with “access”? (More on this in later chapters, but for now, consider how you might actually find people to interview or places to observe and whether gatekeepers exist who might keep you out.)
  • Will you need to submit an application proposal for your university’s IRB (institutional review board)? If you are doing any research with live human subjects, you probably need to factor in the time and potential hassle of an IRB review (see chapter 8). If you are under severe time constraints, you might need to consider developing a research question that can be addressed with secondary sources, online content, or historical archives (see chapters 16 and 17).

In addition to these practicalities, you will also want to consider the research question in terms of what is best for you now. Are you engaged in research because you are required to be—jumping a hurdle for a course or for your degree? If so, you really do want to think about your project as training and develop a question that will allow you to practice whatever data collection and analysis techniques you want to develop. For example, if you are a grad student in a public health program who is interested in eventually doing work that requires conducting interviews with patients, develop a research question and research design that is interview based. Focus on the practicality (and practice) of the study more than the theoretical impact or academic contribution, in other words. On the other hand, if you are a PhD candidate who is seeking an academic position in the future, your research question should be pitched in a way to build theoretical knowledge as well (the phrasing is typically “original contribution to scholarship”).

The more time you have to devote to the study and the larger the project, the more important it is to reflect on your own motivations and goals when crafting a research question (remember chapter 2?). By “your own motivations and goals,” I mean what interests you about the social world and what impact you want your research to have, both academically and practically speaking. Many students have secret (or not-so-secret) plans to make the world a better place by helping address climate change, pointing out pressure points to fight inequities, or bringing awareness to an overlooked area of concern. My own work in graduate school was motivated by the last of these three—the not-so-secret goal of my research was to raise awareness about obstacles to success for first-generation and working-class college students. This underlying goal motivated me to complete my dissertation in a timely manner and then to further continue work in this area and see my research get published. I cared enough about the topic that I was not ready to put it away. I am still not ready to put it away. I encourage you to find topics that you can’t put away, ever. That will keep you going whenever things get difficult in the research process, as they inevitably will.

On the other hand, if you are an undergraduate and you really have very little time, some of the best advice I have heard is to find a study you really like and adapt it to a new context. Perhaps you read a study about how students select majors and how this differs by class ( Hurst 2019 ). You can try to replicate the study on a small scale among your classmates. Use the same research question, but revise for your context. You can probably even find the exact questions I  used and ask them in the new sample. Then when you get to the analysis and write-up, you have a comparison study to guide you, and you can say interesting things about the new context and whether the original findings were confirmed (similar) or not. You can even propose reasons why you might have found differences between one and the other.

Another way of thinking about research questions is to explicitly tie them to the type of purpose of your study. Of course, this means being very clear about what your ultimate purpose is! Marshall and Rossman ( 2016 ) break down the purpose of a study into four categories: exploratory, explanatory, descriptive, and emancipatory ( 78 ). Exploratory purpose types include wanting to investigate little-understood phenomena, or identifying or discovering important new categories of meaning, or generating hypotheses for further research. For these, research questions might be fairly loose: What is going on here? How are people interacting on this site? What do people talk about when you ask them about the state of the world? You are almost (but never entirely) starting from scratch. Be careful though—just because a topic is new to you does not mean it is really new. Someone else (or many other someones) may already have done this exploratory research. Part of your job is to find this out (more on this in “What Is a ‘Literature Review’?” in chapter 9). Descriptive purposes (documenting and describing a phenomenon) are similar to exploratory purposes but with a much clearer goal (description). A good research question for a descriptive study would specify the actions, events, beliefs, attitudes, structures, and/or processes that will be described.

Most researchers find that their topic has already been explored and described, so they move to trying to explain a relationship or phenomenon. For these, you will want research questions that capture the relationships of interest. For example, how does gender influence one’s understanding of police brutality (because we already know from the literature that it does, so now we are interested in understanding how and why)? Or what is the relationship between education and climate change denialism? If you find that prior research has already provided a lot of evidence about those relationships as well as explanations for how they work, and you want to move the needle past explanation into action, you might find yourself trying to conduct an emancipatory study. You want to be even more clear in acknowledging past research if you find yourself here. Then create a research question that will allow you to “create opportunities and the will to engage in social action” ( Marshall and Rossman 2016:78 ). Research questions might ask, “How do participants problematize their circumstances and take positive social action?” If we know that some students have come together to fight against student debt, how are they doing this, and with what success? Your purpose would be to help evaluate possibilities for social change and to use your research to make recommendations for more successful emancipatory actions.

Recap: Be specific. Be clear. Be practical. And do what you love.

Choosing an Approach or Tradition

Qualitative researchers may be defined as those who are working with data that is not in numerical form, but there are actually multiple traditions or approaches that fall under this broad category. I find it useful to know a little bit about the history and development of qualitative research to better understand the differences in these approaches. The following chart provides an overview of the six phases of development identified by Denzin and Lincoln ( 2005 ):

Table 4.1. Six Phases of Development

Year/Period Phase Focus
Pre-1945 Traditional Influence of positivism; anthropologists and ethnographers strive for objectivity when reporting observations in the field
1945-1970 Modernist Emphasis of methodological rigor and procedural formalism as a way of gaining acceptance
1970-1986 Blurred genres Large number of alternative approaches emerge, all competing with and contesting positivist and formalist approaches; e.g., structuralism, symbolic interactionism, ethnomethodology, constructionism
1980s-1990s Crisis of representation Attention turns to issues of power and privilege and the necessity of reflexivity around race, class, gender positions and identities; traditional notions of validity and neutrality were undermined
1990s-2000 Triple crisis Moving beyond issues of representation, questions raised about evaluation of qualitative research and the writing/presentation of it as well; more political and participatory forms emerge; qualitative research to advance social justice advocated
2000s... Postexperimental Boundaries expanded to include creative nonfiction, autobiographical ethnography, poetic representation, and other creative approaches

There are other ways one could present the history as well. Feminist theory and methodologies came to the fore in the 1970s and 1980s and had a lot to do with the internal critique of more positivist approaches. Feminists were quite aware that standpoint matters—that the identity of the researcher plays a role in the research, and they were ardent supporters of dismantling unjust power systems and using qualitative methods to help advance this mission. You might note, too, that many of the internal disputes were basically epistemological disputes about how we know what we know and whether one’s social location/position delimits that knowledge. Today, we are in a bountiful world of qualitative research, one that embraces multiple forms of knowing and knowledge. This is good, but it means that you, the student, have more choice when it comes to situating your study and framing your research question, and some will expect you to signal the choices you have made in any research protocols you write or publications and presentations.

Creswell’s ( 1998 ) definition of qualitative research includes the notion of distinct traditions of inquiry: “Qualitative research is an inquiry process of understanding based on distinct methodological traditions of inquiry that explore a social or human problem. The research builds complex,   holistic pictures, analyzes words, reports detailed views of informants , and conducted the study in a natural setting” (15; emphases added). I usually caution my students against taking shelter under one of these approaches, as, practically speaking, there is a lot of mixing of traditions among researchers. And yet it is useful to know something about the various histories and approaches, particularly as you are first starting out. Each tradition tends to favor a particular epistemological perspective (see chapter 3), a way of reasoning (see “ Advanced: Inductive versus Deductive Reasoning ”), and a data-collection technique.

There are anywhere from ten to twenty “traditions of inquiry,” depending on how one draws the boundaries. In my accounting, there are twelve, but three approaches tend to dominate the field.

Ethnography

Ethnography was developed from the discipline of anthropology, as the study of (other) culture(s). From a relatively positivist/objective approach to writing down the “truth” of what is observed during the colonial era (where this “truth” was then often used to help colonial administrators maintain order and exploit people and extract resources more effectively), ethnography was adopted by all kinds of social science researchers to get a better understanding of how groups of people (various subcultures and cultures) live their lives. Today, ethnographers are more likely to be seeking to dismantle power relations than to support them. They often study groups of people that are overlooked and marginalized, and sometimes they do the obverse by demonstrating how truly strange the familiar practices of the dominant group are. Ethnography is also central to organizational studies (e.g., How does this institution actually work?) and studies of education (e.g., What is it like to be a student during the COVID era?).

Ethnographers use methods of participant observation and intensive fieldwork in their studies, often living or working among the group under study for months at a time (and, in some cases, years). I’ve called this “deep ethnography,” and it is the subject of chapter 14. The data ethnographers analyze are copious “field notes” written while in the field, often supplemented by in-depth interviews and many more casual conversations. The final product of ethnographers is a “thick” description of the culture. This makes reading ethnographies enjoyable, as the goal is to write in such a way that the reader feels immersed in the culture.

There are variations on the ethnography, such as the autoethnography , where the researcher uses a systematic and rigorous study of themselves to better understand the culture in which they find themselves. Autoethnography is a relatively new approach, even though it is derived from one of the oldest approaches. One can say that it takes to heart the feminist directive to “make the personal political,” to underscore the connections between personal experiences and larger social and political structures. Introspection becomes the primary data source.

Grounded Theory

Grounded Theory holds a special place in qualitative research for a few reasons, not least of which is that nonqualitative researchers often mistakenly believe that Grounded Theory is the only qualitative research methodology . Sometimes, it is easier for students to explain what they are doing as “Grounded Theory” because it sounds “more scientific” than the alternative descriptions of qualitative research. This is definitely part of its appeal. Grounded Theory is the name given to the systematic inductive approach first developed by Glaser and Strauss in 1967, The Discovery of Grounded Theory: Strategies for Qualitative Research . Too few people actually read Glaser and Strauss’s book. It is both groundbreaking and fairly unremarkable at the same time. As a historical intervention into research methods generally, it is both a sharp critique of positivist methods in the social sciences (theory testing) and a rejection of purely descriptive accounts-building qualitative research. Glaser and Strauss argued for an approach whose goal was to construct (middle-level) theories from recursive data analysis of nonnumerical data (interviews and observations). They advocated a “constant comparative method” in which coding and analysis take place simultaneously and recursively. The demands are fairly strenuous. If done correctly, the result is the development of a new theory about the social world.

So why do I call this “fairly unremarkable”? To some extent, all qualitative research already does what Glaser and Strauss ( 1967 ) recommend, albeit without denoting the processes quite so specifically. As will be seen throughout the rest of this textbook, all qualitative research employs some “constant comparisons” through recursive data analyses. Where Grounded Theory sets itself apart from a significant number of qualitative research projects, however, is in its dedication to inductively building theory. Personally, I think it is important to understand that Glaser and Strauss were rejecting deductive theory testing in sociology when they first wrote their book. They were part of a rising cohort who rejected the positivist mathematical approaches that were taking over sociology journals in the 1950s and 1960s. Here are some of the comments and points they make against this kind of work:

Accurate description and verification are not so crucial when one’s purpose is to generate theory. ( 28 ; further arguing that sampling strategies are different when one is not trying to test a theory or generalize results)

Illuminating perspectives are too often suppressed when the main emphasis is verifying theory. ( 40 )

Testing for statistical significance can obscure from theoretical relevance. ( 201 )

Instead, they argued, sociologists should be building theories about the social world. They are not physicists who spend time testing and refining theories. And they are not journalists who report descriptions. What makes sociologists better than journalists and other professionals is that they develop theory from their work “In their driving efforts to get the facts [research sociologists] tend to forget that the distinctive offering of sociology to our society is sociological theory, not research description” ( 30–31 ).

Grounded Theory’s inductive approach can be off-putting to students who have a general research question in mind and a working hypothesis. The true Grounded Theory approach is often used in exploratory studies where there are no extant theories. After all, the promise of this approach is theory generation, not theory testing. Flying totally free at the start can be terrifying. It can also be a little disingenuous, as there are very few things under the sun that have not been considered before. Barbour ( 2008:197 ) laments that this approach is sometimes used because the researcher is too lazy to read the relevant literature.

To summarize, Glaser and Strauss justified the qualitative research project in a way that gave it standing among the social sciences, especially vis-à-vis quantitative researchers. By distinguishing the constant comparative method from journalism, Glaser and Strauss enabled qualitative research to gain legitimacy.

So what is it exactly, and how does one do it? The following stages provide a succinct and basic overview, differentiating the portions that are similar to/in accordance with qualitative research methods generally and those that are distinct from the Grounded Theory approach:

Step 1. Select a case, sample, and setting (similar—unless you begin with a theory to test!).

Step 2. Begin data collection (similar).

Step 3. Engage data analysis (similar in general but specificity of details somewhat unique to Grounded Theory): (1) emergent coding (initial followed by focused), (2) axial (a priori) coding , (3) theoretical coding , (4) creation of theoretical categories; analysis ends when “theoretical saturation ” has been achieved.

Grounded Theory’s prescriptive (i.e., it has a set of rules) framework can appeal to beginning students, but it is unnecessary to adopt the entire approach in order to make use of some of its suggestions. And if one does not exactly follow the Grounded Theory rulebook, it can mislead others if you tend to call what you are doing Grounded Theory when you are not:

Grounded theory continues to be a misunderstood method, although many researchers purport to use it. Qualitative researchers often claim to conduct grounded theory studies without fully understanding or adopting its distinctive guidelines. They may employ one or two of the strategies or mistake qualitative analysis for grounded theory. Conversely, other researchers employ grounded theory methods in reductionist, mechanistic ways. Neither approach embodies the flexible yet systematic mode of inquiry, directed but open-ended analysis, and imaginative theorizing from empirical data that grounded theory methods can foster. Subsequently, the potential of grounded theory methods for generating middle-range theory has not been fully realized ( Charmaz 2014 ).

Phenomenology

Where Grounded Theory sets itself apart for its inductive systematic approach to data analysis, phenomenologies are distinct for their focus on what is studied—in this case, the meanings of “lived experiences” of a group of persons sharing a particular event or circumstance. There are phenomenologies of being working class ( Charlesworth 2000 ), of the tourist experience ( Cohen 1979 ), of Whiteness ( Ahmed 2007 ). The phenomenon of interest may also be an emotion or circumstance. One can study the phenomenon of “White rage,” for example, or the phenomenon of arranged marriage.

The roots of phenomenology lie in philosophy (Husserl, Heidegger, Merleau-Ponty, Sartre) but have been adapted by sociologists in particular. Phenomenologists explore “how human beings make sense of experience and transform experience into consciousness, both individually and as shared meaning” ( Patton 2002:104 ).

One of the most important aspects of conducting a good phenomenological study is getting the sample exactly right so that each person can speak to the phenomenon in question. Because the researcher is interested in the meanings of an experience, in-depth interviews are the preferred method of data collection. Observations are not nearly as helpful here because people may do a great number of things without meaning to or without being conscious of their implications. This is important to note because phenomenologists are studying not “the reality” of what happens at all but an articulated understanding of a lived experience. When reading a phenomenological study, it is important to keep this straight—too often I have heard students critique a study because the interviewer didn’t actually see how people’s behavior might conflict with what they say (which is, at heart, an epistemological issue!).

In addition to the “big three,” there are many other approaches; some are variations, and some are distinct approaches in their own right. Case studies focus explicitly on context and dynamic interactions over time and can be accomplished with quantitative or qualitative methods or a mixture of both (for this reason, I am not considering it as one of the big three qualitative methods, even though it is a very common approach). Whatever methods are used, a contextualized deep understanding of the case (or cases) is central.

Critical inquiry is a loose collection of techniques held together by a core argument that understanding issues of power should be the focus of much social science research or, to put this another way, that it is impossible to understand society (its people and institutions) without paying attention to the ways that power relations and power dynamics inform and deform those people and institutions. This attention to power dynamics includes how research is conducted too. All research fundamentally involves issues of power. For this reason, many critical inquiry traditions include a place for collaboration between researcher and researched. Examples include (1) critical narrative analysis, which seeks to describe the meaning of experience for marginalized or oppressed persons or groups through storytelling; (2) participatory action research, which requires collaboration between the researcher and the research subjects or community of interest; and (3) critical race analysis, a methodological application of Critical Race Theory (CRT), which posits that racial oppression is endemic (if not always throughout time and place, at least now and here).

Do you follow a particular tradition of inquiry? Why?

Shawn Wilson’s book, Research Is Ceremony: Indigenous Research Methods , is my holy grail. It really flipped my understanding of research and relationships. Rather than thinking linearly and approaching research in a more canonical sense, Wilson shook my world view by drawing me into a pattern of inquiry that emphasized transparency and relational accountability. The Indigenous research paradigm is applicable in all research settings, and I follow it because it pushes me to constantly evaluate my position as a knowledge seeker and knowledge sharer.

Autoethnography takes the researcher as the subject. This is one approach that is difficult to explain to more quantitatively minded researchers, as it seems to violate many of the norms of “scientific research” as understood by them. First, the sample size is quite small—the n is 1, the researcher. Two, the researcher is not a neutral observer—indeed, the subjectivity of the researcher is the main strength of this approach. Autoethnographies can be extremely powerful for their depth of understanding and reflexivity, but they need to be conducted in their own version of rigor to stand up to scrutiny by skeptics. If you are skeptical, read one of the excellent published examples out there—I bet you will be impressed with what you take away. As they say, the proof is in the pudding on this approach.

Advanced: Inductive versus Deductive Reasoning

There has been a great deal of ink shed in the discussion of inductive versus deductive approaches, not all of it very instructive. Although there is a huge conceptual difference between them, in practical terms, most researchers cycle between the two, even within the same research project. The simplest way to explain the difference between the two is that we are using deductive reasoning when we test an existing theory (move from general to particular), and we are using inductive reasoning when we are generating theory (move from particular to general). Figure 4.2 provides a schematic of the deductive approach. From the literature, we select a theory about the impact of student loan debt: student loan debt will delay homeownership among young adults. We then formulate a hypothesis based on this theory: adults in their thirties with high debt loads will be less likely to own homes than their peers who do not have high debt loads. We then collect data to test the hypothesis and analyze the results. We find that homeownership is substantially lower among persons of color and those who were the first in their families to graduate from college. Notably, high debt loads did not affect homeownership among White adults whose parents held college degrees. We thus refine the theory to match the new findings: student debt loads delay homeownership among some young adults, thereby increasing inequalities in this generation. We have now contributed new knowledge to our collective corpus.

what is specific research questions

The inductive approach is contrasted in figure 4.3. Here, we did not begin with a preexisting theory or previous literature but instead began with an observation. Perhaps we were conducting interviews with young adults who held high amounts of debt and stumbled across this observation, struck by how many were renting apartments or small houses. We then noted a pattern—not all the young adults we were talking to were renting; race and class seemed to play a role here. We would then probably expand our study in a way to be able to further test this developing theory, ensuring that we were not seeing anomalous patterns. Once we were confident about our observations and analyses, we would then develop a theory, coming to the same place as our deductive approach, but in reverse.

what is specific research questions

A third form of reasoning, abductive (sometimes referred to as probabilistic reasoning) was developed in the late nineteenth century by American philosopher Charles Sanders Peirce. I have included some articles for further reading for those interested.

Among social scientists, the deductive approach is often relaxed so that a research question is set based on the existing literature rather than creating a hypothesis or set of hypotheses to test. Some journals still require researchers to articulate hypotheses, however. If you have in mind a publication, it is probably a good idea to take a look at how most articles are organized and whether specific hypotheses statements are included.

Table 4.2. Twelve Approaches. Adapted from Patton 2002:132-133.

Approach Home discipline /Data Collection Techniques
Ethnography Anthropology Fieldwork/Observations + supplemental interviews
Grounded theory Sociology Fieldwork/Observations + Interviews
Phenomenology Philosophy In-depth interviews
Constructivism Sociology Focus Groups; Interviews
Heuristic inquiry Psychology Self-reflections and fieldnotes + interviews
Ethnomethodology Sociology In-depth interviews + Fieldwork, including social experiments
Symbolic interaction Social psychology Focus Groups + Interviews
Semiotics Linguistics Textual analyses + interviews/focus groups
Hermeneutics Theology Textual analyses
Narrative analysis Literary criticism Interviews, Oral Histories, Textual Analyses, Historical Artefacts, Content Analyses
Ecological psychology Ecology Observation
Orientational/Standpoint approaches (critical theory, feminist theory) Law; Sociology PAR, Interviews, Focus Groups

Further Readings

The following readings have been examples of various approaches or traditions of inquiry:

Ahmed, Sara. 2007. “A Phenomenology of Whiteness.” Feminist Theory 8(2):149–168.

Charlesworth, Simon. 2000. A Phenomenology of Working-Class Experience . Cambridge: Cambridge University Press.*

Clandinin, D. Jean, and F. Michael Connelly. 2000. Narrative Inquiry: Experience and Story in Qualitative Research . San Francisco: Jossey-Bass.

Cohen, E. 1979. “A Phenomenology of Tourist Experiences.” Sociology 13(2):179–201.

Cooke, Bill, and Uma Kothari, eds. 2001. Participation: The New Tyranny? London: Zed Books. A critique of participatory action.

Corbin, Juliet, and Anselm Strauss. 2008. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory . 3rd ed. Thousand Oaks, CA: SAGE.

Crabtree, B. F., and W. L. Miller, eds. 1999. Doing Qualitative Research: Multiple Strategies . Thousand Oaks, CA: SAGE.

Creswell, John W. 1997. Qualitative Inquiry and Research Design: Choosing among Five Approaches. Thousand Oaks, CA: SAGE.

Glaser, Barney G., and Anselm Strauss. 1967. The Discovery of Grounded Theory: Strategies for Qualitative Research . New York: Aldine.

Gobo, Giampetro, and Andrea Molle. 2008. Doing Ethnography . Thousand Oaks, CA: SAGE.

Hancock, Dawson B., and Bob Algozzine. 2016. Doing Case Study Research: A Practical Guide for Beginning Research . 3rd ed. New York: Teachers College Press.

Harding, Sandra. 1987. Feminism and Methodology . Bloomington: Indiana University Press.

Husserl, Edmund. (1913) 2017. Ideas: Introduction to Pure Phenomenology . Eastford, CT: Martino Fine Books.

Rose, Gillian. 2012. Visual Methodologies . 3rd ed. London: SAGE.

Van der Riet, M. 2009. “Participatory Research and the Philosophy of Social Science: Beyond the Moral Imperative.” Qualitative Inquiry 14(4):546–565.

Van Manen, Max. 1990. Researching Lived Experience: Human Science for an Action Sensitive Pedagogy . Albany: State University of New York.

Wortham, Stanton. 2001. Narratives in Action: A Strategy for Research and Analysis . New York: Teachers College Press.

Inductive, Deductive, and Abductive Reasoning and Nomothetic Science in General

Aliseda, Atocha. 2003. “Mathematical Reasoning vs. Abductive Reasoning: A Structural Approach.” Synthese 134(1/2):25–44.

Bonk, Thomas. 1997. “Newtonian Gravity, Quantum Discontinuity and the Determination of Theory by Evidence.” Synthese 112(1):53–73. A (natural) scientific discussion of inductive reasoning.

Bonnell, Victoria E. 1980. “The Uses of Theory, Concepts and Comparison in Historical Sociology.” C omparative Studies in Society and History 22(2):156–173.

Crane, Mark, and Michael C. Newman. 1996. “Scientific Method in Environmental Toxicology.” Environmental Reviews 4(2):112–122.

Huang, Philip C. C., and Yuan Gao. 2015. “Should Social Science and Jurisprudence Imitate Natural Science?” Modern China 41(2):131–167.

Mingers, J. 2012. “Abduction: The Missing Link between Deduction and Induction. A Comment on Ormerod’s ‘Rational Inference: Deductive, Inductive and Probabilistic Thinking.’” Journal of the Operational Research Society 63(6):860–861.

Ormerod, Richard J. 2010. “Rational Inference: Deductive, Inductive and Probabilistic Thinking.” Journal of the Operational Research Society 61(8):1207–1223.

Perry, Charner P. 1927. “Inductive vs. Deductive Method in Social Science Research.” Southwestern Political and Social Science Quarterly 8(1):66–74.

Plutynski, Anya. 2011. “Four Problems of Abduction: A Brief History.” HOPOS: The Journal of the International Society for the History of Philosophy of Science 1(2):227–248.

Thompson, Bruce, and Gloria M. Borrello. 1992. “Different Views of Love: Deductive and Inductive Lines of Inquiry.” Current Directions in Psychological Science 1(5):154–156.

Tracy, Sarah J. 2012. “The Toxic and Mythical Combination of a Deductive Writing Logic for Inductive Qualitative Research.” Qualitative Communication Research 1(1):109–141.

A place or collection containing records, documents, or other materials of historical interest; most universities have an archive of material related to the university’s history, as well as other “special collections” that may be of interest to members of the community.

A person who introduces the researcher to a field site’s culture and population.  Also referred to as guides.  Used in ethnography .

A form of research and a methodological tradition of inquiry in which the researcher uses self-reflection and writing to explore personal experiences and connect this autobiographical story to wider cultural, political, and social meanings and understandings.  “Autoethnography is a research method that uses a researcher's personal experience to describe and critique cultural beliefs, practices, and experiences” ( Adams, Jones, and Ellis 2015 ).

The philosophical framework in which research is conducted; the approach to “research” (what practices this entails, etc.).  Inevitably, one’s epistemological perspective will also guide one’s methodological choices, as in the case of a constructivist who employs a Grounded Theory approach to observations and interviews, or an objectivist who surveys key figures in an organization to find out how that organization is run.  One of the key methodological distinctions in social science research is that between quantitative and qualitative research.

The process of labeling and organizing qualitative data to identify different themes and the relationships between them; a way of simplifying data to allow better management and retrieval of key themes and illustrative passages.  See coding frame and  codebook.

A later stage coding process used in Grounded Theory in which data is reassembled around a category, or axis.

A later stage-coding process used in Grounded Theory in which key words or key phrases capture the emergent theory.

The point at which you can conclude data collection because every person you are interviewing, the interaction you are observing, or content you are analyzing merely confirms what you have already noted.  Achieving saturation is often used as the justification for the final sample size.

A methodological tradition of inquiry that focuses on the meanings held by individuals and/or groups about a particular phenomenon (e.g., a “phenomenology of whiteness” or a “phenomenology of first-generation college students”).  Sometimes this is referred to as understanding “the lived experience” of a particular group or culture.  Interviews form the primary tool of data collection for phenomenological studies.  Derived from the German philosophy of phenomenology (Husserl 1913; 2017).

The number of individuals (or units) included in your sample

A form of reasoning which employs a “top-down” approach to drawing conclusions: it begins with a premise or hypothesis and seeks to verify it (or disconfirm it) with newly collected data.  Inferences are made based on widely accepted facts or premises.  Deduction is idea-first, followed by observations and a conclusion.  This form of reasoning is often used in quantitative research and less often in qualitative research.  Compare to inductive reasoning .  See also abductive reasoning .

A form of reasoning that employs a “bottom-up” approach to drawing conclusions: it begins with the collection of data relevant to a particular question and then seeks to build an argument or theory based on an analysis of that data.  Induction is observation first, followed by an idea that could explain what has been observed.  This form of reasoning is often used in qualitative research and seldom used in qualitative research.  Compare to deductive reasoning .  See also abductive reasoning .

An “interpretivist” form of reasoning in which “most likely” conclusions are drawn, based on inference.  This approach is often used by qualitative researchers who stress the recursive nature of qualitative data analysis.  Compare with deductive reasoning and inductive reasoning .

A form of social science research that generally follows the scientific method as established in the natural sciences.  In contrast to idiographic research , the nomothetic researcher looks for general patterns and “laws” of human behavior and social relationships.  Once discovered, these patterns and laws will be expected to be widely applicable.  Quantitative social science research is nomothetic because it seeks to generalize findings from samples to larger populations.  Most qualitative social science research is also nomothetic, although generalizability is here understood to be theoretical in nature rather than statistical .  Some qualitative researchers, however, espouse the idiographic research paradigm instead.

Introduction to Qualitative Research Methods Copyright © 2023 by Allison Hurst is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

  • Open access
  • Published: 13 September 2024

Understanding disciplinary perspectives: a framework to develop skills for interdisciplinary research collaborations of medical experts and engineers

  • Sophie van Baalen   ORCID: orcid.org/0000-0002-1592-3276 1 , 2 &
  • Mieke Boon   ORCID: orcid.org/0000-0003-2492-2854 1  

BMC Medical Education volume  24 , Article number:  1000 ( 2024 ) Cite this article

Metrics details

Health professionals need to be prepared for interdisciplinary research collaborations aimed at the development and implementation of medical technology. Expertise is highly domain-specific, and learned by being immersed in professional practice. Therefore, the approaches and results from one domain are not easily understood by experts from another domain. Interdisciplinary collaboration in medical research faces not only institutional, but also cognitive and epistemological barriers. This is one of the reasons why interdisciplinary and interprofessional research collaborations are so difficult. To explain the cognitive and epistemological barriers, we introduce the concept of disciplinary perspectives . Making explicit the disciplinary perspectives of experts participating in interdisciplinary collaborations helps to clarify the specific approach of each expert, thereby improving mutual understanding.

We developed a framework for making disciplinary perspectives of experts participating in an interdisciplinary research collaboration explicit. The applicability of the framework has been tested in an interdisciplinary medical research project aimed at the development and implementation of diffusion MRI for the diagnosis of kidney cancer, where the framework was applied to analyse and articulate the disciplinary perspectives of the experts involved.

We propose a general framework, in the form of a series of questions, based on new insights from the philosophy of science into the epistemology of interdisciplinary research. We explain these philosophical underpinnings in order to clarify the cognitive and epistemological barriers of interdisciplinary research collaborations. In addition, we present a detailed example of the use of the framework in a concrete interdisciplinary research project aimed at developing a diagnostic technology. This case study demonstrates the applicability of the framework in interdisciplinary research projects.

Interdisciplinary research collaborations can be facilitated by a better understanding of how an expert’s disciplinary perspectives enables and guides their specific approach to a problem. Implicit disciplinary perspectives can and should be made explicit in a systematic manner, for which we propose a framework that can be used by disciplinary experts participating in interdisciplinary research project. Furthermore, we suggest that educators can explore how the framework and philosophical underpinning can be implemented in HPE to support the development of students’ interdisciplinary expertise.

Peer Review reports

Expertise is highly domain-specific, and learned by being immersed in professional practice [ 1 ]. However, today’s rapidly evolving health care systems require clinicians who are capable of meeting complex challenges [ 2 ], which often requires interdisciplinary and interprofessional collaborations between experts from distinct disciplines. Footnote 1 With the increasingly central role of innovative medical technologies in many medical specialties [ 3 ], health professionals will presumable participate in interdisciplinary and interprofessional research collaborations. But interprofessional and interdisciplinary research collaborations are notoriously difficult (e.g., [ 4 , 5 , 6 , 7 ]). Boon et al. (2019) argue that the complexity of current medical practices requires interdisciplinary expertise , which is an extension of adaptive expertise [ 8 ]. Interdisciplinary expertise involves the ability to understand the role of disciplinary perspectives .

In this paper, we combine insights from the philosophy of science on disciplinary perspectives and practice experience from an interdisciplinary medical research project aimed at the development and implementation of diffusion MRI for the diagnosis of kidney cancer. Based on these insights and practice experience, we propose a framework for mitigating cognitive and epistemological barriers caused by different disciplinary perspectives. In addition, we present a detailed example of the use of the framework to analyse and explain the experts’ disciplinary perspectives in the aforementioned interdisciplinary research project aimed at developing a diagnostic technology. This case study demonstrates the use of the framework in interdisciplinary research projects. The framework can be used by health professionals to facilitate their interdisciplinary research projects, by analysing and explaining their disciplinary perspectives.

Interdisciplinary research

To address the barriers to interdisciplinary research, various authors have developed analytical frameworks to guide the research process and help disciplinary experts understand what it takes to execute projects together with experts from other disciplines [ 9 , 10 , 11 , 12 ]. Menken et al. (2016), for example, provide a method for interdisciplinary research that is much similar to the traditional empirical cycle, including steps such as “identify problem or topic,” “formulate preliminary research questions,” “data collection” and “draw conclusions” [ 11 ]. Other frameworks describe which steps need to be taken in the interdisciplinary research process . In the literature on team science , several authors also aim to provide a better understanding of the process of interdisciplinary research. For example, Hasan et al. (2023) focuses on the ‘micro’ layers of the team science ecosystem proposed by Stokols et al. (2019) – the layer of individual team members collaborating in interdisciplinary research projects [ 13 , 14 ]. From their analysis of an online collaborations between early academics from different fields, they provide insights into common issues in interdisciplinary research and methods for dealing with them. By applying their framework from the start of the interdisciplinary research process, they argue, interdisciplinary capture [ 15 ] can be avoided.

Although the aforementioned frameworks provide valuable guidance on the process of interdisciplinary collaboration, they do not address the deeper cognitive and epistemological challenges of interdisciplinary research collaboration [ 5 , 16 ], which is the objective of our contribution. A crucial assumption in current frameworks seems to be that interdisciplinary research collaboration is learned by doing, and that the integration of different disciplines will automatically follow. Footnote 2 In our view, however, the integration of different disciplines is both crucial and one of the most challenging aspects of interdisciplinary research collaboration. In previous work we have argued that the inherent cognitive and epistemological (knowledge-theoretical) challenges of integration have been neglected by most authors providing models for interdisciplinary research [ 8 ]. In this paper, our focus is therefore on challenges of using and producing knowledge in interdisciplinary research collaborations that aim at solving complex real-world problems. Examples are collaborations between distinct medical specialists in the diagnosis and treatment of a specific patient (e.g., an oncologist and radiologist), but also collaborations between medical experts and biomedical engineers aimed at innovative medical technology for clinical uses. In this paper, we focus on inter disciplinary research projects, in which two or more academic fields are integrated to solve real-world problems, and not on trans disciplinary projects in which one or more academic fields are integrated with expertise from outside of academia such as policy-making or practice. Footnote 3

The challenge of interdisciplinary research collaborations aimed at solving a shared problem is that each expert is guided by his/her own disciplinary perspective. However, the results produced by experts from different disciplines, although internally coherent, are not mutually coherent, so that they are not easily integrated. Furthermore, approaches and results understood within a contributing disciplinary perspective are not easily understood by experts specialised in other disciplinary perspectives, even though each expert aims to contribute to the same problem.

In short, the way in which experts use and produce knowledge is guided by the disciplinary perspective typical of their own practice. But experts are often unaware of having a disciplinary perspective. We argue that this is an obstacle to participating in interdisciplinary research collaborations focused on using and producing knowledge for complex problem-solving . Moreover, disciplinary perspectives are often considered impenetrable —as they are acquired by doing — which makes dealing with the disciplinary perspective of other experts a difficult learning objective. In this paper, we defend that disciplinary perspectives can be made explicit in a systematic manner, and that their role in ‘how experts in a specific discipline use and produce knowledge’ can thus be made understandable for experts and students in both their own and other disciplines.

To this end, we have developed a framework, based on new insights in the philosophy of science and on practice experience of interdisciplinary research collaboration aimed at the development of a medical technology, which can be used by experts in a particular discipline to analyse different elements of their discipline and, together with collaborators, to analyse the same elements from other disciplines. We believe that this systematic approach to understanding disciplinary perspectives will facilitate interdisciplinary research collaborations between experts from different fields. It will create awareness of one’s own disciplinary perspective and the ability to understand the disciplinary perspective of other experts at a sufficient level. Our framework thus aims to alleviate the challenge of integration in a collaborative research project by providing a tool for analysing disciplinary perspectives . We suggest that the concrete descriptions of disciplinary perspectives that result from the application of the framework, clarify the approaches of experts in a multi-disciplinary team. It thus enables effective communication through improved understanding of how each discipline contributes. Once researchers sufficiently understand each other’s discipline, they will be able to construct so-called conceptual models that integrate content relevant to the problems at hand. Footnote 4

Education in interdisciplinary research

In addition to professionals using our framework to facilitate collaboration in interdisciplinary research projects, we suggest that this framework can also be implemented in medical education. It can be used to teach students what it means to have a disciplinary perspective, and to explicate the role of disciplinary perspectives of disciplinary experts participating in an interdisciplinary research collaboration. We have implemented this framework in an innovative, challenge-based educational design that explicitly aims to support and promote the development of interdisciplinary research skills [ 22 ]. Research into the intended learning objectives has not yet been completed, but our initial findings indicate that the proposed framework effectively supports students in their ability to develop crucial skills for conducting interdisciplinary research projects. We suggest therefore that the framework can also be implemented in HPE as a scaffold for teaching and learning metacognitive skills needed in interdisciplinary research collaborations, for example between medical experts and engineers.

Research has shown that interprofessional education courses for healthcare students can have a positive effect on the knowledge, skills and attitudes required for interprofessional collaboration, but that organising such interventions is challenging [ 23 , 24 ]. In the HPE literature, it is generally assumed that the limitations of interprofessional and interdisciplinary teamwork are due to problems of communication, collaboration and cooperation [ 25 , 26 ], which are linked to barriers and enablers at institutional, organizational, infrastructural, professional and individual levels (e.g., [ 27 , 28 ]). Therefore, interprofessional and interdisciplinary collaborations are discussed extensively in the HPE literature – our focus is challenges of interdisciplinary research collaboration.

The ability to use and produce knowledge and methods in solving (novel) problems is covered in the HPE literature by the notion of adaptive expertise , which encompasses clinical reasoning, integrating basic and clinical sciences, and the transfer of previously learned knowledge, concepts and methods to solve new problems in another context (e.g., [ 1 , 29 , 30 , 31 , 32 , 33 , 34 ]). In previous work, we introduced the concept of interdisciplinary expertise, which expands on the notion of adaptive expertise by including the ability to understand, analyse and communicate disciplinary perspectives [ 8 ]. In this paper, we address the challenge posed by how this ability to understand, analyse and communicate disciplinary perspectives can be learned. The framework that we propose can be implemented in HPE to function as a tool to scaffold metacognitive skills of health professions students, facilitating the development of interdisciplinary expertise.

Aims and contributions of this paper

Our first objective is to show that interdisciplinary collaboration in (medical) research faces not only institutional, but also cognitive and epistemological barriers. Therefore, we first provide a theoretical explanation of the concept of ‘disciplinary perspective’ as developed in the philosophy of science, in order to make it plausible that the cognitive barriers experienced by experts in interdisciplinary collaboration are the result of different disciplinary perspectives on a problem and its solution.

Our second objective is to provide a systematic approach to improve interdisciplinary research, for which we propose a framework, in the form of a series of questions, based on new insights from the philosophy of science into the epistemology of interdisciplinary research. We provide a detailed explanation of the application of the proposed framework in an interdisciplinary medical research project to illustrate its applicability in a multidisciplinary research collaborations, by showing that the different disciplinary perspectives that inform researchers and technicians within a multidisciplinary research team can be made transparent in a systematic way.

In short, our intended contribution is (i) to explain cognitive and epistemological barriers by introducing the concept of disciplinary perspectives in medical research collaborations, (ii) to offer a framework that enables the mitigation of these barriers within interdisciplinary research projects that are caused by different disciplinary perspectives, and (iii) to illustrate the applicability of this framework by a concrete case of an interdisciplinary research collaboration in a medical-technical research setting.

We developed a framework for making disciplinary perspectives of experts participating in an interdisciplinary research collaboration explicit, by combining insights from the philosophy of science with practical experience from a medical research project. Philosophy of science provided the theoretical basis for our concept of disciplinary perspectives. Our detailed case-description stems from an interdisciplinary medical research project to develop and implement a new imaging tool for the diagnosis of kidney cancer, in which the first author participated. We then applied the framework to analyze and articulate the disciplinary perspectives of experts involved in this interdisciplinary medical research project.

The usefulness and applicability of the proposed framework was tested by the first author who, in her role as PI, was able to use it successfully in coordinating an interdisciplinary research project aimed at developing a biomedical technology for clinical practice [ 35 , 36 ]. Below, we illustrate how the framework was systematically applied to this specific case, providing initial evidence of its applicability. However, to test whether the proposed framework reduces the cognitive and epistemological barriers caused by different disciplinary perspectives, experts need to be trained in its use. We suggest that training in the use of this framework requires, among other things, some insight into the philosophical underpinnings of the concept of ‘disciplinary perspective’. Our explanation of the so-called epistemology of disciplinary perspectives in this paper aims to provide such insight.

Developing a framework for analysing and articulating a disciplinary perspective

The framework proposed here is based on insights about disciplinary perspectives in the philosophy of science. These insights concern an epistemology (a theory of knowledge) of scientific disciplines. In other words, the framework is based on an account of the knowledge-theoretical (epistemic) and pragmatic aspects that guide the production of knowledge and scientific understanding by a discipline [ 21 ].

The epistemology of scientific disciplines developed in our previous work is based on the philosophical work of Thomas Kuhn [ 37 ]. Building on his seminal ideas, we understand disciplinary perspectives as analysable in terms of a coherent set of epistemic and pragmatic aspects related to the way in which experts trained in the discipline (and who have thus, albeit implicitly, acquired the disciplinary perspective) apply and produce knowledge [ 38 ]. In our approach, the epistemic and pragmatic aspects that generally characterize a discipline, are made explicit through a set of questions that form the basis of the proposed framework (see Table 1 , and the first column of Table  2 ). The disciplinary perspective can thus be revealed through this framework. In turn, when used in educational settings, this framework can be used to foster interdisciplinary expertise by acting as a scaffold for teaching and learning metacognitive skills for interdisciplinary research collaborations. Footnote 5

The general aspects indicated by italics in each question in Table 1 are interdependent, so that analysis using this framework results in a coherent description of the disciplinary perspective in terms of these aspects. The framework can be used by experts in an interdisciplinary research project not only to make explicit their disciplinary perspective in a general sense, but to also to specify in a systematic way how these aspects relate to the interdisciplinary research problem from their disciplinary discipline (see Table  2 , which contains both the general and problem-specific descriptions for each aspect per discipline). In our view, this approach is productive in overcoming the cognitive and epistemological barriers. It thus contributes to productive interdisciplinary collaboration.

Applying the framework in an interdisciplinary medical research project

To test the applicability of this framework, we applied it to an interdisciplinary medical research project. The interdisciplinary medical research project aimed at developing a new clinical imaging tool, namely, diffusion magnetic resonance imaging (i.e., diffusion MRI) to characterize the micro-structural makeup of kidney tumours, running from early 2014 to mid-2018. The first author was involved in this project as a principle investigator (PI). As an interdisciplinary expert with a background in technical medicine , which combines medical training with technological expertise [ 41 ], she coordinated and integrated contributions from experts with medical and engineering backgrounds. In her role as PI, she applied the proposed framework to analyse and articulate the disciplinary perspectives of other experts involved in the medical research project.

The aim of the interdisciplinary medical research project was to develop a new imaging tool for the characterization of renal tumours, i.e., diffusion MRI. Diffusion MRI allows for visualization and quantification of water diffusion without administration of exogenous contrast materials and is, therefore, a promising technique for imaging kidney tumours. In earlier studies, several parameters derived from diffusion MRI studies were found to differentiate between different tumour types in the kidney [ 42 , 43 , 44 ]. Existing imaging methods in clinical practice can detect the size and location of kidney tumours, but the tumour type and malignancy can only be determined histologically after surgery. The purpose of the medical research project was to assess whether more advanced parameters that can be obtained from diffusion MRI [ 35 , 45 ] can differentiate between malignant and benign kidney tumours [ 36 ]. Being able to make this distinction could potentially prevent unnecessary surgery in patients with non-malignant tumours.

The interdisciplinary medical research project needed to bring together expertise (knowledge and skills) from different professionals, academic researchers as well as clinicians. Therefore, the research team consisted of a physicist, a biomedical engineer, a radiologist, a urologist and the principle investigator. The complex, interdisciplinary research object can be thought of as a system that encompasses several elements: the MRI-machine, the software necessary to produce images, the patient with a (suspected) kidney tumour, and the wider practice of care in which the clinical tool should function. In developing the clinical tool, these elements must be considered interrelated, whereas usually each expert focuses on one of these elements.

The PI utilized the framework to coordinate and integrate the contributions from different experts in the following manner. Throughout the project, she had meetings with each of the team members, where she probed them to explain their specific expertise in regard of the research object, as well as their expert contribution to the development of the imaging tool. Her approach in these meetings was guided by the general questions of the framework (Table 1 ). In this manner, she succeeded in getting a clear insight in aspects of each discipline relevant to the research object, and also in the specific contribution that needed to be made by each expert (as illustrated in Table  2 below). The level of understanding gained by this approach enabled her to, firstly, facilitate interdisciplinary team meetings in which disciplinary interpretations and questions from the experts about the target system could be aligned, and secondly, integrate their contributions towards the development of the new imaging tool [ 36 ].

In the presented approach, the framework was exclusively used by the PI, enabling her to acquire relevant information and understanding about the contributions of the disciplines involved. The other team members in the medical research project were not explicitly involved in applying the framework, nor in articulating their own disciplinary perspective or that of others. Hence, the resulting articulation of the disciplinary perspectives and of the contributions per discipline to the research object (in Table  2 ) is crafted by the PI. The level of understanding of the role of each discipline that the PI has acquired thereby appears to be sufficient to enable her coordinating task in this complex medical research project. Our suggestion for other research and educational practices, though, is that clinicians (as well as) other medical experts can develop this metacognitive skill by using the scaffold (in Table  1 ) in order to participate more effectively in these kinds of complex medical research projects.

In the results  section we will first present our explanation and justification of the idea that disciplinary perspectives determine the specific approaches of experts (who have been trained in a specific discipline in using and producing knowledge) when faced with a complex problem. In this explanation and justification, we will use insights from the philosophy of science. Next, we will explain and illustrate the systematic use of the proposed framework (Table 1 ) by showing the results of applying it to the interdisciplinary medical research project.

The insights from philosophy of science on which the proposed framework for the explication of disciplinary perspectives is rooted in insights of the philosophers Immanuel Kant (1794–1804) and Thomas Kuhn (1922–1996). Their important epistemological insight was that ‘objective’ knowledge of reality does not arise from some kind of imprint in the mind, such as on a photographic plate, but is partly formed by the concepts and theories that scientists hold. These concepts and theories therefore shape the way they perceive the world and produce knowledge about reality. This philosophical insight provides an important explanation for the cognitive and epistemological barriers between disciplines. After all, scientific experts learn these concepts and theories by being trained within a certain discipline. In this way, they develop a disciplinary perspective that determines their view and understanding of reality. Based on this philosophical insight, we can imagine how these barriers can be bridged, namely by developing the metacognitive ability to think about their own cognition and how their scientific view of reality is shaped by their specific disciplinary perspective. In order to facilitate this ability, we develop a framework that can be used as a metacognitive scaffold. Finally, we apply this framework to an example interdisciplinary medical-technical research project, to illustrate it’s use in practice.

Insights from the philosophy of science: disciplinary perspectives

Boon et al. (2019) refer to the notion of disciplinary perspectives and their indelible role in how experts approach problems —in particular, the ways in which experts use and produce knowledge in regard of the problem they aim to solve— and provide a philosophical account of this notion based on so-called constructivist (Kantian) epistemology (i.e., knowledge-theory, [ 38 , 46 ]). On a Kantian view, ‘the world does not speak for itself,’ i.e., knowledge of (aspects of) the external world is not acquired passively on the basis of impressions in the mind (physically) caused by the external world (e.g., similar to how pictures of the world are physically imprinted on a photographic plate). Instead, the way in which people produce and use knowledge results from an interaction between the external world, the human senses and the human cognitive system. Crucially, neither our concepts nor our perceptions stem from passive impressions. Instead, ‘pre-given’ concepts ‘in the mind’ are needed in order to be able to perceive something at all and thus to produce knowledge about reality. Conversely, according to Kant, the imaginative (i.e. creative) capacity of the mind is then able to generate new concepts and to draw new connections of which the adequacy and usability must be tested against our experiences of reality. When new concepts (invented by the creative capacity of the human mind) have been tested against experience, they allow us to see new things in the external world, which we would not see without those concepts. This theoretical insight by Kant is crucial to get past naïve conceptions of knowledge, in particular, by understanding the indelible role of concepts in generating knowledge from observations and experiences.

This philosophical insight already makes it clear, for instance, that ‘descriptions of facts’ in a research project involve discipline-specific concepts, making these descriptions not easy to understand for someone who is not trained in that discipline. After Kant, this role of concepts has been expanded to the role of perspectives . For, Kuhn [ 37 ] created awareness that the human mind plays ‘unconsciously’ and ‘unintentionally’ a much greater role in the way scientific knowledge is created than usually assumed in the view that scientific knowledge is objective . Kuhn has introduced the concept of scientific paradigm to indicate in what sense the mind contributes. His idea was revolutionary because the notion of true and objective knowledge, which is the aim of science, became deeply problematic, as knowledge is only true and objective within the scientific paradigm, whereas it may even be meaningless in another.

Our notion of disciplinary perspectives is in many respects comparable to Kuhn’s idea of scientific paradigm, and is certainly indebted to Kuhn’s invention, particularly, with regard to the idea that it is a more or less coherent, usually implicit ‘background picture’ or ‘conceptual framework,’ which constitutes an inherent part of the cognitive system of an expert, and which forms the basis from which an expert thinks, sees and investigates in a scientific or professional practice. Furthermore, the scientific paradigm is not ‘innate,’ nor individually acquired, but maintained and transferred in scientific or professional practices, usually by being immersed in it. The same can be said about disciplinary perspectives. Yet, there are also important differences.

First, Kuhn believed that the paradigm is so deeply rooted in the cognitive structure of individual scientists, and, moreover, is embedded in how the scientific community functions, that it takes a scientific revolution and a new generation of scientists to shift into another paradigm, which is called a paradigm-shift (sometimes explained as a Gestalt-switch ). Kuhn’s belief suggests that humans lack the capacity to reflect on their own paradigm. Footnote 6 Conversely, we argue that humans can develop the metacognitive ability to perform this kind of reflection by which the structure and content of the paradigm or disciplinary perspective is made explicit. We take this as an important part of interdisciplinary expertise . Our suggestion, however, should not be confused with the idea that we can think without any paradigm or disciplinary perspective – we can’t, but we can explicate its workings (and adapt it), which is what we will illustrate in the case-description below.

Second, Kuhn’s focus was science , i.e., the production of objectively true scientific knowledge, in particular, theories. Instead, our focus is on experts trained in specific disciplines, who use and produce knowledge with regard to (practical) problems that have to be solved. Nonetheless, the Kuhnean insight explains why knowledge generated in distinct disciplines often cannot be combined in a straightforward manner (e.g., as in a jigsaw puzzle), which is due to the fact that knowledge is only fully meaningful and understandable relative to the disciplinary perspective in which it has been produced.

Our notion of disciplinary perspectives is similar to Kuhn’s idea of paradigm (which he specified later on as disciplinary matrices ) in the sense that a paradigm functions as a perspective or a conceptual framework , i.e., a background picture within which a scientific or professional practice of a specific discipline is embedded and which guides and enables this practice. But instead of considering them as replacing each other in a serial historical order as Kuhn did, we assume that disciplinary perspectives co-exist, that is, exist in parallel instead of serial. This view on disciplinary perspectives can be elaborated somewhat further by harking back to Ludwik Fleck [ 47 ], a microbiologist, who already in the 1930s developed a historical philosophy and sociology of science that is very similar to Kuhn’s (also see [ 48 ]). Footnote 7 Similar to and deeply affected by Kant, Fleck draws a close connection between human knowledge (e.g., facts) and cognition. Hence, Fleck disputes that facts are descriptions of things in reality discovered through properly passive observation of aspects in reality – which is why, according to Fleck, facts are invented , not discovered . Similar to Kuhn, Fleck expands on Kant by also including the role of the community in which scientists and experts are trained. Instead of paradigms , however, Fleck uses the terms thought styles and thought collectives to describe how experts in a certain professional or academic community adopt similar ways of perceiving and thinking that differ between disciplines: “The expert [trained in the discipline] is already a specially moulded individual who can no longer escape the bonds of tradition and of the collective; otherwise he would not be an expert” ([ 47 ], p. 54). But while Kuhn strove to explain radical changes in science, Fleck’s focus is on ‘normal science,’ that is, on communities ( thought collectives each having their own thought style ) that co-exist and gradually, rather than radically, change, which is closer to our take on disciplines. Importantly, according to Fleck, the community guides which problems members of that communities find relevant and how they approach these problems. Translated to our vocabulary, in scientific and professional practices, experts trained in different disciplines each have different disciplinary perspective, by means of which they recognize different aspects and problems of the same so-called research object , which they approach in accordance with their own discipline.

We propose that disciplinary perspectives can be analysed and made explicit, which we consider a crucial metacognitive skill of interdisciplinary experts. Our proposal for the framework to analyse disciplinary perspectives (in Table 1 ) takes its cue in Kuhn’s notion of disciplinary matrices. Kuhn’s original notion presents a matrix by which historians and philosophers can analyse the paradigm in hindsight, specifying aspects such as the metaphysical background beliefs and basic concepts, core theories, epistemic values, and methods, which all play a role in how knowledge is generated (also see [ 8 , 50 ]). Our framework includes some of these aspects, but also adds others, thereby generating a scaffold that facilitates interdisciplinary collaborations aimed at applying and producing knowledge for complex problem-solving in professional research practices aimed at ‘real-world’ practices, such as medical research practice. Below, we will illustrate the application of this framework in a concrete case.

Interdisciplinary research project: diffusion MRI for the diagnosis of kidney tumour

We will illustrate the applicability of the proposed framework (Table 1 ) for the analysis of disciplinary perspectives using the example of a research project that aims to develop a new clinical imaging tool, namely, diffusion MRI to characterize the microstructure of renal tumours. In our analysis, we focus on experts from four different disciplines: (I) clinical practice, (II) medical biology, (III) MRI physics, and (IV) signal and image processing. As indicated in the methods section, the complex, interdisciplinary research object that these experts have to deal with concerns a system consisting of the MRI-machine, the software necessary to produce images, and the patient with a (suspected) renal tumour, including the broader care practice in which the clinical tool should function.

In the following paragraphs we will first present a general explanation of the four disciplines involved in the project, and next, illustrate how the proposed framework can be applied to analyse and articulate each disciplinary perspective as well as the specific contribution of each discipline to the research object (in Table  2 ). It is not our intention to provide comprehensive descriptions of the fields that are involved, but rather to provide insight into how the fields differ from each other across the elements of our framework. In addition, we do not believe that all (disciplinary) experts only adhere to one disciplinary perspective. For example, clinicians usually combine both a clinical and biomedical perspective to fit together a complete picture of a patient for clinical decision-making concerning diagnosis and treatment [ 51 , 52 , 53 ]. Moreover, MRI engineers will usually need to combine insights from MRI physics and signal processing.

I. Clinical practice concerning patients with renal tumours

Clinical practice concerns the patient with a renal tumour. This practice differs from the other disciplines in our example, because it is not primarily a scientific discipline. Nonetheless, to develop a diagnostic tool, the disciplinary perspective of clinicians specialized in patients with kidney tumours is crucial, for example, to determine the conditions that the technology needs to meet in order to be useful for their clinical practice. The knowledge-base of clinical experts is rooted in biomedical sciences, which means that clinical experts often understand their patient’s signs and symptoms from a biomedical perspective (i.e., in terms of tumour formation of healthy renal physiology). Yet, clinicians will usually focus on their patient’s clinical presentation and possible diagnostic and clinical pathways. In clinical practice, several kidney tumour types are distinguished, each with its own histological presentation (visible under the microscope), tumour growth rate and chance of metastases. Unfortunately, all kidney tumour types, including non-malignant types, appear the same on standard imaging modalities, namely, as solid lesions. When the tumour is not metastasized, treatment consists of surgery removing the whole kidney or the part of the kidney that contains the tumour (i.e., ‘radical’ or ‘partial’ nephrectomy). If surgery is not possible, other treatments include chemotherapy or radiation. After surgery, a pathologist examines the tumour tissue to determine the tumour type. Occasionally, the pathologist concludes that the removed tumour was non-malignant, which is a situation that may be prevented if diffusion MRI can be used to distinguish between malignant and non-malignant tumours prior to surgery.

II. Medical biology

In biology, the structure and working of the body is studied at several levels, from the interaction of proteins and other macromolecules within cells to the functioning of organs. In the case at hand, the organ of interest is the kidney. Functions of the kidneys are excretion of waste materials, control of blood pressure via hormone excretion, balancing the body fluid, acid-base balance and balancing salts by excretion or resorption of ions. Understanding these functions requires insights into the anatomy, tissue architecture and physiology of the kidneys. The main functional structures of the kidney are: (1) the nephron, consisting of a tuft of capillaries (the glomerulus) surrounded by membranes that are shaped like a cup (Bowman’s capsule), responsible for the first filtration of water and small ions, and (2) the renal tubule that is responsible for more specific resorption and excretion of ions and water. The arrangement of small tubes that fan from the centre towards the outside (or cortex) of the kidneys allows maintaining variation in concentrations of ions, which helps to regulate resorption and excretion. The contribution of medical biology to the development of the diagnostic tool is important because knowledge about kidneys such as just sketched provides an understanding of the properties (i.e., microstructural of physiological properties) by which different tumour types can be distinguished from each other, which is crucial to interpreting the novel diagnostic imaging technology.

III. MRI physics & diffusion MRI

Magnetic resonance imaging is based on the physics of magnetism and the interaction of tissue components with radio magnetic fields. The main component of the human body that clinical MRI machines are sensitive to is (the amount of) water molecules or, more specifically, hydrogen nuclei (protons). These protons can be thought of as rotating or spinning , producing (tiny) magnetic fields. By placing tissue in a relatively strong magnetic field (usually 1.5 or 3 Tesla emitted by a large coil that surrounds the body), the tiny magnetic fields of protons (in the water-phase of the tissue) will align themselves with the direction of the strong magnetic field. By then applying a series of radiofrequency pulses, protons will be pushed out of balance and rotate back to their original state, causing a magnetic flux that causes a change in voltage which is picked up by receiver coils in the MRI machine. The rate with which protons return to their original state, the relaxation time, is influenced by the makeup of their environment, and will, therefore, differ for different tissues, resulting in image contrasts between tissues. To be able to form images of the signal, magnetic field gradients are applied, spatially varying the field which enables to differentiate between signals from different locations. Computer software using mathematical formulas ‘translate’ the signal into a series of images.

Diffusion MRI is a subfield of MR imaging, that is based on a contrast between ‘diffusion rates’ of water molecules in different tissues. Diffusion is based on the random (‘Brownian’) motion of water molecules in tissue. This motion is restricted by tissue components such as membranes and macromolecules and therefore water molecules move (or ‘diffuse’) at different rates in different tissues, depending on the microstructure of tissues. To measure this, additional magnetic field gradients are applied, which results in a signal attenuation proportional to the diffusion rate, as water molecules move (‘or diffuse’) out of their original voxel due to diffusion.

The method for acquiring diffusion-weighted images with an MRI machine (i.e., the ‘acquisition sequence’ of applying radiofrequency pulses and switching gradients on and off) is designed to gain sensitivity to the water molecules diffusing from their original location. The measured diffusion coefficient is considered to be related to microstructural properties of the tissue, namely the density of tissue structures such as macromolecules and membranes that restrict water diffusion. Together with other diffusion parameters that can be obtained by fitting the signal to other functions or ‘models’, the diffusion coefficient can be used to characterise and distinguish between different (tumour) tissue types, which is the aim of this new imaging tool.

IV. Signal and image processing

The signal acquired by MRI machines undergoes many processing steps before they appear as images on the screen. Some of these steps are performed automatically by the MRI system while others require standardized operations in the software package supplied by the manufacturer, and yet other, more advanced, manipulations are performed in custom-made programs or software packages developed for specific research purposes. In the field of diffusion MRI, software packages that perform the most common fitting procedures are available but often custom-made algorithms are required. The reason for this is that diffusion MRI is originally developed for brain imaging, while investigating its feasibility in other organs has started more recently and only makes up a small part of the field. New applications generate new challenges. For example, unlike the brain, kidneys (and other abdominal organs) move up and down as a consequence of breathing. Therefore, specific algorithms manipulating the scan to correct for this respiratory motion are required for diffusion MRI of the kidneys. Furthermore, as tissue structure and physiology in the kidneys differ from that in the brain, existing models need to be adjusted to that of the kidney.

In this paper, we have argued that interdisciplinary collaboration is difficult because of the role of experts’ disciplinary perspective, which shapes their view and approach to a problem and creates cognitive and epistemological barriers when collaborating with other disciplines. To overcome these barriers, disciplinary experts involved in interdisciplinary research projects need to be able to explicate their own disciplinary perspective. This ability is part of what is known as interdisciplinary expertise [ 8 ]. We defend that interdisciplinary expertise begins with creating awareness of the role of disciplinary perspectives in how experts view a problem, interpret it, formulate questions and develop solutions.

Analytical frameworks to guide interdisciplinary research processes previously developed by other authors typically focus on the process of interdisciplinary collaboration [ 9 , 10 , 11 , 12 , 13 , 14 , 15 ]. The approach we propose here contributes to this literature by addressing the deeper cognitive and epistemological challenges of interdisciplinary research collaboration on the role of the disciplinary perspective as an inherent part of one’s expertise [ 5 , 16 ]. Several authors have already used the concept of ‘disciplinary perspectives’ to point out the challenges of interdisciplinary research (e.g., [ 9 , 15 ]). Our contribution to this literature is the idea, based on philosophical insights into the epistemology of interdisciplinary research, that disciplinary perspectives can be made explicit, and next, to provide an analytical framework with which disciplinary perspectives within an interdisciplinary research context can be systematically described (as in Table 1 ) with the aim of facilitating interdisciplinary communication within such research projects.

Our further contribution is that we have applied this framework to a concrete case, thereby demonstrating that disciplinary perspectives within a concrete interdisciplinary research project can actually be analyzed and explicated in terms of a coherent set of elements that make up the proposed framework. The result of this analysis (in Table  2 ) shows a coherent description of the discipline in question per column, with an explanation per aspect of what this aspect means for the interdisciplinary research project. It can also be seen that the horizontal comparison (in Table  2 ) results in very different descriptions per aspect for each discipline. We believe that this example demonstrates that it is possible to explain the nature of a specific discipline in a way that is accessible to experts from other disciplines. We do not claim, therefore, that this table is an exhaustive description of the four disciplines involved. Instead, our aim is to show that the approach outlined in this table reduces cognitive and epistemological barriers in interdisciplinary research by enabling communication about the content and nature of the disciplines involved.

We suggest that educators can explore how the framework and philosophical underpinning can be implemented in HPE to support the development of students’ interdisciplinary expertise. Much has been written, especially in the engineering education literature, about the importance of interdisciplinarity and how to teach it. A recent systematic review article shows that the focus of education aimed at interdisciplinarity is on so-called soft skills such as communication and teamwork. Project-based learning is often used to teach the necessary skills, but without specific support to promote these skills [ 7 ]. In our literature review on education for interdisciplinarity [ 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 ], we did not find any authors who specifically address the cognitive and epistemological barriers to interdisciplinary collaboration as described in our article. One possible reason for this is that current epistemological views on the application of science in real-world problem-solving contexts, such as the research project presented here, do not recognise the inherent cognitive and epistemological barriers philosophically explained in this article [ 78 ]. The novelty of our approach is therefore our emphasis on the epistemological and cognitive barriers between disciplines that result from the ineradicable role of disciplinary perspectives in the discipline-bound way in which researchers frame and interpret the common problem. This makes interdisciplinary communication and integration particularly difficult. Specific scaffolds are needed to overcome these barriers. The framework proposed here, which systematically makes the disciplinary perspective explicit, aims to be such a scaffold. We therefore argue that much more attention should be paid to this specific challenge of interdisciplinary collaboration in academic HPE education. This requires both an in-depth philosophical explanation that offers a new view of scientific knowledge that makes clear why interdisciplinary research is difficult, and learning how to make disciplinary perspectives explicit, for which the proposed framework provides a metacognitive scaffold.

We have implemented this framework in a newly designed minor programme that uses challenge-based learning and aims to develop interdisciplinary research skills. In this minor, small groups of students from different disciplines work on the (interdisciplinary) analysis and solution of a complex real-world problem. A number of other scaffolds focused on the overarching learning objective have been included in the educational design, which means that the framework proposed here cannot be tested in isolation. Although our research into whether this new educational design achieves the intended learning goal is not yet complete, our initial experience of using the framework is positive. Students, guided by the teacher, are able to use the framework in their interdisciplinary communication - first in a general sense to get to know each other’s disciplines and then within their research project. This implies that the framework is useful in education aimed at learning to conduct interdisciplinary research.

This example, where the framework has been implemented in education aimed at developing interdisciplinary research skills, also shows that although it was developed in the context of a medical-technical research project, it is in fact very general and well suited for any interdisciplinary research.

A critical comment should be made regarding our preliminary evidence of the framework’s usefulness. The first author, who was PI of the interdisciplinary medical research project, in which she applied this framework in her role as coordinator, was also involved in the development of the framework [ 35 , 36 ]. She, therefore has a detailed insight into the theoretical underpinnings of the framework in relation to its intended application. The lack of such a theoretical background may make it more difficult to apply the framework in interdisciplinary research. Footnote 8 Which is why we have provided an extensive elaboration of these underpinnings in this paper.

Further research should address the question of whether this scaffold can facilitate interdisciplinary collaboration between disciplinary experts.

Further research is also needed to systematically analyse the value of this framework in HPE education. This starts with the question of what type of educational design it can be successfully implemented in. Other important questions are: Can interdisciplinary expertise be acquired without knowledge of the other discipline (e.g., biomedical engineering)? In other words, how much education in other disciplines should HPE provide to prepare experts to participate in specific interdisciplinary collaborations?

Furthermore, we emphasize that in addition to learning to use this framework as a metacognitive scaffold to gain a deeper understanding of the epistemological and cognitive barriers, students also need to develop other skills necessary for interdisciplinary research collaboration and working in interdisciplinary teams. The frameworks discussed in our introduction that analyse and guide the interdisciplinary research process provide insights into these skills (e.g. [ 9 , 10 , 11 , 12 ] and [ 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 ]).

We suggest that the article as a whole can be used in such educational settings to achieve several goals, provided that students are guided and coached by educators. First, to foster student’s understanding of the epistemological challenges of interdisciplinary collaboration and to recognize that these challenges are usually underestimated and not addressed in most approaches. Second, by providing insights into the epistemological challenges by outlining the philosophical underpinnings, students will be made aware of having a disciplinary perspective and how it guides their work. Finally, by providing a framework that can be used to analyse these disciplinary perspectives and by providing an example from the case description. When successful, this approach encourages students to developing transferrable skills that can be used in research projects beyond the initial educational project.

Conclusions

Interdisciplinary research collaborations can be facilitated by a better understanding of how an expert’s disciplinary perspectives enables and guides their specific approach to a problem. Implicit disciplinary perspectives can and should be made explicit in a systematic manner, for which we propose a framework that can be used by disciplinary experts participating in interdisciplinary research projects. With this framework, and its philosophical underpinning, we contribute to a fundamental aspect of interdisciplinary collaborations.

Availability of data and materials

All data generated or analysed during this study are included in this published.

In this article, we use ‘disciplines,’ ‘fields’ and ‘specialisms’ interchangeably.

Bridle (2013), Klein (1990), Newell (2007) and Szostak (2002) provide activities that are important for interdisciplinary collaborations, such as communication, negotiation and evaluating assumptions. In order to be able to perform such activities, students need to develop the appropriate skills [ 9 , 17 , 18 , 19 ].

Roux et al. (2017) provide a clear characterization of transdisciplinary research: “A key aim of transdisciplinary research is for actors from science, policy and practice to co-evolve their understanding of a social–ecological issue, reconcile their diverse perspectives and co-produce appropriate knowledge to serve a common purpose.” ([ 20 ], p. 1).

Boon (2020, 2023) explains the notion of conceptual modelling in application oriented research [ 21 , 22 ].

i.e., a framework that enables us to think analytically and systematically about our cognitive processes when we use and produce knowledge [ 39 , 40 ].

Yet, we recognize that this belief was plausible in Kuhn’s era, where the idea that humans (including scientists) are inevitably and indelibly guided by paradigms and perspectives was revolutionary and devastating with regard to the rational view of man. But nowadays we have become familiar with this idea, which offers an opening for the metacognitive abilities that we suggest.

To scholars in HPE, we recommend the entry on Ludwik Fleck in the Stanford Encyclopedia of Philosophy [ 49 ].

The point made here touches on a more fundamental issue that is beyond the scope of this article. Namely, that resistance of students, but also of teachers, to the described approach may have to do with more traditional epistemological beliefs about science that do not fit well with the way scientific research works in practice [ 78 , 79 ]. The philosophical underpinnings of the proposed framework explained in this article suggest alternative epistemological beliefs that are more appropriate for interdisciplinary research aimed at (complex) ‘real-world’ problems.

Abbreviations

Health professions education

Magnetic Resonance Imaging

Principle investigator

Mylopoulos M, Regehr G. Cognitive metaphors of expertise and knowledge: prospects and limitations for medical education. Med Educ. 2007. https://doi.org/10.1111/j.1365-2923.2007.02912.x .

Mylopoulos M, Kulasegaram K, Woods NN. Developing the experts we need: fostering adaptive expertise through education. J Eval Clin Pract. 2018. https://doi.org/10.1111/jep.12905 .

World Health Organization (WHO). Medical devices: managing the Mismatch. An outcome of the Priority Medical devices project. WHO; 2010. https://www.who.int/publications/i/item/9789241564045 .

Gilbert JH, Yan J, Hoffman SJ. A WHO report: framework for action on interprofessional education and collaborative practice. J Allied Health. 2010;39(Suppl 1):196–7.

Google Scholar  

MacLeod M. What makes interdisciplinarity difficult? Some consequences of domain specificity in interdisciplinary practice. Synthese. 2016. https://doi.org/10.1007/s11229-016-1236-4 .

Hudson JN, Croker A. Educating for collaborative practice: an interpretation of current achievements and thoughts for future directions. Med Educ. 2018. https://doi.org/10.1111/medu.13455 .

Van der Beemt A, MacLeod M, van der Veen JT, van de Ven A, van Baalen S, Klaassen RG, Boon M. Interdisciplinary engineering education: a review of vision, teaching and support. J Eng Educ. 2020;109(1). https://doi.org/10.1002/jee.20347 .

Boon M, Van Baalen SJ, Groenier M. Interdisciplinary expertise in medical practice: challenges of using and producing knowledge in complex problem-solving. Med Teach. 2019. https://doi.org/10.1080/0142159X.2018.1544417 .

Klein J. Interdisciplinarity: history, theory and practice. Detroit, MI: Wayne State University; 1990.

Repko A, Navakas F, Fiscella J. Integrating interdisciplinarity: how the theories of common ground and Cognitive_Interdisciplinarity are informing the debate on interdisciplinary integration. Issues Interdisciplinary Stud. 2007;25:1–31.

Menken S, Keestra M, Rutting L, Post G, de Roo M, Blad S, de Greef L. An introduction to interdisciplinary research: theory and practice. Amsterdam: Amsterdam University; 2016.

Book   Google Scholar  

Repko AF, Szostak R. Interdisciplinary research. Process and theory. 3rd ed. Los Angeles: Sage; 2017.

Hasan MN, Koksal C, Montel L, Le Gouais A, Barnfield A, Bates G, Kwon HR. Developing shared understanding through online interdisciplinary collaboration: reflections from a research project on better integration of health outcomes in future urban. Futures. 2023. https://doi.org/10.1016/j.futures.2023.103176 .

Stokols D, Olson JS, Salazar M, Olson GM. Strengthening the ecosystem for effective team science: a case study from University of California, Irvine, USA. 2019. https://i2insights.org/2019/02/19/team-science-ecosystem/ . Accessed 2 Feb 2024 .

Brister E. Disciplinary capture and epistemological obstacles to interdisciplinary research: lessons from Central African conservation disputes. Stud History Philos Sci part C: Stud History Philos Biol Biomedical Sci. 2016. https://doi.org/10.1016/j.shpsc.2015.11.001 .

Boon M, Orozco M, Sivakumar K. Epistemological and educational issues in teaching practice-oriented scientific research: roles for philosophers of science. Eur J Philos Sci. 2022;12(1):16. https://doi.org/10.1007/s13194-022-00447-z .

Article   Google Scholar  

Bridle H, Vrieling A, Cardillo M, Araya Y, Hinojosa L. Preparing for an interdisciplinary future: a perspective from early-career researchers. Futures. 2013. https://doi.org/10.1016/j.futures.2013.09.003 .

Newell WH. Decision-making in Interdisciplinary studies. In: Morcol G, editor. Handbook of decision making. New York: CRC Press/Taylor & Francis Group; 2007. p. 245–65.

Szostak R. How to do interdisciplinarity. Integrating the debate. Issues Integr Stud. 2002;20:103–22.

Roux DJ, Nel JL, Cundill G, O’farrell P, Fabricius C. Transdisciplinary research for systemic change: who to learn with, what to learn about and how to learn. Sustain Sci. 2017. https://doi.org/10.1007/s11625-017-0446-0 .

Boon M. The role of disciplinary perspectives in an epistemology of models. Eur J Philos Sci. 2020. https://doi.org/10.1007/s13194-020-00295-9 .

Boon M, Conceptual modelling as an overarching research skill in engineering education. SEFI2023 2023;  https://doi.org/10.21427/ZDX4-VV41 accessed through https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1074&context=sefi2023_prapap .

Guraya SY, Barr H. The effectiveness of interprofessional education in healthcare: a systematic review and meta-analysis. Kaohsiung J Med Sci. 2018. https://doi.org/10.1016/j.kjms.2017.12.009 .

Darlow B, Brown M, McKinlay E, Gray L, Purdie G, Pullen S. Longitudinal impact of preregistration interprofessional education on the attitudes and skills of health professionals during their early careers: a non-randomised trial with 4-year outcomes. BMJ Open. 2022;12(7):e060066. https://doi.org/10.1136/bmjopen-2021-060066 .

Clark G. Institutionalizing interdisciplinary health professions programs in higher education: the implications of one story and two laws. J Interprof Care. 2004. https://doi.org/10.1080/13561820410001731296 .

O’Keefe M, Henderson A, Chick R. Defining a set of common interprofessional learning competencies for health profession students. Med Teach. 2017. https://doi.org/10.1080/0142159X.2017.1300246 .

Choi BC, Pak AW. Multidisciplinarity, interdisciplinarity, and transdisciplinarity in health research, services, education and policy: 2. Promotors, barriers, and strategies of enhancement. Clin Invest Med. 2007. https://doi.org/10.25011/cim.v30i6.2950 .

Lawlis TR, Anson J, Greenfield D. Barriers and enablers that influence sustainable interprofessional education: a literature review. J Interprof Care. 2014. https://doi.org/10.3109/13561820.2014.895977 .

Schwartz DL, Bransford JD, Sears D. Efficiency and innovation in transfer. In transfer of learning from a modern multidisciplinary perspective . Charlotte, NC: Information age publishing. 2005; 3:1–51. Edited by JP Mestre JP.

Mylopoulos M, Regehr G. Putting the expert together again. Med Educ. 2011. https://doi.org/10.1111/j.1365-2923.2011.04032.x .

Carbonell KB, Stalmeijer RE, Könings KD, Segers M, van Merriënboer JJ. How experts deal with novel situations: a review of adaptive expertise. Educ Res Rev. 2014. https://doi.org/10.1016/j.edurev.2014.03.001 .

Kulasegaram K, Min C, Howey E, Neville A, Woods N, Dore K, et al. The mediating effect of context variation in mixed practice for transfer of basic science. Adv Health Sci Educ. 2015. https://doi.org/10.1007/s10459-014-9574-9 .

Castillo JM, Park YS, Harris I, Cheung JJH, Sood L, Clark MD, et al. A critical narrative review of transfer of basic science knowledge in health professions education. Med Educ. 2018. https://doi.org/10.1111/medu.13519 .

Dyre L, Tolsgaard MG. The gap in transfer research. Med Educ. 2018. https://doi.org/10.1111/medu.13591 .

Van Baalen S, Leemans A, Dik P, Lilien MR, Ten Haken B, Froeling M. Intravoxel incoherent motion modeling in the kidneys: comparison of mono-, bi-, and triexponential fit. J Magn Reson Imaging. 2017. https://doi.org/10.1002/jmri.25519 .

Van Baalen S, Froeling M, Asselman M, Klazen C, Jeltes C, Van Dijk L, et al. Mono, bi-and tri-exponential diffusion MRI modelling for renal solid masses and comparison with histopathological findings. Cancer Imaging. 2018. https://doi.org/10.1186/s40644-018-0178-0 .

Kuhn TS. The Structure of Scientific Revolutions. 2nd ed. Chicago: The University of Chicago Press; 1970.

Boon M, Van Baalen S. Epistemology for interdisciplinary research–shifting philosophical paradigms of science. Eur J Philos Sci. 2019. https://doi.org/10.1007/s13194-018-0242-4 .

Flavell JH. Metacognition and cognitive monitoring: a new area of cognitive–developmental inquiry. Am Psychol. 1979. https://doi.org/10.1037/0003-066X.34.10.906 .

Pintrich P P.R. The role of metacognitive knowledge in learning, teaching, and assessing. Theory into Pract. 2002. https://doi.org/10.1207/s15430421tip4104_3 .

Groenier M, Pieters JM, Miedema HAT. Technical medicine: designing medical technological solutions for improved health care. Med Sci Educ 2017, https://doi.org/10.1007/s40670-017-0443-z

Chandarana H, Kang SK, Wong S, Rusinek H, Zhang JL, Arizono S et al. Diffusion-Weighted Intravoxel Incoherent Motion Imaging of Renal Tumors with Histopathologic Correlation. Invest Radiol 2012. https://doi.org/10.1097/RLI.0b013e31826a0a49 .

Feng Q, Ma Z, Zhang S, Wu J. Usefulness of diffusion tensor imaging for the differentiation between low-fat angiomyolipoma and clear cell carcinoma of the kidney. SpringerPlus. 2016. https://doi.org/10.1186/s40064-015-1628-x .

Rheinheimer S, Stieltjes B, Schneider F, Simon D, Pahernik S, Kauczor HU, et al. Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters–initial experience. Eur J Radiol. 2012. https://doi.org/10.1016/j.ejrad.2011.10.016 .

Van der Bel R, Gurney-Champion OJ, Froeling M, Stroues ESG, Nederveen AJ, Krediet CTP. A tri-exponential model for intravoxel incoherent motion analysis of the human kidney: in silico and during pharmacological renal perfusion modulation. Eur J Radiol. 2017. https://doi.org/10.1016/j.ejrad.2017.03.008 .

Boon M: Philosophy of science in practice: a proposal for epistemological constructivism. 2015; Helsinki (Finland). Edited by Leitgeb H, Niiniluoto I, Seppälä P, Sober E. Helsinki (Finland): College publications. 2017a:289–310. 2017a.

Fleck L. Genesis and development of a scientific fact. Chicago: University of Chicago Press; 1935/1979.

Mößner N. Thought styles and paradigms—a comparative study of Ludwik Fleck and Thomas S. Kuhn. Stud Hist Philos Sci Part A. 2011. https://doi.org/10.1016/j.shpsa.2010.12.002 .

Sady W. Ludwik Fleck. In: the stanford encyclopedia of philosophy. Zalta EN, editor. 2017. https://plato.stanford.edu/archives/fall2017/entries/fleck/ . Accessed 30 Jul 2020.

Boon M. An engineering paradigm in the biomedical sciences: knowledge as epistemic tool. Prog Biophys Mol Biol. 2017b. doi:j.pbiomolbio.2017.04.001.

Van Baalen S, Boon M. An epistemological shift: from evidence-based medicine to epistemological responsibility. J Eval Clin Pract. 2015. https://doi.org/10.1111/jep.12282 .

Woods NN, Brooks LR, Norman GR. The role of biomedical knowledge in diagnosis of difficult clinical cases. Adv Health Sci Educ. 2007;12:417–26.

Schmidt HG, Rikers RMJP. How expertise develops in medicine: knowledge encapsulation and illness script formation. Med Educ. 2007. https://doi.org/10.1111/j.1365-2923.2007.02915.x .

Newell WH. A theory of interdisciplinary studies. Issues Integr Stud. 2001;19:1–25.

Ivanitskaya L, Clark D, Montgomery G, Primeau R. Interdisciplinary learning: process and outcomes. Innov High Educ. 2002. https://doi.org/10.1023/A:1021105309984 .

Nikitina S. Three strategies for interdisciplinary teaching: contextualizing, conceptualizing, and problem-centring. J Curric stud. 2006. https://doi.org/10.1080/00220270500422632 .

Aram JD. Concepts of interdisciplinarity: configurations of knowledge and action. Hum Relat. 2004. https://doi.org/10.1177/0018726704043893 .

Aboelela SW, Larson E, Bakken S, Carrasquillo O, Formicola A, Glied SA, et al. Defining interdisciplinary research: conclusions from a critical review of the literature. Health Serv Res. 2007. https://doi.org/10.1111/j.1475-6773.2006.00621.x .

Mansilla VB, Duraisingh ED, Wolfe CR, Haynes C. Targeted assessment rubric: an empirically grounded rubric for interdisciplinary writing. J High Educ. 2009;80(3):334–53.

Spelt EJ, Biemans HJ, Tobi H, Luning PA, Mulder M. Teaching and learning in interdisciplinary higher education: a systematic review. Educ Psychol Rev. 2009. https://doi.org/10.1007/s10648-009-9113-z .

Klein JA. A Taxonomy of interdisciplinarity. In: Frodeman R, editor. In the oxford handbook of interdisciplinarity. Oxford: Oxford University press; 2010. p. 15–30.

Terpstra JL, Best A, Abrams DB, Moor G. Health sciences and health services. In: Frodeman R, editor. The Oxford Handbook of Interdisciplinarity. Oxford: Oxford University Press; 2010.

DeZure D. Interdisciplinary pedagogies in higher education. In: Frodeman R, editor. In the oxford handbook of interdisciplinarity. Oxford: Oxford University press; 2010. p. 372–87.

Frenk J, Chen L, Bhutta ZA, Cohen J, Crisp N, Evans T. Health professionals for a new century: transforming education to strengthen health systems in an interdependent world. Lancet. 2010. https://doi.org/10.1016/S0140-6736(10)61854-5 .

Haynes C, Brown-Leonard J. From surprise parties to mapmaking: undergraduate journeys toward interdisciplinary understanding. J High Educ. 2010. https://doi.org/10.1080/00221546.2010.11779070 .

Hirsch-Hadorn G, Pohl C, Bammer G. Solving problems through transdisciplinary research. In: Frodeman R, editor. In the oxford handbook of interdisciplinarity. Oxford: Oxford University press; 2010. p. 431–52.

Szostak R. The interdisciplinary research process. In: Repko AF, Newell WH, Szostak R, editors. In Interdisciplinary research: case studies of integrative understandings of complex problems. Thousand Oaks, CA: Sage; 2011. p. 3–19.

McNair LD, Newswander C, Boden D, Borrego M. Student and faculty interdisciplinary identities in self-managed teams. J Eng Educ. 2011. https://doi.org/10.1002/j.2168-9830.2011.tb00018.x .

Liu SY, Lin CS, Tsai CC. College Students’ scientific epistemological views and thinking patterns in Socioscientific decision making. Sci Educ. 2011. https://doi.org/10.1002/sce.20422 .

Abu-Rish E, Kim S, Choe L, Varpio L, Malik E, White AA, et al. Current trends in interprofessional education of health sciences students: a literature review. J Interprof Care. 2012. https://doi.org/10.3109/13561820.2012.715604 .

Bammer G. Disciplining interdisciplinarity - integration and implementation sciences for researching Complex real-world problems. Canberra: Australian National University E-Press; 2013.

Holbrook JB. What is interdisciplinary communication? Reflections on the very idea of disciplinary integration. Synthese. 2013. https://doi.org/10.1007/s11229-012-0179-7 .

Andersen H. The second essential tension: on tradition and innovation in interdisciplinary research. Topoi. 2013. https://doi.org/10.1007/s11245-012-9133-z .

Andersen H. Collaboration, interdisciplinarity, and the epistemology of contemporary science. Stud Hist Philos Sci Part A. 2016. https://doi.org/10.1016/j.shpsa.2015.10.006 .

Lattuca LR, Knight DB, Bergom IM. Developing a measure of interdisciplinary competence for engineers. Paper presented at the American Society for Engineering Education 2012 Annual Conference & Exposition, San Antonio, Texas, USA; 2013.

Acquavita SP, Lewis MA, Aparicio E, Pecukonis E. Student perspectives on interprofessional education and experiences. J Allied Health. 2014;43(2):e31–6.

Pharo E, Davison A, McGregor H, Warr K, Brown P. Using communities of practice to enhance interdisciplinary teaching: lessons from four Australian institutions. High Educ Res Dev. 2014. https://doi.org/10.1080/07294360.2013.832168 .

Boon M. How philosophical beliefs about science affect science education in academic engineering programs: the context of construction. Eng Stud. 2022. https://doi.org/10.1080/19378629.2022.2125398 .

Bromme R, Pieschl S, Stahl E. Epistemological beliefs are standards for adaptive learning: a functional theory about epistemological beliefs and metacognition. Metacognition Learn. 2010. https://doi.org/10.1007/s11409-009-9053-5 .

Download references

Acknowledgements

We are very grateful to three anonymous reviewers who have provided valuable feedback and suggestions that have helped us improve the paper.

This work is financed by an Aspasia grant (409.40216) of the Dutch National Science Foundation (NWO) for the project Philosophy of Science for the Engineering Sciences , and by the work package Interdisciplinary Engineering Education at the 4TU-CEE (Centre Engineering Education https://www.4tu.nl/cee/en/ ) in The Netherlands.

Author information

Authors and affiliations.

Department of Philosophy, University of Twente, Enschede, The Netherlands

Sophie van Baalen & Mieke Boon

Rathenau Instituut, Den Haag, The Netherlands

Sophie van Baalen

You can also search for this author in PubMed   Google Scholar

Contributions

SvB and MB have co-authored the manuscript and have contributed equally to the article.

Authors' information

Mieke Boon (PhD) graduated in chemical engineering (cum laude) and is a full professor in philosophy of science in practice . Her research aims at a philosophy of science for the engineering sciences , addressing topics such as methodology, technological instruments, scientific modeling, paradigms of science, interdisciplinarity, and science teaching. Sophie van Baalen (PhD) graduated in technical medicine and in philosophy of science technology and society , both cum laude. She recently finished her PhD project in which she aimed to understand epistemological aspects of technical medicine from a philosophy of science perspective, such as evidence-based medicine, expertise, interdisciplinarity and technological instruments.

Corresponding author

Correspondence to Mieke Boon .

Ethics declarations

Ethics approval and consent to participate.

No human participants were involved in this research, so ethical approval and/or consent to participate is not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

van Baalen, S., Boon, M. Understanding disciplinary perspectives: a framework to develop skills for interdisciplinary research collaborations of medical experts and engineers. BMC Med Educ 24 , 1000 (2024). https://doi.org/10.1186/s12909-024-05913-1

Download citation

Received : 14 July 2023

Accepted : 14 August 2024

Published : 13 September 2024

DOI : https://doi.org/10.1186/s12909-024-05913-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Adaptive expertise
  • Interdisciplinary expertise
  • Metacognitive skills
  • Higher-order cognitive abilities
  • Epistemology
  • Problem-solving
  • Disciplinary perspectives
  • Medical technology

BMC Medical Education

ISSN: 1472-6920

what is specific research questions

IMAGES

  1. What Is a Research Question? Tips on How to Find Interesting Topics

    what is specific research questions

  2. How to Write a Good Research Question (w/ Examples)

    what is specific research questions

  3. Research Question: Definition, Types, Examples, Quick Tips

    what is specific research questions

  4. How to Write a Research Question in 2024: Types, Steps, and Examples

    what is specific research questions

  5. How to Develop a Strong Research Question

    what is specific research questions

  6. How to state a research question. How to State a Research Question in a

    what is specific research questions

VIDEO

  1. What is research topic? Criteria for selecting topic, components and examples #health #research

  2. Literature Resource Center Gale 2024

  3. Types of Research Question #researchquestion

  4. Advanced Research Methods, Tools and Techniques for Multidisciplinary Research (MRD 2.0-2024)

  5. Research Help: What do I do when I can't find any reliable information on my topic?

  6. 4 Types of Research Questions to Start Your Writing Project Right

COMMENTS

  1. 10 Research Question Examples to Guide your Research Project

    However, all research questions should be focused, specific, and relevant to a timely social or scholarly issue. Once you've read our guide on how to write a research question, you can use these examples to craft your own.

  2. Research Questions: Definitions, Types + [Examples]

    A qualitative research question is a type of systematic inquiry that aims at collecting qualitative data from research subjects. The aim of qualitative research questions is to gather non-statistical information pertaining to the experiences, observations, and perceptions of the research subjects in line with the objectives of the investigation.

  3. Research Questions

    Research questions are the specific questions that guide a research study or inquiry. These questions help to define the scope of the research and provide a clear focus for the study. Research questions are usually developed at the beginning of a research project and are designed to address a particular research problem or objective.

  4. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  5. Research Question Examples ‍

    A well-crafted research question (or set of questions) sets the stage for a robust study and meaningful insights. But, if you're new to research, it's not always clear what exactly constitutes a good research question. In this post, we'll provide you with clear examples of quality research questions across various disciplines, so that you can approach your research project with confidence!

  6. Research Question 101

    Learn what a research question is, how it's different from a research aim or objective, and how to write a high-quality research question.

  7. Research Question: Definition, Types, Examples, Quick Tips

    Read the complete guide to writing a research question, including the characteristics of a good research question, examples, and steps to create strong research questions.

  8. Developing a Research Question

    What is a research question? Once you have selected a topic, you need to develop a research question. You may be used to working with a thesis statement, but a thesis statement is an answer. If you start your research with an answer, you might miss something important or your paper might be too one-sided.

  9. How to Develop a Good Research Question?

    In this article, we are aiming to help researchers understand what is a good research question and how to write one with examples.

  10. How to Craft a Strong Research Question (With Research Question

    A well-written research question is a key element that must be identified and pinned down before researchers can even begin their research study or work. Read this article to learn how to write a strong research question with some good examples of research questions across disciplines.

  11. How to Write a Research Question: Types and Examples

    Framing the research question is the first step in any research project, and you can learn how to write a research question that is focused, achievable, and answerable! Check this detailed article to know what a research question is, the different types, and a step-by-step process to formulate effective research questions, with examples.

  12. How to Write a Research Question

    Why is a research question essential to the research process? Research questions help writers focus their research by providing a path through the research and writing process. The specificity of a well-developed research question helps writers avoid the "all-about" paper and work toward supporting a specific, arguable thesis.

  13. Examples of good research questions

    Examples of good research questions. Alternatively, here's an example of a good research question: "How does using a vehicle's infotainment touch screen by drivers aged 16 to 18 in the U.S. affect driving habits?" This question is far more specific than the first bad example.

  14. The question: types of research questions and how to develop them

    Research question structure. The formulation of a well-structured research question is perhaps one of the most important steps in the research process. The primary question will drive the hypothesis of the study, determine the study design and methods, and ultimately govern the types of conclusions that can be made based on the results.

  15. Research Aims, Objectives & Questions

    The research aims, objectives and research questions (the golden thread) define the focus and scope (the delimitations) of your research project. In other words, they help ringfence your dissertation or thesis to a relatively narrow domain, so that you can "go deep" and really dig into a specific problem or opportunity.

  16. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  17. How to Write a Good Research Question (w/ Examples)

    A research question is the main question your study seeks to answer. Learn how to write a strong research question and see examples.

  18. How to Write a Research Question in 2024: Types, Steps, and Examples

    3. Narrow down your topic and determine potential research questions. Once you have gathered enough knowledge on the topic you want to pursue, you can start focusing on a more specific area of study and narrowing down a research question. One option is to focus on gaps in existing knowledge or recent literature.

  19. How to Write a Research Question the SMART Way

    Crafting a research question is the foundational step in any research endeavor. A well-structured research question not only guides your study but also sets the stage for a successful research project. In this guide, we'll explore how to write a research question using the SMART criteria, ensuring that it is Specific, Measurable, Achievable, Relevant, and Time-bound.

  20. Developing a Research Question

    A research question is an essential tool to help guide your research paper, project, or thesis. It poses a specific question that you are seeking to answer in your paper. Research questions can be broad or narrow, and can change throughout the research process.

  21. Writing Research Questions

    What is a research question? Explore how to write effective and strong research questions. Learn their purposes and see specific examples of...

  22. Research questions, hypotheses and objectives

    The development of the research question, including a supportive hypothesis and objectives, is a necessary key step in producing clinically relevant results to be used in evidence-based practice. A well-defined and specific research question is more likely to help guide us in making decisions about study design and population and subsequently ...

  23. Chapter 4. Finding a Research Question and Approaches to Qualitative

    Developing a Research Question Research questions are different from general questions people have about the social world. They are narrowly tailored to fit a very specific issue, complete with context and time boundaries.

  24. Understanding disciplinary perspectives: a framework to develop skills

    Background Health professionals need to be prepared for interdisciplinary research collaborations aimed at the development and implementation of medical technology. Expertise is highly domain-specific, and learned by being immersed in professional practice. Therefore, the approaches and results from one domain are not easily understood by experts from another domain. Interdisciplinary ...