Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

scientific hypothesis thesis

Step 1. Ask a question

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved April 17, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Grad Coach

What Is A Research (Scientific) Hypothesis? A plain-language explainer + examples

By:  Derek Jansen (MBA)  | Reviewed By: Dr Eunice Rautenbach | June 2020

If you’re new to the world of research, or it’s your first time writing a dissertation or thesis, you’re probably noticing that the words “research hypothesis” and “scientific hypothesis” are used quite a bit, and you’re wondering what they mean in a research context .

“Hypothesis” is one of those words that people use loosely, thinking they understand what it means. However, it has a very specific meaning within academic research. So, it’s important to understand the exact meaning before you start hypothesizing. 

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

scientific hypothesis thesis

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.  

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference. 

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

scientific hypothesis thesis

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Research limitations vs delimitations

16 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Tesfaye Negesa Urge

this is very important note help me much more

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.34(45); 2019 Nov 25

Logo of jkms

Scientific Hypotheses: Writing, Promoting, and Predicting Implications

Armen yuri gasparyan.

1 Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, West Midlands, UK.

Lilit Ayvazyan

2 Department of Medical Chemistry, Yerevan State Medical University, Yerevan, Armenia.

Ulzhan Mukanova

3 Department of Surgical Disciplines, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

Marlen Yessirkepov

4 Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

George D. Kitas

5 Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester, UK.

Scientific hypotheses are essential for progress in rapidly developing academic disciplines. Proposing new ideas and hypotheses require thorough analyses of evidence-based data and predictions of the implications. One of the main concerns relates to the ethical implications of the generated hypotheses. The authors may need to outline potential benefits and limitations of their suggestions and target widely visible publication outlets to ignite discussion by experts and start testing the hypotheses. Not many publication outlets are currently welcoming hypotheses and unconventional ideas that may open gates to criticism and conservative remarks. A few scholarly journals guide the authors on how to structure hypotheses. Reflecting on general and specific issues around the subject matter is often recommended for drafting a well-structured hypothesis article. An analysis of influential hypotheses, presented in this article, particularly Strachan's hygiene hypothesis with global implications in the field of immunology and allergy, points to the need for properly interpreting and testing new suggestions. Envisaging the ethical implications of the hypotheses should be considered both by authors and journal editors during the writing and publishing process.

INTRODUCTION

We live in times of digitization that radically changes scientific research, reporting, and publishing strategies. Researchers all over the world are overwhelmed with processing large volumes of information and searching through numerous online platforms, all of which make the whole process of scholarly analysis and synthesis complex and sophisticated.

Current research activities are diversifying to combine scientific observations with analysis of facts recorded by scholars from various professional backgrounds. 1 Citation analyses and networking on social media are also becoming essential for shaping research and publishing strategies globally. 2 Learning specifics of increasingly interdisciplinary research studies and acquiring information facilitation skills aid researchers in formulating innovative ideas and predicting developments in interrelated scientific fields.

Arguably, researchers are currently offered more opportunities than in the past for generating new ideas by performing their routine laboratory activities, observing individual cases and unusual developments, and critically analyzing published scientific facts. What they need at the start of their research is to formulate a scientific hypothesis that revisits conventional theories, real-world processes, and related evidence to propose new studies and test ideas in an ethical way. 3 Such a hypothesis can be of most benefit if published in an ethical journal with wide visibility and exposure to relevant online databases and promotion platforms.

Although hypotheses are crucially important for the scientific progress, only few highly skilled researchers formulate and eventually publish their innovative ideas per se . Understandably, in an increasingly competitive research environment, most authors would prefer to prioritize their ideas by discussing and conducting tests in their own laboratories or clinical departments, and publishing research reports afterwards. However, there are instances when simple observations and research studies in a single center are not capable of explaining and testing new groundbreaking ideas. Formulating hypothesis articles first and calling for multicenter and interdisciplinary research can be a solution in such instances, potentially launching influential scientific directions, if not academic disciplines.

The aim of this article is to overview the importance and implications of infrequently published scientific hypotheses that may open new avenues of thinking and research.

Despite the seemingly established views on innovative ideas and hypotheses as essential research tools, no structured definition exists to tag the term and systematically track related articles. In 1973, the Medical Subject Heading (MeSH) of the U.S. National Library of Medicine introduced “Research Design” as a structured keyword that referred to the importance of collecting data and properly testing hypotheses, and indirectly linked the term to ethics, methods and standards, among many other subheadings.

One of the experts in the field defines “hypothesis” as a well-argued analysis of available evidence to provide a realistic (scientific) explanation of existing facts, fill gaps in public understanding of sophisticated processes, and propose a new theory or a test. 4 A hypothesis can be proven wrong partially or entirely. However, even such an erroneous hypothesis may influence progress in science by initiating professional debates that help generate more realistic ideas. The main ethical requirement for hypothesis authors is to be honest about the limitations of their suggestions. 5

EXAMPLES OF INFLUENTIAL SCIENTIFIC HYPOTHESES

Daily routine in a research laboratory may lead to groundbreaking discoveries provided the daily accounts are comprehensively analyzed and reproduced by peers. The discovery of penicillin by Sir Alexander Fleming (1928) can be viewed as a prime example of such discoveries that introduced therapies to treat staphylococcal and streptococcal infections and modulate blood coagulation. 6 , 7 Penicillin got worldwide recognition due to the inventor's seminal works published by highly prestigious and widely visible British journals, effective ‘real-world’ antibiotic therapy of pneumonia and wounds during World War II, and euphoric media coverage. 8 In 1945, Fleming, Florey and Chain got a much deserved Nobel Prize in Physiology or Medicine for the discovery that led to the mass production of the wonder drug in the U.S. and ‘real-world practice’ that tested the use of penicillin. What remained globally unnoticed is that Zinaida Yermolyeva, the outstanding Soviet microbiologist, created the Soviet penicillin, which turned out to be more effective than the Anglo-American penicillin and entered mass production in 1943; that year marked the turning of the tide of the Great Patriotic War. 9 One of the reasons of the widely unnoticed discovery of Zinaida Yermolyeva is that her works were published exclusively by local Russian (Soviet) journals.

The past decades have been marked by an unprecedented growth of multicenter and global research studies involving hundreds and thousands of human subjects. This trend is shaped by an increasing number of reports on clinical trials and large cohort studies that create a strong evidence base for practice recommendations. Mega-studies may help generate and test large-scale hypotheses aiming to solve health issues globally. Properly designed epidemiological studies, for example, may introduce clarity to the hygiene hypothesis that was originally proposed by David Strachan in 1989. 10 David Strachan studied the epidemiology of hay fever in a cohort of 17,414 British children and concluded that declining family size and improved personal hygiene had reduced the chances of cross infections in families, resulting in epidemics of atopic disease in post-industrial Britain. Over the past four decades, several related hypotheses have been proposed to expand the potential role of symbiotic microorganisms and parasites in the development of human physiological immune responses early in life and protection from allergic and autoimmune diseases later on. 11 , 12 Given the popularity and the scientific importance of the hygiene hypothesis, it was introduced as a MeSH term in 2012. 13

Hypotheses can be proposed based on an analysis of recorded historic events that resulted in mass migrations and spreading of certain genetic diseases. As a prime example, familial Mediterranean fever (FMF), the prototype periodic fever syndrome, is believed to spread from Mesopotamia to the Mediterranean region and all over Europe due to migrations and religious prosecutions millennia ago. 14 Genetic mutations spearing mild clinical forms of FMF are hypothesized to emerge and persist in the Mediterranean region as protective factors against more serious infectious diseases, particularly tuberculosis, historically common in that part of the world. 15 The speculations over the advantages of carrying the MEditerranean FeVer (MEFV) gene are further strengthened by recorded low mortality rates from tuberculosis among FMF patients of different nationalities living in Tunisia in the first half of the 20th century. 16

Diagnostic hypotheses shedding light on peculiarities of diseases throughout the history of mankind can be formulated using artefacts, particularly historic paintings. 17 Such paintings may reveal joint deformities and disfigurements due to rheumatic diseases in individual subjects. A series of paintings with similar signs of pathological conditions interpreted in a historic context may uncover mysteries of epidemics of certain diseases, which is the case with Ruben's paintings depicting signs of rheumatic hands and making some doctors to believe that rheumatoid arthritis was common in Europe in the 16th and 17th century. 18

WRITING SCIENTIFIC HYPOTHESES

There are author instructions of a few journals that specifically guide how to structure, format, and make submissions categorized as hypotheses attractive. One of the examples is presented by Med Hypotheses , the flagship journal in its field with more than four decades of publishing and influencing hypothesis authors globally. However, such guidance is not based on widely discussed, implemented, and approved reporting standards, which are becoming mandatory for all scholarly journals.

Generating new ideas and scientific hypotheses is a sophisticated task since not all researchers and authors are skilled to plan, conduct, and interpret various research studies. Some experience with formulating focused research questions and strong working hypotheses of original research studies is definitely helpful for advancing critical appraisal skills. However, aspiring authors of scientific hypotheses may need something different, which is more related to discerning scientific facts, pooling homogenous data from primary research works, and synthesizing new information in a systematic way by analyzing similar sets of articles. To some extent, this activity is reminiscent of writing narrative and systematic reviews. As in the case of reviews, scientific hypotheses need to be formulated on the basis of comprehensive search strategies to retrieve all available studies on the topics of interest and then synthesize new information selectively referring to the most relevant items. One of the main differences between scientific hypothesis and review articles relates to the volume of supportive literature sources ( Table 1 ). In fact, hypothesis is usually formulated by referring to a few scientific facts or compelling evidence derived from a handful of literature sources. 19 By contrast, reviews require analyses of a large number of published documents retrieved from several well-organized and evidence-based databases in accordance with predefined search strategies. 20 , 21 , 22

The format of hypotheses, especially the implications part, may vary widely across disciplines. Clinicians may limit their suggestions to the clinical manifestations of diseases, outcomes, and management strategies. Basic and laboratory scientists analysing genetic, molecular, and biochemical mechanisms may need to view beyond the frames of their narrow fields and predict social and population-based implications of the proposed ideas. 23

Advanced writing skills are essential for presenting an interesting theoretical article which appeals to the global readership. Merely listing opposing facts and ideas, without proper interpretation and analysis, may distract the experienced readers. The essence of a great hypothesis is a story behind the scientific facts and evidence-based data.

ETHICAL IMPLICATIONS

The authors of hypotheses substantiate their arguments by referring to and discerning rational points from published articles that might be overlooked by others. Their arguments may contradict the established theories and practices, and pose global ethical issues, particularly when more or less efficient medical technologies and public health interventions are devalued. The ethical issues may arise primarily because of the careless references to articles with low priorities, inadequate and apparently unethical methodologies, and concealed reporting of negative results. 24 , 25

Misinterpretation and misunderstanding of the published ideas and scientific hypotheses may complicate the issue further. For example, Alexander Fleming, whose innovative ideas of penicillin use to kill susceptible bacteria saved millions of lives, warned of the consequences of uncontrolled prescription of the drug. The issue of antibiotic resistance had emerged within the first ten years of penicillin use on a global scale due to the overprescription that affected the efficacy of antibiotic therapies, with undesirable consequences for millions. 26

The misunderstanding of the hygiene hypothesis that primarily aimed to shed light on the role of the microbiome in allergic and autoimmune diseases resulted in decline of public confidence in hygiene with dire societal implications, forcing some experts to abandon the original idea. 27 , 28 Although that hypothesis is unrelated to the issue of vaccinations, the public misunderstanding has resulted in decline of vaccinations at a time of upsurge of old and new infections.

A number of ethical issues are posed by the denial of the viral (human immunodeficiency viruses; HIV) hypothesis of acquired Immune deficiency Syndrome (AIDS) by Peter Duesberg, who overviewed the links between illicit recreational drugs and antiretroviral therapies with AIDS and refuted the etiological role of HIV. 29 That controversial hypothesis was rejected by several journals, but was eventually published without external peer review at Med Hypotheses in 2010. The publication itself raised concerns of the unconventional editorial policy of the journal, causing major perturbations and more scrutinized publishing policies by journals processing hypotheses.

WHERE TO PUBLISH HYPOTHESES

Although scientific authors are currently well informed and equipped with search tools to draft evidence-based hypotheses, there are still limited quality publication outlets calling for related articles. The journal editors may be hesitant to publish articles that do not adhere to any research reporting guidelines and open gates for harsh criticism of unconventional and untested ideas. Occasionally, the editors opting for open-access publishing and upgrading their ethics regulations launch a section to selectively publish scientific hypotheses attractive to the experienced readers. 30 However, the absence of approved standards for this article type, particularly no mandate for outlining potential ethical implications, may lead to publication of potentially harmful ideas in an attractive format.

A suggestion of simultaneously publishing multiple or alternative hypotheses to balance the reader views and feedback is a potential solution for the mainstream scholarly journals. 31 However, that option alone is hardly applicable to emerging journals with unconventional quality checks and peer review, accumulating papers with multiple rejections by established journals.

A large group of experts view hypotheses with improbable and controversial ideas publishable after formal editorial (in-house) checks to preserve the authors' genuine ideas and avoid conservative amendments imposed by external peer reviewers. 32 That approach may be acceptable for established publishers with large teams of experienced editors. However, the same approach can lead to dire consequences if employed by nonselective start-up, open-access journals processing all types of articles and primarily accepting those with charged publication fees. 33 In fact, pseudoscientific ideas arguing Newton's and Einstein's seminal works or those denying climate change that are hardly testable have already found their niche in substandard electronic journals with soft or nonexistent peer review. 34

CITATIONS AND SOCIAL MEDIA ATTENTION

The available preliminary evidence points to the attractiveness of hypothesis articles for readers, particularly those from research-intensive countries who actively download related documents. 35 However, citations of such articles are disproportionately low. Only a small proportion of top-downloaded hypotheses (13%) in the highly prestigious Med Hypotheses receive on average 5 citations per article within a two-year window. 36

With the exception of a few historic papers, the vast majority of hypotheses attract relatively small number of citations in a long term. 36 Plausible explanations are that these articles often contain a single or only a few citable points and that suggested research studies to test hypotheses are rarely conducted and reported, limiting chances of citing and crediting authors of genuine research ideas.

A snapshot analysis of citation activity of hypothesis articles may reveal interest of the global scientific community towards their implications across various disciplines and countries. As a prime example, Strachan's hygiene hypothesis, published in 1989, 10 is still attracting numerous citations on Scopus, the largest bibliographic database. As of August 28, 2019, the number of the linked citations in the database is 3,201. Of the citing articles, 160 are cited at least 160 times ( h -index of this research topic = 160). The first three citations are recorded in 1992 and followed by a rapid annual increase in citation activity and a peak of 212 in 2015 ( Fig. 1 ). The top 5 sources of the citations are Clin Exp Allergy (n = 136), J Allergy Clin Immunol (n = 119), Allergy (n = 81), Pediatr Allergy Immunol (n = 69), and PLOS One (n = 44). The top 5 citing authors are leading experts in pediatrics and allergology Erika von Mutius (Munich, Germany, number of publications with the index citation = 30), Erika Isolauri (Turku, Finland, n = 27), Patrick G Holt (Subiaco, Australia, n = 25), David P. Strachan (London, UK, n = 23), and Bengt Björksten (Stockholm, Sweden, n = 22). The U.S. is the leading country in terms of citation activity with 809 related documents, followed by the UK (n = 494), Germany (n = 314), Australia (n = 211), and the Netherlands (n = 177). The largest proportion of citing documents are articles (n = 1,726, 54%), followed by reviews (n = 950, 29.7%), and book chapters (n = 213, 6.7%). The main subject areas of the citing items are medicine (n = 2,581, 51.7%), immunology and microbiology (n = 1,179, 23.6%), and biochemistry, genetics and molecular biology (n = 415, 8.3%).

An external file that holds a picture, illustration, etc.
Object name is jkms-34-e300-g001.jpg

Interestingly, a recent analysis of 111 publications related to Strachan's hygiene hypothesis, stating that the lack of exposure to infections in early life increases the risk of rhinitis, revealed a selection bias of 5,551 citations on Web of Science. 37 The articles supportive of the hypothesis were cited more than nonsupportive ones (odds ratio adjusted for study design, 2.2; 95% confidence interval, 1.6–3.1). A similar conclusion pointing to a citation bias distorting bibliometrics of hypotheses was reached by an earlier analysis of a citation network linked to the idea that β-amyloid, which is involved in the pathogenesis of Alzheimer disease, is produced by skeletal muscle of patients with inclusion body myositis. 38 The results of both studies are in line with the notion that ‘positive’ citations are more frequent in the field of biomedicine than ‘negative’ ones, and that citations to articles with proven hypotheses are too common. 39

Social media channels are playing an increasingly active role in the generation and evaluation of scientific hypotheses. In fact, publicly discussing research questions on platforms of news outlets, such as Reddit, may shape hypotheses on health-related issues of global importance, such as obesity. 40 Analyzing Twitter comments, researchers may reveal both potentially valuable ideas and unfounded claims that surround groundbreaking research ideas. 41 Social media activities, however, are unevenly distributed across different research topics, journals and countries, and these are not always objective professional reflections of the breakthroughs in science. 2 , 42

Scientific hypotheses are essential for progress in science and advances in healthcare. Innovative ideas should be based on a critical overview of related scientific facts and evidence-based data, often overlooked by others. To generate realistic hypothetical theories, the authors should comprehensively analyze the literature and suggest relevant and ethically sound design for future studies. They should also consider their hypotheses in the context of research and publication ethics norms acceptable for their target journals. The journal editors aiming to diversify their portfolio by maintaining and introducing hypotheses section are in a position to upgrade guidelines for related articles by pointing to general and specific analyses of the subject, preferred study designs to test hypotheses, and ethical implications. The latter is closely related to specifics of hypotheses. For example, editorial recommendations to outline benefits and risks of a new laboratory test or therapy may result in a more balanced article and minimize associated risks afterwards.

Not all scientific hypotheses have immediate positive effects. Some, if not most, are never tested in properly designed research studies and never cited in credible and indexed publication outlets. Hypotheses in specialized scientific fields, particularly those hardly understandable for nonexperts, lose their attractiveness for increasingly interdisciplinary audience. The authors' honest analysis of the benefits and limitations of their hypotheses and concerted efforts of all stakeholders in science communication to initiate public discussion on widely visible platforms and social media may reveal rational points and caveats of the new ideas.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Gasparyan AY, Yessirkepov M, Kitas GD.
  • Methodology: Gasparyan AY, Mukanova U, Ayvazyan L.
  • Writing - original draft: Gasparyan AY, Ayvazyan L, Yessirkepov M.
  • Writing - review & editing: Gasparyan AY, Yessirkepov M, Mukanova U, Kitas GD.
  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

scientific hypothesis thesis

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 15 April 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

It awesome. It has really positioned me in my research project

Rate this article Cancel Reply

Your email address will not be published.

scientific hypothesis thesis

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

scientific hypothesis thesis

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

scientific hypothesis thesis

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

scientific hypothesis thesis

What should universities' stance be on AI tools in research and academic writing?

Elsevier QRcode Wechat

  • Manuscript Preparation

What is and How to Write a Good Hypothesis in Research?

  • 4 minute read
  • 296.9K views

Table of Contents

One of the most important aspects of conducting research is constructing a strong hypothesis. But what makes a hypothesis in research effective? In this article, we’ll look at the difference between a hypothesis and a research question, as well as the elements of a good hypothesis in research. We’ll also include some examples of effective hypotheses, and what pitfalls to avoid.

What is a Hypothesis in Research?

Simply put, a hypothesis is a research question that also includes the predicted or expected result of the research. Without a hypothesis, there can be no basis for a scientific or research experiment. As such, it is critical that you carefully construct your hypothesis by being deliberate and thorough, even before you set pen to paper. Unless your hypothesis is clearly and carefully constructed, any flaw can have an adverse, and even grave, effect on the quality of your experiment and its subsequent results.

Research Question vs Hypothesis

It’s easy to confuse research questions with hypotheses, and vice versa. While they’re both critical to the Scientific Method, they have very specific differences. Primarily, a research question, just like a hypothesis, is focused and concise. But a hypothesis includes a prediction based on the proposed research, and is designed to forecast the relationship of and between two (or more) variables. Research questions are open-ended, and invite debate and discussion, while hypotheses are closed, e.g. “The relationship between A and B will be C.”

A hypothesis is generally used if your research topic is fairly well established, and you are relatively certain about the relationship between the variables that will be presented in your research. Since a hypothesis is ideally suited for experimental studies, it will, by its very existence, affect the design of your experiment. The research question is typically used for new topics that have not yet been researched extensively. Here, the relationship between different variables is less known. There is no prediction made, but there may be variables explored. The research question can be casual in nature, simply trying to understand if a relationship even exists, descriptive or comparative.

How to Write Hypothesis in Research

Writing an effective hypothesis starts before you even begin to type. Like any task, preparation is key, so you start first by conducting research yourself, and reading all you can about the topic that you plan to research. From there, you’ll gain the knowledge you need to understand where your focus within the topic will lie.

Remember that a hypothesis is a prediction of the relationship that exists between two or more variables. Your job is to write a hypothesis, and design the research, to “prove” whether or not your prediction is correct. A common pitfall is to use judgments that are subjective and inappropriate for the construction of a hypothesis. It’s important to keep the focus and language of your hypothesis objective.

An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions.

Use the following points as a checklist to evaluate the effectiveness of your research hypothesis:

  • Predicts the relationship and outcome
  • Simple and concise – avoid wordiness
  • Clear with no ambiguity or assumptions about the readers’ knowledge
  • Observable and testable results
  • Relevant and specific to the research question or problem

Research Hypothesis Example

Perhaps the best way to evaluate whether or not your hypothesis is effective is to compare it to those of your colleagues in the field. There is no need to reinvent the wheel when it comes to writing a powerful research hypothesis. As you’re reading and preparing your hypothesis, you’ll also read other hypotheses. These can help guide you on what works, and what doesn’t, when it comes to writing a strong research hypothesis.

Here are a few generic examples to get you started.

Eating an apple each day, after the age of 60, will result in a reduction of frequency of physician visits.

Budget airlines are more likely to receive more customer complaints. A budget airline is defined as an airline that offers lower fares and fewer amenities than a traditional full-service airline. (Note that the term “budget airline” is included in the hypothesis.

Workplaces that offer flexible working hours report higher levels of employee job satisfaction than workplaces with fixed hours.

Each of the above examples are specific, observable and measurable, and the statement of prediction can be verified or shown to be false by utilizing standard experimental practices. It should be noted, however, that often your hypothesis will change as your research progresses.

Language Editing Plus

Elsevier’s Language Editing Plus service can help ensure that your research hypothesis is well-designed, and articulates your research and conclusions. Our most comprehensive editing package, you can count on a thorough language review by native-English speakers who are PhDs or PhD candidates. We’ll check for effective logic and flow of your manuscript, as well as document formatting for your chosen journal, reference checks, and much more.

Systematic Literature Review or Literature Review

  • Research Process

Systematic Literature Review or Literature Review?

What is a Problem Statement

What is a Problem Statement? [with examples]

You may also like.

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

scientific hypothesis thesis

The Clear Path to An Impactful Paper: ②

Essentials of Writing to Communicate Research in Medicine

The Essentials of Writing to Communicate Research in Medicine

There are some recognizable elements and patterns often used for framing engaging sentences in English. Find here the sentence patterns in Academic Writing

Changing Lines: Sentence Patterns in Academic Writing

Input your search keywords and press Enter.

  • How it works

Published by Nicolas at January 16th, 2024 , Revised On January 23, 2024

How To Write A Hypotheses – Guide For Students

The word “hypothesis” might conjure up images of scientists in white coats, but crafting a solid hypothesis is a crucial skill for students in any field. Whether you are analyzing Shakespeare’s sonnets or conducting a science experiment, a well-defined research hypothesis sets the stage for your dissertation or thesis and fuels your investigation. 

Table of Contents

Writing a hypothesis is a crucial step in the research process. A hypothesis serves as the foundation of your research paper because it guides the direction of your study and provides a clear framework for investigation. But how to write a hypothesis? This blog will help you craft one. Let’s get started.

What Is A Hypothesis

A hypothesis is a clear and testable thesis statement or prediction that serves as the foundation of a research study. It is formulated based on existing knowledge, observations, and theoretical frameworks. 

A hypothesis articulates the researcher’s expectations regarding the relationship between variables in a study.

Hypothesis Example

Students exposed to multimedia-enhanced teaching methods will demonstrate higher retention of information compared to those taught using traditional methods.

The formulation of a hypothesis is crucial for guiding the research process and providing a clear direction for data collection and analysis. A well-crafted research hypothesis not only makes the research purpose explicit but also sets the stage for drawing meaningful conclusions from the study’s findings.

What Is A Null Hypothesis And Alternative Hypothesis

There are two main types of hypotheses: the null hypothesis (H0) and the alternative hypothesis (H1 or Ha). 

The null hypothesis posits that there is no significant effect or relationship, while the alternative hypothesis suggests the presence of a significant effect or relationship.

For example, in a study investigating the effect of a new drug on blood pressure, the null hypothesis might state that there is no difference in blood pressure between the control group (not receiving the drug) and the experimental group (receiving the drug). The alternative hypothesis, on the other hand, would propose that there is a significant difference in blood pressure between the two groups.

The literature review we write have:

  • Precision and Clarity
  • Zero Plagiarism
  • High-level Encryption
  • Authentic Sources

How To Write A Good Research Hypothesis

Writing a hypothesis involves a systematic process that guides your research and provides a clear and testable statement about the expected relationship between variables. Go through the MLA vs. APA guidelines before writing. Here are the steps to help you how to write a hypothesis:

Step 1: Identify The Research Topic

Clearly define the research topic or question that you want to investigate. Ensure that your research question is specific and focused, providing a clear direction for your study.

Step 2: Conduct A Literature Review

Review existing literature related to your research topic. A thorough literature review helps you understand what is already known in the field, identify gaps, and build a foundation for formulating your hypothesis.

Step 3: Define Variables

Identify the variables involved in your study. The independent variable is the factor you manipulate, and the dependent variable is the one you measure. Clearly define the characteristics or conditions you are studying.

Step 4: Establish The Relationship

Determine the expected relationship between the independent and dependent variables. Will a change in the independent variable lead to a change in the dependent variable? Specify whether you anticipate a positive, negative, or no relationship.

Step 5: Formulate The Null Hypothesis (H0)

The null hypothesis represents the default position, suggesting that there is no significant effect or relationship between the variables you are studying. It serves as the baseline to be tested against. The null hypothesis is often denoted as H0.

Step 6: Formulate The Alternative Hypothesis (H1 or Ha)

The alternative hypothesis articulates the researcher’s expectation about the existence of a significant effect or relationship. It is what you aim to support with your research paper . The alternative hypothesis is denoted as H1 or Ha.

For example, if your research topic is about the effect of a new fertilizer on plant growth:

  • Null Hypothesis (H0): There is no significant difference in plant growth between plants treated with the traditional fertilizer and those treated with the new fertilizer.
  • Alternative Hypothesis (H1): There is a significant difference in plant growth between plants treated with the traditional fertilizer and those treated with the new fertilizer.

Step 7: Ensure Testability And Specificity

Confirm that your research hypothesis is testable and can be empirically investigated. Ensure that it is specific, providing a clear and measurable statement that can be validated or refuted through data collection and analysis.

Hypothesis Examples

What makes a good hypothesis.

  • Clear Statement: A hypothesis should be stated clearly and precisely. It should be easily understandable and convey the expected relationship between variables.
  • Testability: A hypothesis must be testable through empirical observation or experimentation. This means that there should be a feasible way to collect data and assess whether the expected relationship holds true.
  • Specificity: The research hypothesis should be specific in terms of the variables involved and the nature of the expected relationship. Vague or ambiguous hypotheses can lead to unclear research outcomes.
  • Measurability: Variables in a hypothesis should be measurable, meaning they can be quantified or observed objectively. This ensures that the research can be conducted with precision.
  • Falsifiability: A good research hypothesis should be falsifiable, meaning there should be a possibility of proving it wrong. This concept is fundamental to the scientific method, as hypotheses that cannot be tested or disproven lack scientific validity.

Frequently Asked Questions

How to write a hypothesis.

  • Clearly state the research question.
  • Identify the variables involved.
  • Formulate a clear and testable prediction.
  • Use specific and measurable terms.
  • Align the hypothesis with the research question.
  • Distinguish between the null hypothesis (no effect) and alternative hypothesis (expected effect).
  • Ensure the hypothesis is falsifiable and subject to empirical testing.

How to write a hypothesis for a lab?

  • Identify the purpose of the lab.
  • Clearly state the relationship between variables.
  • Use concise language and specific terms.
  • Make the hypothesis testable through experimentation.
  • Align with the lab’s objectives.
  • Include an if-then statement to express the expected outcome.
  • Ensure clarity and relevance to the experimental setup.

What Is A Null Hypothesis?

A null hypothesis is a statement suggesting no effect or relationship between variables in a research study. It serves as the default assumption, stating that any observed differences or effects are due to chance. Researchers aim to reject the null hypothesis based on statistical evidence to support their alternative hypothesis.

How to write a null hypothesis?

  • State there is no effect, difference, or relationship between variables.
  • Use clear and specific language.
  • Frame it in a testable manner.
  • Align with the research question.
  • Specify parameters for statistical testing.
  • Consider it as the default assumption to be tested and potentially rejected in favour of the alternative hypothesis.

What is the p-value of a hypothesis test?

The p-value in a hypothesis test represents the probability of obtaining observed results, or more extreme ones, if the null hypothesis is true. A lower p-value suggests stronger evidence against the null hypothesis, often leading to its rejection. Common significance thresholds include 0.05 or 0.01.

How to write a hypothesis in science?

  • Clearly state the research question
  • Identify the variables and their relationship.
  • Formulate a testable and falsifiable prediction.
  • Use specific, measurable terms.
  • Distinguish between the null and alternative hypotheses.
  • Ensure clarity and relevance to the scientific investigation.

How to write a hypothesis for a research proposal?

  • Clearly define the research question.
  • Identify variables and their expected relationship.
  • Formulate a specific, testable hypothesis.
  • Align the hypothesis with the proposal’s objectives.
  • Clearly articulate the null hypothesis.
  • Use concise language and measurable terms.
  • Ensure the hypothesis aligns with the proposed research methodology.

How to write a good hypothesis psychology?

  • Formulate a specific and testable prediction.
  • Use precise and measurable terms.
  • Align the hypothesis with psychological theories.
  • Articulate the null hypothesis.
  • Ensure the hypothesis guides empirical testing in psychological research.

You May Also Like

Learn how to write an exceptional research paper with the help of professionally crafted research paper examples. Become an expert now!

This blog comprehensively assigns what the cognitive failures questionnaire measures. Read more to get the complete information.

Learn everything about meta synthesis literature review in this comprehensive guide. From definition and process to its types and challenges.

Ready to place an order?

USEFUL LINKS

Learning resources, company details.

  • How It Works

Automated page speed optimizations for fast site performance

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

scientific hypothesis thesis

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

scientific hypothesis thesis

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Banner

PSC 352: Introduction to Comparative Politics

  • Getting Started
  • Comparative Politics Overview
  • Current World/Political News Feeds
  • Choose a country

What is the difference between a thesis & a hypothesis?

  • Find Books/eBooks
  • Find Articles, Reports & Documents
  • Find Statistics
  • Find Poll & Survey Results
  • Evaluate Your Sources
  • Cite Your Sources

B oth the hypothesis statement and the thesis statement answer the research question of the study.  When the statement is one that can be proved or disproved, it is an hypothesis statement.  If, instead, the statement specifically shows the intentions/objectives/position of the researcher, it is a thesis statement.

A hypothesis is a statement that can be proved or disproved.  It is typically used in quantitative research and predicts the relationship between variables.

A thesis statement is a short, direct sentence that summarizes the main point or claim of an essay or research paper. It is seen in quantitative, qualitative, and mixed methods research.  A thesis statement is developed, supported, and explained in the body of the essay or research report by means of examples and evidence.

Every research study should contain a concise and well-written thesis statement. If the intent of the study is to prove/disprove something, that research report will also contain an hypothesis statement.

Jablonski , Judith. What is the difference between a thesis statement and an hypothesis statement? Online Library. American Public University System. Jun 16, 2014. Web.   http://apus.libanswers.com/faq/2374

Let’s say you are interested in the conflict in Darfur, and you conclude that the issues you wish to address include the nature, causes, and effects of the conflict, and the international response. While you could address the issue of international response first, it makes the most sense to start with a description of the conflict, followed by an exploration of the causes, effects, and then to discuss the international response and what more could/should be done.

This hypothetical example may lead to the following title, introduction, and statement of questions:

Conflict in Darfur: Causes, Consequences, and International Response       This paper examines the conflict in Darfur, Sudan. It is organized around the following questions: (1) What is the nature of the conflict in Darfur? (2) What are the causes and effects of the conflict? (3) What has the international community done to address it, and what more could/should it do?

Following the section that presents your questions and background, you will offer a set of responses/answers/(hypo)theses. They should follow the order of the questions. This might look something like this, “The paper argues/contends/ maintains/seeks to develop the position that...etc.” The most important thing you can do in this section is to present as clearly as possible your best thinking on the subject matter guided by course material and research. As you proceed through the research process, your thinking about the issues/questions will become more nuanced, complex, and refined. The statement of your theses will reflect this as you move forward in the research process.

So, looking to our hypothetical example on Darfur:

The current conflict in Darfur goes back more than a decade and consists of fighting between government-supported troops and residents of Darfur. The causes of the conflict include x, y, and z. The effects of the conflict have been a, b, and c. The international community has done 0, and it should do 1, 2, and 3.

Once you have setup your thesis you will be ready to begin amassing supporting evidence for you claims. This is a very important part of the research paper, as you will provide the substance to defend your thesis.

  • << Previous: Choose a country
  • Next: Find Books/eBooks >>
  • Last Updated: Feb 28, 2024 3:19 PM
  • URL: https://libguides.mssu.edu/PSC352

This site is maintained by the librarians of George A. Spiva Library . If you have a question or comment about the Library's LibGuides, please contact the site administrator .

  • How It Works
  • PhD thesis writing
  • Master thesis writing
  • Bachelor thesis writing
  • Dissertation writing service
  • Dissertation abstract writing
  • Thesis proposal writing
  • Thesis editing service
  • Thesis proofreading service
  • Thesis formatting service
  • Coursework writing service
  • Research paper writing service
  • Architecture thesis writing
  • Computer science thesis writing
  • Engineering thesis writing
  • History thesis writing
  • MBA thesis writing
  • Nursing dissertation writing
  • Psychology dissertation writing
  • Sociology thesis writing
  • Statistics dissertation writing
  • Buy dissertation online
  • Write my dissertation
  • Cheap thesis
  • Cheap dissertation
  • Custom dissertation
  • Dissertation help
  • Pay for thesis
  • Pay for dissertation
  • Senior thesis
  • Write my thesis

How To Write A Hypothesis Guide And Detailed Instructions

how to write a hypothesis

Whether you’re studying for a college degree, MBA, or Ph.D., developing a hypothesis for your research is mandatory. You must know how to write a good hypothesis to impress your professors. Now, how should a hypothesis be written?

This is where some students get confused and exhausted. You already know that you’re to formulate a hypothesis around something testable. But you don’t know how to create hypotheses based on previous observations that you would later explain in your paper or journal.

In this article, you’ll learn what a hypothesis is, how to make a hypothesis, examples of how to write hypothesis statement, and how to go about yours.

What Is A Hypothesis?

A hypothesis is a statement that is not proven, and it’s an assumption that you’ll base your research on. They must be testable: they must have answers that can be checked with experiments and evidence.

The theory around your hypothesis becomes valid when it’s proven to be true through experiments. Scientists have rules for writing that make their chemistry, physics, and biology research reproducible.

An essential part is that they must understand the experiments of others so that they can build on them and improve them. These rules define how scientists write about science. This rule applies to hypotheses, too.

Why Do You Need A Hypothesis?

Writing a good hypothesis is a key part of any scientific exploration. It allows a broad and open-ended question that compels you to investigate. There are many other reasons, including:

It’s different from a theory because a theory is something like:

“The earth orbits around the sun.”

This is not testable because we know that it’s true. A theory is more like an explanation for why something happens, while a hypothesis is a guess about what will happen and why it would.

A hypothesis is a statement of the relationship you’ve observed in a pair of variables. The easiest way to think about it is that the hypothesis is your testable statement for your research project.

You would typically use your background knowledge and experience as a researcher to come up with this statement before you set out to collect data. A good hypothesis will give you insight into what kind of data you need to collect to answer the question (or provide evidence).

For example:

“People who live in cities have higher stress levels than those who live in rural areas because there are more people around them all day long!”

This hypothesis would then lead us to ask questions like “How do we measure stress?” or “What factors contribute to stress?” You’ll provide answers to these questions with the paper.

A hypothesis can be proven or disproven throughout an experiment. The most common way to disprove a hypothesis is through statistical significance testing. This entails using probability and data analysis to show that there’s no practical difference between the two compared groups.

The hypothesis is a testable statement about how the world works. It’s also a way to properly arrange and structure your data. Without a hypothesis, you won’t even know what to set your scientific experiment on. A hypothesis is what you’ll use to predict what will happen in the future, and the data you collect during the research will help validate or disprove this.

In science, you’re always trying to figure out why things happen the way they do and what factors affect them. When you know how something works, “why do some people get sick while others don’t?” You might make up a hypothesis to test your idea: “People who are exposed to germs get flu symptoms.” Here’s how to start a hypothesis as the answer lets you determine whether your idea is right or wrong; an experiment then validates (or disproves) it.

Now that you know why you need to formulate a testable hypothesis, learn how to write a research hypothesis with tangible examples.

How To Write A Hypothesis

Before you start your experiments in the lab, it’s important to take some time to think about what you’re trying to achieve. After all, you can’t know your research destination until you plan it beforehand. This is why mastering how to state a hypothesis gives room for healthy predictions. Here’s how you formulate hypothesis:

Your first step is to determine what you want to investigate. You can start with a question you’d like to answer or a problem that needs solving.For example, if you’re a teacher trying to improve your students’ reading skills, you might ask:

“What techniques can I use for my students to boost reading comprehension scores on their standardized tests?”

This could also be stated as “Do test-taking strategies lead to improved standardized test scores?”

Once your question pops in your mind, especially while reflecting on a scientific paper you’ve read or a documentary you saw, write it down and commence research.

You need some facts to state a hypothesis and prove it. It might be tricky to get these facts, and you’ll want to look for relevant and irrelevant information.

Relevant information is directly related to your hypothesis. For example, your relevant sources would be academic, examination, and psychology journals, quantitative data or news outlets for the above statement.

Irrelevant information is any other kind of data, and this could be random news outlets or interviews that could help bolster what your assumptions are.

Use the word “because” to indicate that your variable causes or explains another variable. For example: If we are testing whether exercise leads to weight loss, our sentence might look like this:

“Consistent gym practice causes weight loss because it burns calories and gets the body in shape.”

You need to identify if your hypothesis is testable or if it’s an opinion you can’t prove. You can’t test what you don’t know or can’t prove. So you’d need to rewrite your hypothesis if you think it’s not testable.

Your hypothesis should be clear, concise, testable, specific, and relevant. The best way to do this is to write a brief summary of your hypothesis in the form: “If X happens, then Y will happen.”

Here’s a sample hypothesis:

“If I add 15 minutes to my sitting time everyday, then my body mass index (BMI) will reduce by 5 points in three months.”

Now that you’ve defined your idea, it’s time for the actual experiment to determine whether it’ll work.

How To Write A Hypothesis Statement: Example Of A Hypothesis

There are numerous examples of a hypothesis statement you can take a clue from. A scientific hypothesis examines two variables that need evidence-based research to be considered valid. For example:

“If I increase the amount of water applied to a plant garden, then it will make it grow faster.”

You have identified the independent and dependent variables in this statement. The independent variable is “amount of water applied,” and the dependent variable is “grow faster.” You also included a control group, which is important in scientific experiments to eliminate bias from other factors that could influence your results.

In this case, you are comparing how much growth there would be if you increase the amount of water versus how much growth there would be if you do not increase it.

You then need to research the topic in detail and design an experiment before you can write your report. The first step is to decide what you’re going to measure, how you’ll measure it, and how many times you’ll do this so that it’s accurate.

Once you’ve measured your experiment, interpreting the results can be challenging. You should look at graphs or charts of your data to see if any patterns or trends might indicate a cause-and-effect relationship between two things (like applying more water to the plant garden and faster growth).

After looking at the results of your experiment and deciding whether or not they support your original hypothesis, use this new knowledge in your conclusion. Write up something like:

“Based on my findings, it’s clear that applying more water to any plant garden would make the plant garden grow faster and greener.”

Then, write an introduction section where you can explain why this project interests/matters/is relevant to your reader. At this point, your hypothesis is no longer an educated guess. It started as one (with the observation or thoughts/idea) and ended as verifiable.

Format For Hypothesis: How Should A Hypothesis Be Written?

The usual format of a hypothesis is If – (then) – because.

Because we have the idea that if a hypothesis is formatted as an if-then statement, it’s clear what the hypothesis is about. This can be helpful for your readers and yourself if you ever need to come back and look at your work.

So, now that you know how to format it correctly (and why) let’s look at some hypothesis examples.

“If snow falls, then I’ll catch a cold when I get outside because cold can be a result of heavy snow.”
“If anyone in my family eats cake, then we will feel sick because the cake contains ingredients we are allergic to.”
“Some grasses never grow because they’re stumped every day.”

All these show that two variables must come together in the sentence. The variables must also be a probability the research attempts to solve to make them valid statements.

How To Know Your Hypothesis Is Good

Now that you know how to create a hypothesis, you need to know if it’s good through these pointers:

State a Hypothesis as Clearly as Possible You can choose precise words that are neither ambiguous nor too technical. You should also avoid jargon and words with multiple meanings to keep your language simple and clear. Don’t use fancy or pretentious words unless they’re absolutely necessary for the meaning you want to convey, and make sure you’ve used them in their correct context. In addition, use a tone of voice appropriate to the audience. A scientific paper may need more formal language than an article for popular consumption. A Good Hypothesis Should Explain the Bond Between Multiple Variables The main purpose of forming a hypothesis is to explain the relationship between multiple variables clearly. The relationship should be testable for it to be proven. This is, why if X leads to Y, what is in between that connects X and Y? This must reflect in the hypothesis as it’s the factor that’ll be experimented. A Hypothesis should Be Testable This means that your hypothesis should be a statement that can be proven or disproven with an experiment. You want to make sure your hypothesis is specific enough to guide you towards the right experiment but not so specific that it eliminates any other possible outcomes of your experiment. Also, a hypothesis should not make claims about unobservable things (like feelings or thoughts). Instead, focus on observable results (things we can see) like measurements and observations from experiments conducted by scientists over time.If your hypothesis isn’t testable, then it needs to be reformulated.

What Should You Do If Your Hypothesis Is Incorrect?

You need to reformulate your thesis if it’s incorrect. You may have to reevaluate the problem or look at it differently. It’s also possible that you need to test your hypothesis with a different method of experimentation.

Here are some ideas from the best scientific thesis writing help experts:

Try Another Approach: Try looking at your hypothesis from a different angle, or consider changing up your methods entirely (for example, instead of asking people what they think will happen in the future and then testing their opinions against reality, you could run an experiment where participants predict events and then actually follow up on those predictions). Share Your Idea with a Third Party: Your hypothesis can be tested by allowing a third party to observe the results of your attempt to prove or disprove the statement. For example, if you’re testing whether peanuts can be made into peanut butter using only as few steps as possible, have someone else make it for you or observe them make it.

Document how you made your product and recorded any necessary changes along the way. This will help you know what works and doesn’t so that you’ll make changes to the whole idea.

Get Hypothesis Writing Help

Writing a hypothesis is smart work. You need professionals who know how to write a scientific hypothesis and journal that reflect the experiment supporting the hypothesis. You need professionals who are also expert writers and can offer writing help online.

We offer some of the best writing helpers online, with fast with turnovers. Our writers create the best hypothesis scenario with the possibility to ace any experiment at a cheap price. They will offer writing help if you need these professionals to help write a good hypothesis for you. After all, you need to complete your degrees stronger than you started. A great paper by professionals can seal that deal, and our master thesis writing service is here to help.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Comment * Error message

Name * Error message

Email * Error message

Save my name, email, and website in this browser for the next time I comment.

As Putin continues killing civilians, bombing kindergartens, and threatening WWIII, Ukraine fights for the world's peaceful future.

Ukraine Live Updates

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

Examples

Science Hypothesis

scientific hypothesis thesis

Hypothesis are the bedrock of scientific investigation, guiding researchers toward understanding the unknown. Crafting effective science hypotheses involves precise formulation and prediction. This hypothesis statement guide delves into the intricacies of constructing science hypothesis statements, offering practical examples and valuable tips to ensure your hypothesis stand strong against the rigors of experimentation and analysis.

What is Science Hypothesis? – Definition

A science hypothesis is a proposed explanation or educated guess that can be tested through experimentation or observation. It serves as a preliminary assumption or prediction about a phenomenon, often derived from existing knowledge or theories. Science hypotheses are essential for guiding research and helping scientists investigate the validity of their predictions.

What is an example of a hypothesis statement in science?

Example of a hypothesis statement in science: “If the temperature of water increases, then the rate of plant growth will also increase.” This hypothesis predicts a cause-and-effect relationship between water temperature and plant growth, which can be tested through controlled experiments.

100 Science Hypothesis Statement Examples

Science Hypothesis Statement Example

Size: 223 KB

Science hypotheses lay the foundation for empirical exploration. These Thesis statements predict outcomes based on existing knowledge and guide research. Explore a variety of science hypothesis examples across different disciplines, showcasing the diverse ways scientists propose, test, and validate their assumptions. From physics to biology, chemistry to astronomy, delve into these examples that highlight the essence of scientific inquiry and discovery.

  • Physics : If the mass of an object increases, its gravitational pull on another object will also increase.
  • Biology : If plants are exposed to different light wavelengths, then the one exposed to red light will exhibit the highest growth rate.
  • Chemistry : If the concentration of a reactant increases, then the rate of the chemical reaction will also increase.
  • Astronomy : If the distance between two galaxies decreases, then their gravitational attraction will intensify.
  • Geology : If the temperature of a rock sample increases, then its density will decrease due to expansion.
  • Psychology : If individuals are exposed to positive affirmations, then their self-esteem scores will improve.
  • Sociology : If economic inequality increases, then crime rates within a community will also rise.
  • Environmental Science : If pollution levels decrease in a river, then the diversity of aquatic species will increase.
  • Computer Science : If the processing speed of a computer chip increases, then the execution time of a software program will decrease.
  • Meteorology : If atmospheric pressure drops significantly, then the likelihood of stormy weather conditions will rise.
  • Neuroscience : If individuals engage in regular meditation, then their brain’s gray matter volume in regions associated with mindfulness will increase.
  • Economics : If interest rates decrease, then consumer spending will rise due to increased borrowing.
  • Anthropology : If a society’s cultural diversity increases, then its acceptance of differing norms and values will also grow.
  • Zoology : If predators are introduced to an ecosystem, then the population of prey species will decline.
  • Medical Research : If a new drug is administered, then patients with a specific medical condition will experience a reduction in symptoms.
  • Nutrition Science : If individuals consume a diet high in antioxidants, then their risk of developing certain chronic diseases will decrease.
  • Materials Science : If the temperature of a metal is lowered, then its electrical conductivity will decrease due to reduced kinetic energy.
  • Political Science : If voter education initiatives increase, then voter turnout rates in elections will also rise.
  • Geography : If urbanization expands in a region, then the average local temperature will increase due to the heat island effect.
  • Ecology : If a keystone species is removed from an ecosystem, then the overall biodiversity of that ecosystem will be negatively impacted.
  • Medieval History : If trade routes between two civilizations strengthen, then cultural exchange and technological advancements will flourish.
  • Microbiology : If a specific bacterium is introduced to a microbial community, then it will outcompete other species for resources.
  • Oceanography : If ocean temperatures rise, then coral reefs will experience bleaching due to the loss of symbiotic algae.
  • Education : If class sizes are reduced, then student engagement and learning outcomes will improve.
  • Genetics : If individuals inherit two recessive alleles for a particular trait, then they will exhibit the trait phenotypically.
  • Criminology : If community policing initiatives are implemented, then the crime rate in neighborhoods will decrease due to improved trust between law enforcement and residents.
  • Botany : If plants are exposed to varying levels of nutrients, then their growth rate and overall health will be affected accordingly.
  • Epidemiology : If individuals are vaccinated against a specific virus, then the incidence of that virus in the population will decline.
  • Architecture : If buildings are designed with energy-efficient features, then their energy consumption and environmental impact will be reduced.
  • Literary Studies : If readers are exposed to diverse genres of literature, then their vocabulary and literary comprehension will expand.
  • Mechanical Engineering : If the surface area of a heat exchanger is increased, then its efficiency in transferring thermal energy will improve.
  • Artificial Intelligence : If a machine learning algorithm is trained on a larger dataset, then its accuracy in making predictions will increase.
  • Sports Science : If athletes incorporate specific pre-game rituals, then their performance and focus during competitions will improve.
  • Archaeology : If a new excavation site is discovered, then artifacts and evidence of past civilizations will be uncovered.
  • Film Studies : If films use non-linear storytelling techniques, then audience engagement and interpretation will become more complex.
  • Fashion Design : If clothing materials with better breathability are used, then wearers’ comfort levels in hot weather will increase.
  • Music Psychology : If listeners are exposed to music with a fast tempo, then their heart rate and energy levels will be positively affected.
  • Environmental Engineering : If a wastewater treatment system is upgraded, then the water quality of nearby rivers and streams will improve.
  • Philosophy : If ethical dilemmas are discussed openly, then individuals’ moral reasoning and decision-making skills will become more refined.
  • Cognitive Science : If individuals practice mindfulness meditation, then their attention span and cognitive control will enhance.
  • Political Economy : If trade barriers between two countries are lifted, then their economic interdependence and cooperation will strengthen.
  • Agricultural Science : If certain crops are rotated in a field, then soil fertility and nutrient content will be better maintained.
  • Cultural Anthropology : If cultural norms change to value gender equality, then the division of labor and social roles will evolve accordingly.
  • Linguistics : If a language’s phonetic structure is altered, then the perception and articulation of speech sounds will be affected.
  • Religious Studies : If religious festivals are celebrated widely, then social cohesion and a sense of community among participants will increase.
  • Urban Planning : If public transportation infrastructure is improved, then the use of private vehicles and traffic congestion will decrease.
  • Renewable Energy : If solar panel efficiency increases, then the cost-effectiveness of solar energy as a power source will improve.
  • Sustainable Agriculture : If organic farming practices are adopted, then soil health and biodiversity in agricultural fields will be enhanced.
  • Human Genetics : If a specific gene mutation is present, then the likelihood of developing a hereditary disease will be higher.
  • Space Exploration : If a spacecraft is sent to a distant planet, then the data collected will provide insights into its composition and environment.
  • Cultural Studies : If a society values inclusivity in its media representations, then stereotypes and biases will be challenged.
  • Quantum Physics : If two entangled particles are measured, then the measurement of one particle will instantaneously affect the state of the other particle, regardless of distance.
  • Social Work : If support systems are established for individuals facing addiction, then their likelihood of successful recovery will increase.
  • Civil Engineering : If a bridge is constructed using specific materials and design principles, then its load-bearing capacity and structural integrity will be maximized.
  • Educational Technology : If interactive learning platforms are integrated into classrooms, then students’ engagement and retention of concepts will rise.
  • Animal Behavior : If a specific stimulus is introduced to an animal’s environment, then its behavioral response will indicate whether the stimulus is perceived as positive or negative.
  • Public Health : If a vaccination campaign targets a high percentage of the population, then the spread of a contagious disease will be curbed.
  • Forensic Science : If DNA evidence is analyzed from a crime scene, then it can be matched to potential suspects or used to exonerate individuals.
  • Game Design : If a game incorporates branching storylines, then players’ choices will lead to multiple possible outcomes and endings.
  • Gender Studies : If gender stereotypes are challenged in educational settings, then students’ understanding of gender roles and identities will evolve.
  • Particle Physics : If a new particle is discovered in particle accelerator experiments, then it may contribute to our understanding of fundamental forces.
  • Culinary Science : If cooking techniques are adjusted, then the texture and flavor of a dish will be enhanced.
  • Developmental Psychology : If children are exposed to early childhood education programs, then their cognitive and social development will be positively influenced.
  • Journalism : If journalists provide unbiased coverage of events, then the public’s perception and understanding of news stories will be more accurate.
  • Business Management : If a company implements remote work policies, then employees’ job satisfaction and productivity will be impacted.
  • Astronomy : If a telescope observes a distant celestial object, then its light spectrum can reveal information about its composition and distance.
  • Climate Science : If greenhouse gas emissions continue to rise, then global temperatures will increase, leading to more frequent and severe climate events.
  • Molecular Biology : If a specific gene is mutated, then the protein it codes for may lose its function, leading to a genetic disorder.
  • Urban Sociology : If urban planning focuses on mixed-use development, then neighborhoods will become more walkable and vibrant.
  • Environmental Science : If deforestation continues in a particular region, then biodiversity loss and habitat destruction will result.
  • Educational Psychology : If students receive constructive feedback, then their academic performance and self-esteem will improve.
  • Sports Nutrition : If athletes consume a balanced diet, then their energy levels and physical performance will be optimized.
  • Industrial Engineering : If a manufacturing process is streamlined, then production efficiency and cost-effectiveness will increase.
  • Climate Change Mitigation : If renewable energy sources replace fossil fuels, then carbon emissions and air pollution will decrease.
  • Criminal Justice : If restorative justice programs are implemented, then recidivism rates among offenders will decrease.
  • Cognitive Neuroscience : If brain imaging techniques are used, then neural activity patterns associated with memory retrieval can be identified.
  • Environmental Policy : If conservation policies are enforced, then endangered species populations will have a chance to recover.
  • Tourism Management : If sustainable tourism practices are adopted, then the negative impact of tourism on local ecosystems will be minimized.
  • Public Opinion Research : If surveys are conducted on political preferences, then insights into voter behavior and attitudes can be gained.
  • Sociolinguistics : If language use changes over time, then linguistic patterns and dialects in a community may evolve.
  • Consumer Behavior : If marketing strategies incorporate social media influencers, then consumer purchasing decisions will be influenced.
  • Digital Communication : If online privacy measures are strengthened, then users’ data security and trust in digital platforms will increase.
  • Cancer Research : If a specific genetic mutation is identified, then targeted therapies can be developed to treat the cancer associated with that mutation.
  • Human Rights Advocacy : If educational campaigns raise awareness about human rights violations, then public pressure on governments to address these issues will rise.
  • Educational Assessment : If standardized tests are redesigned to focus on critical thinking skills, then students’ analytical abilities will be better evaluated.
  • Epidemiology : If a specific virus spreads within a community, then the rate of infection and transmission can be studied to develop effective containment strategies.
  • Cognitive Psychology : If memory recall is examined under different conditions, then the factors influencing memory retrieval can be identified.
  • Financial Economics : If interest rates are lowered by the central bank, then borrowing costs for businesses and individuals will decrease.
  • Marine Biology : If ocean temperatures rise due to climate change, then coral bleaching events will become more frequent, leading to coral reef degradation.
  • Political Science : If voter turnout is influenced by campaign advertising, then the correlation between media exposure and voting behavior can be analyzed.
  • Clinical Psychology : If cognitive-behavioral therapy is administered to individuals with anxiety disorders, then their symptoms will show a reduction.
  • Public Policy : If a government enforces stricter regulations on smoking in public spaces, then the prevalence of smoking-related health issues will decline.
  • Material Science : If a new material is developed with specific properties, then its potential applications in various industries can be explored.
  • Language Acquisition : If children are exposed to multiple languages in their early years, then their linguistic skills may develop differently compared to monolingual children.
  • Tourism Economics : If travel restrictions are lifted, then the recovery of the tourism industry and its contribution to the local economy can be assessed.
  • Behavioral Economics : If individuals are given incentives to make environmentally friendly choices, then the impact of economic incentives on behavior can be studied.
  • Educational Technology : If online learning platforms are used in classrooms, then their effect on student engagement and academic performance can be evaluated.
  • Health Policy : If universal healthcare coverage is implemented, then access to medical services and health outcomes for the population can be improved.
  • Agricultural Economics : If crop yields are compared between traditional farming methods and modern agricultural practices, then the efficiency of different approaches can be determined.
  • Literary Analysis : If a specific theme is analyzed across different literary works, then the ways in which authors address and convey that theme can be explored.

Science Hypothesis Statement Examples for Psychology

These psychology hypothesis pertain to human behaviors, emotions, or cognitive processes. They are tailored to the field of psychology, which studies the human mind and behavior. For instance, “Effects of Sleep on Memory” posits a connection between sleep duration and memory performance.

  • Effects of Sleep on Memory : People who sleep 8 hours per night will perform better on memory tests compared to those who sleep only 4 hours.
  • Role of Colors in Mood Regulation : Exposure to blue light will decrease feelings of sadness in depressed individuals.
  • Childhood Attachment and Adult Relationships : Individuals with secure childhood attachments will have more stable romantic relationships in adulthood.
  • Influence of Music on Productivity : Listening to classical music while working increases task completion rates among office workers.
  • Gaming and Reaction Time : Regular gamers will have quicker reaction times than non-gamers in response to unexpected stimuli.
  • Effects of Meditation on Stress : Individuals who practice daily meditation will report lower stress levels compared to those who don’t meditate.
  • Social Media Usage and Loneliness : High usage of social media correlates with increased feelings of loneliness in teenagers.
  • Class Size and Student Performance : Students in smaller class sizes will score higher on standardized tests than students in larger class sizes.
  • Scent and Memory Recall : People exposed to a specific scent during learning will recall information better when the same scent is present during retrieval.
  • Financial Incentives and Motivation : Providing financial incentives will increase motivation for completing mundane tasks.

Simple Science Hypothesis Statement Examples

These are basic and straightforward scientific hypotheses that cover various fields, such as biology or physics. They’re easy to understand even for people without much scientific background. For instance, the simple hypothesis tatement about “Plant Growth” directly relates the use of fertilizer to plant height.

  • Plant Growth : Adding fertilizer will make plants grow taller.
  • Solar Energy : Increasing sunlight exposure will increase the voltage output of a solar cell.
  • Density : Objects made of metal will sink in water.
  • Digestion : Enzyme supplements will increase the speed of food digestion.
  • Osmosis : Potatoes placed in salt water will shrink due to loss of water.
  • Evaporation : Water will evaporate faster on a hot day compared to a cold day.
  • Nutrition : Plants given sugar water will develop yellow leaves.
  • Magnetism : Increasing the temperature of a magnet will decrease its magnetic strength.
  • Conduction : Metals will conduct electricity better than plastics.
  • Reflection : Shiny surfaces reflect more light than dull surfaces.

Strong Science Hypothesis Statement Examples

These are more detailed and specific hypotheses, often relating to a well-defined scientific question. They may also suggest a precise outcome or relationship. For example, “Vaccination and Immunity” indicates a specific result (production of specific antibodies) in response to a defined action (vaccinating mice).

  • Environmental Toxins and Cell Growth : Exposure to specific environmental toxins will inhibit the division of cells in an organism.
  • Nutrition and Cognitive Performance : Diets rich in omega-3 fatty acids will significantly enhance cognitive performance in adults over 60.
  • Genetic Mutations and Disease Resistance : Specific genetic mutations in fruit flies will confer resistance to a particular pesticide.
  • Neurotransmitters and Behavior : An increase in serotonin levels in the brain will lead to a decrease in aggressive behaviors in rats.
  • Plant Pathogens and Resistance : Tomato plants genetically modified to express the XYZ gene will resist infection from the ABC pathogen more effectively than non-modified plants.
  • Vaccination and Immunity : Vaccinating mice with a particular strain of virus will lead to the production of specific antibodies that prevent future infections.
  • Hormonal Levels and Bone Density : Post-menopausal women with decreased estrogen levels will have a significant reduction in bone density compared to pre-menopausal women.
  • Enzyme Concentration and Reaction Rate : Doubling the concentration of an enzyme in a solution will double the rate of the substrate’s conversion to the product.
  • Climate Change and Coral Bleaching : An increase in sea surface temperature by 2°C will lead to a 50% increase in coral bleaching events.
  • Pesticides and Pollinator Health : Exposure to the pesticide DEF will reduce the foraging ability of honeybees by at least 30%.

Scientific Hypothesis Statement Examples

These are broader scientific hypothesis applicable to different scientific disciplines. They’re structured to make clear, testable predictions about the relationship between variables. “Bacterial Growth,” for instance, predicts the outcome of bacteria exposed to UV light.

  • Bacterial Growth : Bacteria exposed to ultraviolet (UV) light will have a reduced growth rate compared to those not exposed to UV light.
  • Antibiotic Resistance : Overuse of antibiotics in livestock will lead to an increase in antibiotic-resistant bacteria in humans.
  • Evolutionary Adaptation : Birds with longer beaks will have an advantage in accessing food after a drastic environmental change.
  • Photosynthesis Rate : Plants grown under red light will have a lower rate of photosynthesis compared to those grown under blue light.
  • Stem Cell Differentiation : The presence of growth factor X will guide stem cells to differentiate into nerve cells more frequently than muscle cells.
  • Ozone Layer and UV Radiation : Depletion of the ozone layer will result in increased UV radiation levels on Earth’s surface.
  • Protein Folding : Mutation at position 123 in protein Z will lead to a misfolded protein structure.
  • Water Quality and Fish Health : Rivers with high levels of industrial pollutants will have a reduced fish population due to compromised gill functionality.
  • Seismic Activity and Plate Tectonics : Regions located at the boundaries of tectonic plates will experience more frequent and stronger earthquakes.
  • Drug Efficacy : Patients treated with drug Y will recover from infection twice as fast as those treated with a placebo.

Alternative Hypothesis Statement Examples for Science

The alternative hypothesis states that there is a statistically significant relationship between two variables. It’s what you might want to prove or demonstrate. For example, the hypothesis about “Green Tea and Metabolism” suggests that drinking green tea can have a positive effect on metabolic rates.

  • Dietary Supplements and Energy Levels : Consuming a daily vitamin B12 supplement will increase energy levels in vegans.
  • Soil Type and Crop Yield : Sandy soil will produce a lower maize yield than loamy soil.
  • Air Pollution and Respiratory Diseases : Living in areas with higher particulate matter (PM2.5) levels will increase the incidence of respiratory diseases.
  • Green Tea and Metabolism : Drinking green tea daily will increase metabolic rates in adults.
  • Exercise and Brain Health : Engaging in regular aerobic exercise will increase cognitive function in older adults.
  • Artificial Sweeteners and Appetite : Consuming artificial sweeteners will increase appetite in individuals.
  • Forest Density and Wildlife Diversity : Forests with higher tree density will support a more diverse range of wildlife.
  • Hydration and Skin Health : Drinking at least 2 liters of water daily will improve skin elasticity.
  • Biofuels and Engine Performance : Engines running on biofuel will have a higher fuel efficiency than those running on traditional petroleum fuels.
  • Artificial Light and Plant Growth : Plants grown under LED lights will have a faster growth rate than those grown under fluorescent lights.

Null Hypothesis Statement Examples for Science

The null hypothesis posits that there is no relationship between two variables. It’s the statement you want to test against. Scientists often set out to reject the null hypothesis to demonstrate there’s a relationship. For instance, “Diet and Weight Loss” asserts there’s no difference in weight loss outcomes between two diet types.

  • Diet and Weight Loss : There is no difference in weight loss between individuals on a low-carb diet and those on a low-fat diet.
  • Antibacterial Soap and Hand Hygiene : Using antibacterial soap does not decrease the number of bacteria on hands compared to using regular soap.
  • Meditation and Blood Pressure : There is no difference in blood pressure levels between individuals who meditate daily and those who don’t.
  • Organic Foods and Nutrient Content : Organic fruits and vegetables have the same nutrient content as non-organic fruits and vegetables.
  • Pain Relievers and Pain Reduction : Over-the-counter pain reliever X does not reduce pain more effectively than a placebo.
  • Educational Method and Learning : There is no difference in learning outcomes between students taught using method A and those taught using method B.
  • Herbal Treatment and Sleep Duration : Herbal treatment Y does not increase sleep duration compared to a placebo.
  • Sunscreen and Sunburn : There is no difference in sunburn incidence between individuals using sunscreen with SPF 30 and those using sunscreen with SPF 50.
  • Caffeine and Alertness : Consuming caffeine does not increase alertness levels compared to not consuming caffeine.
  • Probiotics and Gut Health : Taking daily probiotics does not increase the diversity of gut bacteria compared to not taking probiotics.

What is a good hypothesis for a science project?

A good hypothesis is a fundamental cornerstone for any scientific project. It provides direction for your research, helping you to focus your investigations and understand the potential outcomes. Here’s what characterizes a good hypothesis:

  • Testable : A good hypothesis must be something that can be supported or refuted through experimentation, observation, or analysis.
  • Clear and Concise : It should be straightforward and to the point, making it easier for you or others to test.
  • Logical : It should make logical sense, building upon existing knowledge and literature.
  • Specific : The hypothesis should clearly identify the variables and the relationship between them.
  • Relevant : It should be pertinent to the subject matter and not diverge into unrelated areas.
  • Predictive : It should make a clear prediction about what you expect to happen in your study.

How do you write a scientific hypothesis statement? – A Step by Step Guide

  • Identify Your Research Question : Before you can draft a hypothesis, you need to determine what you’re trying to answer. For example, “Does the type of soil affect plant growth?”
  • Perform Preliminary Research : Understand existing literature on the topic. This will help ensure that your hypothesis is original and rooted in current understanding.
  • Independent Variable (what you change): e.g., type of soil.
  • Dependent Variable (what you measure): e.g., plant growth.
  • Make a Prediction : Based on your research, predict the relationship between your variables.
  • If : Describes the change or treatment (independent variable).
  • Then : Predicts the outcome (dependent variable).
  • Because : Provides a rationale based on your background research. E.g., “If a plant is grown in sandy soil, then it will grow slower than in loamy soil, because sandy soil retains less water.”
  • Keep it Simple : Avoid complex sentences or jargon. Your hypothesis should be understandable even to someone not in your field.
  • Review and Revise : Once drafted, revisit your hypothesis. Ensure it aligns with your research question and that it remains clear and testable.

Tips for Writing Science Hypothesis

  • Start with Curiosity : Your initial question should stem from genuine curiosity. It might begin as a broad query which you then refine.
  • Use Open-Ended Questions : Start your question with words like “How,” “What,” or “Why.” These types of questions don’t presuppose an answer and lead to more in-depth investigation.
  • One Variable at a Time : Especially for beginner projects, limit your hypothesis to one independent variable to keep your study focused and manageable.
  • Avoid Biased Language : Your hypothesis should not show any personal biases. Instead of “I believe” or “I think,” use neutral terms.
  • Stay Relevant to Available Tools and Resources : Ensure that you can test your hypothesis with the tools, time, and resources available to you.
  • Peer Review : Before finalizing your question and hypothesis, have a peer or mentor review it. They might catch ambiguities or complexities you missed.
  • Be Ready to Accept Any Outcome : A common mistake is becoming too attached to proving your hypothesis right. Remember, disproving a hypothesis can be just as valuable as proving it.

By carefully crafting your research question and hypothesis, you’ll set a solid foundation for your science project. Whether your results support or challenge your initial predictions, you’ll contribute to the vast and ever-growing body of scientific knowledge.

Twitter

AI Generator

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Thesis Vs Hypothesis: Understanding The Basis And The Key Differences

thesis vs hypothesis - lmshero

Hypothesis vs. thesis: They sound similar and seem to discuss the same thing. However, these terms have vastly different meanings and purposes. You may have encountered these concepts in school or research, but understanding them is key to executing quality work. 

As an inexperienced writer, the thought of differentiating between hypotheses and theses might seem like an insurmountable task. Fortunately, I am here to help. 

In this article, I’ll discuss hypothesis vs. thesis, break down their differences, and show you how to apply this knowledge to create quality written works. Let’s get to it!

Thesis vs. Hypothesis: Understanding the Basis

The power of a thesis.

A thesis is a foundational element in academic writing and research. It also serves as the linchpin of your argument, encapsulating the central idea or point you aim to prove or disprove throughout your work. 

A thesis statement is typically found at the end of the introduction in an essay or research paper, succinctly summarizing the overarching theme.

Crafting a strong thesis

  • Understand the research: Begin by thoroughly comprehending the requirements and objectives of your research. Having a clear understanding of the topic you are arguing or analyzing is crucial.
  • Choose a clear topic: Choose one that interests you and aligns with the research’s scope. Clarity and focus are essential in crafting a strong thesis.
  • Conduct research: Gather relevant information and sources to develop a deep understanding of your topic. This research will provide the evidence and context for your thesis.
  • Identify your position: Determine your stance or position on the topic. Your thesis should express a clear opinion or argument you intend to support throughout your work.
  • Narrow down your focus: Refine your topic and thesis more precisely. Avoid broad, generalized statements. Instead, aim for a concise and specific thesis that addresses a particular aspect of the topic.
  • Test for validity: Ensuring that you can argue and provide evidence to support your thesis is crucial. It should not be a self-evident or universally accepted fact.
  • Write and revise: Craft your thesis statement as a clear, concise sentence summarizing your main argument. Revise and refine it as needed to improve its clarity and strength.

Remember that a strong thesis serves as the foundation for your entire piece of writing, guiding your readers and keeping your work focused and organized.

Hypothesis: The scientific proposition

In contrast, a hypothesis is a tentative proposition or educated guess. It is the initial step in the scientific method, where researchers formulate a hunch to test their assumptions and theories. 

A hypothesis is an assertion that can be proven or disproven through experimentation and observation.

Formulating a hypothesis

  • Identify the research question: Identify the research question or problem you want to investigate. Clearly define the scope and boundaries of your inquiry.
  • Review existing knowledge: Conduct a literature review to gather information about the topic. Understand the existing body of knowledge and literature in the field.
  • Formulate a tentative explanation: Based on your research and understanding of the topic, create a tentative explanation or educated guess about the phenomenon you are studying. This should be a statement that can be falsifiable through experimentation or observation.
  • Make it testable: Ensure that your hypothesis is testable and falsifiable. In other words, designing experiments or gathering data supporting or refuting your hypothesis should be possible.
  • Specify variables and predictions: Clearly define the variables involved in your hypothesis and make predictions about how changes in these variables will affect the outcome. It also helps in designing experiments and collecting data to test your hypothesis.

Formulating a hypothesis is a crucial step in the scientific method since it directs research and guides efforts to validate theories or uncover new knowledge.

Key Differences Between Thesis vs. Hypothesis

scientific hypothesis thesis

1. Nature of statement

  • Thesis: A thesis presents a clear and definitive statement or argument that summarizes the main point of a research paper or essay.
  • Hypothesis: A hypothesis is a tentative and testable proposition or educated guess that suggests a possible outcome of an experiment or research study.
  • Thesis: The primary purpose of a thesis is to provide a central focus and roadmap for the entire piece of academic writing.
  • Hypothesis: The main purpose of a hypothesis is to guide scientific research by proposing a specific prediction that can be tested and validated.

3. Testability

  • Thesis: A thesis is not typically subjected to experimentation but serves as a point of argumentation and discussion.
  • Hypothesis: A hypothesis, on the other hand, is explicitly designed for testing through experimentation or observation, making it a fundamental part of the scientific method.

4. Research stage

  • Thesis: A thesis is usually formulated after extensive research and analysis as a conclusion or summary of findings.
  • Hypothesis: A hypothesis is formulated at the beginning of a research project to establish a basis for experimentation and data collection.
  • Thesis: A thesis typically encompasses the entire research paper or essay, providing an overarching theme throughout the work.
  • Hypothesis: A hypothesis addresses a specific aspect of a research question or problem, guiding the focus of experiments or investigations.

6. Examples

  • Thesis: Example of a thesis statement: “The impact of climate change on marine ecosystems is irreversible.”
  • Hypothesis: Example of a hypothesis: “If increased temperatures continue, coral reefs will experience bleaching events.”
  • Thesis: The thesis represents a conclusion or a well-supported argument and does not aim to be proven or disproven.
  • Hypothesis: On the other hand, a hypothesis aims to be tested and validated through empirical evidence. Besides, it can be proven true or false based on the results of experiments or observations.

These differences highlight the distinct roles that the thesis and hypothesis play in academic writing and scientific research, with one providing a point of argumentation and the other guiding the scientific inquiry process.

Can a hypothesis become a thesis?

Yes. A hypothesis can develop into a thesis as it accumulates substantial evidence through research.

Do all research papers require a thesis?

Not necessarily. While most academic papers benefit from a clear thesis, some, like purely descriptive papers, may follow a different structure.

Can a thesis be proven wrong?

Yes. The purpose of a thesis is not only to prove but also to encourage critical analysis. It can be proven wrong with compelling counterarguments and evidence.

How long should a thesis statement be?

A thesis statement should be concise and to the point, typically one or two sentences.

Is a hypothesis only used in scientific research?

Although hypotheses are typically linked to scientific research, they can also be used to verify assumptions and theories in other areas.

Can a hypothesis be vague?

No. When creating a hypothesis, it’s important to make it clear and able to be tested. Developing experiments and making conclusions based on the results can be difficult if the hypothesis needs clarification.

Final Thoughts

In conclusion, understanding the differences between a hypothesis and a thesis is vital to crafting successful research projects and academic papers. While they may seem interchangeable at first glance, these two concepts serve distinct purposes in the research process. 

A hypothesis serves as a testable prediction or explanation, whereas a thesis is the central argument of a paper or project. Your work can lack clarity and purpose without understanding the difference. 

So, the next time you embark on a research project, take the time to ensure that you understand the fundamental difference between a hypothesis and a thesis. Doing so can lead to more focused, meaningful research that advances knowledge and understanding in your field.

You can also learn more about how long a thesis statement should be .

Thanks for reading.

You may also like:

  • Discover Where Thesis Statement Is Located In An Essay
  • Master’s Thesis Length: How Long Should A Master’s Thesis Be?
  • How Long Is A Thesis Paper: Factors Involved & Formatting Tips
  • Moral Argument – Examples And Benefits
  • Examples of Work Ethic: Everyone Loves a Good Employee

People Also Read:

why do waiters get paid so little - lmshero

Why Do Waiters Get Paid So Little [+ How To Make More Money]

can you email a resignation letter - lmshero

Navigating Workplace Norms: Can You Email A Resignation Letter?

difference between roles and responsibilities - lmshero

Difference Between Roles And Responsibilities

does suspension mean termination - lmshero

Does Suspension Mean Termination?

moral-claim-lmshero

Moral Claim: Definition, Significance, Contemporary Issues, & Challenges

why can't you flush toilet after drug test - lmshero

Why Can’t You Flush The Toilet After A Drug Test?

Pediaa.Com

Home » Education » Difference Between Thesis and Hypothesis

Difference Between Thesis and Hypothesis

Main difference –  thesis vs hypothesis                           .

Thesis and hypothesis are two common terms that are often found in research studies. Hypothesis is a logical proposition that is based on existing knowledge that serves as the starting point of an investigation. A thesis is a statement that is put forward as a premise to be maintained or proved. The main difference between thesis and hypothesis is that thesis is found in all research studies whereas a hypothesis is mainly found in experimental quantitative research studies.

This article explains,

1. What is a Thesis?      – Definition, Features, Function

2. What is a Hypothesis?      – Definition, Features, Function

Difference Between Thesis and Hypothesis - Comparison Summary

What is a Thesis

The word thesis has two meanings in a research study. Thesis can either refer to a dissertation or a thesis statement. Thesis or dissertation is the long essay or document that consists of the research study.  Thesis can also refer to a theory or statement that is used as a premise to be maintained or proved.

The thesis statement in a research article is a sentence found at the beginning of the paper that presents the main argument of the paper. The rest of the document will gather, organize and present evidence to support this argument. The thesis statement will basically present the topic of the paper and indicate what position the researcher is going to take in relation to this topic. A thesis statement can generally be found at the end of the first paragraph (introductory paragraph) of the paper.

Main Difference - Thesis vs Hypothesis

What is a Hypothesis

A hypothesis is a logical assumption based on available evidence. Hypothesis is defined as “a supposition or proposed explanation made on the basis of limited evidence as a starting point for further investigation” in the Oxford dictionary and as “an idea or theory that is not proven but that leads to further study or discussion” in the Merriam-Webster dictionary. In simple words, it is an educated guess that is not proven with concrete scientific evidence. Once it is scientifically tested and proven, it becomes a theory. However, it is important to note that a hypothesis can be accurate or inaccurate.

Hypotheses are mostly used in experiments and research studies. However, hypotheses are not used in every research study. They are mostly used in quantitative research studies  that deal with experiments. Hypotheses are often used to test a specific model or theory . They can be used only when the researcher has sufficient knowledge about the subject since hypothesis are always based on the existing knowledge. Once the hypothesis is built, the researcher can find and analyze data and use them to prove or disprove the hypothesis.

Difference Between Thesis and Hypothesis - 1

Thesis: A thesis is a “statement or theory that is put forward as a premise to be maintained or proved” or a “long essay or dissertation involving personal research, written by a candidate for a university degree” (Oxford dictionary).

Hypothesis: A hypothesis is “a supposition or proposed explanation made on the basis of limited evidence as a starting point for further investigation” (Oxford dictionary).

Thesis: Thesis statement can be found in all research papers.

Hypothesis: Hypotheses are usually found in experimental quantitative research studies.

Thesis: Thesis statement may explain the hypothesis and how the researcher intends to support it.

Hypothesis: Hypothesis is an educated guess based on the existing knowledge.

Image Courtesy:

“Master’s Thesis” by  Henri Sivonen   (CC BY 2.0)  via Flickr

“Colonial Flagellate Hypothesis” By Katelynp1 – Own work (CC BY-SA 3.0) via Commons Wikimedia

' src=

About the Author: Hasa

Hasanthi is a seasoned content writer and editor with over 8 years of experience. Armed with a BA degree in English and a knack for digital marketing, she explores her passions for literature, history, culture, and food through her engaging and informative writing.

​You May Also Like These

Leave a reply cancel reply.

University of Illinois at Chicago

File(s) under embargo

until file(s) become available

Understanding Hypotheses in Newton's Scientific Thought

Degree grantor, degree level, degree name, committee member, submitted date, thesis type, usage metrics.

  • Skip to content
  • Skip to this site's menu
  • Skip to search

Welcome to Brock University

Information for.

  • Future students
  • Current students
  • International
  • Professional and Continuing Studies
  • Community partners
  • Alumni and donors
  • Faculties & Departments
  • Graduate Studies
  • Teaching & Learning
  • Academic Integrity
  • Research @ Brock
  • Institutes and Centres
  • Research services
  • Brock innovation
  • Transdisciplinarity at Brock
  • Funding opportunities
  • About Brock
  • Visitor information
  • Careers @ Brock
  • A–Z directory

Quick links

  • Student Email / 365
  • my.brocku.ca
  • Brightspace
  • Office of the Registrar
  • Campus Store
  • Brock Sports
  • Important Dates
  • Students’ Union (BUSU)
  • Graduate Students’ Union (GSA)
  • The Brock News
  • Events around campus
  • Faculty and Staff directory
  • Campus Safety
  • Faculty and Staff Login
  • Faculty and Staff Email
  • ITS Help Desk - Password Resets
  • Brock U Home

Want to go to Brock but not sure where to start? We can help.

How to apply.

  • Undergraduate students
  • Graduate students
  • Teacher education
  • Continuing education

Our programs

  • Undergraduate programs
  • Graduate programs
  • Spring / Summer courses
  • Online Learning
  • Take a virtual tour
  • Book a campus tour
  • Living at Brock
  • Smart Start

More information

  • Admissions @ Brock
  • Important dates
  • Financial aid
  • Request information

Faculty of Mathematics & Science

In this section.

  • Dean’s Message
  • Dean Peter Berg’s Profile
  • Science Stores
  • Strategic Plan – FMS
  • Undergraduate Programs
  • Graduate Programs
  • Data Science and Analytics
  • BASc in Earth and Planetary Science Communication
  • BSc Sciences
  • Master of Science in Materials Physics
  • Department of Biological Sciences
  • Department of Chemistry
  • Department of Computer Science
  • Department of Earth Sciences
  • Yousef Haj-Ahmad Department of Engineering
  • Department of Mathematics and Statistics
  • Department of Physics
  • Centre for Biotechnology
  • Centre for Neuroscience
  • Academic Advising
  • Indigenous Entrance Scholarship
  • FMS Entrance Awards for Black Students
  • Awards and Bursaries
  • Prospective Undergraduate Students
  • Prospective Graduate Students
  • Resources for Current Graduate Students
  • For All Current Students
  • Faculty and Staff Award Nominations
  • Teaching and Learning
  • Teaching Awards
  • Conference Assistance Application
  • Faculty Computer Request Form
  • Funding Request Form
  • Research awards
  • Featured Researchers
  • Biological Sciences
  • Biotechnology
  • Computer Science
  • Earth Sciences
  • Mathematics and Statistics
  • Neuroscience
  • FMS GRaD Conference
  • FMS – Undergraduate Research Symposium
  • Science Start
  • Contact Us and Directions

April 26 – Master of Science Thesis Defence – Aaron Alderson

Wednesday, April 17, 2024 | By jsteepe

Master of Science thesis defence in Earth Sciences

Aaron Alderson, a Master of Science candidate in the Department of Earth Sciences, will defend his thesis titled “Non-pollen palynomorphs and black carbon in sediments from Walden Pond (Massachusetts, USA): evidence of sudden onset events and human impact over the past millennium” on Friday, April 26 at 11 AM., in MC H313.

The examination committee includes Uwe Brand, Chair; Francine McCarthy, Supervisor; Althea Davies, External Examiner (University of St. Andrews, UK); and Michael Pisaric and Joseph Boyce (McMaster University), Committee Members

Tags: Earth Sciences , FMS , Thesis defence Categories: Events

banner button leading to the Graduate Studies info website

FMS News and Events

  • April 26 – Master of Science Thesis Defence – Aaron Alderson
  • March 26 – Master of Science Thesis Defence – Danielle Martin
  • Feb 7 – MRP defence – Braden Saunders
  • Feb 6 – Master of Science Thesis Defence – Shajib Chowdhury
  • Feb 5 – MSc Thesis Defence – Jannatul Ferdous
  • Feb 1 – Master of Science Thesis Defence – Andrew Vu
  • Feb 7 – Master of Science Thesis Defence – Mehenika Akter
  • Jan 22 – PhD Thesis Defence – Alyson Edge
  • Jan 19 – Master of Science Thesis Defence – Ricardo Alva Oropeza
  • Master of Science Thesis Defences – Dec 11 and Dec 15 -Alysha Gullion, Ethan Gibbons, Nicholas Aksamit, Raikhan Zakarina

Connect with us

Helpful links.

  • Emergency contacts
  • Mental Health and Wellness
  • Financial information
  • Contact Brock University
  • Media relations
  • Website feedback

Every gift makes a difference.

Copyright © 2024 Brock University

Non-discrimination Policy University policies Privacy Accessibility

Niagara Region 1812 Sir Isaac Brock Way St. Catharines, ON L2S 3A1 Canada +1 905-688-5550

  • X, formerly Twitter

We acknowledge the land on which Brock University was built is the traditional territory of the Haudenosaunee and Anishinaabe peoples, many of whom continue to live and work here today. This territory is covered by the Upper Canada Treaties and is within the land protected by the Dish with One Spoon Wampum agreement. Today this gathering place is home to many First Nations, Metis, and Inuit peoples and acknowledging reminds us that our great standard of living is directly related to the resources and friendship of Indigenous people.

We use cookies to improve your overall web experience. By using our website you consent to our use of cookies in accordance with our Privacy Policy I agree

  • Skip to main content
  • Keyboard shortcuts for audio player

Shots - Health News

  • Your Health
  • Treatments & Tests
  • Health Inc.
  • Public Health

The Science of Siblings

Gay people often have older brothers. why and does it matter.

Selena Simmons-Duffin

Selena Simmons-Duffin

Credit: Lily Padula for NPR

The Science of Siblings is a new series exploring the ways our siblings can influence us, from our money and our mental health all the way down to our very molecules. We'll be sharing these stories over the next several weeks.

This is something I learned years ago through gay bar chatter: Gay people are often the youngest kids in their families. I liked the idea right away — as a gay youngest sibling, it made me feel like there was a statistical order to things and I fit neatly into that order.

When I started to report on the science behind it, I learned it's true: There is a well-documented correlation between having older siblings (older brothers, specifically) and a person's chance of being gay. But parts of the story also struck me as strange and dark. I thought of We the Animals , Justin Torres' haunting semi-autobiographical novel about three brothers — the youngest of whom is queer — growing up in New York state. So I called Torres to get his take on the idea.

The Science of Siblings

Torres' first reaction was to find it considerably less appealing than I did. This makes sense — his latest novel, Blackouts , won a National Book Award last year, and it grapples with the sinister history of how scientists have studied sexuality. "My novel is interested in the pre-Kinsey sexology studies, specifically this one called Sex Variants ," he told me. "It's really informed by eugenics. They were looking for the cause of homosexuality in the body in order to treat it or cure it or get rid of it."

That's why, when he saw my inquiry about a statistical finding that connects sexuality and birth order, he was wary. "To be frank, I find these kinds of studies that're looking for something rooted in the body to explain sexuality to be kind of bunk. I think they rely on a really binary understanding of sexuality itself," he said.

"That's fair," I conceded. But this connection between queerness and older brothers has been found so many times in so many places that one researcher told me it's "a kind of truth" in the science of sexuality.

Rooted in a dark past

The first research on this topic did indeed begin in the 1940s and '50s, during that era of investigations into what causes homosexuality, to be able to cure it. At the time, the queer people whom scientists were studying were living in a world where this facet of their identity was dangerous. Plus, the studies themselves didn't find much, says Jan Kabátek , a senior research fellow at the University of Melbourne.

"Most of it fell flat," he told me. "But there is an exception to this, and that is the finding that men, specifically, who exhibit attraction to the same sex are likely to have more older brothers than other types of siblings."

The cover of Blackouts by Justin Torres. It is a black cover with gold type and a gold line drawing of a tiger.

In the 1990s, this was dubbed the "fraternal birth order effect." In the years since, it has been found again and again, all over the world.

"This pattern has been documented around Canada and the United States, but it goes well beyond that," says Scott Semenyna , a psychology professor at Stetson University. "There's been now many confirmations that this pattern exists in countries like Samoa. It exists in southern Mexico. It exists in places like Turkey and Brazil."

Huge study, consistent findings

An impressive recent study established that this pattern held up in an analysis of a huge sample — over 9 million people from the Netherlands. It confirmed all those earlier studies and added a twist.

"Interestingly enough — and this is quite different from what has been done before — we also showed that the same association manifests for women," explains Kabátek, one of the study's authors. Women who were in same-sex marriages were also more likely to have older brothers than other types of siblings.

At baseline, the chance that someone will be gay is pretty small. "Somewhere around 2 to 3% — we can call it 2% just for the sake of simplicity," Semenyna says. "The fraternal birth order effect shows that you're going to run into about a 33% increase in the probability of, like, male same-sex attraction for every older brother that you have."

The effect is cumulative: The more older brothers someone has, the bigger it is. If you have one older brother, your probability of being gay nudges up to about 2.6%. "And then that probability would increase another 33% if there was a second older brother, to about 3.5%," Semenyna says.

If you have five older brothers, your chance of being gay is about 8% — so, four times the baseline probability.

scientific hypothesis thesis

The author, Selena Simmons-Duffin, at age 3, with her brother, David Simmons-Duffin, at age 5. The Simmons-Duffin family hide caption

The author, Selena Simmons-Duffin, at age 3, with her brother, David Simmons-Duffin, at age 5.

Still, even 8% is pretty small. "The vast majority of people who have a lot of older brothers are still going to come out opposite-sex attracted," Semenyna says. Also, plenty of gay people have no brothers at all, or they're the oldest in their families. Having older brothers is definitely not the only influence on a person's sexuality.

"But just the fact that we are observing effects that are so strong, relatively speaking, implies that there's a good chance that there is, at least partially, some biological mechanism that is driving these associations," Kabátek says.

A hypothesis, but no definitive mechanism

For decades, the leading candidate for that biological mechanism has been the "maternal immune hypothesis," Semenyna explains. "The basic version of this hypothesis is that when a male fetus is developing, the Y chromosome of the male produces proteins that are going to be recognized as foreign by the mother's immune system and it forms somewhat of an immune response to those proteins."

That immune response has some effect on the development of subsequent male fetuses, Semenyna says. The plausibility of this hypothesis was bolstered by a 2017 study that found "that mothers of gay sons have more of these antibodies that target these male-specific proteins than mothers of sons who are not gay or mothers who have no sons whatsoever," he says.

But now that Kabátek's study of the Dutch population has found that this pattern was present among women in same-sex marriages as well, there are new questions about whether this hypothesis is correct.

"One option is that the immune hypothesis works for both men and women," Kabátek says. "Of course, there can be also other explanations. It's for prospective research to make this clearer."

Fun to think about, but concerning too

In a way, I tell Justin Torres, this effect seems simple and fun to me. It's a concrete statistical finding, documented all over the world, and there's an intriguing hypothesis about why it may happen biologically. But darker undercurrents in all of it worry me, like raising a dangerous idea that becoming gay in the womb is the only version of gayness that is real — or a repackaged version of the old idea that mothers are to "blame."

Book cover for We the Animals by Justin Torres, showing three boys jumping in midair.

"It is the undercurrents that worry me immensely," he responds. "I remember when I was a kid — I have this memory of watching daytime television. I must have been staying home from school sick in the late '80s or early '90s. The host polled the audience and said, 'If there was a test [during pregnancy] and you could know if your child was gay, would you abort?' I remember being so horrified and disturbed watching all those hands go up in the audience — just feeling so hated. At that young age, I knew this thing about myself, even if I wasn't ready to admit it."

Even if tolerance for queer people in American society has grown a lot since then, he says, "I think that tolerance waxes and wanes, and I worry about that line of thinking."

At the same time, he agrees that the idea of a connection with gay people being the youngest kids in their families is kind of hilarious. "One thing that pops into my mind is, like, maybe if you're just surrounded by a lot of men, you either choose or don't choose men, right?" he laughs.

Essentially, in his view, it's fun to think about, but probably not deeper than that.

"As a humanist, I just don't know why we need to look for explanations for something as complex and joyous and weird as sexuality," Torres says.

Then again, scientists are unlikely to be able to resist that mysterious, weird complexity. Even if the joy and self-expression and community and so many other parts of queerness and sexuality will always be more than statistics can explain.

More from the Science of Siblings series:

  • A gunman stole his twin from him. This is what he's learned about grieving a sibling
  • In the womb, a brother's hormones can shape a sister's future
  • These identical twins both grew up with autism, but took very different paths
  • Science of Siblings
  • queer community
  • homosexuality

IMAGES

  1. Best Example of How to Write a Hypothesis 2024

    scientific hypothesis thesis

  2. How to Write a Hypothesis

    scientific hypothesis thesis

  3. How to Write a Strong Hypothesis in 6 Simple Steps

    scientific hypothesis thesis

  4. Research Hypothesis: Definition, Types, Examples and Quick Tips

    scientific hypothesis thesis

  5. Scientific Hypothesis

    scientific hypothesis thesis

  6. Research Hypothesis: Definition, Types, Examples and Quick Tips

    scientific hypothesis thesis

VIDEO

  1. Hypothesis Hack : Leveraging Your Thesis with DATAtab

  2. how to say thesis, abstract, theory, hypothesis in Swahili #swahili #learnswahili

  3. How to write a hypothesis

  4. HYPOTHESIS STATEMENT IS ACCEPTED OR REJECTED l THESIS TIPS & GUIDE

  5. What Is A Hypothesis?

  6. Research Hypothesis and its Types with examples /urdu/hindi

COMMENTS

  1. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  2. What Is A Research (Scientific) Hypothesis?

    A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes - specificity, clarity and testability. Let's take a look at these more closely.

  3. Scientific Hypotheses: Writing, Promoting, and Predicting Implications

    A snapshot analysis of citation activity of hypothesis articles may reveal interest of the global scientific community towards their implications across various disciplines and countries. As a prime example, Strachan's hygiene hypothesis, published in 1989,10 is still attracting numerous citations on Scopus, the largest bibliographic database ...

  4. Research Hypothesis: Definition, Types, Examples and Quick Tips

    What is a Hypothesis? The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement, which is a brief summary of your research paper. The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion.

  5. How To Write An A-Grade Research Hypothesis (+ Examples ...

    Learn what exactly a research (or scientific) hypothesis is and how to write high-quality hypothesis statements for any dissertation, thesis, or research pro...

  6. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  7. What is a Research Hypothesis and How to Write a Hypothesis

    The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure. 3.

  8. Scientific hypothesis

    hypothesis. science. scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ...

  9. What is and How to Write a Good Hypothesis in Research?

    An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions. Use the following points as a checklist to evaluate the effectiveness of your research hypothesis: Predicts the relationship and outcome.

  10. How To Write A Hypotheses

    Identify the variables involved. Formulate a clear and testable prediction. Use specific and measurable terms. Align the hypothesis with the research question. Distinguish between the null hypothesis (no effect) and alternative hypothesis (expected effect). Ensure the hypothesis is falsifiable and subject to empirical testing.

  11. How to Write a Hypothesis in 6 Steps, With Examples

    4 Alternative hypothesis. An alternative hypothesis, abbreviated as H 1 or H A, is used in conjunction with a null hypothesis. It states the opposite of the null hypothesis, so that one and only one must be true. Examples: Plants grow better with bottled water than tap water. Professional psychics win the lottery more than other people. 5 ...

  12. How to Write a Great Hypothesis

    A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good ...

  13. Develop a Thesis/Hypothesis

    A thesis statement is developed, supported, and explained in the body of the essay or research report by means of examples and evidence. Every research study should contain a concise and well-written thesis statement. If the intent of the study is to prove/disprove something, that research report will also contain an hypothesis statement.

  14. How to Write a Hypothesis for a Research Paper + Examples

    Ensure that your hypothesis is realistic and can be tested within the constraints of your available resources, time, and ethical considerations. Avoid value judgments: Be neutral and objective. Avoid including personal beliefs, value judgments, or subjective opinions. Stick to empirical statements based on evidence.

  15. How To Write A Hypothesis That Will Benefit Your Thesis

    In addition, use a tone of voice appropriate to the audience. A scientific paper may need more formal language than an article for popular consumption. A Good Hypothesis Should Explain the Bond Between Multiple Variables. The main purpose of forming a hypothesis is to explain the relationship between multiple variables clearly.

  16. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  17. Scientific Hypothesis

    Embarking on a scientific journey requires hypotheses that challenge, inspire, and guide your inquiries. The essence of any research, a well-framed hypothesis, serves as the compass that directs experiments and Thesis statement analysis. Dive into this comprehensive guide that unfolds a rich tapestry of scientific hypothesis statement examples, elucidates the steps to craft your own, and ...

  18. PDF HEB Thesis Hypothesis guide

    science - but you will determine the most likely explanation given the available evidence. The best we can do in science! Topic: Broad question fundamental to human evolutionary biology: Specific question that your thesis will investigate: H 1: Hypothesis 1 Expectations for what you will find in the data, if H 1 correct: H 2: Hypothesis 2

  19. Science Hypothesis

    Science hypotheses lay the foundation for empirical exploration. These Thesis statements predict outcomes based on existing knowledge and guide research. Explore a variety of science hypothesis examples across different disciplines, showcasing the diverse ways scientists propose, test, and validate their assumptions.

  20. Thesis Vs Hypothesis: Understanding The Basis And The Key Differences

    1. Nature of statement. Thesis: A thesis presents a clear and definitive statement or argument that summarizes the main point of a research paper or essay. Hypothesis: A hypothesis is a tentative and testable proposition or educated guess that suggests a possible outcome of an experiment or research study. 2.

  21. Hypothesis

    The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits.. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon.For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained ...

  22. Difference Between Thesis and Hypothesis

    A thesis is a statement that is put forward as a premise to be maintained or proved. The main difference between thesis and hypothesis is that thesis is found in all research studies whereas a hypothesis is mainly found in experimental quantitative research studies. This article explains, 1. What is a Thesis? - Definition, Features, Function. 2.

  23. Understanding Hypotheses in Newton's Scientific Thought

    In Isaac Newton's major scientific work, the Principia Mathematica, he proposed a theory of gravity but refused to explain why gravity occurs. 'Hypotheses non fingo,' he wrote famously, or 'I feign no hypotheses.' For Newton, a 'hypothesis' was a conjectural causal explanation, and his refusal to give one for gravity gave his contemporaries the impression that his new science was ...

  24. April 26

    Master of Science thesis defence in Earth Sciences. Aaron Alderson, a Master of Science candidate in the Department of Earth Sciences, will defend his thesis titled "Non-pollen palynomorphs and black carbon in sediments from Walden Pond (Massachusetts, USA): evidence of sudden onset events and human impact over the past millennium" on Friday, April 26 at 11 AM., in MC H313.

  25. US COVID-origins hearing puts scientific journals in the hot seat

    Politicians spar over whether academic publishers colluded with government scientists to suppress the lab-leak hypothesis.

  26. Gay people often have older brothers. Why? And does it matter?

    The Science of Siblings is a new series exploring the ways our siblings can influence us, ... A hypothesis, but no definitive mechanism. For decades, the leading candidate for that biological ...