Your Modern Business Guide To Data Analysis Methods And Techniques

Data analysis methods and techniques blog post by datapine

Table of Contents

1) What Is Data Analysis?

2) Why Is Data Analysis Important?

3) What Is The Data Analysis Process?

4) Types Of Data Analysis Methods

5) Top Data Analysis Techniques To Apply

6) Quality Criteria For Data Analysis

7) Data Analysis Limitations & Barriers

8) Data Analysis Skills

9) Data Analysis In The Big Data Environment

In our data-rich age, understanding how to analyze and extract true meaning from our business’s digital insights is one of the primary drivers of success.

Despite the colossal volume of data we create every day, a mere 0.5% is actually analyzed and used for data discovery , improvement, and intelligence. While that may not seem like much, considering the amount of digital information we have at our fingertips, half a percent still accounts for a vast amount of data.

With so much data and so little time, knowing how to collect, curate, organize, and make sense of all of this potentially business-boosting information can be a minefield – but online data analysis is the solution.

In science, data analysis uses a more complex approach with advanced techniques to explore and experiment with data. On the other hand, in a business context, data is used to make data-driven decisions that will enable the company to improve its overall performance. In this post, we will cover the analysis of data from an organizational point of view while still going through the scientific and statistical foundations that are fundamental to understanding the basics of data analysis. 

To put all of that into perspective, we will answer a host of important analytical questions, explore analytical methods and techniques, while demonstrating how to perform analysis in the real world with a 17-step blueprint for success.

What Is Data Analysis?

Data analysis is the process of collecting, modeling, and analyzing data using various statistical and logical methods and techniques. Businesses rely on analytics processes and tools to extract insights that support strategic and operational decision-making.

All these various methods are largely based on two core areas: quantitative and qualitative research.

To explain the key differences between qualitative and quantitative research, here’s a video for your viewing pleasure:

Gaining a better understanding of different techniques and methods in quantitative research as well as qualitative insights will give your analyzing efforts a more clearly defined direction, so it’s worth taking the time to allow this particular knowledge to sink in. Additionally, you will be able to create a comprehensive analytical report that will skyrocket your analysis.

Apart from qualitative and quantitative categories, there are also other types of data that you should be aware of before dividing into complex data analysis processes. These categories include: 

  • Big data: Refers to massive data sets that need to be analyzed using advanced software to reveal patterns and trends. It is considered to be one of the best analytical assets as it provides larger volumes of data at a faster rate. 
  • Metadata: Putting it simply, metadata is data that provides insights about other data. It summarizes key information about specific data that makes it easier to find and reuse for later purposes. 
  • Real time data: As its name suggests, real time data is presented as soon as it is acquired. From an organizational perspective, this is the most valuable data as it can help you make important decisions based on the latest developments. Our guide on real time analytics will tell you more about the topic. 
  • Machine data: This is more complex data that is generated solely by a machine such as phones, computers, or even websites and embedded systems, without previous human interaction.

Why Is Data Analysis Important?

Before we go into detail about the categories of analysis along with its methods and techniques, you must understand the potential that analyzing data can bring to your organization.

  • Informed decision-making : From a management perspective, you can benefit from analyzing your data as it helps you make decisions based on facts and not simple intuition. For instance, you can understand where to invest your capital, detect growth opportunities, predict your income, or tackle uncommon situations before they become problems. Through this, you can extract relevant insights from all areas in your organization, and with the help of dashboard software , present the data in a professional and interactive way to different stakeholders.
  • Reduce costs : Another great benefit is to reduce costs. With the help of advanced technologies such as predictive analytics, businesses can spot improvement opportunities, trends, and patterns in their data and plan their strategies accordingly. In time, this will help you save money and resources on implementing the wrong strategies. And not just that, by predicting different scenarios such as sales and demand you can also anticipate production and supply. 
  • Target customers better : Customers are arguably the most crucial element in any business. By using analytics to get a 360° vision of all aspects related to your customers, you can understand which channels they use to communicate with you, their demographics, interests, habits, purchasing behaviors, and more. In the long run, it will drive success to your marketing strategies, allow you to identify new potential customers, and avoid wasting resources on targeting the wrong people or sending the wrong message. You can also track customer satisfaction by analyzing your client’s reviews or your customer service department’s performance.

What Is The Data Analysis Process?

Data analysis process graphic

When we talk about analyzing data there is an order to follow in order to extract the needed conclusions. The analysis process consists of 5 key stages. We will cover each of them more in detail later in the post, but to start providing the needed context to understand what is coming next, here is a rundown of the 5 essential steps of data analysis. 

  • Identify: Before you get your hands dirty with data, you first need to identify why you need it in the first place. The identification is the stage in which you establish the questions you will need to answer. For example, what is the customer's perception of our brand? Or what type of packaging is more engaging to our potential customers? Once the questions are outlined you are ready for the next step. 
  • Collect: As its name suggests, this is the stage where you start collecting the needed data. Here, you define which sources of data you will use and how you will use them. The collection of data can come in different forms such as internal or external sources, surveys, interviews, questionnaires, and focus groups, among others.  An important note here is that the way you collect the data will be different in a quantitative and qualitative scenario. 
  • Clean: Once you have the necessary data it is time to clean it and leave it ready for analysis. Not all the data you collect will be useful, when collecting big amounts of data in different formats it is very likely that you will find yourself with duplicate or badly formatted data. To avoid this, before you start working with your data you need to make sure to erase any white spaces, duplicate records, or formatting errors. This way you avoid hurting your analysis with bad-quality data. 
  • Analyze : With the help of various techniques such as statistical analysis, regressions, neural networks, text analysis, and more, you can start analyzing and manipulating your data to extract relevant conclusions. At this stage, you find trends, correlations, variations, and patterns that can help you answer the questions you first thought of in the identify stage. Various technologies in the market assist researchers and average users with the management of their data. Some of them include business intelligence and visualization software, predictive analytics, and data mining, among others. 
  • Interpret: Last but not least you have one of the most important steps: it is time to interpret your results. This stage is where the researcher comes up with courses of action based on the findings. For example, here you would understand if your clients prefer packaging that is red or green, plastic or paper, etc. Additionally, at this stage, you can also find some limitations and work on them. 

Now that you have a basic understanding of the key data analysis steps, let’s look at the top 17 essential methods.

17 Essential Types Of Data Analysis Methods

Before diving into the 17 essential types of methods, it is important that we go over really fast through the main analysis categories. Starting with the category of descriptive up to prescriptive analysis, the complexity and effort of data evaluation increases, but also the added value for the company.

a) Descriptive analysis - What happened.

The descriptive analysis method is the starting point for any analytic reflection, and it aims to answer the question of what happened? It does this by ordering, manipulating, and interpreting raw data from various sources to turn it into valuable insights for your organization.

Performing descriptive analysis is essential, as it enables us to present our insights in a meaningful way. Although it is relevant to mention that this analysis on its own will not allow you to predict future outcomes or tell you the answer to questions like why something happened, it will leave your data organized and ready to conduct further investigations.

b) Exploratory analysis - How to explore data relationships.

As its name suggests, the main aim of the exploratory analysis is to explore. Prior to it, there is still no notion of the relationship between the data and the variables. Once the data is investigated, exploratory analysis helps you to find connections and generate hypotheses and solutions for specific problems. A typical area of ​​application for it is data mining.

c) Diagnostic analysis - Why it happened.

Diagnostic data analytics empowers analysts and executives by helping them gain a firm contextual understanding of why something happened. If you know why something happened as well as how it happened, you will be able to pinpoint the exact ways of tackling the issue or challenge.

Designed to provide direct and actionable answers to specific questions, this is one of the world’s most important methods in research, among its other key organizational functions such as retail analytics , e.g.

c) Predictive analysis - What will happen.

The predictive method allows you to look into the future to answer the question: what will happen? In order to do this, it uses the results of the previously mentioned descriptive, exploratory, and diagnostic analysis, in addition to machine learning (ML) and artificial intelligence (AI). Through this, you can uncover future trends, potential problems or inefficiencies, connections, and casualties in your data.

With predictive analysis, you can unfold and develop initiatives that will not only enhance your various operational processes but also help you gain an all-important edge over the competition. If you understand why a trend, pattern, or event happened through data, you will be able to develop an informed projection of how things may unfold in particular areas of the business.

e) Prescriptive analysis - How will it happen.

Another of the most effective types of analysis methods in research. Prescriptive data techniques cross over from predictive analysis in the way that it revolves around using patterns or trends to develop responsive, practical business strategies.

By drilling down into prescriptive analysis, you will play an active role in the data consumption process by taking well-arranged sets of visual data and using it as a powerful fix to emerging issues in a number of key areas, including marketing, sales, customer experience, HR, fulfillment, finance, logistics analytics , and others.

Top 17 data analysis methods

As mentioned at the beginning of the post, data analysis methods can be divided into two big categories: quantitative and qualitative. Each of these categories holds a powerful analytical value that changes depending on the scenario and type of data you are working with. Below, we will discuss 17 methods that are divided into qualitative and quantitative approaches. 

Without further ado, here are the 17 essential types of data analysis methods with some use cases in the business world: 

A. Quantitative Methods 

To put it simply, quantitative analysis refers to all methods that use numerical data or data that can be turned into numbers (e.g. category variables like gender, age, etc.) to extract valuable insights. It is used to extract valuable conclusions about relationships, differences, and test hypotheses. Below we discuss some of the key quantitative methods. 

1. Cluster analysis

The action of grouping a set of data elements in a way that said elements are more similar (in a particular sense) to each other than to those in other groups – hence the term ‘cluster.’ Since there is no target variable when clustering, the method is often used to find hidden patterns in the data. The approach is also used to provide additional context to a trend or dataset.

Let's look at it from an organizational perspective. In a perfect world, marketers would be able to analyze each customer separately and give them the best-personalized service, but let's face it, with a large customer base, it is timely impossible to do that. That's where clustering comes in. By grouping customers into clusters based on demographics, purchasing behaviors, monetary value, or any other factor that might be relevant for your company, you will be able to immediately optimize your efforts and give your customers the best experience based on their needs.

2. Cohort analysis

This type of data analysis approach uses historical data to examine and compare a determined segment of users' behavior, which can then be grouped with others with similar characteristics. By using this methodology, it's possible to gain a wealth of insight into consumer needs or a firm understanding of a broader target group.

Cohort analysis can be really useful for performing analysis in marketing as it will allow you to understand the impact of your campaigns on specific groups of customers. To exemplify, imagine you send an email campaign encouraging customers to sign up for your site. For this, you create two versions of the campaign with different designs, CTAs, and ad content. Later on, you can use cohort analysis to track the performance of the campaign for a longer period of time and understand which type of content is driving your customers to sign up, repurchase, or engage in other ways.  

A useful tool to start performing cohort analysis method is Google Analytics. You can learn more about the benefits and limitations of using cohorts in GA in this useful guide . In the bottom image, you see an example of how you visualize a cohort in this tool. The segments (devices traffic) are divided into date cohorts (usage of devices) and then analyzed week by week to extract insights into performance.

Cohort analysis chart example from google analytics

3. Regression analysis

Regression uses historical data to understand how a dependent variable's value is affected when one (linear regression) or more independent variables (multiple regression) change or stay the same. By understanding each variable's relationship and how it developed in the past, you can anticipate possible outcomes and make better decisions in the future.

Let's bring it down with an example. Imagine you did a regression analysis of your sales in 2019 and discovered that variables like product quality, store design, customer service, marketing campaigns, and sales channels affected the overall result. Now you want to use regression to analyze which of these variables changed or if any new ones appeared during 2020. For example, you couldn’t sell as much in your physical store due to COVID lockdowns. Therefore, your sales could’ve either dropped in general or increased in your online channels. Through this, you can understand which independent variables affected the overall performance of your dependent variable, annual sales.

If you want to go deeper into this type of analysis, check out this article and learn more about how you can benefit from regression.

4. Neural networks

The neural network forms the basis for the intelligent algorithms of machine learning. It is a form of analytics that attempts, with minimal intervention, to understand how the human brain would generate insights and predict values. Neural networks learn from each and every data transaction, meaning that they evolve and advance over time.

A typical area of application for neural networks is predictive analytics. There are BI reporting tools that have this feature implemented within them, such as the Predictive Analytics Tool from datapine. This tool enables users to quickly and easily generate all kinds of predictions. All you have to do is select the data to be processed based on your KPIs, and the software automatically calculates forecasts based on historical and current data. Thanks to its user-friendly interface, anyone in your organization can manage it; there’s no need to be an advanced scientist. 

Here is an example of how you can use the predictive analysis tool from datapine:

Example on how to use predictive analytics tool from datapine

**click to enlarge**

5. Factor analysis

The factor analysis also called “dimension reduction” is a type of data analysis used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. The aim here is to uncover independent latent variables, an ideal method for streamlining specific segments.

A good way to understand this data analysis method is a customer evaluation of a product. The initial assessment is based on different variables like color, shape, wearability, current trends, materials, comfort, the place where they bought the product, and frequency of usage. Like this, the list can be endless, depending on what you want to track. In this case, factor analysis comes into the picture by summarizing all of these variables into homogenous groups, for example, by grouping the variables color, materials, quality, and trends into a brother latent variable of design.

If you want to start analyzing data using factor analysis we recommend you take a look at this practical guide from UCLA.

6. Data mining

A method of data analysis that is the umbrella term for engineering metrics and insights for additional value, direction, and context. By using exploratory statistical evaluation, data mining aims to identify dependencies, relations, patterns, and trends to generate advanced knowledge.  When considering how to analyze data, adopting a data mining mindset is essential to success - as such, it’s an area that is worth exploring in greater detail.

An excellent use case of data mining is datapine intelligent data alerts . With the help of artificial intelligence and machine learning, they provide automated signals based on particular commands or occurrences within a dataset. For example, if you’re monitoring supply chain KPIs , you could set an intelligent alarm to trigger when invalid or low-quality data appears. By doing so, you will be able to drill down deep into the issue and fix it swiftly and effectively.

In the following picture, you can see how the intelligent alarms from datapine work. By setting up ranges on daily orders, sessions, and revenues, the alarms will notify you if the goal was not completed or if it exceeded expectations.

Example on how to use intelligent alerts from datapine

7. Time series analysis

As its name suggests, time series analysis is used to analyze a set of data points collected over a specified period of time. Although analysts use this method to monitor the data points in a specific interval of time rather than just monitoring them intermittently, the time series analysis is not uniquely used for the purpose of collecting data over time. Instead, it allows researchers to understand if variables changed during the duration of the study, how the different variables are dependent, and how did it reach the end result. 

In a business context, this method is used to understand the causes of different trends and patterns to extract valuable insights. Another way of using this method is with the help of time series forecasting. Powered by predictive technologies, businesses can analyze various data sets over a period of time and forecast different future events. 

A great use case to put time series analysis into perspective is seasonality effects on sales. By using time series forecasting to analyze sales data of a specific product over time, you can understand if sales rise over a specific period of time (e.g. swimwear during summertime, or candy during Halloween). These insights allow you to predict demand and prepare production accordingly.  

8. Decision Trees 

The decision tree analysis aims to act as a support tool to make smart and strategic decisions. By visually displaying potential outcomes, consequences, and costs in a tree-like model, researchers and company users can easily evaluate all factors involved and choose the best course of action. Decision trees are helpful to analyze quantitative data and they allow for an improved decision-making process by helping you spot improvement opportunities, reduce costs, and enhance operational efficiency and production.

But how does a decision tree actually works? This method works like a flowchart that starts with the main decision that you need to make and branches out based on the different outcomes and consequences of each decision. Each outcome will outline its own consequences, costs, and gains and, at the end of the analysis, you can compare each of them and make the smartest decision. 

Businesses can use them to understand which project is more cost-effective and will bring more earnings in the long run. For example, imagine you need to decide if you want to update your software app or build a new app entirely.  Here you would compare the total costs, the time needed to be invested, potential revenue, and any other factor that might affect your decision.  In the end, you would be able to see which of these two options is more realistic and attainable for your company or research.

9. Conjoint analysis 

Last but not least, we have the conjoint analysis. This approach is usually used in surveys to understand how individuals value different attributes of a product or service and it is one of the most effective methods to extract consumer preferences. When it comes to purchasing, some clients might be more price-focused, others more features-focused, and others might have a sustainable focus. Whatever your customer's preferences are, you can find them with conjoint analysis. Through this, companies can define pricing strategies, packaging options, subscription packages, and more. 

A great example of conjoint analysis is in marketing and sales. For instance, a cupcake brand might use conjoint analysis and find that its clients prefer gluten-free options and cupcakes with healthier toppings over super sugary ones. Thus, the cupcake brand can turn these insights into advertisements and promotions to increase sales of this particular type of product. And not just that, conjoint analysis can also help businesses segment their customers based on their interests. This allows them to send different messaging that will bring value to each of the segments. 

10. Correspondence Analysis

Also known as reciprocal averaging, correspondence analysis is a method used to analyze the relationship between categorical variables presented within a contingency table. A contingency table is a table that displays two (simple correspondence analysis) or more (multiple correspondence analysis) categorical variables across rows and columns that show the distribution of the data, which is usually answers to a survey or questionnaire on a specific topic. 

This method starts by calculating an “expected value” which is done by multiplying row and column averages and dividing it by the overall original value of the specific table cell. The “expected value” is then subtracted from the original value resulting in a “residual number” which is what allows you to extract conclusions about relationships and distribution. The results of this analysis are later displayed using a map that represents the relationship between the different values. The closest two values are in the map, the bigger the relationship. Let’s put it into perspective with an example. 

Imagine you are carrying out a market research analysis about outdoor clothing brands and how they are perceived by the public. For this analysis, you ask a group of people to match each brand with a certain attribute which can be durability, innovation, quality materials, etc. When calculating the residual numbers, you can see that brand A has a positive residual for innovation but a negative one for durability. This means that brand A is not positioned as a durable brand in the market, something that competitors could take advantage of. 

11. Multidimensional Scaling (MDS)

MDS is a method used to observe the similarities or disparities between objects which can be colors, brands, people, geographical coordinates, and more. The objects are plotted using an “MDS map” that positions similar objects together and disparate ones far apart. The (dis) similarities between objects are represented using one or more dimensions that can be observed using a numerical scale. For example, if you want to know how people feel about the COVID-19 vaccine, you can use 1 for “don’t believe in the vaccine at all”  and 10 for “firmly believe in the vaccine” and a scale of 2 to 9 for in between responses.  When analyzing an MDS map the only thing that matters is the distance between the objects, the orientation of the dimensions is arbitrary and has no meaning at all. 

Multidimensional scaling is a valuable technique for market research, especially when it comes to evaluating product or brand positioning. For instance, if a cupcake brand wants to know how they are positioned compared to competitors, it can define 2-3 dimensions such as taste, ingredients, shopping experience, or more, and do a multidimensional scaling analysis to find improvement opportunities as well as areas in which competitors are currently leading. 

Another business example is in procurement when deciding on different suppliers. Decision makers can generate an MDS map to see how the different prices, delivery times, technical services, and more of the different suppliers differ and pick the one that suits their needs the best. 

A final example proposed by a research paper on "An Improved Study of Multilevel Semantic Network Visualization for Analyzing Sentiment Word of Movie Review Data". Researchers picked a two-dimensional MDS map to display the distances and relationships between different sentiments in movie reviews. They used 36 sentiment words and distributed them based on their emotional distance as we can see in the image below where the words "outraged" and "sweet" are on opposite sides of the map, marking the distance between the two emotions very clearly.

Example of multidimensional scaling analysis

Aside from being a valuable technique to analyze dissimilarities, MDS also serves as a dimension-reduction technique for large dimensional data. 

B. Qualitative Methods

Qualitative data analysis methods are defined as the observation of non-numerical data that is gathered and produced using methods of observation such as interviews, focus groups, questionnaires, and more. As opposed to quantitative methods, qualitative data is more subjective and highly valuable in analyzing customer retention and product development.

12. Text analysis

Text analysis, also known in the industry as text mining, works by taking large sets of textual data and arranging them in a way that makes it easier to manage. By working through this cleansing process in stringent detail, you will be able to extract the data that is truly relevant to your organization and use it to develop actionable insights that will propel you forward.

Modern software accelerate the application of text analytics. Thanks to the combination of machine learning and intelligent algorithms, you can perform advanced analytical processes such as sentiment analysis. This technique allows you to understand the intentions and emotions of a text, for example, if it's positive, negative, or neutral, and then give it a score depending on certain factors and categories that are relevant to your brand. Sentiment analysis is often used to monitor brand and product reputation and to understand how successful your customer experience is. To learn more about the topic check out this insightful article .

By analyzing data from various word-based sources, including product reviews, articles, social media communications, and survey responses, you will gain invaluable insights into your audience, as well as their needs, preferences, and pain points. This will allow you to create campaigns, services, and communications that meet your prospects’ needs on a personal level, growing your audience while boosting customer retention. There are various other “sub-methods” that are an extension of text analysis. Each of them serves a more specific purpose and we will look at them in detail next. 

13. Content Analysis

This is a straightforward and very popular method that examines the presence and frequency of certain words, concepts, and subjects in different content formats such as text, image, audio, or video. For example, the number of times the name of a celebrity is mentioned on social media or online tabloids. It does this by coding text data that is later categorized and tabulated in a way that can provide valuable insights, making it the perfect mix of quantitative and qualitative analysis.

There are two types of content analysis. The first one is the conceptual analysis which focuses on explicit data, for instance, the number of times a concept or word is mentioned in a piece of content. The second one is relational analysis, which focuses on the relationship between different concepts or words and how they are connected within a specific context. 

Content analysis is often used by marketers to measure brand reputation and customer behavior. For example, by analyzing customer reviews. It can also be used to analyze customer interviews and find directions for new product development. It is also important to note, that in order to extract the maximum potential out of this analysis method, it is necessary to have a clearly defined research question. 

14. Thematic Analysis

Very similar to content analysis, thematic analysis also helps in identifying and interpreting patterns in qualitative data with the main difference being that the first one can also be applied to quantitative analysis. The thematic method analyzes large pieces of text data such as focus group transcripts or interviews and groups them into themes or categories that come up frequently within the text. It is a great method when trying to figure out peoples view’s and opinions about a certain topic. For example, if you are a brand that cares about sustainability, you can do a survey of your customers to analyze their views and opinions about sustainability and how they apply it to their lives. You can also analyze customer service calls transcripts to find common issues and improve your service. 

Thematic analysis is a very subjective technique that relies on the researcher’s judgment. Therefore,  to avoid biases, it has 6 steps that include familiarization, coding, generating themes, reviewing themes, defining and naming themes, and writing up. It is also important to note that, because it is a flexible approach, the data can be interpreted in multiple ways and it can be hard to select what data is more important to emphasize. 

15. Narrative Analysis 

A bit more complex in nature than the two previous ones, narrative analysis is used to explore the meaning behind the stories that people tell and most importantly, how they tell them. By looking into the words that people use to describe a situation you can extract valuable conclusions about their perspective on a specific topic. Common sources for narrative data include autobiographies, family stories, opinion pieces, and testimonials, among others. 

From a business perspective, narrative analysis can be useful to analyze customer behaviors and feelings towards a specific product, service, feature, or others. It provides unique and deep insights that can be extremely valuable. However, it has some drawbacks.  

The biggest weakness of this method is that the sample sizes are usually very small due to the complexity and time-consuming nature of the collection of narrative data. Plus, the way a subject tells a story will be significantly influenced by his or her specific experiences, making it very hard to replicate in a subsequent study. 

16. Discourse Analysis

Discourse analysis is used to understand the meaning behind any type of written, verbal, or symbolic discourse based on its political, social, or cultural context. It mixes the analysis of languages and situations together. This means that the way the content is constructed and the meaning behind it is significantly influenced by the culture and society it takes place in. For example, if you are analyzing political speeches you need to consider different context elements such as the politician's background, the current political context of the country, the audience to which the speech is directed, and so on. 

From a business point of view, discourse analysis is a great market research tool. It allows marketers to understand how the norms and ideas of the specific market work and how their customers relate to those ideas. It can be very useful to build a brand mission or develop a unique tone of voice. 

17. Grounded Theory Analysis

Traditionally, researchers decide on a method and hypothesis and start to collect the data to prove that hypothesis. The grounded theory is the only method that doesn’t require an initial research question or hypothesis as its value lies in the generation of new theories. With the grounded theory method, you can go into the analysis process with an open mind and explore the data to generate new theories through tests and revisions. In fact, it is not necessary to collect the data and then start to analyze it. Researchers usually start to find valuable insights as they are gathering the data. 

All of these elements make grounded theory a very valuable method as theories are fully backed by data instead of initial assumptions. It is a great technique to analyze poorly researched topics or find the causes behind specific company outcomes. For example, product managers and marketers might use the grounded theory to find the causes of high levels of customer churn and look into customer surveys and reviews to develop new theories about the causes. 

How To Analyze Data? Top 17 Data Analysis Techniques To Apply

17 top data analysis techniques by datapine

Now that we’ve answered the questions “what is data analysis’”, why is it important, and covered the different data analysis types, it’s time to dig deeper into how to perform your analysis by working through these 17 essential techniques.

1. Collaborate your needs

Before you begin analyzing or drilling down into any techniques, it’s crucial to sit down collaboratively with all key stakeholders within your organization, decide on your primary campaign or strategic goals, and gain a fundamental understanding of the types of insights that will best benefit your progress or provide you with the level of vision you need to evolve your organization.

2. Establish your questions

Once you’ve outlined your core objectives, you should consider which questions will need answering to help you achieve your mission. This is one of the most important techniques as it will shape the very foundations of your success.

To help you ask the right things and ensure your data works for you, you have to ask the right data analysis questions .

3. Data democratization

After giving your data analytics methodology some real direction, and knowing which questions need answering to extract optimum value from the information available to your organization, you should continue with democratization.

Data democratization is an action that aims to connect data from various sources efficiently and quickly so that anyone in your organization can access it at any given moment. You can extract data in text, images, videos, numbers, or any other format. And then perform cross-database analysis to achieve more advanced insights to share with the rest of the company interactively.  

Once you have decided on your most valuable sources, you need to take all of this into a structured format to start collecting your insights. For this purpose, datapine offers an easy all-in-one data connectors feature to integrate all your internal and external sources and manage them at your will. Additionally, datapine’s end-to-end solution automatically updates your data, allowing you to save time and focus on performing the right analysis to grow your company.

data connectors from datapine

4. Think of governance 

When collecting data in a business or research context you always need to think about security and privacy. With data breaches becoming a topic of concern for businesses, the need to protect your client's or subject’s sensitive information becomes critical. 

To ensure that all this is taken care of, you need to think of a data governance strategy. According to Gartner , this concept refers to “ the specification of decision rights and an accountability framework to ensure the appropriate behavior in the valuation, creation, consumption, and control of data and analytics .” In simpler words, data governance is a collection of processes, roles, and policies, that ensure the efficient use of data while still achieving the main company goals. It ensures that clear roles are in place for who can access the information and how they can access it. In time, this not only ensures that sensitive information is protected but also allows for an efficient analysis as a whole. 

5. Clean your data

After harvesting from so many sources you will be left with a vast amount of information that can be overwhelming to deal with. At the same time, you can be faced with incorrect data that can be misleading to your analysis. The smartest thing you can do to avoid dealing with this in the future is to clean the data. This is fundamental before visualizing it, as it will ensure that the insights you extract from it are correct.

There are many things that you need to look for in the cleaning process. The most important one is to eliminate any duplicate observations; this usually appears when using multiple internal and external sources of information. You can also add any missing codes, fix empty fields, and eliminate incorrectly formatted data.

Another usual form of cleaning is done with text data. As we mentioned earlier, most companies today analyze customer reviews, social media comments, questionnaires, and several other text inputs. In order for algorithms to detect patterns, text data needs to be revised to avoid invalid characters or any syntax or spelling errors. 

Most importantly, the aim of cleaning is to prevent you from arriving at false conclusions that can damage your company in the long run. By using clean data, you will also help BI solutions to interact better with your information and create better reports for your organization.

6. Set your KPIs

Once you’ve set your sources, cleaned your data, and established clear-cut questions you want your insights to answer, you need to set a host of key performance indicators (KPIs) that will help you track, measure, and shape your progress in a number of key areas.

KPIs are critical to both qualitative and quantitative analysis research. This is one of the primary methods of data analysis you certainly shouldn’t overlook.

To help you set the best possible KPIs for your initiatives and activities, here is an example of a relevant logistics KPI : transportation-related costs. If you want to see more go explore our collection of key performance indicator examples .

Transportation costs logistics KPIs

7. Omit useless data

Having bestowed your data analysis tools and techniques with true purpose and defined your mission, you should explore the raw data you’ve collected from all sources and use your KPIs as a reference for chopping out any information you deem to be useless.

Trimming the informational fat is one of the most crucial methods of analysis as it will allow you to focus your analytical efforts and squeeze every drop of value from the remaining ‘lean’ information.

Any stats, facts, figures, or metrics that don’t align with your business goals or fit with your KPI management strategies should be eliminated from the equation.

8. Build a data management roadmap

While, at this point, this particular step is optional (you will have already gained a wealth of insight and formed a fairly sound strategy by now), creating a data governance roadmap will help your data analysis methods and techniques become successful on a more sustainable basis. These roadmaps, if developed properly, are also built so they can be tweaked and scaled over time.

Invest ample time in developing a roadmap that will help you store, manage, and handle your data internally, and you will make your analysis techniques all the more fluid and functional – one of the most powerful types of data analysis methods available today.

9. Integrate technology

There are many ways to analyze data, but one of the most vital aspects of analytical success in a business context is integrating the right decision support software and technology.

Robust analysis platforms will not only allow you to pull critical data from your most valuable sources while working with dynamic KPIs that will offer you actionable insights; it will also present them in a digestible, visual, interactive format from one central, live dashboard . A data methodology you can count on.

By integrating the right technology within your data analysis methodology, you’ll avoid fragmenting your insights, saving you time and effort while allowing you to enjoy the maximum value from your business’s most valuable insights.

For a look at the power of software for the purpose of analysis and to enhance your methods of analyzing, glance over our selection of dashboard examples .

10. Answer your questions

By considering each of the above efforts, working with the right technology, and fostering a cohesive internal culture where everyone buys into the different ways to analyze data as well as the power of digital intelligence, you will swiftly start to answer your most burning business questions. Arguably, the best way to make your data concepts accessible across the organization is through data visualization.

11. Visualize your data

Online data visualization is a powerful tool as it lets you tell a story with your metrics, allowing users across the organization to extract meaningful insights that aid business evolution – and it covers all the different ways to analyze data.

The purpose of analyzing is to make your entire organization more informed and intelligent, and with the right platform or dashboard, this is simpler than you think, as demonstrated by our marketing dashboard .

An executive dashboard example showcasing high-level marketing KPIs such as cost per lead, MQL, SQL, and cost per customer.

This visual, dynamic, and interactive online dashboard is a data analysis example designed to give Chief Marketing Officers (CMO) an overview of relevant metrics to help them understand if they achieved their monthly goals.

In detail, this example generated with a modern dashboard creator displays interactive charts for monthly revenues, costs, net income, and net income per customer; all of them are compared with the previous month so that you can understand how the data fluctuated. In addition, it shows a detailed summary of the number of users, customers, SQLs, and MQLs per month to visualize the whole picture and extract relevant insights or trends for your marketing reports .

The CMO dashboard is perfect for c-level management as it can help them monitor the strategic outcome of their marketing efforts and make data-driven decisions that can benefit the company exponentially.

12. Be careful with the interpretation

We already dedicated an entire post to data interpretation as it is a fundamental part of the process of data analysis. It gives meaning to the analytical information and aims to drive a concise conclusion from the analysis results. Since most of the time companies are dealing with data from many different sources, the interpretation stage needs to be done carefully and properly in order to avoid misinterpretations. 

To help you through the process, here we list three common practices that you need to avoid at all costs when looking at your data:

  • Correlation vs. causation: The human brain is formatted to find patterns. This behavior leads to one of the most common mistakes when performing interpretation: confusing correlation with causation. Although these two aspects can exist simultaneously, it is not correct to assume that because two things happened together, one provoked the other. A piece of advice to avoid falling into this mistake is never to trust just intuition, trust the data. If there is no objective evidence of causation, then always stick to correlation. 
  • Confirmation bias: This phenomenon describes the tendency to select and interpret only the data necessary to prove one hypothesis, often ignoring the elements that might disprove it. Even if it's not done on purpose, confirmation bias can represent a real problem, as excluding relevant information can lead to false conclusions and, therefore, bad business decisions. To avoid it, always try to disprove your hypothesis instead of proving it, share your analysis with other team members, and avoid drawing any conclusions before the entire analytical project is finalized.
  • Statistical significance: To put it in short words, statistical significance helps analysts understand if a result is actually accurate or if it happened because of a sampling error or pure chance. The level of statistical significance needed might depend on the sample size and the industry being analyzed. In any case, ignoring the significance of a result when it might influence decision-making can be a huge mistake.

13. Build a narrative

Now, we’re going to look at how you can bring all of these elements together in a way that will benefit your business - starting with a little something called data storytelling.

The human brain responds incredibly well to strong stories or narratives. Once you’ve cleansed, shaped, and visualized your most invaluable data using various BI dashboard tools , you should strive to tell a story - one with a clear-cut beginning, middle, and end.

By doing so, you will make your analytical efforts more accessible, digestible, and universal, empowering more people within your organization to use your discoveries to their actionable advantage.

14. Consider autonomous technology

Autonomous technologies, such as artificial intelligence (AI) and machine learning (ML), play a significant role in the advancement of understanding how to analyze data more effectively.

Gartner predicts that by the end of this year, 80% of emerging technologies will be developed with AI foundations. This is a testament to the ever-growing power and value of autonomous technologies.

At the moment, these technologies are revolutionizing the analysis industry. Some examples that we mentioned earlier are neural networks, intelligent alarms, and sentiment analysis.

15. Share the load

If you work with the right tools and dashboards, you will be able to present your metrics in a digestible, value-driven format, allowing almost everyone in the organization to connect with and use relevant data to their advantage.

Modern dashboards consolidate data from various sources, providing access to a wealth of insights in one centralized location, no matter if you need to monitor recruitment metrics or generate reports that need to be sent across numerous departments. Moreover, these cutting-edge tools offer access to dashboards from a multitude of devices, meaning that everyone within the business can connect with practical insights remotely - and share the load.

Once everyone is able to work with a data-driven mindset, you will catalyze the success of your business in ways you never thought possible. And when it comes to knowing how to analyze data, this kind of collaborative approach is essential.

16. Data analysis tools

In order to perform high-quality analysis of data, it is fundamental to use tools and software that will ensure the best results. Here we leave you a small summary of four fundamental categories of data analysis tools for your organization.

  • Business Intelligence: BI tools allow you to process significant amounts of data from several sources in any format. Through this, you can not only analyze and monitor your data to extract relevant insights but also create interactive reports and dashboards to visualize your KPIs and use them for your company's good. datapine is an amazing online BI software that is focused on delivering powerful online analysis features that are accessible to beginner and advanced users. Like this, it offers a full-service solution that includes cutting-edge analysis of data, KPIs visualization, live dashboards, reporting, and artificial intelligence technologies to predict trends and minimize risk.
  • Statistical analysis: These tools are usually designed for scientists, statisticians, market researchers, and mathematicians, as they allow them to perform complex statistical analyses with methods like regression analysis, predictive analysis, and statistical modeling. A good tool to perform this type of analysis is R-Studio as it offers a powerful data modeling and hypothesis testing feature that can cover both academic and general data analysis. This tool is one of the favorite ones in the industry, due to its capability for data cleaning, data reduction, and performing advanced analysis with several statistical methods. Another relevant tool to mention is SPSS from IBM. The software offers advanced statistical analysis for users of all skill levels. Thanks to a vast library of machine learning algorithms, text analysis, and a hypothesis testing approach it can help your company find relevant insights to drive better decisions. SPSS also works as a cloud service that enables you to run it anywhere.
  • SQL Consoles: SQL is a programming language often used to handle structured data in relational databases. Tools like these are popular among data scientists as they are extremely effective in unlocking these databases' value. Undoubtedly, one of the most used SQL software in the market is MySQL Workbench . This tool offers several features such as a visual tool for database modeling and monitoring, complete SQL optimization, administration tools, and visual performance dashboards to keep track of KPIs.
  • Data Visualization: These tools are used to represent your data through charts, graphs, and maps that allow you to find patterns and trends in the data. datapine's already mentioned BI platform also offers a wealth of powerful online data visualization tools with several benefits. Some of them include: delivering compelling data-driven presentations to share with your entire company, the ability to see your data online with any device wherever you are, an interactive dashboard design feature that enables you to showcase your results in an interactive and understandable way, and to perform online self-service reports that can be used simultaneously with several other people to enhance team productivity.

17. Refine your process constantly 

Last is a step that might seem obvious to some people, but it can be easily ignored if you think you are done. Once you have extracted the needed results, you should always take a retrospective look at your project and think about what you can improve. As you saw throughout this long list of techniques, data analysis is a complex process that requires constant refinement. For this reason, you should always go one step further and keep improving. 

Quality Criteria For Data Analysis

So far we’ve covered a list of methods and techniques that should help you perform efficient data analysis. But how do you measure the quality and validity of your results? This is done with the help of some science quality criteria. Here we will go into a more theoretical area that is critical to understanding the fundamentals of statistical analysis in science. However, you should also be aware of these steps in a business context, as they will allow you to assess the quality of your results in the correct way. Let’s dig in. 

  • Internal validity: The results of a survey are internally valid if they measure what they are supposed to measure and thus provide credible results. In other words , internal validity measures the trustworthiness of the results and how they can be affected by factors such as the research design, operational definitions, how the variables are measured, and more. For instance, imagine you are doing an interview to ask people if they brush their teeth two times a day. While most of them will answer yes, you can still notice that their answers correspond to what is socially acceptable, which is to brush your teeth at least twice a day. In this case, you can’t be 100% sure if respondents actually brush their teeth twice a day or if they just say that they do, therefore, the internal validity of this interview is very low. 
  • External validity: Essentially, external validity refers to the extent to which the results of your research can be applied to a broader context. It basically aims to prove that the findings of a study can be applied in the real world. If the research can be applied to other settings, individuals, and times, then the external validity is high. 
  • Reliability : If your research is reliable, it means that it can be reproduced. If your measurement were repeated under the same conditions, it would produce similar results. This means that your measuring instrument consistently produces reliable results. For example, imagine a doctor building a symptoms questionnaire to detect a specific disease in a patient. Then, various other doctors use this questionnaire but end up diagnosing the same patient with a different condition. This means the questionnaire is not reliable in detecting the initial disease. Another important note here is that in order for your research to be reliable, it also needs to be objective. If the results of a study are the same, independent of who assesses them or interprets them, the study can be considered reliable. Let’s see the objectivity criteria in more detail now. 
  • Objectivity: In data science, objectivity means that the researcher needs to stay fully objective when it comes to its analysis. The results of a study need to be affected by objective criteria and not by the beliefs, personality, or values of the researcher. Objectivity needs to be ensured when you are gathering the data, for example, when interviewing individuals, the questions need to be asked in a way that doesn't influence the results. Paired with this, objectivity also needs to be thought of when interpreting the data. If different researchers reach the same conclusions, then the study is objective. For this last point, you can set predefined criteria to interpret the results to ensure all researchers follow the same steps. 

The discussed quality criteria cover mostly potential influences in a quantitative context. Analysis in qualitative research has by default additional subjective influences that must be controlled in a different way. Therefore, there are other quality criteria for this kind of research such as credibility, transferability, dependability, and confirmability. You can see each of them more in detail on this resource . 

Data Analysis Limitations & Barriers

Analyzing data is not an easy task. As you’ve seen throughout this post, there are many steps and techniques that you need to apply in order to extract useful information from your research. While a well-performed analysis can bring various benefits to your organization it doesn't come without limitations. In this section, we will discuss some of the main barriers you might encounter when conducting an analysis. Let’s see them more in detail. 

  • Lack of clear goals: No matter how good your data or analysis might be if you don’t have clear goals or a hypothesis the process might be worthless. While we mentioned some methods that don’t require a predefined hypothesis, it is always better to enter the analytical process with some clear guidelines of what you are expecting to get out of it, especially in a business context in which data is utilized to support important strategic decisions. 
  • Objectivity: Arguably one of the biggest barriers when it comes to data analysis in research is to stay objective. When trying to prove a hypothesis, researchers might find themselves, intentionally or unintentionally, directing the results toward an outcome that they want. To avoid this, always question your assumptions and avoid confusing facts with opinions. You can also show your findings to a research partner or external person to confirm that your results are objective. 
  • Data representation: A fundamental part of the analytical procedure is the way you represent your data. You can use various graphs and charts to represent your findings, but not all of them will work for all purposes. Choosing the wrong visual can not only damage your analysis but can mislead your audience, therefore, it is important to understand when to use each type of data depending on your analytical goals. Our complete guide on the types of graphs and charts lists 20 different visuals with examples of when to use them. 
  • Flawed correlation : Misleading statistics can significantly damage your research. We’ve already pointed out a few interpretation issues previously in the post, but it is an important barrier that we can't avoid addressing here as well. Flawed correlations occur when two variables appear related to each other but they are not. Confusing correlations with causation can lead to a wrong interpretation of results which can lead to building wrong strategies and loss of resources, therefore, it is very important to identify the different interpretation mistakes and avoid them. 
  • Sample size: A very common barrier to a reliable and efficient analysis process is the sample size. In order for the results to be trustworthy, the sample size should be representative of what you are analyzing. For example, imagine you have a company of 1000 employees and you ask the question “do you like working here?” to 50 employees of which 49 say yes, which means 95%. Now, imagine you ask the same question to the 1000 employees and 950 say yes, which also means 95%. Saying that 95% of employees like working in the company when the sample size was only 50 is not a representative or trustworthy conclusion. The significance of the results is way more accurate when surveying a bigger sample size.   
  • Privacy concerns: In some cases, data collection can be subjected to privacy regulations. Businesses gather all kinds of information from their customers from purchasing behaviors to addresses and phone numbers. If this falls into the wrong hands due to a breach, it can affect the security and confidentiality of your clients. To avoid this issue, you need to collect only the data that is needed for your research and, if you are using sensitive facts, make it anonymous so customers are protected. The misuse of customer data can severely damage a business's reputation, so it is important to keep an eye on privacy. 
  • Lack of communication between teams : When it comes to performing data analysis on a business level, it is very likely that each department and team will have different goals and strategies. However, they are all working for the same common goal of helping the business run smoothly and keep growing. When teams are not connected and communicating with each other, it can directly affect the way general strategies are built. To avoid these issues, tools such as data dashboards enable teams to stay connected through data in a visually appealing way. 
  • Innumeracy : Businesses are working with data more and more every day. While there are many BI tools available to perform effective analysis, data literacy is still a constant barrier. Not all employees know how to apply analysis techniques or extract insights from them. To prevent this from happening, you can implement different training opportunities that will prepare every relevant user to deal with data. 

Key Data Analysis Skills

As you've learned throughout this lengthy guide, analyzing data is a complex task that requires a lot of knowledge and skills. That said, thanks to the rise of self-service tools the process is way more accessible and agile than it once was. Regardless, there are still some key skills that are valuable to have when working with data, we list the most important ones below.

  • Critical and statistical thinking: To successfully analyze data you need to be creative and think out of the box. Yes, that might sound like a weird statement considering that data is often tight to facts. However, a great level of critical thinking is required to uncover connections, come up with a valuable hypothesis, and extract conclusions that go a step further from the surface. This, of course, needs to be complemented by statistical thinking and an understanding of numbers. 
  • Data cleaning: Anyone who has ever worked with data before will tell you that the cleaning and preparation process accounts for 80% of a data analyst's work, therefore, the skill is fundamental. But not just that, not cleaning the data adequately can also significantly damage the analysis which can lead to poor decision-making in a business scenario. While there are multiple tools that automate the cleaning process and eliminate the possibility of human error, it is still a valuable skill to dominate. 
  • Data visualization: Visuals make the information easier to understand and analyze, not only for professional users but especially for non-technical ones. Having the necessary skills to not only choose the right chart type but know when to apply it correctly is key. This also means being able to design visually compelling charts that make the data exploration process more efficient. 
  • SQL: The Structured Query Language or SQL is a programming language used to communicate with databases. It is fundamental knowledge as it enables you to update, manipulate, and organize data from relational databases which are the most common databases used by companies. It is fairly easy to learn and one of the most valuable skills when it comes to data analysis. 
  • Communication skills: This is a skill that is especially valuable in a business environment. Being able to clearly communicate analytical outcomes to colleagues is incredibly important, especially when the information you are trying to convey is complex for non-technical people. This applies to in-person communication as well as written format, for example, when generating a dashboard or report. While this might be considered a “soft” skill compared to the other ones we mentioned, it should not be ignored as you most likely will need to share analytical findings with others no matter the context. 

Data Analysis In The Big Data Environment

Big data is invaluable to today’s businesses, and by using different methods for data analysis, it’s possible to view your data in a way that can help you turn insight into positive action.

To inspire your efforts and put the importance of big data into context, here are some insights that you should know:

  • By 2026 the industry of big data is expected to be worth approximately $273.4 billion.
  • 94% of enterprises say that analyzing data is important for their growth and digital transformation. 
  • Companies that exploit the full potential of their data can increase their operating margins by 60% .
  • We already told you the benefits of Artificial Intelligence through this article. This industry's financial impact is expected to grow up to $40 billion by 2025.

Data analysis concepts may come in many forms, but fundamentally, any solid methodology will help to make your business more streamlined, cohesive, insightful, and successful than ever before.

Key Takeaways From Data Analysis 

As we reach the end of our data analysis journey, we leave a small summary of the main methods and techniques to perform excellent analysis and grow your business.

17 Essential Types of Data Analysis Methods:

  • Cluster analysis
  • Cohort analysis
  • Regression analysis
  • Factor analysis
  • Neural Networks
  • Data Mining
  • Text analysis
  • Time series analysis
  • Decision trees
  • Conjoint analysis 
  • Correspondence Analysis
  • Multidimensional Scaling 
  • Content analysis 
  • Thematic analysis
  • Narrative analysis 
  • Grounded theory analysis
  • Discourse analysis 

Top 17 Data Analysis Techniques:

  • Collaborate your needs
  • Establish your questions
  • Data democratization
  • Think of data governance 
  • Clean your data
  • Set your KPIs
  • Omit useless data
  • Build a data management roadmap
  • Integrate technology
  • Answer your questions
  • Visualize your data
  • Interpretation of data
  • Consider autonomous technology
  • Build a narrative
  • Share the load
  • Data Analysis tools
  • Refine your process constantly 

We’ve pondered the data analysis definition and drilled down into the practical applications of data-centric analytics, and one thing is clear: by taking measures to arrange your data and making your metrics work for you, it’s possible to transform raw information into action - the kind of that will push your business to the next level.

Yes, good data analytics techniques result in enhanced business intelligence (BI). To help you understand this notion in more detail, read our exploration of business intelligence reporting .

And, if you’re ready to perform your own analysis, drill down into your facts and figures while interacting with your data on astonishing visuals, you can try our software for a free, 14-day trial .

  • Privacy Policy

Research Method

Home » Data Analysis – Process, Methods and Types

Data Analysis – Process, Methods and Types

Table of Contents

Data Analysis

Data Analysis

Definition:

Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets. The ultimate aim of data analysis is to convert raw data into actionable insights that can inform business decisions, scientific research, and other endeavors.

Data Analysis Process

The following are step-by-step guides to the data analysis process:

Define the Problem

The first step in data analysis is to clearly define the problem or question that needs to be answered. This involves identifying the purpose of the analysis, the data required, and the intended outcome.

Collect the Data

The next step is to collect the relevant data from various sources. This may involve collecting data from surveys, databases, or other sources. It is important to ensure that the data collected is accurate, complete, and relevant to the problem being analyzed.

Clean and Organize the Data

Once the data has been collected, it needs to be cleaned and organized. This involves removing any errors or inconsistencies in the data, filling in missing values, and ensuring that the data is in a format that can be easily analyzed.

Analyze the Data

The next step is to analyze the data using various statistical and analytical techniques. This may involve identifying patterns in the data, conducting statistical tests, or using machine learning algorithms to identify trends and insights.

Interpret the Results

After analyzing the data, the next step is to interpret the results. This involves drawing conclusions based on the analysis and identifying any significant findings or trends.

Communicate the Findings

Once the results have been interpreted, they need to be communicated to stakeholders. This may involve creating reports, visualizations, or presentations to effectively communicate the findings and recommendations.

Take Action

The final step in the data analysis process is to take action based on the findings. This may involve implementing new policies or procedures, making strategic decisions, or taking other actions based on the insights gained from the analysis.

Types of Data Analysis

Types of Data Analysis are as follows:

Descriptive Analysis

This type of analysis involves summarizing and describing the main characteristics of a dataset, such as the mean, median, mode, standard deviation, and range.

Inferential Analysis

This type of analysis involves making inferences about a population based on a sample. Inferential analysis can help determine whether a certain relationship or pattern observed in a sample is likely to be present in the entire population.

Diagnostic Analysis

This type of analysis involves identifying and diagnosing problems or issues within a dataset. Diagnostic analysis can help identify outliers, errors, missing data, or other anomalies in the dataset.

Predictive Analysis

This type of analysis involves using statistical models and algorithms to predict future outcomes or trends based on historical data. Predictive analysis can help businesses and organizations make informed decisions about the future.

Prescriptive Analysis

This type of analysis involves recommending a course of action based on the results of previous analyses. Prescriptive analysis can help organizations make data-driven decisions about how to optimize their operations, products, or services.

Exploratory Analysis

This type of analysis involves exploring the relationships and patterns within a dataset to identify new insights and trends. Exploratory analysis is often used in the early stages of research or data analysis to generate hypotheses and identify areas for further investigation.

Data Analysis Methods

Data Analysis Methods are as follows:

Statistical Analysis

This method involves the use of mathematical models and statistical tools to analyze and interpret data. It includes measures of central tendency, correlation analysis, regression analysis, hypothesis testing, and more.

Machine Learning

This method involves the use of algorithms to identify patterns and relationships in data. It includes supervised and unsupervised learning, classification, clustering, and predictive modeling.

Data Mining

This method involves using statistical and machine learning techniques to extract information and insights from large and complex datasets.

Text Analysis

This method involves using natural language processing (NLP) techniques to analyze and interpret text data. It includes sentiment analysis, topic modeling, and entity recognition.

Network Analysis

This method involves analyzing the relationships and connections between entities in a network, such as social networks or computer networks. It includes social network analysis and graph theory.

Time Series Analysis

This method involves analyzing data collected over time to identify patterns and trends. It includes forecasting, decomposition, and smoothing techniques.

Spatial Analysis

This method involves analyzing geographic data to identify spatial patterns and relationships. It includes spatial statistics, spatial regression, and geospatial data visualization.

Data Visualization

This method involves using graphs, charts, and other visual representations to help communicate the findings of the analysis. It includes scatter plots, bar charts, heat maps, and interactive dashboards.

Qualitative Analysis

This method involves analyzing non-numeric data such as interviews, observations, and open-ended survey responses. It includes thematic analysis, content analysis, and grounded theory.

Multi-criteria Decision Analysis

This method involves analyzing multiple criteria and objectives to support decision-making. It includes techniques such as the analytical hierarchy process, TOPSIS, and ELECTRE.

Data Analysis Tools

There are various data analysis tools available that can help with different aspects of data analysis. Below is a list of some commonly used data analysis tools:

  • Microsoft Excel: A widely used spreadsheet program that allows for data organization, analysis, and visualization.
  • SQL : A programming language used to manage and manipulate relational databases.
  • R : An open-source programming language and software environment for statistical computing and graphics.
  • Python : A general-purpose programming language that is widely used in data analysis and machine learning.
  • Tableau : A data visualization software that allows for interactive and dynamic visualizations of data.
  • SAS : A statistical analysis software used for data management, analysis, and reporting.
  • SPSS : A statistical analysis software used for data analysis, reporting, and modeling.
  • Matlab : A numerical computing software that is widely used in scientific research and engineering.
  • RapidMiner : A data science platform that offers a wide range of data analysis and machine learning tools.

Applications of Data Analysis

Data analysis has numerous applications across various fields. Below are some examples of how data analysis is used in different fields:

  • Business : Data analysis is used to gain insights into customer behavior, market trends, and financial performance. This includes customer segmentation, sales forecasting, and market research.
  • Healthcare : Data analysis is used to identify patterns and trends in patient data, improve patient outcomes, and optimize healthcare operations. This includes clinical decision support, disease surveillance, and healthcare cost analysis.
  • Education : Data analysis is used to measure student performance, evaluate teaching effectiveness, and improve educational programs. This includes assessment analytics, learning analytics, and program evaluation.
  • Finance : Data analysis is used to monitor and evaluate financial performance, identify risks, and make investment decisions. This includes risk management, portfolio optimization, and fraud detection.
  • Government : Data analysis is used to inform policy-making, improve public services, and enhance public safety. This includes crime analysis, disaster response planning, and social welfare program evaluation.
  • Sports : Data analysis is used to gain insights into athlete performance, improve team strategy, and enhance fan engagement. This includes player evaluation, scouting analysis, and game strategy optimization.
  • Marketing : Data analysis is used to measure the effectiveness of marketing campaigns, understand customer behavior, and develop targeted marketing strategies. This includes customer segmentation, marketing attribution analysis, and social media analytics.
  • Environmental science : Data analysis is used to monitor and evaluate environmental conditions, assess the impact of human activities on the environment, and develop environmental policies. This includes climate modeling, ecological forecasting, and pollution monitoring.

When to Use Data Analysis

Data analysis is useful when you need to extract meaningful insights and information from large and complex datasets. It is a crucial step in the decision-making process, as it helps you understand the underlying patterns and relationships within the data, and identify potential areas for improvement or opportunities for growth.

Here are some specific scenarios where data analysis can be particularly helpful:

  • Problem-solving : When you encounter a problem or challenge, data analysis can help you identify the root cause and develop effective solutions.
  • Optimization : Data analysis can help you optimize processes, products, or services to increase efficiency, reduce costs, and improve overall performance.
  • Prediction: Data analysis can help you make predictions about future trends or outcomes, which can inform strategic planning and decision-making.
  • Performance evaluation : Data analysis can help you evaluate the performance of a process, product, or service to identify areas for improvement and potential opportunities for growth.
  • Risk assessment : Data analysis can help you assess and mitigate risks, whether it is financial, operational, or related to safety.
  • Market research : Data analysis can help you understand customer behavior and preferences, identify market trends, and develop effective marketing strategies.
  • Quality control: Data analysis can help you ensure product quality and customer satisfaction by identifying and addressing quality issues.

Purpose of Data Analysis

The primary purposes of data analysis can be summarized as follows:

  • To gain insights: Data analysis allows you to identify patterns and trends in data, which can provide valuable insights into the underlying factors that influence a particular phenomenon or process.
  • To inform decision-making: Data analysis can help you make informed decisions based on the information that is available. By analyzing data, you can identify potential risks, opportunities, and solutions to problems.
  • To improve performance: Data analysis can help you optimize processes, products, or services by identifying areas for improvement and potential opportunities for growth.
  • To measure progress: Data analysis can help you measure progress towards a specific goal or objective, allowing you to track performance over time and adjust your strategies accordingly.
  • To identify new opportunities: Data analysis can help you identify new opportunities for growth and innovation by identifying patterns and trends that may not have been visible before.

Examples of Data Analysis

Some Examples of Data Analysis are as follows:

  • Social Media Monitoring: Companies use data analysis to monitor social media activity in real-time to understand their brand reputation, identify potential customer issues, and track competitors. By analyzing social media data, businesses can make informed decisions on product development, marketing strategies, and customer service.
  • Financial Trading: Financial traders use data analysis to make real-time decisions about buying and selling stocks, bonds, and other financial instruments. By analyzing real-time market data, traders can identify trends and patterns that help them make informed investment decisions.
  • Traffic Monitoring : Cities use data analysis to monitor traffic patterns and make real-time decisions about traffic management. By analyzing data from traffic cameras, sensors, and other sources, cities can identify congestion hotspots and make changes to improve traffic flow.
  • Healthcare Monitoring: Healthcare providers use data analysis to monitor patient health in real-time. By analyzing data from wearable devices, electronic health records, and other sources, healthcare providers can identify potential health issues and provide timely interventions.
  • Online Advertising: Online advertisers use data analysis to make real-time decisions about advertising campaigns. By analyzing data on user behavior and ad performance, advertisers can make adjustments to their campaigns to improve their effectiveness.
  • Sports Analysis : Sports teams use data analysis to make real-time decisions about strategy and player performance. By analyzing data on player movement, ball position, and other variables, coaches can make informed decisions about substitutions, game strategy, and training regimens.
  • Energy Management : Energy companies use data analysis to monitor energy consumption in real-time. By analyzing data on energy usage patterns, companies can identify opportunities to reduce energy consumption and improve efficiency.

Characteristics of Data Analysis

Characteristics of Data Analysis are as follows:

  • Objective : Data analysis should be objective and based on empirical evidence, rather than subjective assumptions or opinions.
  • Systematic : Data analysis should follow a systematic approach, using established methods and procedures for collecting, cleaning, and analyzing data.
  • Accurate : Data analysis should produce accurate results, free from errors and bias. Data should be validated and verified to ensure its quality.
  • Relevant : Data analysis should be relevant to the research question or problem being addressed. It should focus on the data that is most useful for answering the research question or solving the problem.
  • Comprehensive : Data analysis should be comprehensive and consider all relevant factors that may affect the research question or problem.
  • Timely : Data analysis should be conducted in a timely manner, so that the results are available when they are needed.
  • Reproducible : Data analysis should be reproducible, meaning that other researchers should be able to replicate the analysis using the same data and methods.
  • Communicable : Data analysis should be communicated clearly and effectively to stakeholders and other interested parties. The results should be presented in a way that is understandable and useful for decision-making.

Advantages of Data Analysis

Advantages of Data Analysis are as follows:

  • Better decision-making: Data analysis helps in making informed decisions based on facts and evidence, rather than intuition or guesswork.
  • Improved efficiency: Data analysis can identify inefficiencies and bottlenecks in business processes, allowing organizations to optimize their operations and reduce costs.
  • Increased accuracy: Data analysis helps to reduce errors and bias, providing more accurate and reliable information.
  • Better customer service: Data analysis can help organizations understand their customers better, allowing them to provide better customer service and improve customer satisfaction.
  • Competitive advantage: Data analysis can provide organizations with insights into their competitors, allowing them to identify areas where they can gain a competitive advantage.
  • Identification of trends and patterns : Data analysis can identify trends and patterns in data that may not be immediately apparent, helping organizations to make predictions and plan for the future.
  • Improved risk management : Data analysis can help organizations identify potential risks and take proactive steps to mitigate them.
  • Innovation: Data analysis can inspire innovation and new ideas by revealing new opportunities or previously unknown correlations in data.

Limitations of Data Analysis

  • Data quality: The quality of data can impact the accuracy and reliability of analysis results. If data is incomplete, inconsistent, or outdated, the analysis may not provide meaningful insights.
  • Limited scope: Data analysis is limited by the scope of the data available. If data is incomplete or does not capture all relevant factors, the analysis may not provide a complete picture.
  • Human error : Data analysis is often conducted by humans, and errors can occur in data collection, cleaning, and analysis.
  • Cost : Data analysis can be expensive, requiring specialized tools, software, and expertise.
  • Time-consuming : Data analysis can be time-consuming, especially when working with large datasets or conducting complex analyses.
  • Overreliance on data: Data analysis should be complemented with human intuition and expertise. Overreliance on data can lead to a lack of creativity and innovation.
  • Privacy concerns: Data analysis can raise privacy concerns if personal or sensitive information is used without proper consent or security measures.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Cluster Analysis

Cluster Analysis – Types, Methods and Examples

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Discriminant Analysis

Discriminant Analysis – Methods, Types and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Analyst Answers

Data & Finance for Work & Life

data analysis types, methods, and techniques tree diagram

Data Analysis: Types, Methods & Techniques (a Complete List)

( Updated Version )

While the term sounds intimidating, “data analysis” is nothing more than making sense of information in a table. It consists of filtering, sorting, grouping, and manipulating data tables with basic algebra and statistics.

In fact, you don’t need experience to understand the basics. You have already worked with data extensively in your life, and “analysis” is nothing more than a fancy word for good sense and basic logic.

Over time, people have intuitively categorized the best logical practices for treating data. These categories are what we call today types , methods , and techniques .

This article provides a comprehensive list of types, methods, and techniques, and explains the difference between them.

For a practical intro to data analysis (including types, methods, & techniques), check out our Intro to Data Analysis eBook for free.

Descriptive, Diagnostic, Predictive, & Prescriptive Analysis

If you Google “types of data analysis,” the first few results will explore descriptive , diagnostic , predictive , and prescriptive analysis. Why? Because these names are easy to understand and are used a lot in “the real world.”

Descriptive analysis is an informational method, diagnostic analysis explains “why” a phenomenon occurs, predictive analysis seeks to forecast the result of an action, and prescriptive analysis identifies solutions to a specific problem.

That said, these are only four branches of a larger analytical tree.

Good data analysts know how to position these four types within other analytical methods and tactics, allowing them to leverage strengths and weaknesses in each to uproot the most valuable insights.

Let’s explore the full analytical tree to understand how to appropriately assess and apply these four traditional types.

Tree diagram of Data Analysis Types, Methods, and Techniques

Here’s a picture to visualize the structure and hierarchy of data analysis types, methods, and techniques.

If it’s too small you can view the picture in a new tab . Open it to follow along!

what is method of data analysis in research

Note: basic descriptive statistics such as mean , median , and mode , as well as standard deviation , are not shown because most people are already familiar with them. In the diagram, they would fall under the “descriptive” analysis type.

Tree Diagram Explained

The highest-level classification of data analysis is quantitative vs qualitative . Quantitative implies numbers while qualitative implies information other than numbers.

Quantitative data analysis then splits into mathematical analysis and artificial intelligence (AI) analysis . Mathematical types then branch into descriptive , diagnostic , predictive , and prescriptive .

Methods falling under mathematical analysis include clustering , classification , forecasting , and optimization . Qualitative data analysis methods include content analysis , narrative analysis , discourse analysis , framework analysis , and/or grounded theory .

Moreover, mathematical techniques include regression , Nïave Bayes , Simple Exponential Smoothing , cohorts , factors , linear discriminants , and more, whereas techniques falling under the AI type include artificial neural networks , decision trees , evolutionary programming , and fuzzy logic . Techniques under qualitative analysis include text analysis , coding , idea pattern analysis , and word frequency .

It’s a lot to remember! Don’t worry, once you understand the relationship and motive behind all these terms, it’ll be like riding a bike.

We’ll move down the list from top to bottom and I encourage you to open the tree diagram above in a new tab so you can follow along .

But first, let’s just address the elephant in the room: what’s the difference between methods and techniques anyway?

Difference between methods and techniques

Though often used interchangeably, methods ands techniques are not the same. By definition, methods are the process by which techniques are applied, and techniques are the practical application of those methods.

For example, consider driving. Methods include staying in your lane, stopping at a red light, and parking in a spot. Techniques include turning the steering wheel, braking, and pushing the gas pedal.

Data sets: observations and fields

It’s important to understand the basic structure of data tables to comprehend the rest of the article. A data set consists of one far-left column containing observations, then a series of columns containing the fields (aka “traits” or “characteristics”) that describe each observations. For example, imagine we want a data table for fruit. It might look like this:

Now let’s turn to types, methods, and techniques. Each heading below consists of a description, relative importance, the nature of data it explores, and the motivation for using it.

Quantitative Analysis

  • It accounts for more than 50% of all data analysis and is by far the most widespread and well-known type of data analysis.
  • As you have seen, it holds descriptive, diagnostic, predictive, and prescriptive methods, which in turn hold some of the most important techniques available today, such as clustering and forecasting.
  • It can be broken down into mathematical and AI analysis.
  • Importance : Very high . Quantitative analysis is a must for anyone interesting in becoming or improving as a data analyst.
  • Nature of Data: data treated under quantitative analysis is, quite simply, quantitative. It encompasses all numeric data.
  • Motive: to extract insights. (Note: we’re at the top of the pyramid, this gets more insightful as we move down.)

Qualitative Analysis

  • It accounts for less than 30% of all data analysis and is common in social sciences .
  • It can refer to the simple recognition of qualitative elements, which is not analytic in any way, but most often refers to methods that assign numeric values to non-numeric data for analysis.
  • Because of this, some argue that it’s ultimately a quantitative type.
  • Importance: Medium. In general, knowing qualitative data analysis is not common or even necessary for corporate roles. However, for researchers working in social sciences, its importance is very high .
  • Nature of Data: data treated under qualitative analysis is non-numeric. However, as part of the analysis, analysts turn non-numeric data into numbers, at which point many argue it is no longer qualitative analysis.
  • Motive: to extract insights. (This will be more important as we move down the pyramid.)

Mathematical Analysis

  • Description: mathematical data analysis is a subtype of qualitative data analysis that designates methods and techniques based on statistics, algebra, and logical reasoning to extract insights. It stands in opposition to artificial intelligence analysis.
  • Importance: Very High. The most widespread methods and techniques fall under mathematical analysis. In fact, it’s so common that many people use “quantitative” and “mathematical” analysis interchangeably.
  • Nature of Data: numeric. By definition, all data under mathematical analysis are numbers.
  • Motive: to extract measurable insights that can be used to act upon.

Artificial Intelligence & Machine Learning Analysis

  • Description: artificial intelligence and machine learning analyses designate techniques based on the titular skills. They are not traditionally mathematical, but they are quantitative since they use numbers. Applications of AI & ML analysis techniques are developing, but they’re not yet mainstream enough to show promise across the field.
  • Importance: Medium . As of today (September 2020), you don’t need to be fluent in AI & ML data analysis to be a great analyst. BUT, if it’s a field that interests you, learn it. Many believe that in 10 year’s time its importance will be very high .
  • Nature of Data: numeric.
  • Motive: to create calculations that build on themselves in order and extract insights without direct input from a human.

Descriptive Analysis

  • Description: descriptive analysis is a subtype of mathematical data analysis that uses methods and techniques to provide information about the size, dispersion, groupings, and behavior of data sets. This may sounds complicated, but just think about mean, median, and mode: all three are types of descriptive analysis. They provide information about the data set. We’ll look at specific techniques below.
  • Importance: Very high. Descriptive analysis is among the most commonly used data analyses in both corporations and research today.
  • Nature of Data: the nature of data under descriptive statistics is sets. A set is simply a collection of numbers that behaves in predictable ways. Data reflects real life, and there are patterns everywhere to be found. Descriptive analysis describes those patterns.
  • Motive: the motive behind descriptive analysis is to understand how numbers in a set group together, how far apart they are from each other, and how often they occur. As with most statistical analysis, the more data points there are, the easier it is to describe the set.

Diagnostic Analysis

  • Description: diagnostic analysis answers the question “why did it happen?” It is an advanced type of mathematical data analysis that manipulates multiple techniques, but does not own any single one. Analysts engage in diagnostic analysis when they try to explain why.
  • Importance: Very high. Diagnostics are probably the most important type of data analysis for people who don’t do analysis because they’re valuable to anyone who’s curious. They’re most common in corporations, as managers often only want to know the “why.”
  • Nature of Data : data under diagnostic analysis are data sets. These sets in themselves are not enough under diagnostic analysis. Instead, the analyst must know what’s behind the numbers in order to explain “why.” That’s what makes diagnostics so challenging yet so valuable.
  • Motive: the motive behind diagnostics is to diagnose — to understand why.

Predictive Analysis

  • Description: predictive analysis uses past data to project future data. It’s very often one of the first kinds of analysis new researchers and corporate analysts use because it is intuitive. It is a subtype of the mathematical type of data analysis, and its three notable techniques are regression, moving average, and exponential smoothing.
  • Importance: Very high. Predictive analysis is critical for any data analyst working in a corporate environment. Companies always want to know what the future will hold — especially for their revenue.
  • Nature of Data: Because past and future imply time, predictive data always includes an element of time. Whether it’s minutes, hours, days, months, or years, we call this time series data . In fact, this data is so important that I’ll mention it twice so you don’t forget: predictive analysis uses time series data .
  • Motive: the motive for investigating time series data with predictive analysis is to predict the future in the most analytical way possible.

Prescriptive Analysis

  • Description: prescriptive analysis is a subtype of mathematical analysis that answers the question “what will happen if we do X?” It’s largely underestimated in the data analysis world because it requires diagnostic and descriptive analyses to be done before it even starts. More than simple predictive analysis, prescriptive analysis builds entire data models to show how a simple change could impact the ensemble.
  • Importance: High. Prescriptive analysis is most common under the finance function in many companies. Financial analysts use it to build a financial model of the financial statements that show how that data will change given alternative inputs.
  • Nature of Data: the nature of data in prescriptive analysis is data sets. These data sets contain patterns that respond differently to various inputs. Data that is useful for prescriptive analysis contains correlations between different variables. It’s through these correlations that we establish patterns and prescribe action on this basis. This analysis cannot be performed on data that exists in a vacuum — it must be viewed on the backdrop of the tangibles behind it.
  • Motive: the motive for prescriptive analysis is to establish, with an acceptable degree of certainty, what results we can expect given a certain action. As you might expect, this necessitates that the analyst or researcher be aware of the world behind the data, not just the data itself.

Clustering Method

  • Description: the clustering method groups data points together based on their relativeness closeness to further explore and treat them based on these groupings. There are two ways to group clusters: intuitively and statistically (or K-means).
  • Importance: Very high. Though most corporate roles group clusters intuitively based on management criteria, a solid understanding of how to group them mathematically is an excellent descriptive and diagnostic approach to allow for prescriptive analysis thereafter.
  • Nature of Data : the nature of data useful for clustering is sets with 1 or more data fields. While most people are used to looking at only two dimensions (x and y), clustering becomes more accurate the more fields there are.
  • Motive: the motive for clustering is to understand how data sets group and to explore them further based on those groups.
  • Here’s an example set:

what is method of data analysis in research

Classification Method

  • Description: the classification method aims to separate and group data points based on common characteristics . This can be done intuitively or statistically.
  • Importance: High. While simple on the surface, classification can become quite complex. It’s very valuable in corporate and research environments, but can feel like its not worth the work. A good analyst can execute it quickly to deliver results.
  • Nature of Data: the nature of data useful for classification is data sets. As we will see, it can be used on qualitative data as well as quantitative. This method requires knowledge of the substance behind the data, not just the numbers themselves.
  • Motive: the motive for classification is group data not based on mathematical relationships (which would be clustering), but by predetermined outputs. This is why it’s less useful for diagnostic analysis, and more useful for prescriptive analysis.

Forecasting Method

  • Description: the forecasting method uses time past series data to forecast the future.
  • Importance: Very high. Forecasting falls under predictive analysis and is arguably the most common and most important method in the corporate world. It is less useful in research, which prefers to understand the known rather than speculate about the future.
  • Nature of Data: data useful for forecasting is time series data, which, as we’ve noted, always includes a variable of time.
  • Motive: the motive for the forecasting method is the same as that of prescriptive analysis: the confidently estimate future values.

Optimization Method

  • Description: the optimization method maximized or minimizes values in a set given a set of criteria. It is arguably most common in prescriptive analysis. In mathematical terms, it is maximizing or minimizing a function given certain constraints.
  • Importance: Very high. The idea of optimization applies to more analysis types than any other method. In fact, some argue that it is the fundamental driver behind data analysis. You would use it everywhere in research and in a corporation.
  • Nature of Data: the nature of optimizable data is a data set of at least two points.
  • Motive: the motive behind optimization is to achieve the best result possible given certain conditions.

Content Analysis Method

  • Description: content analysis is a method of qualitative analysis that quantifies textual data to track themes across a document. It’s most common in academic fields and in social sciences, where written content is the subject of inquiry.
  • Importance: High. In a corporate setting, content analysis as such is less common. If anything Nïave Bayes (a technique we’ll look at below) is the closest corporations come to text. However, it is of the utmost importance for researchers. If you’re a researcher, check out this article on content analysis .
  • Nature of Data: data useful for content analysis is textual data.
  • Motive: the motive behind content analysis is to understand themes expressed in a large text

Narrative Analysis Method

  • Description: narrative analysis is a method of qualitative analysis that quantifies stories to trace themes in them. It’s differs from content analysis because it focuses on stories rather than research documents, and the techniques used are slightly different from those in content analysis (very nuances and outside the scope of this article).
  • Importance: Low. Unless you are highly specialized in working with stories, narrative analysis rare.
  • Nature of Data: the nature of the data useful for the narrative analysis method is narrative text.
  • Motive: the motive for narrative analysis is to uncover hidden patterns in narrative text.

Discourse Analysis Method

  • Description: the discourse analysis method falls under qualitative analysis and uses thematic coding to trace patterns in real-life discourse. That said, real-life discourse is oral, so it must first be transcribed into text.
  • Importance: Low. Unless you are focused on understand real-world idea sharing in a research setting, this kind of analysis is less common than the others on this list.
  • Nature of Data: the nature of data useful in discourse analysis is first audio files, then transcriptions of those audio files.
  • Motive: the motive behind discourse analysis is to trace patterns of real-world discussions. (As a spooky sidenote, have you ever felt like your phone microphone was listening to you and making reading suggestions? If it was, the method was discourse analysis.)

Framework Analysis Method

  • Description: the framework analysis method falls under qualitative analysis and uses similar thematic coding techniques to content analysis. However, where content analysis aims to discover themes, framework analysis starts with a framework and only considers elements that fall in its purview.
  • Importance: Low. As with the other textual analysis methods, framework analysis is less common in corporate settings. Even in the world of research, only some use it. Strangely, it’s very common for legislative and political research.
  • Nature of Data: the nature of data useful for framework analysis is textual.
  • Motive: the motive behind framework analysis is to understand what themes and parts of a text match your search criteria.

Grounded Theory Method

  • Description: the grounded theory method falls under qualitative analysis and uses thematic coding to build theories around those themes.
  • Importance: Low. Like other qualitative analysis techniques, grounded theory is less common in the corporate world. Even among researchers, you would be hard pressed to find many using it. Though powerful, it’s simply too rare to spend time learning.
  • Nature of Data: the nature of data useful in the grounded theory method is textual.
  • Motive: the motive of grounded theory method is to establish a series of theories based on themes uncovered from a text.

Clustering Technique: K-Means

  • Description: k-means is a clustering technique in which data points are grouped in clusters that have the closest means. Though not considered AI or ML, it inherently requires the use of supervised learning to reevaluate clusters as data points are added. Clustering techniques can be used in diagnostic, descriptive, & prescriptive data analyses.
  • Importance: Very important. If you only take 3 things from this article, k-means clustering should be part of it. It is useful in any situation where n observations have multiple characteristics and we want to put them in groups.
  • Nature of Data: the nature of data is at least one characteristic per observation, but the more the merrier.
  • Motive: the motive for clustering techniques such as k-means is to group observations together and either understand or react to them.

Regression Technique

  • Description: simple and multivariable regressions use either one independent variable or combination of multiple independent variables to calculate a correlation to a single dependent variable using constants. Regressions are almost synonymous with correlation today.
  • Importance: Very high. Along with clustering, if you only take 3 things from this article, regression techniques should be part of it. They’re everywhere in corporate and research fields alike.
  • Nature of Data: the nature of data used is regressions is data sets with “n” number of observations and as many variables as are reasonable. It’s important, however, to distinguish between time series data and regression data. You cannot use regressions or time series data without accounting for time. The easier way is to use techniques under the forecasting method.
  • Motive: The motive behind regression techniques is to understand correlations between independent variable(s) and a dependent one.

Nïave Bayes Technique

  • Description: Nïave Bayes is a classification technique that uses simple probability to classify items based previous classifications. In plain English, the formula would be “the chance that thing with trait x belongs to class c depends on (=) the overall chance of trait x belonging to class c, multiplied by the overall chance of class c, divided by the overall chance of getting trait x.” As a formula, it’s P(c|x) = P(x|c) * P(c) / P(x).
  • Importance: High. Nïave Bayes is a very common, simplistic classification techniques because it’s effective with large data sets and it can be applied to any instant in which there is a class. Google, for example, might use it to group webpages into groups for certain search engine queries.
  • Nature of Data: the nature of data for Nïave Bayes is at least one class and at least two traits in a data set.
  • Motive: the motive behind Nïave Bayes is to classify observations based on previous data. It’s thus considered part of predictive analysis.

Cohorts Technique

  • Description: cohorts technique is a type of clustering method used in behavioral sciences to separate users by common traits. As with clustering, it can be done intuitively or mathematically, the latter of which would simply be k-means.
  • Importance: Very high. With regard to resembles k-means, the cohort technique is more of a high-level counterpart. In fact, most people are familiar with it as a part of Google Analytics. It’s most common in marketing departments in corporations, rather than in research.
  • Nature of Data: the nature of cohort data is data sets in which users are the observation and other fields are used as defining traits for each cohort.
  • Motive: the motive for cohort analysis techniques is to group similar users and analyze how you retain them and how the churn.

Factor Technique

  • Description: the factor analysis technique is a way of grouping many traits into a single factor to expedite analysis. For example, factors can be used as traits for Nïave Bayes classifications instead of more general fields.
  • Importance: High. While not commonly employed in corporations, factor analysis is hugely valuable. Good data analysts use it to simplify their projects and communicate them more clearly.
  • Nature of Data: the nature of data useful in factor analysis techniques is data sets with a large number of fields on its observations.
  • Motive: the motive for using factor analysis techniques is to reduce the number of fields in order to more quickly analyze and communicate findings.

Linear Discriminants Technique

  • Description: linear discriminant analysis techniques are similar to regressions in that they use one or more independent variable to determine a dependent variable; however, the linear discriminant technique falls under a classifier method since it uses traits as independent variables and class as a dependent variable. In this way, it becomes a classifying method AND a predictive method.
  • Importance: High. Though the analyst world speaks of and uses linear discriminants less commonly, it’s a highly valuable technique to keep in mind as you progress in data analysis.
  • Nature of Data: the nature of data useful for the linear discriminant technique is data sets with many fields.
  • Motive: the motive for using linear discriminants is to classify observations that would be otherwise too complex for simple techniques like Nïave Bayes.

Exponential Smoothing Technique

  • Description: exponential smoothing is a technique falling under the forecasting method that uses a smoothing factor on prior data in order to predict future values. It can be linear or adjusted for seasonality. The basic principle behind exponential smoothing is to use a percent weight (value between 0 and 1 called alpha) on more recent values in a series and a smaller percent weight on less recent values. The formula is f(x) = current period value * alpha + previous period value * 1-alpha.
  • Importance: High. Most analysts still use the moving average technique (covered next) for forecasting, though it is less efficient than exponential moving, because it’s easy to understand. However, good analysts will have exponential smoothing techniques in their pocket to increase the value of their forecasts.
  • Nature of Data: the nature of data useful for exponential smoothing is time series data . Time series data has time as part of its fields .
  • Motive: the motive for exponential smoothing is to forecast future values with a smoothing variable.

Moving Average Technique

  • Description: the moving average technique falls under the forecasting method and uses an average of recent values to predict future ones. For example, to predict rainfall in April, you would take the average of rainfall from January to March. It’s simple, yet highly effective.
  • Importance: Very high. While I’m personally not a huge fan of moving averages due to their simplistic nature and lack of consideration for seasonality, they’re the most common forecasting technique and therefore very important.
  • Nature of Data: the nature of data useful for moving averages is time series data .
  • Motive: the motive for moving averages is to predict future values is a simple, easy-to-communicate way.

Neural Networks Technique

  • Description: neural networks are a highly complex artificial intelligence technique that replicate a human’s neural analysis through a series of hyper-rapid computations and comparisons that evolve in real time. This technique is so complex that an analyst must use computer programs to perform it.
  • Importance: Medium. While the potential for neural networks is theoretically unlimited, it’s still little understood and therefore uncommon. You do not need to know it by any means in order to be a data analyst.
  • Nature of Data: the nature of data useful for neural networks is data sets of astronomical size, meaning with 100s of 1000s of fields and the same number of row at a minimum .
  • Motive: the motive for neural networks is to understand wildly complex phenomenon and data to thereafter act on it.

Decision Tree Technique

  • Description: the decision tree technique uses artificial intelligence algorithms to rapidly calculate possible decision pathways and their outcomes on a real-time basis. It’s so complex that computer programs are needed to perform it.
  • Importance: Medium. As with neural networks, decision trees with AI are too little understood and are therefore uncommon in corporate and research settings alike.
  • Nature of Data: the nature of data useful for the decision tree technique is hierarchical data sets that show multiple optional fields for each preceding field.
  • Motive: the motive for decision tree techniques is to compute the optimal choices to make in order to achieve a desired result.

Evolutionary Programming Technique

  • Description: the evolutionary programming technique uses a series of neural networks, sees how well each one fits a desired outcome, and selects only the best to test and retest. It’s called evolutionary because is resembles the process of natural selection by weeding out weaker options.
  • Importance: Medium. As with the other AI techniques, evolutionary programming just isn’t well-understood enough to be usable in many cases. It’s complexity also makes it hard to explain in corporate settings and difficult to defend in research settings.
  • Nature of Data: the nature of data in evolutionary programming is data sets of neural networks, or data sets of data sets.
  • Motive: the motive for using evolutionary programming is similar to decision trees: understanding the best possible option from complex data.
  • Video example :

Fuzzy Logic Technique

  • Description: fuzzy logic is a type of computing based on “approximate truths” rather than simple truths such as “true” and “false.” It is essentially two tiers of classification. For example, to say whether “Apples are good,” you need to first classify that “Good is x, y, z.” Only then can you say apples are good. Another way to see it helping a computer see truth like humans do: “definitely true, probably true, maybe true, probably false, definitely false.”
  • Importance: Medium. Like the other AI techniques, fuzzy logic is uncommon in both research and corporate settings, which means it’s less important in today’s world.
  • Nature of Data: the nature of fuzzy logic data is huge data tables that include other huge data tables with a hierarchy including multiple subfields for each preceding field.
  • Motive: the motive of fuzzy logic to replicate human truth valuations in a computer is to model human decisions based on past data. The obvious possible application is marketing.

Text Analysis Technique

  • Description: text analysis techniques fall under the qualitative data analysis type and use text to extract insights.
  • Importance: Medium. Text analysis techniques, like all the qualitative analysis type, are most valuable for researchers.
  • Nature of Data: the nature of data useful in text analysis is words.
  • Motive: the motive for text analysis is to trace themes in a text across sets of very long documents, such as books.

Coding Technique

  • Description: the coding technique is used in textual analysis to turn ideas into uniform phrases and analyze the number of times and the ways in which those ideas appear. For this reason, some consider it a quantitative technique as well. You can learn more about coding and the other qualitative techniques here .
  • Importance: Very high. If you’re a researcher working in social sciences, coding is THE analysis techniques, and for good reason. It’s a great way to add rigor to analysis. That said, it’s less common in corporate settings.
  • Nature of Data: the nature of data useful for coding is long text documents.
  • Motive: the motive for coding is to make tracing ideas on paper more than an exercise of the mind by quantifying it and understanding is through descriptive methods.

Idea Pattern Technique

  • Description: the idea pattern analysis technique fits into coding as the second step of the process. Once themes and ideas are coded, simple descriptive analysis tests may be run. Some people even cluster the ideas!
  • Importance: Very high. If you’re a researcher, idea pattern analysis is as important as the coding itself.
  • Nature of Data: the nature of data useful for idea pattern analysis is already coded themes.
  • Motive: the motive for the idea pattern technique is to trace ideas in otherwise unmanageably-large documents.

Word Frequency Technique

  • Description: word frequency is a qualitative technique that stands in opposition to coding and uses an inductive approach to locate specific words in a document in order to understand its relevance. Word frequency is essentially the descriptive analysis of qualitative data because it uses stats like mean, median, and mode to gather insights.
  • Importance: High. As with the other qualitative approaches, word frequency is very important in social science research, but less so in corporate settings.
  • Nature of Data: the nature of data useful for word frequency is long, informative documents.
  • Motive: the motive for word frequency is to locate target words to determine the relevance of a document in question.

Types of data analysis in research

Types of data analysis in research methodology include every item discussed in this article. As a list, they are:

  • Quantitative
  • Qualitative
  • Mathematical
  • Machine Learning and AI
  • Descriptive
  • Prescriptive
  • Classification
  • Forecasting
  • Optimization
  • Grounded theory
  • Artificial Neural Networks
  • Decision Trees
  • Evolutionary Programming
  • Fuzzy Logic
  • Text analysis
  • Idea Pattern Analysis
  • Word Frequency Analysis
  • Nïave Bayes
  • Exponential smoothing
  • Moving average
  • Linear discriminant

Types of data analysis in qualitative research

As a list, the types of data analysis in qualitative research are the following methods:

Types of data analysis in quantitative research

As a list, the types of data analysis in quantitative research are:

Data analysis methods

As a list, data analysis methods are:

  • Content (qualitative)
  • Narrative (qualitative)
  • Discourse (qualitative)
  • Framework (qualitative)
  • Grounded theory (qualitative)

Quantitative data analysis methods

As a list, quantitative data analysis methods are:

Tabular View of Data Analysis Types, Methods, and Techniques

About the author.

Noah is the founder & Editor-in-Chief at AnalystAnswers. He is a transatlantic professional and entrepreneur with 5+ years of corporate finance and data analytics experience, as well as 3+ years in consumer financial products and business software. He started AnalystAnswers to provide aspiring professionals with accessible explanations of otherwise dense finance and data concepts. Noah believes everyone can benefit from an analytical mindset in growing digital world. When he's not busy at work, Noah likes to explore new European cities, exercise, and spend time with friends and family.

File available immediately.

what is method of data analysis in research

Notice: JavaScript is required for this content.

  • University Libraries
  • Research Guides
  • Topic Guides
  • Research Methods Guide
  • Data Analysis

Research Methods Guide: Data Analysis

  • Introduction
  • Research Design & Method
  • Survey Research
  • Interview Research
  • Resources & Consultation

Tools for Analyzing Survey Data

  • R (open source)
  • Stata 
  • DataCracker (free up to 100 responses per survey)
  • SurveyMonkey (free up to 100 responses per survey)

Tools for Analyzing Interview Data

  • AQUAD (open source)
  • NVivo 

Data Analysis and Presentation Techniques that Apply to both Survey and Interview Research

  • Create a documentation of the data and the process of data collection.
  • Analyze the data rather than just describing it - use it to tell a story that focuses on answering the research question.
  • Use charts or tables to help the reader understand the data and then highlight the most interesting findings.
  • Don’t get bogged down in the detail - tell the reader about the main themes as they relate to the research question, rather than reporting everything that survey respondents or interviewees said.
  • State that ‘most people said …’ or ‘few people felt …’ rather than giving the number of people who said a particular thing.
  • Use brief quotes where these illustrate a particular point really well.
  • Respect confidentiality - you could attribute a quote to 'a faculty member', ‘a student’, or 'a customer' rather than ‘Dr. Nicholls.'

Survey Data Analysis

  • If you used an online survey, the software will automatically collate the data – you will just need to download the data, for example as a spreadsheet.
  • If you used a paper questionnaire, you will need to manually transfer the responses from the questionnaires into a spreadsheet.  Put each question number as a column heading, and use one row for each person’s answers.  Then assign each possible answer a number or ‘code’.
  • When all the data is present and correct, calculate how many people selected each response.
  • Once you have calculated how many people selected each response, you can set up tables and/or graph to display the data.  This could take the form of a table or chart.
  • In addition to descriptive statistics that characterize findings from your survey, you can use statistical and analytical reporting techniques if needed.

Interview Data Analysis

  • Data Reduction and Organization: Try not to feel overwhelmed by quantity of information that has been collected from interviews- a one-hour interview can generate 20 to 25 pages of single-spaced text.   Once you start organizing your fieldwork notes around themes, you can easily identify which part of your data to be used for further analysis.
  • What were the main issues or themes that struck you in this contact / interviewee?"
  • Was there anything else that struck you as salient, interesting, illuminating or important in this contact / interviewee? 
  • What information did you get (or failed to get) on each of the target questions you had for this contact / interviewee?
  • Connection of the data: You can connect data around themes and concepts - then you can show how one concept may influence another.
  • Examination of Relationships: Examining relationships is the centerpiece of the analytic process, because it allows you to move from simple description of the people and settings to explanations of why things happened as they did with those people in that setting.
  • << Previous: Interview Research
  • Next: Resources & Consultation >>
  • Last Updated: Aug 21, 2023 10:42 AM

Banner

Research Methods

  • Getting Started
  • What is Research Design?
  • Research Approach
  • Research Methodology
  • Data Collection
  • Data Analysis & Interpretation
  • Population & Sampling
  • Theories, Theoretical Perspective & Theoretical Framework
  • Useful Resources

Further Resources

Cover Art

Data Analysis & Interpretation

  • Quantitative Data

Qualitative Data

  • Mixed Methods

You will need to tidy, analyse and interpret the data you collected to give meaning to it, and to answer your research question.  Your choice of methodology points the way to the most suitable method of analysing your data.

what is method of data analysis in research

If the data is numeric you can use a software package such as SPSS, Excel Spreadsheet or “R” to do statistical analysis.  You can identify things like mean, median and average or identify a causal or correlational relationship between variables.  

The University of Connecticut has useful information on statistical analysis.

If your research set out to test a hypothesis your research will either support or refute it, and you will need to explain why this is the case.  You should also highlight and discuss any issues or actions that may have impacted on your results, either positively or negatively.  To fully contribute to the body of knowledge in your area be sure to discuss and interpret your results within the context of your research and the existing literature on the topic.

Data analysis for a qualitative study can be complex because of the variety of types of data that can be collected. Qualitative researchers aren’t attempting to measure observable characteristics, they are often attempting to capture an individual’s interpretation of a phenomena or situation in a particular context or setting.  This data could be captured in text from an interview or focus group, a movie, images, or documents.   Analysis of this type of data is usually done by analysing each artefact according to a predefined and outlined criteria for analysis and then by using a coding system.  The code can be developed by the researcher before analysis or the researcher may develop a code from the research data.  This can be done by hand or by using thematic analysis software such as NVivo.

Interpretation of qualitative data can be presented as a narrative.  The themes identified from the research can be organised and integrated with themes in the existing literature to give further weight and meaning to the research.  The interpretation should also state if the aims and objectives of the research were met.   Any shortcomings with research or areas for further research should also be discussed (Creswell,2009)*.

For further information on analysing and presenting qualitative date, read this article in Nature .

Mixed Methods Data

Data analysis for mixed methods involves aspects of both quantitative and qualitative methods.  However, the sequencing of data collection and analysis is important in terms of the mixed method approach that you are taking.  For example, you could be using a convergent, sequential or transformative model which directly impacts how you use different data to inform, support or direct the course of your study.

The intention in using mixed methods is to produce a synthesis of both quantitative and qualitative information to give a detailed picture of a phenomena in a particular context or setting. To fully understand how best to produce this synthesis it might be worth looking at why researchers choose this method.  Bergin**(2018) states that researchers choose mixed methods because it allows them to triangulate, illuminate or discover a more diverse set of findings.  Therefore, when it comes to interpretation you will need to return to the purpose of your research and discuss and interpret your data in that context. As with quantitative and qualitative methods, interpretation of data should be discussed within the context of the existing literature.

Bergin’s book is available in the Library to borrow. Bolton LTT collection 519.5 BER

Creswell’s book is available in the Library to borrow.  Bolton LTT collection 300.72 CRE

For more information on data analysis look at Sage Research Methods database on the library website.

*Creswell, John W.(2009)  Research design: qualitative, and mixed methods approaches.  Sage, Los Angeles, pp 183

**Bergin, T (2018), Data analysis: quantitative, qualitative and mixed methods. Sage, Los Angeles, pp182

  • << Previous: Data Collection
  • Next: Population & Sampling >>
  • Last Updated: Sep 7, 2023 3:09 PM
  • URL: https://tudublin.libguides.com/research_methods

PW Skills | Blog

Data Analysis Techniques in Research – Methods, Tools & Examples

' src=

Varun Saharawat is a seasoned professional in the fields of SEO and content writing. With a profound knowledge of the intricate aspects of these disciplines, Varun has established himself as a valuable asset in the world of digital marketing and online content creation.

data analysis techniques in research

Data analysis techniques in research are essential because they allow researchers to derive meaningful insights from data sets to support their hypotheses or research objectives.

Data Analysis Techniques in Research : While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition captures its essence. Data analysis involves refining, transforming, and interpreting raw data to derive actionable insights that guide informed decision-making for businesses.

Data Analytics Course

A straightforward illustration of data analysis emerges when we make everyday decisions, basing our choices on past experiences or predictions of potential outcomes.

If you want to learn more about this topic and acquire valuable skills that will set you apart in today’s data-driven world, we highly recommend enrolling in the Data Analytics Course by Physics Wallah . And as a special offer for our readers, use the coupon code “READER” to get a discount on this course.

Table of Contents

What is Data Analysis?

Data analysis is the systematic process of inspecting, cleaning, transforming, and interpreting data with the objective of discovering valuable insights and drawing meaningful conclusions. This process involves several steps:

  • Inspecting : Initial examination of data to understand its structure, quality, and completeness.
  • Cleaning : Removing errors, inconsistencies, or irrelevant information to ensure accurate analysis.
  • Transforming : Converting data into a format suitable for analysis, such as normalization or aggregation.
  • Interpreting : Analyzing the transformed data to identify patterns, trends, and relationships.

Types of Data Analysis Techniques in Research

Data analysis techniques in research are categorized into qualitative and quantitative methods, each with its specific approaches and tools. These techniques are instrumental in extracting meaningful insights, patterns, and relationships from data to support informed decision-making, validate hypotheses, and derive actionable recommendations. Below is an in-depth exploration of the various types of data analysis techniques commonly employed in research:

1) Qualitative Analysis:

Definition: Qualitative analysis focuses on understanding non-numerical data, such as opinions, concepts, or experiences, to derive insights into human behavior, attitudes, and perceptions.

  • Content Analysis: Examines textual data, such as interview transcripts, articles, or open-ended survey responses, to identify themes, patterns, or trends.
  • Narrative Analysis: Analyzes personal stories or narratives to understand individuals’ experiences, emotions, or perspectives.
  • Ethnographic Studies: Involves observing and analyzing cultural practices, behaviors, and norms within specific communities or settings.

2) Quantitative Analysis:

Quantitative analysis emphasizes numerical data and employs statistical methods to explore relationships, patterns, and trends. It encompasses several approaches:

Descriptive Analysis:

  • Frequency Distribution: Represents the number of occurrences of distinct values within a dataset.
  • Central Tendency: Measures such as mean, median, and mode provide insights into the central values of a dataset.
  • Dispersion: Techniques like variance and standard deviation indicate the spread or variability of data.

Diagnostic Analysis:

  • Regression Analysis: Assesses the relationship between dependent and independent variables, enabling prediction or understanding causality.
  • ANOVA (Analysis of Variance): Examines differences between groups to identify significant variations or effects.

Predictive Analysis:

  • Time Series Forecasting: Uses historical data points to predict future trends or outcomes.
  • Machine Learning Algorithms: Techniques like decision trees, random forests, and neural networks predict outcomes based on patterns in data.

Prescriptive Analysis:

  • Optimization Models: Utilizes linear programming, integer programming, or other optimization techniques to identify the best solutions or strategies.
  • Simulation: Mimics real-world scenarios to evaluate various strategies or decisions and determine optimal outcomes.

Specific Techniques:

  • Monte Carlo Simulation: Models probabilistic outcomes to assess risk and uncertainty.
  • Factor Analysis: Reduces the dimensionality of data by identifying underlying factors or components.
  • Cohort Analysis: Studies specific groups or cohorts over time to understand trends, behaviors, or patterns within these groups.
  • Cluster Analysis: Classifies objects or individuals into homogeneous groups or clusters based on similarities or attributes.
  • Sentiment Analysis: Uses natural language processing and machine learning techniques to determine sentiment, emotions, or opinions from textual data.

Also Read: AI and Predictive Analytics: Examples, Tools, Uses, Ai Vs Predictive Analytics

Data Analysis Techniques in Research Examples

To provide a clearer understanding of how data analysis techniques are applied in research, let’s consider a hypothetical research study focused on evaluating the impact of online learning platforms on students’ academic performance.

Research Objective:

Determine if students using online learning platforms achieve higher academic performance compared to those relying solely on traditional classroom instruction.

Data Collection:

  • Quantitative Data: Academic scores (grades) of students using online platforms and those using traditional classroom methods.
  • Qualitative Data: Feedback from students regarding their learning experiences, challenges faced, and preferences.

Data Analysis Techniques Applied:

1) Descriptive Analysis:

  • Calculate the mean, median, and mode of academic scores for both groups.
  • Create frequency distributions to represent the distribution of grades in each group.

2) Diagnostic Analysis:

  • Conduct an Analysis of Variance (ANOVA) to determine if there’s a statistically significant difference in academic scores between the two groups.
  • Perform Regression Analysis to assess the relationship between the time spent on online platforms and academic performance.

3) Predictive Analysis:

  • Utilize Time Series Forecasting to predict future academic performance trends based on historical data.
  • Implement Machine Learning algorithms to develop a predictive model that identifies factors contributing to academic success on online platforms.

4) Prescriptive Analysis:

  • Apply Optimization Models to identify the optimal combination of online learning resources (e.g., video lectures, interactive quizzes) that maximize academic performance.
  • Use Simulation Techniques to evaluate different scenarios, such as varying student engagement levels with online resources, to determine the most effective strategies for improving learning outcomes.

5) Specific Techniques:

  • Conduct Factor Analysis on qualitative feedback to identify common themes or factors influencing students’ perceptions and experiences with online learning.
  • Perform Cluster Analysis to segment students based on their engagement levels, preferences, or academic outcomes, enabling targeted interventions or personalized learning strategies.
  • Apply Sentiment Analysis on textual feedback to categorize students’ sentiments as positive, negative, or neutral regarding online learning experiences.

By applying a combination of qualitative and quantitative data analysis techniques, this research example aims to provide comprehensive insights into the effectiveness of online learning platforms.

Also Read: Learning Path to Become a Data Analyst in 2024

Data Analysis Techniques in Quantitative Research

Quantitative research involves collecting numerical data to examine relationships, test hypotheses, and make predictions. Various data analysis techniques are employed to interpret and draw conclusions from quantitative data. Here are some key data analysis techniques commonly used in quantitative research:

1) Descriptive Statistics:

  • Description: Descriptive statistics are used to summarize and describe the main aspects of a dataset, such as central tendency (mean, median, mode), variability (range, variance, standard deviation), and distribution (skewness, kurtosis).
  • Applications: Summarizing data, identifying patterns, and providing initial insights into the dataset.

2) Inferential Statistics:

  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. This technique includes hypothesis testing, confidence intervals, t-tests, chi-square tests, analysis of variance (ANOVA), regression analysis, and correlation analysis.
  • Applications: Testing hypotheses, making predictions, and generalizing findings from a sample to a larger population.

3) Regression Analysis:

  • Description: Regression analysis is a statistical technique used to model and examine the relationship between a dependent variable and one or more independent variables. Linear regression, multiple regression, logistic regression, and nonlinear regression are common types of regression analysis .
  • Applications: Predicting outcomes, identifying relationships between variables, and understanding the impact of independent variables on the dependent variable.

4) Correlation Analysis:

  • Description: Correlation analysis is used to measure and assess the strength and direction of the relationship between two or more variables. The Pearson correlation coefficient, Spearman rank correlation coefficient, and Kendall’s tau are commonly used measures of correlation.
  • Applications: Identifying associations between variables and assessing the degree and nature of the relationship.

5) Factor Analysis:

  • Description: Factor analysis is a multivariate statistical technique used to identify and analyze underlying relationships or factors among a set of observed variables. It helps in reducing the dimensionality of data and identifying latent variables or constructs.
  • Applications: Identifying underlying factors or constructs, simplifying data structures, and understanding the underlying relationships among variables.

6) Time Series Analysis:

  • Description: Time series analysis involves analyzing data collected or recorded over a specific period at regular intervals to identify patterns, trends, and seasonality. Techniques such as moving averages, exponential smoothing, autoregressive integrated moving average (ARIMA), and Fourier analysis are used.
  • Applications: Forecasting future trends, analyzing seasonal patterns, and understanding time-dependent relationships in data.

7) ANOVA (Analysis of Variance):

  • Description: Analysis of variance (ANOVA) is a statistical technique used to analyze and compare the means of two or more groups or treatments to determine if they are statistically different from each other. One-way ANOVA, two-way ANOVA, and MANOVA (Multivariate Analysis of Variance) are common types of ANOVA.
  • Applications: Comparing group means, testing hypotheses, and determining the effects of categorical independent variables on a continuous dependent variable.

8) Chi-Square Tests:

  • Description: Chi-square tests are non-parametric statistical tests used to assess the association between categorical variables in a contingency table. The Chi-square test of independence, goodness-of-fit test, and test of homogeneity are common chi-square tests.
  • Applications: Testing relationships between categorical variables, assessing goodness-of-fit, and evaluating independence.

These quantitative data analysis techniques provide researchers with valuable tools and methods to analyze, interpret, and derive meaningful insights from numerical data. The selection of a specific technique often depends on the research objectives, the nature of the data, and the underlying assumptions of the statistical methods being used.

Also Read: Analysis vs. Analytics: How Are They Different?

Data Analysis Methods

Data analysis methods refer to the techniques and procedures used to analyze, interpret, and draw conclusions from data. These methods are essential for transforming raw data into meaningful insights, facilitating decision-making processes, and driving strategies across various fields. Here are some common data analysis methods:

  • Description: Descriptive statistics summarize and organize data to provide a clear and concise overview of the dataset. Measures such as mean, median, mode, range, variance, and standard deviation are commonly used.
  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. Techniques such as hypothesis testing, confidence intervals, and regression analysis are used.

3) Exploratory Data Analysis (EDA):

  • Description: EDA techniques involve visually exploring and analyzing data to discover patterns, relationships, anomalies, and insights. Methods such as scatter plots, histograms, box plots, and correlation matrices are utilized.
  • Applications: Identifying trends, patterns, outliers, and relationships within the dataset.

4) Predictive Analytics:

  • Description: Predictive analytics use statistical algorithms and machine learning techniques to analyze historical data and make predictions about future events or outcomes. Techniques such as regression analysis, time series forecasting, and machine learning algorithms (e.g., decision trees, random forests, neural networks) are employed.
  • Applications: Forecasting future trends, predicting outcomes, and identifying potential risks or opportunities.

5) Prescriptive Analytics:

  • Description: Prescriptive analytics involve analyzing data to recommend actions or strategies that optimize specific objectives or outcomes. Optimization techniques, simulation models, and decision-making algorithms are utilized.
  • Applications: Recommending optimal strategies, decision-making support, and resource allocation.

6) Qualitative Data Analysis:

  • Description: Qualitative data analysis involves analyzing non-numerical data, such as text, images, videos, or audio, to identify themes, patterns, and insights. Methods such as content analysis, thematic analysis, and narrative analysis are used.
  • Applications: Understanding human behavior, attitudes, perceptions, and experiences.

7) Big Data Analytics:

  • Description: Big data analytics methods are designed to analyze large volumes of structured and unstructured data to extract valuable insights. Technologies such as Hadoop, Spark, and NoSQL databases are used to process and analyze big data.
  • Applications: Analyzing large datasets, identifying trends, patterns, and insights from big data sources.

8) Text Analytics:

  • Description: Text analytics methods involve analyzing textual data, such as customer reviews, social media posts, emails, and documents, to extract meaningful information and insights. Techniques such as sentiment analysis, text mining, and natural language processing (NLP) are used.
  • Applications: Analyzing customer feedback, monitoring brand reputation, and extracting insights from textual data sources.

These data analysis methods are instrumental in transforming data into actionable insights, informing decision-making processes, and driving organizational success across various sectors, including business, healthcare, finance, marketing, and research. The selection of a specific method often depends on the nature of the data, the research objectives, and the analytical requirements of the project or organization.

Also Read: Quantitative Data Analysis: Types, Analysis & Examples

Data Analysis Tools

Data analysis tools are essential instruments that facilitate the process of examining, cleaning, transforming, and modeling data to uncover useful information, make informed decisions, and drive strategies. Here are some prominent data analysis tools widely used across various industries:

1) Microsoft Excel:

  • Description: A spreadsheet software that offers basic to advanced data analysis features, including pivot tables, data visualization tools, and statistical functions.
  • Applications: Data cleaning, basic statistical analysis, visualization, and reporting.

2) R Programming Language:

  • Description: An open-source programming language specifically designed for statistical computing and data visualization.
  • Applications: Advanced statistical analysis, data manipulation, visualization, and machine learning.

3) Python (with Libraries like Pandas, NumPy, Matplotlib, and Seaborn):

  • Description: A versatile programming language with libraries that support data manipulation, analysis, and visualization.
  • Applications: Data cleaning, statistical analysis, machine learning, and data visualization.

4) SPSS (Statistical Package for the Social Sciences):

  • Description: A comprehensive statistical software suite used for data analysis, data mining, and predictive analytics.
  • Applications: Descriptive statistics, hypothesis testing, regression analysis, and advanced analytics.

5) SAS (Statistical Analysis System):

  • Description: A software suite used for advanced analytics, multivariate analysis, and predictive modeling.
  • Applications: Data management, statistical analysis, predictive modeling, and business intelligence.

6) Tableau:

  • Description: A data visualization tool that allows users to create interactive and shareable dashboards and reports.
  • Applications: Data visualization , business intelligence , and interactive dashboard creation.

7) Power BI:

  • Description: A business analytics tool developed by Microsoft that provides interactive visualizations and business intelligence capabilities.
  • Applications: Data visualization, business intelligence, reporting, and dashboard creation.

8) SQL (Structured Query Language) Databases (e.g., MySQL, PostgreSQL, Microsoft SQL Server):

  • Description: Database management systems that support data storage, retrieval, and manipulation using SQL queries.
  • Applications: Data retrieval, data cleaning, data transformation, and database management.

9) Apache Spark:

  • Description: A fast and general-purpose distributed computing system designed for big data processing and analytics.
  • Applications: Big data processing, machine learning, data streaming, and real-time analytics.

10) IBM SPSS Modeler:

  • Description: A data mining software application used for building predictive models and conducting advanced analytics.
  • Applications: Predictive modeling, data mining, statistical analysis, and decision optimization.

These tools serve various purposes and cater to different data analysis needs, from basic statistical analysis and data visualization to advanced analytics, machine learning, and big data processing. The choice of a specific tool often depends on the nature of the data, the complexity of the analysis, and the specific requirements of the project or organization.

Also Read: How to Analyze Survey Data: Methods & Examples

Importance of Data Analysis in Research

The importance of data analysis in research cannot be overstated; it serves as the backbone of any scientific investigation or study. Here are several key reasons why data analysis is crucial in the research process:

  • Data analysis helps ensure that the results obtained are valid and reliable. By systematically examining the data, researchers can identify any inconsistencies or anomalies that may affect the credibility of the findings.
  • Effective data analysis provides researchers with the necessary information to make informed decisions. By interpreting the collected data, researchers can draw conclusions, make predictions, or formulate recommendations based on evidence rather than intuition or guesswork.
  • Data analysis allows researchers to identify patterns, trends, and relationships within the data. This can lead to a deeper understanding of the research topic, enabling researchers to uncover insights that may not be immediately apparent.
  • In empirical research, data analysis plays a critical role in testing hypotheses. Researchers collect data to either support or refute their hypotheses, and data analysis provides the tools and techniques to evaluate these hypotheses rigorously.
  • Transparent and well-executed data analysis enhances the credibility of research findings. By clearly documenting the data analysis methods and procedures, researchers allow others to replicate the study, thereby contributing to the reproducibility of research findings.
  • In fields such as business or healthcare, data analysis helps organizations allocate resources more efficiently. By analyzing data on consumer behavior, market trends, or patient outcomes, organizations can make strategic decisions about resource allocation, budgeting, and planning.
  • In public policy and social sciences, data analysis is instrumental in developing and evaluating policies and interventions. By analyzing data on social, economic, or environmental factors, policymakers can assess the effectiveness of existing policies and inform the development of new ones.
  • Data analysis allows for continuous improvement in research methods and practices. By analyzing past research projects, identifying areas for improvement, and implementing changes based on data-driven insights, researchers can refine their approaches and enhance the quality of future research endeavors.

However, it is important to remember that mastering these techniques requires practice and continuous learning. That’s why we highly recommend the Data Analytics Course by Physics Wallah . Not only does it cover all the fundamentals of data analysis, but it also provides hands-on experience with various tools such as Excel, Python, and Tableau. Plus, if you use the “ READER ” coupon code at checkout, you can get a special discount on the course.

For Latest Tech Related Information, Join Our Official Free Telegram Group : PW Skills Telegram Group

Data Analysis Techniques in Research FAQs

What are the 5 techniques for data analysis.

The five techniques for data analysis include: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis Qualitative Analysis

What are techniques of data analysis in research?

Techniques of data analysis in research encompass both qualitative and quantitative methods. These techniques involve processes like summarizing raw data, investigating causes of events, forecasting future outcomes, offering recommendations based on predictions, and examining non-numerical data to understand concepts or experiences.

What are the 3 methods of data analysis?

The three primary methods of data analysis are: Qualitative Analysis Quantitative Analysis Mixed-Methods Analysis

What are the four types of data analysis techniques?

The four types of data analysis techniques are: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis

  • Why is Data Analytics Skills Important?

data analytics skills

Data analytics skills are important for candidates to stand out from other candidates during a job interview and better their…

  • Which Course is Best for Business Analyst? (Business Analysts Online Courses)

business analysts online courses

Many reputed platforms and institutions offer online certification courses which can help you land job offers in relevant companies. In…

  • What is Data Analytics in Database?

database analytics

Database analytics is a method of interpreting and analyzing data stored inside the database to extract meaningful insights. Read the…

right adv

Related Articles

  • Finance Data Analysis: What is a Financial Data Analysis?
  • What are Data Analysis Tools?
  • Best Courses For Data Analytics: Top 10 Courses For Your Career in Trend
  • Big Data: What Do You Mean By Big Data?
  • Top 20 Big Data Tools Used By Professionals
  • 10 Most Popular Big Data Analytics Tools
  • Top Best Big Data Analytics Classes 2024

bottom banner

Grad Coach

Qualitative Data Analysis Methods 101:

The “big 6” methods + examples.

By: Kerryn Warren (PhD) | Reviewed By: Eunice Rautenbach (D.Tech) | May 2020 (Updated April 2023)

Qualitative data analysis methods. Wow, that’s a mouthful. 

If you’re new to the world of research, qualitative data analysis can look rather intimidating. So much bulky terminology and so many abstract, fluffy concepts. It certainly can be a minefield!

Don’t worry – in this post, we’ll unpack the most popular analysis methods , one at a time, so that you can approach your analysis with confidence and competence – whether that’s for a dissertation, thesis or really any kind of research project.

Qualitative data analysis methods

What (exactly) is qualitative data analysis?

To understand qualitative data analysis, we need to first understand qualitative data – so let’s step back and ask the question, “what exactly is qualitative data?”.

Qualitative data refers to pretty much any data that’s “not numbers” . In other words, it’s not the stuff you measure using a fixed scale or complex equipment, nor do you analyse it using complex statistics or mathematics.

So, if it’s not numbers, what is it?

Words, you guessed? Well… sometimes , yes. Qualitative data can, and often does, take the form of interview transcripts, documents and open-ended survey responses – but it can also involve the interpretation of images and videos. In other words, qualitative isn’t just limited to text-based data.

So, how’s that different from quantitative data, you ask?

Simply put, qualitative research focuses on words, descriptions, concepts or ideas – while quantitative research focuses on numbers and statistics . Qualitative research investigates the “softer side” of things to explore and describe , while quantitative research focuses on the “hard numbers”, to measure differences between variables and the relationships between them. If you’re keen to learn more about the differences between qual and quant, we’ve got a detailed post over here .

qualitative data analysis vs quantitative data analysis

So, qualitative analysis is easier than quantitative, right?

Not quite. In many ways, qualitative data can be challenging and time-consuming to analyse and interpret. At the end of your data collection phase (which itself takes a lot of time), you’ll likely have many pages of text-based data or hours upon hours of audio to work through. You might also have subtle nuances of interactions or discussions that have danced around in your mind, or that you scribbled down in messy field notes. All of this needs to work its way into your analysis.

Making sense of all of this is no small task and you shouldn’t underestimate it. Long story short – qualitative analysis can be a lot of work! Of course, quantitative analysis is no piece of cake either, but it’s important to recognise that qualitative analysis still requires a significant investment in terms of time and effort.

Need a helping hand?

what is method of data analysis in research

In this post, we’ll explore qualitative data analysis by looking at some of the most common analysis methods we encounter. We’re not going to cover every possible qualitative method and we’re not going to go into heavy detail – we’re just going to give you the big picture. That said, we will of course includes links to loads of extra resources so that you can learn more about whichever analysis method interests you.

Without further delay, let’s get into it.

The “Big 6” Qualitative Analysis Methods 

There are many different types of qualitative data analysis, all of which serve different purposes and have unique strengths and weaknesses . We’ll start by outlining the analysis methods and then we’ll dive into the details for each.

The 6 most popular methods (or at least the ones we see at Grad Coach) are:

  • Content analysis
  • Narrative analysis
  • Discourse analysis
  • Thematic analysis
  • Grounded theory (GT)
  • Interpretive phenomenological analysis (IPA)

Let’s take a look at each of them…

QDA Method #1: Qualitative Content Analysis

Content analysis is possibly the most common and straightforward QDA method. At the simplest level, content analysis is used to evaluate patterns within a piece of content (for example, words, phrases or images) or across multiple pieces of content or sources of communication. For example, a collection of newspaper articles or political speeches.

With content analysis, you could, for instance, identify the frequency with which an idea is shared or spoken about – like the number of times a Kardashian is mentioned on Twitter. Or you could identify patterns of deeper underlying interpretations – for instance, by identifying phrases or words in tourist pamphlets that highlight India as an ancient country.

Because content analysis can be used in such a wide variety of ways, it’s important to go into your analysis with a very specific question and goal, or you’ll get lost in the fog. With content analysis, you’ll group large amounts of text into codes , summarise these into categories, and possibly even tabulate the data to calculate the frequency of certain concepts or variables. Because of this, content analysis provides a small splash of quantitative thinking within a qualitative method.

Naturally, while content analysis is widely useful, it’s not without its drawbacks . One of the main issues with content analysis is that it can be very time-consuming , as it requires lots of reading and re-reading of the texts. Also, because of its multidimensional focus on both qualitative and quantitative aspects, it is sometimes accused of losing important nuances in communication.

Content analysis also tends to concentrate on a very specific timeline and doesn’t take into account what happened before or after that timeline. This isn’t necessarily a bad thing though – just something to be aware of. So, keep these factors in mind if you’re considering content analysis. Every analysis method has its limitations , so don’t be put off by these – just be aware of them ! If you’re interested in learning more about content analysis, the video below provides a good starting point.

QDA Method #2: Narrative Analysis 

As the name suggests, narrative analysis is all about listening to people telling stories and analysing what that means . Since stories serve a functional purpose of helping us make sense of the world, we can gain insights into the ways that people deal with and make sense of reality by analysing their stories and the ways they’re told.

You could, for example, use narrative analysis to explore whether how something is being said is important. For instance, the narrative of a prisoner trying to justify their crime could provide insight into their view of the world and the justice system. Similarly, analysing the ways entrepreneurs talk about the struggles in their careers or cancer patients telling stories of hope could provide powerful insights into their mindsets and perspectives . Simply put, narrative analysis is about paying attention to the stories that people tell – and more importantly, the way they tell them.

Of course, the narrative approach has its weaknesses , too. Sample sizes are generally quite small due to the time-consuming process of capturing narratives. Because of this, along with the multitude of social and lifestyle factors which can influence a subject, narrative analysis can be quite difficult to reproduce in subsequent research. This means that it’s difficult to test the findings of some of this research.

Similarly, researcher bias can have a strong influence on the results here, so you need to be particularly careful about the potential biases you can bring into your analysis when using this method. Nevertheless, narrative analysis is still a very useful qualitative analysis method – just keep these limitations in mind and be careful not to draw broad conclusions . If you’re keen to learn more about narrative analysis, the video below provides a great introduction to this qualitative analysis method.

QDA Method #3: Discourse Analysis 

Discourse is simply a fancy word for written or spoken language or debate . So, discourse analysis is all about analysing language within its social context. In other words, analysing language – such as a conversation, a speech, etc – within the culture and society it takes place. For example, you could analyse how a janitor speaks to a CEO, or how politicians speak about terrorism.

To truly understand these conversations or speeches, the culture and history of those involved in the communication are important factors to consider. For example, a janitor might speak more casually with a CEO in a company that emphasises equality among workers. Similarly, a politician might speak more about terrorism if there was a recent terrorist incident in the country.

So, as you can see, by using discourse analysis, you can identify how culture , history or power dynamics (to name a few) have an effect on the way concepts are spoken about. So, if your research aims and objectives involve understanding culture or power dynamics, discourse analysis can be a powerful method.

Because there are many social influences in terms of how we speak to each other, the potential use of discourse analysis is vast . Of course, this also means it’s important to have a very specific research question (or questions) in mind when analysing your data and looking for patterns and themes, or you might land up going down a winding rabbit hole.

Discourse analysis can also be very time-consuming  as you need to sample the data to the point of saturation – in other words, until no new information and insights emerge. But this is, of course, part of what makes discourse analysis such a powerful technique. So, keep these factors in mind when considering this QDA method. Again, if you’re keen to learn more, the video below presents a good starting point.

QDA Method #4: Thematic Analysis

Thematic analysis looks at patterns of meaning in a data set – for example, a set of interviews or focus group transcripts. But what exactly does that… mean? Well, a thematic analysis takes bodies of data (which are often quite large) and groups them according to similarities – in other words, themes . These themes help us make sense of the content and derive meaning from it.

Let’s take a look at an example.

With thematic analysis, you could analyse 100 online reviews of a popular sushi restaurant to find out what patrons think about the place. By reviewing the data, you would then identify the themes that crop up repeatedly within the data – for example, “fresh ingredients” or “friendly wait staff”.

So, as you can see, thematic analysis can be pretty useful for finding out about people’s experiences , views, and opinions . Therefore, if your research aims and objectives involve understanding people’s experience or view of something, thematic analysis can be a great choice.

Since thematic analysis is a bit of an exploratory process, it’s not unusual for your research questions to develop , or even change as you progress through the analysis. While this is somewhat natural in exploratory research, it can also be seen as a disadvantage as it means that data needs to be re-reviewed each time a research question is adjusted. In other words, thematic analysis can be quite time-consuming – but for a good reason. So, keep this in mind if you choose to use thematic analysis for your project and budget extra time for unexpected adjustments.

Thematic analysis takes bodies of data and groups them according to similarities (themes), which help us make sense of the content.

QDA Method #5: Grounded theory (GT) 

Grounded theory is a powerful qualitative analysis method where the intention is to create a new theory (or theories) using the data at hand, through a series of “ tests ” and “ revisions ”. Strictly speaking, GT is more a research design type than an analysis method, but we’ve included it here as it’s often referred to as a method.

What’s most important with grounded theory is that you go into the analysis with an open mind and let the data speak for itself – rather than dragging existing hypotheses or theories into your analysis. In other words, your analysis must develop from the ground up (hence the name). 

Let’s look at an example of GT in action.

Assume you’re interested in developing a theory about what factors influence students to watch a YouTube video about qualitative analysis. Using Grounded theory , you’d start with this general overarching question about the given population (i.e., graduate students). First, you’d approach a small sample – for example, five graduate students in a department at a university. Ideally, this sample would be reasonably representative of the broader population. You’d interview these students to identify what factors lead them to watch the video.

After analysing the interview data, a general pattern could emerge. For example, you might notice that graduate students are more likely to read a post about qualitative methods if they are just starting on their dissertation journey, or if they have an upcoming test about research methods.

From here, you’ll look for another small sample – for example, five more graduate students in a different department – and see whether this pattern holds true for them. If not, you’ll look for commonalities and adapt your theory accordingly. As this process continues, the theory would develop . As we mentioned earlier, what’s important with grounded theory is that the theory develops from the data – not from some preconceived idea.

So, what are the drawbacks of grounded theory? Well, some argue that there’s a tricky circularity to grounded theory. For it to work, in principle, you should know as little as possible regarding the research question and population, so that you reduce the bias in your interpretation. However, in many circumstances, it’s also thought to be unwise to approach a research question without knowledge of the current literature . In other words, it’s a bit of a “chicken or the egg” situation.

Regardless, grounded theory remains a popular (and powerful) option. Naturally, it’s a very useful method when you’re researching a topic that is completely new or has very little existing research about it, as it allows you to start from scratch and work your way from the ground up .

Grounded theory is used to create a new theory (or theories) by using the data at hand, as opposed to existing theories and frameworks.

QDA Method #6:   Interpretive Phenomenological Analysis (IPA)

Interpretive. Phenomenological. Analysis. IPA . Try saying that three times fast…

Let’s just stick with IPA, okay?

IPA is designed to help you understand the personal experiences of a subject (for example, a person or group of people) concerning a major life event, an experience or a situation . This event or experience is the “phenomenon” that makes up the “P” in IPA. Such phenomena may range from relatively common events – such as motherhood, or being involved in a car accident – to those which are extremely rare – for example, someone’s personal experience in a refugee camp. So, IPA is a great choice if your research involves analysing people’s personal experiences of something that happened to them.

It’s important to remember that IPA is subject – centred . In other words, it’s focused on the experiencer . This means that, while you’ll likely use a coding system to identify commonalities, it’s important not to lose the depth of experience or meaning by trying to reduce everything to codes. Also, keep in mind that since your sample size will generally be very small with IPA, you often won’t be able to draw broad conclusions about the generalisability of your findings. But that’s okay as long as it aligns with your research aims and objectives.

Another thing to be aware of with IPA is personal bias . While researcher bias can creep into all forms of research, self-awareness is critically important with IPA, as it can have a major impact on the results. For example, a researcher who was a victim of a crime himself could insert his own feelings of frustration and anger into the way he interprets the experience of someone who was kidnapped. So, if you’re going to undertake IPA, you need to be very self-aware or you could muddy the analysis.

IPA can help you understand the personal experiences of a person or group concerning a major life event, an experience or a situation.

How to choose the right analysis method

In light of all of the qualitative analysis methods we’ve covered so far, you’re probably asking yourself the question, “ How do I choose the right one? ”

Much like all the other methodological decisions you’ll need to make, selecting the right qualitative analysis method largely depends on your research aims, objectives and questions . In other words, the best tool for the job depends on what you’re trying to build. For example:

  • Perhaps your research aims to analyse the use of words and what they reveal about the intention of the storyteller and the cultural context of the time.
  • Perhaps your research aims to develop an understanding of the unique personal experiences of people that have experienced a certain event, or
  • Perhaps your research aims to develop insight regarding the influence of a certain culture on its members.

As you can probably see, each of these research aims are distinctly different , and therefore different analysis methods would be suitable for each one. For example, narrative analysis would likely be a good option for the first aim, while grounded theory wouldn’t be as relevant. 

It’s also important to remember that each method has its own set of strengths, weaknesses and general limitations. No single analysis method is perfect . So, depending on the nature of your research, it may make sense to adopt more than one method (this is called triangulation ). Keep in mind though that this will of course be quite time-consuming.

As we’ve seen, all of the qualitative analysis methods we’ve discussed make use of coding and theme-generating techniques, but the intent and approach of each analysis method differ quite substantially. So, it’s very important to come into your research with a clear intention before you decide which analysis method (or methods) to use.

Start by reviewing your research aims , objectives and research questions to assess what exactly you’re trying to find out – then select a qualitative analysis method that fits. Never pick a method just because you like it or have experience using it – your analysis method (or methods) must align with your broader research aims and objectives.

No single analysis method is perfect, so it can often make sense to adopt more than one  method (this is called triangulation).

Let’s recap on QDA methods…

In this post, we looked at six popular qualitative data analysis methods:

  • First, we looked at content analysis , a straightforward method that blends a little bit of quant into a primarily qualitative analysis.
  • Then we looked at narrative analysis , which is about analysing how stories are told.
  • Next up was discourse analysis – which is about analysing conversations and interactions.
  • Then we moved on to thematic analysis – which is about identifying themes and patterns.
  • From there, we went south with grounded theory – which is about starting from scratch with a specific question and using the data alone to build a theory in response to that question.
  • And finally, we looked at IPA – which is about understanding people’s unique experiences of a phenomenon.

Of course, these aren’t the only options when it comes to qualitative data analysis, but they’re a great starting point if you’re dipping your toes into qualitative research for the first time.

If you’re still feeling a bit confused, consider our private coaching service , where we hold your hand through the research process to help you develop your best work.

what is method of data analysis in research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Research design for qualitative and quantitative studies

84 Comments

Richard N

This has been very helpful. Thank you.

netaji

Thank you madam,

Mariam Jaiyeola

Thank you so much for this information

Nzube

I wonder it so clear for understand and good for me. can I ask additional query?

Lee

Very insightful and useful

Susan Nakaweesi

Good work done with clear explanations. Thank you.

Titilayo

Thanks so much for the write-up, it’s really good.

Hemantha Gunasekara

Thanks madam . It is very important .

Gumathandra

thank you very good

Pramod Bahulekar

This has been very well explained in simple language . It is useful even for a new researcher.

Derek Jansen

Great to hear that. Good luck with your qualitative data analysis, Pramod!

Adam Zahir

This is very useful information. And it was very a clear language structured presentation. Thanks a lot.

Golit,F.

Thank you so much.

Emmanuel

very informative sequential presentation

Shahzada

Precise explanation of method.

Alyssa

Hi, may we use 2 data analysis methods in our qualitative research?

Thanks for your comment. Most commonly, one would use one type of analysis method, but it depends on your research aims and objectives.

Dr. Manju Pandey

You explained it in very simple language, everyone can understand it. Thanks so much.

Phillip

Thank you very much, this is very helpful. It has been explained in a very simple manner that even a layman understands

Anne

Thank nicely explained can I ask is Qualitative content analysis the same as thematic analysis?

Thanks for your comment. No, QCA and thematic are two different types of analysis. This article might help clarify – https://onlinelibrary.wiley.com/doi/10.1111/nhs.12048

Rev. Osadare K . J

This is my first time to come across a well explained data analysis. so helpful.

Tina King

I have thoroughly enjoyed your explanation of the six qualitative analysis methods. This is very helpful. Thank you!

Bromie

Thank you very much, this is well explained and useful

udayangani

i need a citation of your book.

khutsafalo

Thanks a lot , remarkable indeed, enlighting to the best

jas

Hi Derek, What other theories/methods would you recommend when the data is a whole speech?

M

Keep writing useful artikel.

Adane

It is important concept about QDA and also the way to express is easily understandable, so thanks for all.

Carl Benecke

Thank you, this is well explained and very useful.

Ngwisa

Very helpful .Thanks.

Hajra Aman

Hi there! Very well explained. Simple but very useful style of writing. Please provide the citation of the text. warm regards

Hillary Mophethe

The session was very helpful and insightful. Thank you

This was very helpful and insightful. Easy to read and understand

Catherine

As a professional academic writer, this has been so informative and educative. Keep up the good work Grad Coach you are unmatched with quality content for sure.

Keep up the good work Grad Coach you are unmatched with quality content for sure.

Abdulkerim

Its Great and help me the most. A Million Thanks you Dr.

Emanuela

It is a very nice work

Noble Naade

Very insightful. Please, which of this approach could be used for a research that one is trying to elicit students’ misconceptions in a particular concept ?

Karen

This is Amazing and well explained, thanks

amirhossein

great overview

Tebogo

What do we call a research data analysis method that one use to advise or determining the best accounting tool or techniques that should be adopted in a company.

Catherine Shimechero

Informative video, explained in a clear and simple way. Kudos

Van Hmung

Waoo! I have chosen method wrong for my data analysis. But I can revise my work according to this guide. Thank you so much for this helpful lecture.

BRIAN ONYANGO MWAGA

This has been very helpful. It gave me a good view of my research objectives and how to choose the best method. Thematic analysis it is.

Livhuwani Reineth

Very helpful indeed. Thanku so much for the insight.

Storm Erlank

This was incredibly helpful.

Jack Kanas

Very helpful.

catherine

very educative

Wan Roslina

Nicely written especially for novice academic researchers like me! Thank you.

Talash

choosing a right method for a paper is always a hard job for a student, this is a useful information, but it would be more useful personally for me, if the author provide me with a little bit more information about the data analysis techniques in type of explanatory research. Can we use qualitative content analysis technique for explanatory research ? or what is the suitable data analysis method for explanatory research in social studies?

ramesh

that was very helpful for me. because these details are so important to my research. thank you very much

Kumsa Desisa

I learnt a lot. Thank you

Tesfa NT

Relevant and Informative, thanks !

norma

Well-planned and organized, thanks much! 🙂

Dr. Jacob Lubuva

I have reviewed qualitative data analysis in a simplest way possible. The content will highly be useful for developing my book on qualitative data analysis methods. Cheers!

Nyi Nyi Lwin

Clear explanation on qualitative and how about Case study

Ogobuchi Otuu

This was helpful. Thank you

Alicia

This was really of great assistance, it was just the right information needed. Explanation very clear and follow.

Wow, Thanks for making my life easy

C. U

This was helpful thanks .

Dr. Alina Atif

Very helpful…. clear and written in an easily understandable manner. Thank you.

Herb

This was so helpful as it was easy to understand. I’m a new to research thank you so much.

cissy

so educative…. but Ijust want to know which method is coding of the qualitative or tallying done?

Ayo

Thank you for the great content, I have learnt a lot. So helpful

Tesfaye

precise and clear presentation with simple language and thank you for that.

nneheng

very informative content, thank you.

Oscar Kuebutornye

You guys are amazing on YouTube on this platform. Your teachings are great, educative, and informative. kudos!

NG

Brilliant Delivery. You made a complex subject seem so easy. Well done.

Ankit Kumar

Beautifully explained.

Thanks a lot

Kidada Owen-Browne

Is there a video the captures the practical process of coding using automated applications?

Thanks for the comment. We don’t recommend using automated applications for coding, as they are not sufficiently accurate in our experience.

Mathewos Damtew

content analysis can be qualitative research?

Hend

THANK YOU VERY MUCH.

Dev get

Thank you very much for such a wonderful content

Kassahun Aman

do you have any material on Data collection

Prince .S. mpofu

What a powerful explanation of the QDA methods. Thank you.

Kassahun

Great explanation both written and Video. i have been using of it on a day to day working of my thesis project in accounting and finance. Thank you very much for your support.

BORA SAMWELI MATUTULI

very helpful, thank you so much

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Banner

Research Guide: Data analysis and reporting findings

  • Postgraduate Online Training subject guide This link opens in a new window
  • Open Educational Resources (OERs)
  • Library support
  • Research ideas
  • You and your supervisor
  • Researcher skills
  • Research Data Management This link opens in a new window
  • Literature review
  • Plagiarism This link opens in a new window
  • Research Methods
  • Data analysis and reporting findings
  • Statistical support
  • Writing support
  • Researcher visibility
  • Conferences and Presentations
  • Postgraduate Forums
  • Soft skills development
  • Emotional support
  • The Commons Informer (blog)
  • Research Tip Archives
  • RC Newsletter Archives
  • Evaluation Forms

Data analysis and findings

Data analysis is the most crucial part of any research. Data analysis summarizes collected data. It involves the interpretation of data gathered through the use of analytical and logical reasoning to determine patterns, relationships or trends. 

Data Analysis Checklist

Cleaning  data

* Did you capture and code your data in the right manner?

*Do you have all data or missing data?

* Do you have enough observations?

* Do you have any outliers? If yes, what is the remedy for outlier?

* Does your data have the potential to answer your questions?

Analyzing data

* Visualize your data, e.g. charts, tables, and graphs, to mention a few.

*  Identify patterns, correlations, and trends

* Test your hypotheses

* Let your data tell a story

Reports the results

* Communicate and interpret the results

* Conclude and recommend

* Your targeted audience must understand your results

* Use more datasets and samples

* Use accessible and understandable data analytical tool

* Do not delegate your data analysis

* Clean data to confirm that they are complete and free from errors

* Analyze cleaned data

* Understand your results

* Keep in mind who will be reading your results and present it in a way that they will understand it

* Share the results with the supervisor oftentimes

Past presentations

  • PhD Writing Retreat - Analysing_Fieldwork_Data by Cori Wielenga A clear and concise presentation on the ‘now what’ and ‘so what’ of data collection and analysis - compiled and originally presented by Cori Wielenga.

Online Resources

what is method of data analysis in research

  • Qualitative analysis of interview data: A step-by-step guide
  • Qualitative Data Analysis - Coding & Developing Themes

Recommended Quantitative Data Analysis books

what is method of data analysis in research

Recommended Qualitative Data Analysis books

what is method of data analysis in research

  • << Previous: Data collection techniques
  • Next: Statistical support >>
  • Last Updated: Apr 22, 2024 11:02 AM
  • URL: https://library.up.ac.za/c.php?g=485435
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

what is method of data analysis in research

Home Market Research

Qualitative Data Analysis: What is it, Methods + Examples

Explore qualitative data analysis with diverse methods and real-world examples. Uncover the nuances of human experiences with this guide.

In a world rich with information and narrative, understanding the deeper layers of human experiences requires a unique vision that goes beyond numbers and figures. This is where the power of qualitative data analysis comes to light.

In this blog, we’ll learn about qualitative data analysis, explore its methods, and provide real-life examples showcasing its power in uncovering insights.

What is Qualitative Data Analysis?

Qualitative data analysis is a systematic process of examining non-numerical data to extract meaning, patterns, and insights.

In contrast to quantitative analysis, which focuses on numbers and statistical metrics, the qualitative study focuses on the qualitative aspects of data, such as text, images, audio, and videos. It seeks to understand every aspect of human experiences, perceptions, and behaviors by examining the data’s richness.

Companies frequently conduct this analysis on customer feedback. You can collect qualitative data from reviews, complaints, chat messages, interactions with support centers, customer interviews, case notes, or even social media comments. This kind of data holds the key to understanding customer sentiments and preferences in a way that goes beyond mere numbers.

Importance of Qualitative Data Analysis

Qualitative data analysis plays a crucial role in your research and decision-making process across various disciplines. Let’s explore some key reasons that underline the significance of this analysis:

In-Depth Understanding

It enables you to explore complex and nuanced aspects of a phenomenon, delving into the ‘how’ and ‘why’ questions. This method provides you with a deeper understanding of human behavior, experiences, and contexts that quantitative approaches might not capture fully.

Contextual Insight

You can use this analysis to give context to numerical data. It will help you understand the circumstances and conditions that influence participants’ thoughts, feelings, and actions. This contextual insight becomes essential for generating comprehensive explanations.

Theory Development

You can generate or refine hypotheses via qualitative data analysis. As you analyze the data attentively, you can form hypotheses, concepts, and frameworks that will drive your future research and contribute to theoretical advances.

Participant Perspectives

When performing qualitative research, you can highlight participant voices and opinions. This approach is especially useful for understanding marginalized or underrepresented people, as it allows them to communicate their experiences and points of view.

Exploratory Research

The analysis is frequently used at the exploratory stage of your project. It assists you in identifying important variables, developing research questions, and designing quantitative studies that will follow.

Types of Qualitative Data

When conducting qualitative research, you can use several qualitative data collection methods , and here you will come across many sorts of qualitative data that can provide you with unique insights into your study topic. These data kinds add new views and angles to your understanding and analysis.

Interviews and Focus Groups

Interviews and focus groups will be among your key methods for gathering qualitative data. Interviews are one-on-one talks in which participants can freely share their thoughts, experiences, and opinions.

Focus groups, on the other hand, are discussions in which members interact with one another, resulting in dynamic exchanges of ideas. Both methods provide rich qualitative data and direct access to participant perspectives.

Observations and Field Notes

Observations and field notes are another useful sort of qualitative data. You can immerse yourself in the research environment through direct observation, carefully documenting behaviors, interactions, and contextual factors.

These observations will be recorded in your field notes, providing a complete picture of the environment and the behaviors you’re researching. This data type is especially important for comprehending behavior in their natural setting.

Textual and Visual Data

Textual and visual data include a wide range of resources that can be qualitatively analyzed. Documents, written narratives, and transcripts from various sources, such as interviews or speeches, are examples of textual data.

Photographs, films, and even artwork provide a visual layer to your research. These forms of data allow you to investigate what is spoken and the underlying emotions, details, and symbols expressed by language or pictures.

When to Choose Qualitative Data Analysis over Quantitative Data Analysis

As you begin your research journey, understanding why the analysis of qualitative data is important will guide your approach to understanding complex events. If you analyze qualitative data, it will provide new insights that complement quantitative methodologies, which will give you a broader understanding of your study topic.

It is critical to know when to use qualitative analysis over quantitative procedures. You can prefer qualitative data analysis when:

  • Complexity Reigns: When your research questions involve deep human experiences, motivations, or emotions, qualitative research excels at revealing these complexities.
  • Exploration is Key: Qualitative analysis is ideal for exploratory research. It will assist you in understanding a new or poorly understood topic before formulating quantitative hypotheses.
  • Context Matters: If you want to understand how context affects behaviors or results, qualitative data analysis provides the depth needed to grasp these relationships.
  • Unanticipated Findings: When your study provides surprising new viewpoints or ideas, qualitative analysis helps you to delve deeply into these emerging themes.
  • Subjective Interpretation is Vital: When it comes to understanding people’s subjective experiences and interpretations, qualitative data analysis is the way to go.

You can make informed decisions regarding the right approach for your research objectives if you understand the importance of qualitative analysis and recognize the situations where it shines.

Qualitative Data Analysis Methods and Examples

Exploring various qualitative data analysis methods will provide you with a wide collection for making sense of your research findings. Once the data has been collected, you can choose from several analysis methods based on your research objectives and the data type you’ve collected.

There are five main methods for analyzing qualitative data. Each method takes a distinct approach to identifying patterns, themes, and insights within your qualitative data. They are:

Method 1: Content Analysis

Content analysis is a methodical technique for analyzing textual or visual data in a structured manner. In this method, you will categorize qualitative data by splitting it into manageable pieces and assigning the manual coding process to these units.

As you go, you’ll notice ongoing codes and designs that will allow you to conclude the content. This method is very beneficial for detecting common ideas, concepts, or themes in your data without losing the context.

Steps to Do Content Analysis

Follow these steps when conducting content analysis:

  • Collect and Immerse: Begin by collecting the necessary textual or visual data. Immerse yourself in this data to fully understand its content, context, and complexities.
  • Assign Codes and Categories: Assign codes to relevant data sections that systematically represent major ideas or themes. Arrange comparable codes into groups that cover the major themes.
  • Analyze and Interpret: Develop a structured framework from the categories and codes. Then, evaluate the data in the context of your research question, investigate relationships between categories, discover patterns, and draw meaning from these connections.

Benefits & Challenges

There are various advantages to using content analysis:

  • Structured Approach: It offers a systematic approach to dealing with large data sets and ensures consistency throughout the research.
  • Objective Insights: This method promotes objectivity, which helps to reduce potential biases in your study.
  • Pattern Discovery: Content analysis can help uncover hidden trends, themes, and patterns that are not always obvious.
  • Versatility: You can apply content analysis to various data formats, including text, internet content, images, etc.

However, keep in mind the challenges that arise:

  • Subjectivity: Even with the best attempts, a certain bias may remain in coding and interpretation.
  • Complexity: Analyzing huge data sets requires time and great attention to detail.
  • Contextual Nuances: Content analysis may not capture all of the contextual richness that qualitative data analysis highlights.

Example of Content Analysis

Suppose you’re conducting market research and looking at customer feedback on a product. As you collect relevant data and analyze feedback, you’ll see repeating codes like “price,” “quality,” “customer service,” and “features.” These codes are organized into categories such as “positive reviews,” “negative reviews,” and “suggestions for improvement.”

According to your findings, themes such as “price” and “customer service” stand out and show that pricing and customer service greatly impact customer satisfaction. This example highlights the power of content analysis for obtaining significant insights from large textual data collections.

Method 2: Thematic Analysis

Thematic analysis is a well-structured procedure for identifying and analyzing recurring themes in your data. As you become more engaged in the data, you’ll generate codes or short labels representing key concepts. These codes are then organized into themes, providing a consistent framework for organizing and comprehending the substance of the data.

The analysis allows you to organize complex narratives and perspectives into meaningful categories, which will allow you to identify connections and patterns that may not be visible at first.

Steps to Do Thematic Analysis

Follow these steps when conducting a thematic analysis:

  • Code and Group: Start by thoroughly examining the data and giving initial codes that identify the segments. To create initial themes, combine relevant codes.
  • Code and Group: Begin by engaging yourself in the data, assigning first codes to notable segments. To construct basic themes, group comparable codes together.
  • Analyze and Report: Analyze the data within each theme to derive relevant insights. Organize the topics into a consistent structure and explain your findings, along with data extracts that represent each theme.

Thematic analysis has various benefits:

  • Structured Exploration: It is a method for identifying patterns and themes in complex qualitative data.
  • Comprehensive knowledge: Thematic analysis promotes an in-depth understanding of the complications and meanings of the data.
  • Application Flexibility: This method can be customized to various research situations and data kinds.

However, challenges may arise, such as:

  • Interpretive Nature: Interpreting qualitative data in thematic analysis is vital, and it is critical to manage researcher bias.
  • Time-consuming: The study can be time-consuming, especially with large data sets.
  • Subjectivity: The selection of codes and topics might be subjective.

Example of Thematic Analysis

Assume you’re conducting a thematic analysis on job satisfaction interviews. Following your immersion in the data, you assign initial codes such as “work-life balance,” “career growth,” and “colleague relationships.” As you organize these codes, you’ll notice themes develop, such as “Factors Influencing Job Satisfaction” and “Impact on Work Engagement.”

Further investigation reveals the tales and experiences included within these themes and provides insights into how various elements influence job satisfaction. This example demonstrates how thematic analysis can reveal meaningful patterns and insights in qualitative data.

Method 3: Narrative Analysis

The narrative analysis involves the narratives that people share. You’ll investigate the histories in your data, looking at how stories are created and the meanings they express. This method is excellent for learning how people make sense of their experiences through narrative.

Steps to Do Narrative Analysis

The following steps are involved in narrative analysis:

  • Gather and Analyze: Start by collecting narratives, such as first-person tales, interviews, or written accounts. Analyze the stories, focusing on the plot, feelings, and characters.
  • Find Themes: Look for recurring themes or patterns in various narratives. Think about the similarities and differences between these topics and personal experiences.
  • Interpret and Extract Insights: Contextualize the narratives within their larger context. Accept the subjective nature of each narrative and analyze the narrator’s voice and style. Extract insights from the tales by diving into the emotions, motivations, and implications communicated by the stories.

There are various advantages to narrative analysis:

  • Deep Exploration: It lets you look deeply into people’s personal experiences and perspectives.
  • Human-Centered: This method prioritizes the human perspective, allowing individuals to express themselves.

However, difficulties may arise, such as:

  • Interpretive Complexity: Analyzing narratives requires dealing with the complexities of meaning and interpretation.
  • Time-consuming: Because of the richness and complexities of tales, working with them can be time-consuming.

Example of Narrative Analysis

Assume you’re conducting narrative analysis on refugee interviews. As you read the stories, you’ll notice common themes of toughness, loss, and hope. The narratives provide insight into the obstacles that refugees face, their strengths, and the dreams that guide them.

The analysis can provide a deeper insight into the refugees’ experiences and the broader social context they navigate by examining the narratives’ emotional subtleties and underlying meanings. This example highlights how narrative analysis can reveal important insights into human stories.

Method 4: Grounded Theory Analysis

Grounded theory analysis is an iterative and systematic approach that allows you to create theories directly from data without being limited by pre-existing hypotheses. With an open mind, you collect data and generate early codes and labels that capture essential ideas or concepts within the data.

As you progress, you refine these codes and increasingly connect them, eventually developing a theory based on the data. Grounded theory analysis is a dynamic process for developing new insights and hypotheses based on details in your data.

Steps to Do Grounded Theory Analysis

Grounded theory analysis requires the following steps:

  • Initial Coding: First, immerse yourself in the data, producing initial codes that represent major concepts or patterns.
  • Categorize and Connect: Using axial coding, organize the initial codes, which establish relationships and connections between topics.
  • Build the Theory: Focus on creating a core category that connects the codes and themes. Regularly refine the theory by comparing and integrating new data, ensuring that it evolves organically from the data.

Grounded theory analysis has various benefits:

  • Theory Generation: It provides a one-of-a-kind opportunity to generate hypotheses straight from data and promotes new insights.
  • In-depth Understanding: The analysis allows you to deeply analyze the data and reveal complex relationships and patterns.
  • Flexible Process: This method is customizable and ongoing, which allows you to enhance your research as you collect additional data.

However, challenges might arise with:

  • Time and Resources: Because grounded theory analysis is a continuous process, it requires a large commitment of time and resources.
  • Theoretical Development: Creating a grounded theory involves a thorough understanding of qualitative data analysis software and theoretical concepts.
  • Interpretation of Complexity: Interpreting and incorporating a newly developed theory into existing literature can be intellectually hard.

Example of Grounded Theory Analysis

Assume you’re performing a grounded theory analysis on workplace collaboration interviews. As you open code the data, you will discover notions such as “communication barriers,” “team dynamics,” and “leadership roles.” Axial coding demonstrates links between these notions, emphasizing the significance of efficient communication in developing collaboration.

You create the core “Integrated Communication Strategies” category through selective coding, which unifies new topics.

This theory-driven category serves as the framework for understanding how numerous aspects contribute to effective team collaboration. This example shows how grounded theory analysis allows you to generate a theory directly from the inherent nature of the data.

Method 5: Discourse Analysis

Discourse analysis focuses on language and communication. You’ll look at how language produces meaning and how it reflects power relations, identities, and cultural influences. This strategy examines what is said and how it is said; the words, phrasing, and larger context of communication.

The analysis is precious when investigating power dynamics, identities, and cultural influences encoded in language. By evaluating the language used in your data, you can identify underlying assumptions, cultural standards, and how individuals negotiate meaning through communication.

Steps to Do Discourse Analysis

Conducting discourse analysis entails the following steps:

  • Select Discourse: For analysis, choose language-based data such as texts, speeches, or media content.
  • Analyze Language: Immerse yourself in the conversation, examining language choices, metaphors, and underlying assumptions.
  • Discover Patterns: Recognize the dialogue’s reoccurring themes, ideologies, and power dynamics. To fully understand the effects of these patterns, put them in their larger context.

There are various advantages of using discourse analysis:

  • Understanding Language: It provides an extensive understanding of how language builds meaning and influences perceptions.
  • Uncovering Power Dynamics: The analysis reveals how power dynamics appear via language.
  • Cultural Insights: This method identifies cultural norms, beliefs, and ideologies stored in communication.

However, the following challenges may arise:

  • Complexity of Interpretation: Language analysis involves navigating multiple levels of nuance and interpretation.
  • Subjectivity: Interpretation can be subjective, so controlling researcher bias is important.
  • Time-Intensive: Discourse analysis can take a lot of time because careful linguistic study is required in this analysis.

Example of Discourse Analysis

Consider doing discourse analysis on media coverage of a political event. You notice repeating linguistic patterns in news articles that depict the event as a conflict between opposing parties. Through deconstruction, you can expose how this framing supports particular ideologies and power relations.

You can illustrate how language choices influence public perceptions and contribute to building the narrative around the event by analyzing the speech within the broader political and social context. This example shows how discourse analysis can reveal hidden power dynamics and cultural influences on communication.

How to do Qualitative Data Analysis with the QuestionPro Research suite?

QuestionPro is a popular survey and research platform that offers tools for collecting and analyzing qualitative and quantitative data. Follow these general steps for conducting qualitative data analysis using the QuestionPro Research Suite:

  • Collect Qualitative Data: Set up your survey to capture qualitative responses. It might involve open-ended questions, text boxes, or comment sections where participants can provide detailed responses.
  • Export Qualitative Responses: Export the responses once you’ve collected qualitative data through your survey. QuestionPro typically allows you to export survey data in various formats, such as Excel or CSV.
  • Prepare Data for Analysis: Review the exported data and clean it if necessary. Remove irrelevant or duplicate entries to ensure your data is ready for analysis.
  • Code and Categorize Responses: Segment and label data, letting new patterns emerge naturally, then develop categories through axial coding to structure the analysis.
  • Identify Themes: Analyze the coded responses to identify recurring themes, patterns, and insights. Look for similarities and differences in participants’ responses.
  • Generate Reports and Visualizations: Utilize the reporting features of QuestionPro to create visualizations, charts, and graphs that help communicate the themes and findings from your qualitative research.
  • Interpret and Draw Conclusions: Interpret the themes and patterns you’ve identified in the qualitative data. Consider how these findings answer your research questions or provide insights into your study topic.
  • Integrate with Quantitative Data (if applicable): If you’re also conducting quantitative research using QuestionPro, consider integrating your qualitative findings with quantitative results to provide a more comprehensive understanding.

Qualitative data analysis is vital in uncovering various human experiences, views, and stories. If you’re ready to transform your research journey and apply the power of qualitative analysis, now is the moment to do it. Book a demo with QuestionPro today and begin your journey of exploration.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

NPS Survey Platform

NPS Survey Platform: Types, Tips, 11 Best Platforms & Tools

Apr 26, 2024

user journey vs user flow

User Journey vs User Flow: Differences and Similarities

gap analysis tools

Best 7 Gap Analysis Tools to Empower Your Business

Apr 25, 2024

employee survey tools

12 Best Employee Survey Tools for Organizational Excellence

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Table of Contents

What is data collection, why do we need data collection, what are the different data collection methods, data collection tools, the importance of ensuring accurate and appropriate data collection, issues related to maintaining the integrity of data collection, what are common challenges in data collection, what are the key steps in the data collection process, data collection considerations and best practices, choose the right data science program, are you interested in a career in data science, what is data collection: methods, types, tools.

What is Data Collection? Definition, Types, Tools, and Techniques

The process of gathering and analyzing accurate data from various sources to find answers to research problems, trends and probabilities, etc., to evaluate possible outcomes is Known as Data Collection. Knowledge is power, information is knowledge, and data is information in digitized form, at least as defined in IT. Hence, data is power. But before you can leverage that data into a successful strategy for your organization or business, you need to gather it. That’s your first step.

So, to help you get the process started, we shine a spotlight on data collection. What exactly is it? Believe it or not, it’s more than just doing a Google search! Furthermore, what are the different types of data collection? And what kinds of data collection tools and data collection techniques exist?

If you want to get up to speed about what is data collection process, you’ve come to the right place. 

Transform raw data into captivating visuals with Simplilearn's hands-on Data Visualization Courses and captivate your audience. Also, master the art of data management with Simplilearn's comprehensive data management courses  - unlock new career opportunities today!

Data collection is the process of collecting and evaluating information or data from multiple sources to find answers to research problems, answer questions, evaluate outcomes, and forecast trends and probabilities. It is an essential phase in all types of research, analysis, and decision-making, including that done in the social sciences, business, and healthcare.

Accurate data collection is necessary to make informed business decisions, ensure quality assurance, and keep research integrity.

During data collection, the researchers must identify the data types, the sources of data, and what methods are being used. We will soon see that there are many different data collection methods . There is heavy reliance on data collection in research, commercial, and government fields.

Before an analyst begins collecting data, they must answer three questions first:

  • What’s the goal or purpose of this research?
  • What kinds of data are they planning on gathering?
  • What methods and procedures will be used to collect, store, and process the information?

Additionally, we can break up data into qualitative and quantitative types. Qualitative data covers descriptions such as color, size, quality, and appearance. Quantitative data, unsurprisingly, deals with numbers, such as statistics, poll numbers, percentages, etc.

Before a judge makes a ruling in a court case or a general creates a plan of attack, they must have as many relevant facts as possible. The best courses of action come from informed decisions, and information and data are synonymous.

The concept of data collection isn’t a new one, as we’ll see later, but the world has changed. There is far more data available today, and it exists in forms that were unheard of a century ago. The data collection process has had to change and grow with the times, keeping pace with technology.

Whether you’re in the world of academia, trying to conduct research, or part of the commercial sector, thinking of how to promote a new product, you need data collection to help you make better choices.

Now that you know what is data collection and why we need it, let's take a look at the different methods of data collection. While the phrase “data collection” may sound all high-tech and digital, it doesn’t necessarily entail things like computers, big data , and the internet. Data collection could mean a telephone survey, a mail-in comment card, or even some guy with a clipboard asking passersby some questions. But let’s see if we can sort the different data collection methods into a semblance of organized categories.

Primary and secondary methods of data collection are two approaches used to gather information for research or analysis purposes. Let's explore each data collection method in detail:

1. Primary Data Collection:

Primary data collection involves the collection of original data directly from the source or through direct interaction with the respondents. This method allows researchers to obtain firsthand information specifically tailored to their research objectives. There are various techniques for primary data collection, including:

a. Surveys and Questionnaires: Researchers design structured questionnaires or surveys to collect data from individuals or groups. These can be conducted through face-to-face interviews, telephone calls, mail, or online platforms.

b. Interviews: Interviews involve direct interaction between the researcher and the respondent. They can be conducted in person, over the phone, or through video conferencing. Interviews can be structured (with predefined questions), semi-structured (allowing flexibility), or unstructured (more conversational).

c. Observations: Researchers observe and record behaviors, actions, or events in their natural setting. This method is useful for gathering data on human behavior, interactions, or phenomena without direct intervention.

d. Experiments: Experimental studies involve the manipulation of variables to observe their impact on the outcome. Researchers control the conditions and collect data to draw conclusions about cause-and-effect relationships.

e. Focus Groups: Focus groups bring together a small group of individuals who discuss specific topics in a moderated setting. This method helps in understanding opinions, perceptions, and experiences shared by the participants.

2. Secondary Data Collection:

Secondary data collection involves using existing data collected by someone else for a purpose different from the original intent. Researchers analyze and interpret this data to extract relevant information. Secondary data can be obtained from various sources, including:

a. Published Sources: Researchers refer to books, academic journals, magazines, newspapers, government reports, and other published materials that contain relevant data.

b. Online Databases: Numerous online databases provide access to a wide range of secondary data, such as research articles, statistical information, economic data, and social surveys.

c. Government and Institutional Records: Government agencies, research institutions, and organizations often maintain databases or records that can be used for research purposes.

d. Publicly Available Data: Data shared by individuals, organizations, or communities on public platforms, websites, or social media can be accessed and utilized for research.

e. Past Research Studies: Previous research studies and their findings can serve as valuable secondary data sources. Researchers can review and analyze the data to gain insights or build upon existing knowledge.

Now that we’ve explained the various techniques, let’s narrow our focus even further by looking at some specific tools. For example, we mentioned interviews as a technique, but we can further break that down into different interview types (or “tools”).

Word Association

The researcher gives the respondent a set of words and asks them what comes to mind when they hear each word.

Sentence Completion

Researchers use sentence completion to understand what kind of ideas the respondent has. This tool involves giving an incomplete sentence and seeing how the interviewee finishes it.

Role-Playing

Respondents are presented with an imaginary situation and asked how they would act or react if it was real.

In-Person Surveys

The researcher asks questions in person.

Online/Web Surveys

These surveys are easy to accomplish, but some users may be unwilling to answer truthfully, if at all.

Mobile Surveys

These surveys take advantage of the increasing proliferation of mobile technology. Mobile collection surveys rely on mobile devices like tablets or smartphones to conduct surveys via SMS or mobile apps.

Phone Surveys

No researcher can call thousands of people at once, so they need a third party to handle the chore. However, many people have call screening and won’t answer.

Observation

Sometimes, the simplest method is the best. Researchers who make direct observations collect data quickly and easily, with little intrusion or third-party bias. Naturally, it’s only effective in small-scale situations.

Accurate data collecting is crucial to preserving the integrity of research, regardless of the subject of study or preferred method for defining data (quantitative, qualitative). Errors are less likely to occur when the right data gathering tools are used (whether they are brand-new ones, updated versions of them, or already available).

Among the effects of data collection done incorrectly, include the following -

  • Erroneous conclusions that squander resources
  • Decisions that compromise public policy
  • Incapacity to correctly respond to research inquiries
  • Bringing harm to participants who are humans or animals
  • Deceiving other researchers into pursuing futile research avenues
  • The study's inability to be replicated and validated

When these study findings are used to support recommendations for public policy, there is the potential to result in disproportionate harm, even if the degree of influence from flawed data collecting may vary by discipline and the type of investigation.

Let us now look at the various issues that we might face while maintaining the integrity of data collection.

In order to assist the errors detection process in the data gathering process, whether they were done purposefully (deliberate falsifications) or not, maintaining data integrity is the main justification (systematic or random errors).

Quality assurance and quality control are two strategies that help protect data integrity and guarantee the scientific validity of study results.

Each strategy is used at various stages of the research timeline:

  • Quality control - tasks that are performed both after and during data collecting
  • Quality assurance - events that happen before data gathering starts

Let us explore each of them in more detail now.

Quality Assurance

As data collecting comes before quality assurance, its primary goal is "prevention" (i.e., forestalling problems with data collection). The best way to protect the accuracy of data collection is through prevention. The uniformity of protocol created in the thorough and exhaustive procedures manual for data collecting serves as the best example of this proactive step. 

The likelihood of failing to spot issues and mistakes early in the research attempt increases when guides are written poorly. There are several ways to show these shortcomings:

  • Failure to determine the precise subjects and methods for retraining or training staff employees in data collecting
  • List of goods to be collected, in part
  • There isn't a system in place to track modifications to processes that may occur as the investigation continues.
  • Instead of detailed, step-by-step instructions on how to deliver tests, there is a vague description of the data gathering tools that will be employed.
  • Uncertainty regarding the date, procedure, and identity of the person or people in charge of examining the data
  • Incomprehensible guidelines for using, adjusting, and calibrating the data collection equipment.

Now, let us look at how to ensure Quality Control.

Become a Data Scientist With Real-World Experience

Become a Data Scientist With Real-World Experience

Quality Control

Despite the fact that quality control actions (detection/monitoring and intervention) take place both after and during data collection, the specifics should be meticulously detailed in the procedures manual. Establishing monitoring systems requires a specific communication structure, which is a prerequisite. Following the discovery of data collection problems, there should be no ambiguity regarding the information flow between the primary investigators and staff personnel. A poorly designed communication system promotes slack oversight and reduces opportunities for error detection.

Direct staff observation conference calls, during site visits, or frequent or routine assessments of data reports to spot discrepancies, excessive numbers, or invalid codes can all be used as forms of detection or monitoring. Site visits might not be appropriate for all disciplines. Still, without routine auditing of records, whether qualitative or quantitative, it will be challenging for investigators to confirm that data gathering is taking place in accordance with the manual's defined methods. Additionally, quality control determines the appropriate solutions, or "actions," to fix flawed data gathering procedures and reduce recurrences.

Problems with data collection, for instance, that call for immediate action include:

  • Fraud or misbehavior
  • Systematic mistakes, procedure violations 
  • Individual data items with errors
  • Issues with certain staff members or a site's performance 

Researchers are trained to include one or more secondary measures that can be used to verify the quality of information being obtained from the human subject in the social and behavioral sciences where primary data collection entails using human subjects. 

For instance, a researcher conducting a survey would be interested in learning more about the prevalence of risky behaviors among young adults as well as the social factors that influence these risky behaviors' propensity for and frequency. Let us now explore the common challenges with regard to data collection.

There are some prevalent challenges faced while collecting data, let us explore a few of them to understand them better and avoid them.

Data Quality Issues

The main threat to the broad and successful application of machine learning is poor data quality. Data quality must be your top priority if you want to make technologies like machine learning work for you. Let's talk about some of the most prevalent data quality problems in this blog article and how to fix them.

Inconsistent Data

When working with various data sources, it's conceivable that the same information will have discrepancies between sources. The differences could be in formats, units, or occasionally spellings. The introduction of inconsistent data might also occur during firm mergers or relocations. Inconsistencies in data have a tendency to accumulate and reduce the value of data if they are not continually resolved. Organizations that have heavily focused on data consistency do so because they only want reliable data to support their analytics.

Data Downtime

Data is the driving force behind the decisions and operations of data-driven businesses. However, there may be brief periods when their data is unreliable or not prepared. Customer complaints and subpar analytical outcomes are only two ways that this data unavailability can have a significant impact on businesses. A data engineer spends about 80% of their time updating, maintaining, and guaranteeing the integrity of the data pipeline. In order to ask the next business question, there is a high marginal cost due to the lengthy operational lead time from data capture to insight.

Schema modifications and migration problems are just two examples of the causes of data downtime. Data pipelines can be difficult due to their size and complexity. Data downtime must be continuously monitored, and it must be reduced through automation.

Ambiguous Data

Even with thorough oversight, some errors can still occur in massive databases or data lakes. For data streaming at a fast speed, the issue becomes more overwhelming. Spelling mistakes can go unnoticed, formatting difficulties can occur, and column heads might be deceptive. This unclear data might cause a number of problems for reporting and analytics.

Become a Data Science Expert & Get Your Dream Job

Become a Data Science Expert & Get Your Dream Job

Duplicate Data

Streaming data, local databases, and cloud data lakes are just a few of the sources of data that modern enterprises must contend with. They might also have application and system silos. These sources are likely to duplicate and overlap each other quite a bit. For instance, duplicate contact information has a substantial impact on customer experience. If certain prospects are ignored while others are engaged repeatedly, marketing campaigns suffer. The likelihood of biased analytical outcomes increases when duplicate data are present. It can also result in ML models with biased training data.

Too Much Data

While we emphasize data-driven analytics and its advantages, a data quality problem with excessive data exists. There is a risk of getting lost in an abundance of data when searching for information pertinent to your analytical efforts. Data scientists, data analysts, and business users devote 80% of their work to finding and organizing the appropriate data. With an increase in data volume, other problems with data quality become more serious, particularly when dealing with streaming data and big files or databases.

Inaccurate Data

For highly regulated businesses like healthcare, data accuracy is crucial. Given the current experience, it is more important than ever to increase the data quality for COVID-19 and later pandemics. Inaccurate information does not provide you with a true picture of the situation and cannot be used to plan the best course of action. Personalized customer experiences and marketing strategies underperform if your customer data is inaccurate.

Data inaccuracies can be attributed to a number of things, including data degradation, human mistake, and data drift. Worldwide data decay occurs at a rate of about 3% per month, which is quite concerning. Data integrity can be compromised while being transferred between different systems, and data quality might deteriorate with time.

Hidden Data

The majority of businesses only utilize a portion of their data, with the remainder sometimes being lost in data silos or discarded in data graveyards. For instance, the customer service team might not receive client data from sales, missing an opportunity to build more precise and comprehensive customer profiles. Missing out on possibilities to develop novel products, enhance services, and streamline procedures is caused by hidden data.

Finding Relevant Data

Finding relevant data is not so easy. There are several factors that we need to consider while trying to find relevant data, which include -

  • Relevant Domain
  • Relevant demographics
  • Relevant Time period and so many more factors that we need to consider while trying to find relevant data.

Data that is not relevant to our study in any of the factors render it obsolete and we cannot effectively proceed with its analysis. This could lead to incomplete research or analysis, re-collecting data again and again, or shutting down the study.

Deciding the Data to Collect

Determining what data to collect is one of the most important factors while collecting data and should be one of the first factors while collecting data. We must choose the subjects the data will cover, the sources we will be used to gather it, and the quantity of information we will require. Our responses to these queries will depend on our aims, or what we expect to achieve utilizing your data. As an illustration, we may choose to gather information on the categories of articles that website visitors between the ages of 20 and 50 most frequently access. We can also decide to compile data on the typical age of all the clients who made a purchase from your business over the previous month.

Not addressing this could lead to double work and collection of irrelevant data or ruining your study as a whole.

Dealing With Big Data

Big data refers to exceedingly massive data sets with more intricate and diversified structures. These traits typically result in increased challenges while storing, analyzing, and using additional methods of extracting results. Big data refers especially to data sets that are quite enormous or intricate that conventional data processing tools are insufficient. The overwhelming amount of data, both unstructured and structured, that a business faces on a daily basis. 

The amount of data produced by healthcare applications, the internet, social networking sites social, sensor networks, and many other businesses are rapidly growing as a result of recent technological advancements. Big data refers to the vast volume of data created from numerous sources in a variety of formats at extremely fast rates. Dealing with this kind of data is one of the many challenges of Data Collection and is a crucial step toward collecting effective data. 

Low Response and Other Research Issues

Poor design and low response rates were shown to be two issues with data collecting, particularly in health surveys that used questionnaires. This might lead to an insufficient or inadequate supply of data for the study. Creating an incentivized data collection program might be beneficial in this case to get more responses.

Now, let us look at the key steps in the data collection process.

In the Data Collection Process, there are 5 key steps. They are explained briefly below -

1. Decide What Data You Want to Gather

The first thing that we need to do is decide what information we want to gather. We must choose the subjects the data will cover, the sources we will use to gather it, and the quantity of information that we would require. For instance, we may choose to gather information on the categories of products that an average e-commerce website visitor between the ages of 30 and 45 most frequently searches for. 

2. Establish a Deadline for Data Collection

The process of creating a strategy for data collection can now begin. We should set a deadline for our data collection at the outset of our planning phase. Some forms of data we might want to continuously collect. We might want to build up a technique for tracking transactional data and website visitor statistics over the long term, for instance. However, we will track the data throughout a certain time frame if we are tracking it for a particular campaign. In these situations, we will have a schedule for when we will begin and finish gathering data. 

3. Select a Data Collection Approach

We will select the data collection technique that will serve as the foundation of our data gathering plan at this stage. We must take into account the type of information that we wish to gather, the time period during which we will receive it, and the other factors we decide on to choose the best gathering strategy.

4. Gather Information

Once our plan is complete, we can put our data collection plan into action and begin gathering data. In our DMP, we can store and arrange our data. We need to be careful to follow our plan and keep an eye on how it's doing. Especially if we are collecting data regularly, setting up a timetable for when we will be checking in on how our data gathering is going may be helpful. As circumstances alter and we learn new details, we might need to amend our plan.

5. Examine the Information and Apply Your Findings

It's time to examine our data and arrange our findings after we have gathered all of our information. The analysis stage is essential because it transforms unprocessed data into insightful knowledge that can be applied to better our marketing plans, goods, and business judgments. The analytics tools included in our DMP can be used to assist with this phase. We can put the discoveries to use to enhance our business once we have discovered the patterns and insights in our data.

Let us now look at some data collection considerations and best practices that one might follow.

We must carefully plan before spending time and money traveling to the field to gather data. While saving time and resources, effective data collection strategies can help us collect richer, more accurate, and richer data.

Below, we will be discussing some of the best practices that we can follow for the best results -

1. Take Into Account the Price of Each Extra Data Point

Once we have decided on the data we want to gather, we need to make sure to take the expense of doing so into account. Our surveyors and respondents will incur additional costs for each additional data point or survey question.

2. Plan How to Gather Each Data Piece

There is a dearth of freely accessible data. Sometimes the data is there, but we may not have access to it. For instance, unless we have a compelling cause, we cannot openly view another person's medical information. It could be challenging to measure several types of information.

Consider how time-consuming and difficult it will be to gather each piece of information while deciding what data to acquire.

3. Think About Your Choices for Data Collecting Using Mobile Devices

Mobile-based data collecting can be divided into three categories -

  • IVRS (interactive voice response technology) -  Will call the respondents and ask them questions that have already been recorded. 
  • SMS data collection - Will send a text message to the respondent, who can then respond to questions by text on their phone. 
  • Field surveyors - Can directly enter data into an interactive questionnaire while speaking to each respondent, thanks to smartphone apps.

We need to make sure to select the appropriate tool for our survey and responders because each one has its own disadvantages and advantages.

4. Carefully Consider the Data You Need to Gather

It's all too easy to get information about anything and everything, but it's crucial to only gather the information that we require. 

It is helpful to consider these 3 questions:

  • What details will be helpful?
  • What details are available?
  • What specific details do you require?

5. Remember to Consider Identifiers

Identifiers, or details describing the context and source of a survey response, are just as crucial as the information about the subject or program that we are actually researching.

In general, adding more identifiers will enable us to pinpoint our program's successes and failures with greater accuracy, but moderation is the key.

6. Data Collecting Through Mobile Devices is the Way to Go

Although collecting data on paper is still common, modern technology relies heavily on mobile devices. They enable us to gather many various types of data at relatively lower prices and are accurate as well as quick. There aren't many reasons not to pick mobile-based data collecting with the boom of low-cost Android devices that are available nowadays.

The Ultimate Ticket to Top Data Science Job Roles

The Ultimate Ticket to Top Data Science Job Roles

1. What is data collection with example?

Data collection is the process of collecting and analyzing information on relevant variables in a predetermined, methodical way so that one can respond to specific research questions, test hypotheses, and assess results. Data collection can be either qualitative or quantitative. Example: A company collects customer feedback through online surveys and social media monitoring to improve their products and services.

2. What are the primary data collection methods?

As is well known, gathering primary data is costly and time intensive. The main techniques for gathering data are observation, interviews, questionnaires, schedules, and surveys.

3. What are data collection tools?

The term "data collecting tools" refers to the tools/devices used to gather data, such as a paper questionnaire or a system for computer-assisted interviews. Tools used to gather data include case studies, checklists, interviews, occasionally observation, surveys, and questionnaires.

4. What’s the difference between quantitative and qualitative methods?

While qualitative research focuses on words and meanings, quantitative research deals with figures and statistics. You can systematically measure variables and test hypotheses using quantitative methods. You can delve deeper into ideas and experiences using qualitative methodologies.

5. What are quantitative data collection methods?

While there are numerous other ways to get quantitative information, the methods indicated above—probability sampling, interviews, questionnaire observation, and document review—are the most typical and frequently employed, whether collecting information offline or online.

6. What is mixed methods research?

User research that includes both qualitative and quantitative techniques is known as mixed methods research. For deeper user insights, mixed methods research combines insightful user data with useful statistics.

7. What are the benefits of collecting data?

Collecting data offers several benefits, including:

  • Knowledge and Insight
  • Evidence-Based Decision Making
  • Problem Identification and Solution
  • Validation and Evaluation
  • Identifying Trends and Predictions
  • Support for Research and Development
  • Policy Development
  • Quality Improvement
  • Personalization and Targeting
  • Knowledge Sharing and Collaboration

8. What’s the difference between reliability and validity?

Reliability is about consistency and stability, while validity is about accuracy and appropriateness. Reliability focuses on the consistency of results, while validity focuses on whether the results are actually measuring what they are intended to measure. Both reliability and validity are crucial considerations in research to ensure the trustworthiness and meaningfulness of the collected data and measurements.

Are you thinking about pursuing a career in the field of data science? Simplilearn's Data Science courses are designed to provide you with the necessary skills and expertise to excel in this rapidly changing field. Here's a detailed comparison for your reference:

Program Name Data Scientist Master's Program Post Graduate Program In Data Science Post Graduate Program In Data Science Geo All Geos All Geos Not Applicable in US University Simplilearn Purdue Caltech Course Duration 11 Months 11 Months 11 Months Coding Experience Required Basic Basic No Skills You Will Learn 10+ skills including data structure, data manipulation, NumPy, Scikit-Learn, Tableau and more 8+ skills including Exploratory Data Analysis, Descriptive Statistics, Inferential Statistics, and more 8+ skills including Supervised & Unsupervised Learning Deep Learning Data Visualization, and more Additional Benefits Applied Learning via Capstone and 25+ Data Science Projects Purdue Alumni Association Membership Free IIMJobs Pro-Membership of 6 months Resume Building Assistance Upto 14 CEU Credits Caltech CTME Circle Membership Cost $$ $$$$ $$$$ Explore Program Explore Program Explore Program

We live in the Data Age, and if you want a career that fully takes advantage of this, you should consider a career in data science. Simplilearn offers a Caltech Post Graduate Program in Data Science  that will train you in everything you need to know to secure the perfect position. This Data Science PG program is ideal for all working professionals, covering job-critical topics like R, Python programming , machine learning algorithms , NLP concepts , and data visualization with Tableau in great detail. This is all provided via our interactive learning model with live sessions by global practitioners, practical labs, and industry projects.

Data Science & Business Analytics Courses Duration and Fees

Data Science & Business Analytics programs typically range from a few weeks to several months, with fees varying based on program and institution.

Recommended Reads

Data Science Career Guide: A Comprehensive Playbook To Becoming A Data Scientist

Difference Between Collection and Collections in Java

An Ultimate One-Stop Solution Guide to Collections in C# Programming With Examples

Managing Data

Capped Collection in MongoDB

What Are Java Collections and How to Implement Them?

Get Affiliated Certifications with Live Class programs

Data scientist.

  • Add the IBM Advantage to your Learning
  • 25 Industry-relevant Projects and Integrated labs

Caltech Data Sciences-Bootcamp

  • Exclusive visit to Caltech’s Robotics Lab

Caltech Post Graduate Program in Data Science

  • Earn a program completion certificate from Caltech CTME
  • Curriculum delivered in live online sessions by industry experts
  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

This paper is in the following e-collection/theme issue:

Published on 25.4.2024 in Vol 26 (2024)

Effect of Prosocial Behaviors on e-Consultations in a Web-Based Health Care Community: Panel Data Analysis

Authors of this article:

Author Orcid Image

Original Paper

  • Xiaoxiao Liu 1, 2 , PhD   ; 
  • Huijing Guo 3 , PhD   ; 
  • Le Wang 4 , PhD   ; 
  • Mingye Hu 5 , PhD   ; 
  • Yichan Wei 1 , BBM   ; 
  • Fei Liu 6 , PhD   ; 
  • Xifu Wang 7 , MCM  

1 School of Management, Xi’an Jiaotong University, Xi'an, China

2 China Institute of Hospital Development and Reform, Xi'an Jiaotong University, Xi'an, China

3 School of Economics and Management, China University of Mining and Technology, Xuzhou, China

4 College of Business, City University of Hong Kong, Hong Kong, China (Hong Kong)

5 School of Economics and Management, Xi’an University of Technology, Xi'an, China

6 School of Management, Harbin Engineering University, Harbin, China

7 Healthcare Simulation Center, Guangzhou First People’s Hospital, Guangzhou, China

Corresponding Author:

Xifu Wang, MCM

Healthcare Simulation Center

Guangzhou First People’s Hospital

1 Pan Fu Road

Yuexiu District

Guangzhou, 510180

Phone: 86 13560055951

Email: [email protected]

Background: Patients using web-based health care communities for e-consultation services have the option to choose their service providers from an extensive digital market. To stand out in this crowded field, doctors in web-based health care communities often engage in prosocial behaviors, such as proactive and reactive actions, to attract more users. However, the effect of these behaviors on the volume of e-consultations remains unclear and warrants further exploration.

Objective: This study investigates the impact of various prosocial behaviors on doctors’ e-consultation volume in web-based health care communities and the moderating effects of doctors’ digital and offline reputations.

Methods: A panel data set containing information on 2880 doctors over a 22-month period was obtained from one of the largest web-based health care communities in China. Data analysis was conducted using a 2-way fixed effects model with robust clustered SEs. A series of robustness checks were also performed, including alternative measurements of independent variables and estimation methods.

Results: Results indicated that both types of doctors’ prosocial behaviors, namely, proactive and reactive actions, positively impacted their e-consultation volume. In terms of the moderating effects of external reputation, doctors’ offline professional titles were found to negatively moderate the relationship between their proactive behaviors and their e-consultation volume. However, these titles did not significantly affect the relationship between doctors’ reactive behaviors and their e-consultation volume ( P =.45). Additionally, doctors’ digital recommendations from patients negatively moderated both the relationship between doctors’ proactive behaviors and e-consultation volume and the relationship between doctors’ reactive behaviors and e-consultation volume.

Conclusions: Drawing upon functional motives theory and social exchange theory, this study categorizes doctors’ prosocial behaviors into proactive and reactive actions. It provides empirical evidence that prosocial behaviors can lead to an increase in e-consultation volume. This study also illuminates the moderating roles doctors’ digital and offline reputations play in the relationships between prosocial behaviors and e-consultation volume.

Introduction

e-Consultations, offered through web-based health care communities [ 1 ], are increasingly becoming vital complements to traditional hospital services [ 2 - 4 ]. In hospital consultations, patients can only passively accept treatment [ 5 ] from a limited pool of medical resources within a geographical radius. However, when engaging with web-based health care communities, patients can search for primary care solutions [ 6 ] from an extensive digital market in a relatively short time [ 7 ]. Given that the diagnostic accuracy of e-consultations matches that of hospital consultations [ 8 - 10 ], e-consultations are becoming increasingly attractive to patients [ 3 , 11 ].

Doctors are also showing a growing interest in e-consultations, motivated by economic and social benefits. First, doctors can achieve economic gains by participating in e-consultations [ 7 , 12 ]. Web-based consultation platforms facilitate an efficient reputation system, enabling patients to easily provide feedback about doctors. Consequently, doctors can use e-consultation to strengthen their relationship with patients [ 13 , 14 ] and foster positive word-of-mouth [ 15 ]. More e-consultations can benefit doctors by retaining current patients, attracting new ones, and boosting in-person hospital visits [ 16 , 17 ]. Second, doctors could also receive social returns from engaging in e-consultation [ 7 ]. Active participation in e-consultations allows doctors to demonstrate their skills, attitude, and experience, aiding in accumulating professional capital [ 7 ], building their reputation [ 18 ], and increasing their social influence [ 19 ]. Given these tangible and intangible benefits, it is essential for doctors to diligently provide the desired e-consultations and make additional efforts to highlight their service attributes to stand out [ 6 , 20 , 21 ]. This involves engaging in prosocial behaviors in web-based health care communities, which is the primary research focus of this study.

Prior studies have examined the effects of prosocial behaviors on financial outcomes, such as actions reflecting social responsibility in the workplace [ 22 ]. In the health care sector, previous research has explored doctors’ prosocial behaviors within traditional, offline medical services. Doctors, working in established medical institutes and serving patients with limited choices of clinical service providers, often aim for self-satisfaction and patient satisfaction with their offline prosocial behaviors. For example, research indicates that doctors may act prosocially to regulate their self-oriented feelings [ 23 ] and foster a caring and understanding attitude toward patients [ 24 , 25 ]. Additionally, doctors who demonstrate more empathy and care can elicit positive emotions in patients and improve the doctor-patient relationship [ 26 , 27 ].

Compared to the offline context, doctors’ prosocial behaviors in a digital context may differ in 2 aspects. First, the internet allows patients to choose from a broader, more diverse range of doctors without the constraints of time and space [ 7 ]. However, the uncertainty inherent in the digital environment creates a more pronounced information asymmetry between patients and doctors [ 28 ], consequently making it more challenging for patients to establish trust. Therefore, doctors’ prosocial behaviors are crucial in building their self-image, establishing patients’ trust, and assisting patients in identifying suitable doctors [ 29 , 30 ]. Second, unlike offline environments, web-based medical platforms offer a range of functions, including asynchronous activities such as publishing articles, as well as real-time interactional actions such as answering questions during live streams. This array of functions facilitates the adoption of more diverse prosocial behaviors by doctors.

Although these differences underscore the importance of studying doctors’ prosocial behavior, there has been limited research focusing on the impact of such behaviors in the digital context. One previous study has scrutinized the impact of prosocial behaviors, such as answering patients’ questions freely, on patient engagement within web-based health care communities [ 31 ]. An aspect that requires further exploration is how doctors’ motivations and patients’ involvement vary in doctors’ helping behaviors. Consequently, studies on web-based health care communities should differentiate between diverse prosocial actions to understand their effects on doctors’ web-based service outcomes. This study aims to contribute new knowledge regarding the full breadth of doctors’ prosocial behaviors.

Unlike the previous study that exclusively investigated doctors’ asynchronous behaviors in web-based health care communities [ 31 ], this study also explores the role of synchronous reactive actions in achieving optimal doctors’ e-consultation volume. Recently, web-based health care communities have developed and released live-streaming functions to assist doctors in providing voluntary interactions with patients. The effect of doctors’ engagement in medical live streaming on e-consultation services remains unexplored. While these behaviors could demonstrate doctors’ ethical traits and ability to fulfill an e-consultation workflow, a potential trade-off with e-consultations may exist when doctors engage in prosocial behaviors.

In summary, this study examines the effects of doctors’ proactive and reactive prosocial behaviors, considering their digital and offline reputations as potential moderating factors. First, drawing from functional motives theory (FMT), we explore the impact of doctors’ web-based proactive actions on their e-consultation volume. Proactive behaviors are actions in which individuals exceed their assigned work, focusing on long-term goals to prevent future problems [ 32 , 33 ]. According to FMT, these behaviors reflect helping actions that satisfy personal needs [ 34 ], driven by self-focused motivations [ 35 ], such as impression management and the realization of self-worth goals. For example, knowledge-based proactive behaviors, such as disseminating expertise to preempt future issues, are self-initiated and not reactions to immediate requests [ 36 ]. This study categorizes doctors’ sharing of professional articles as a form of proactive behavior that creates a professional image for their patient audience. This is because these actions aim to assist patients with future health concerns rather than directly responding to patients’ immediate needs.

Second, this study explores the role of doctors’ reactive prosocial behaviors in increasing e-consultations, guided by social exchange theory (SET). Unlike proactive behaviors, reactive behaviors are characterized by instances of individuals engaging in helping activities [ 35 ], typically in response to others’ needs [ 34 ]. SET posits that individuals incurring additional social costs in relationships may anticipate reciprocal value [ 37 , 38 ]. Reactive prosocial behaviors, per SET, are initiated by the motivation to satisfy others’ desires, leading to the development of cooperative social values. In our context, medical live streams facilitate real-time, synchronized interactions, enabling patients to ask questions and doctors to provide immediate responses. Patients’ health questions during these streams indicate their immediate needs. Thus, a higher frequency of live streams within a certain period suggests doctors are increasingly responding to patients’ needs during that time. Therefore, this study uses the number of medical live-streaming sessions conducted by doctors as a measure for their synchronous reactive behaviors.

Finally, considering that doctors’ reputations play a crucial role in their workflow on web-based health care communities [ 39 , 40 ], we test the moderating roles of digital and offline reputation—measured by doctors’ offline professional titles and patients’ recommendations in the digital context, respectively—on the main effects.

Based on previous studies and practices within web-based health care communities, we aim to extend the literature by testing the impact of 2 types of web-based prosocial behaviors by doctors: proactive and synchronous reactive actions on e-consultation volume. We then explore the moderating roles of doctors’ offline and digital reputations on these main effects.

Research Framework and Hypothesis Development

We have developed a research framework, shown in Figure 1 , to identify effective prosocial strategies used by doctors within web-based health care communities to achieve a preferred e-consultation volume from the supply side.

what is method of data analysis in research

Primarily, we explore the relationships between doctors’ prosocial behaviors and e-consultation volume, drawing on FMT and SET. These theories are widely adopted for measuring and classifying the outcomes of prosocial behaviors from 2 fundamental perspectives based on human nature [ 34 ]. While doctors’ offline prosocial behaviors may help satisfy patients [ 24 , 25 ], who are already service acceptors, the outcomes of doctors’ web-based prosocial behaviors still need careful distinction. It is essential to clearly differentiate between various types of doctors’ prosocial behaviors to identify their nature. In this study, following the leads of FMT and SET, we test 2 kinds of prosocial behavior: proactive (posting professional articles to achieve self-worth) and reactive (conducting medical live streaming to create cooperative social values).

Subsequently, we examine how doctors’ external reputation moderates the impacts of doctors’ proactive and reactive prosocial behaviors. This examination is conducted from the perspectives of reducing uncertainty and building trust, respectively.

Doctors’ Proactive Behaviors and e-Consultation Volume

FMT places emphasis on the primary motivations behind individuals’ behaviors, adopting an atheoretical stance [ 41 ]. Through the exploratory process, previous studies have provided examples to identify the functional motivations behind prosocial behaviors [ 42 ], such as expressing important personal values. In web-based health care communities, doctors have the opportunity to demonstrate personal traits through proactive behaviors. According to FMT, these proactive behaviors stem from the actors’ active efforts to satisfy their own needs and achieve self-worth [ 34 , 35 ].

Doctors might post professional articles, such as clinical notes and scientific papers, on web-based health care communities to help patient readers handle future health problems. These proactive prosocial behaviors are primarily driven by a desire to showcase personal medical competence, a crucial characteristic of a professional image [ 43 ], in medical consultations. By posting professional articles, doctors can display their medical knowledge, care delivery capability, and service quality, thereby enhancing their professional image. We hypothesize that this effort will lead to an increase in the e-consultation volume. Therefore, we propose the following hypothesis:

  • Hypothesis 1: The posting of professional articles by doctors positively impacts their e-consultation volume on web-based health care communities.

Doctors’ Reactive Behaviors and e-Consultation Volume

Considering the social environment in the working context, SET suggests that reactive prosocial behaviors stem from responding to others’ needs [ 34 ]. Engaging in such behaviors can foster positive perceptions among the audience and build cooperative social values [ 44 ] through reactive social exchange. People with a high orientation toward cooperative social values act to maximize mutual interests [ 45 ], a trait highly valued in the medical field.

We use medical live streaming as a measure of doctors’ reactive behaviors on web-based health care communities. Volunteering to provide interactional live streaming, a typical reactive behavior that may generate cooperative social value, gives the patient audience the impression that the doctors will prioritize demand-side interests during e-consultation services. Additionally, engaging in medical live streaming allows doctors to present themselves as authentic and recognized experts. This enhances their social presence [ 46 ], potentially leading to increased service use [ 47 ] and greater popularity [ 48 ]. Consequently, patients are more likely to perceive doctors who participate in medical live streaming as trustworthy for consultations. Given that e-consultations are closely related to the health conditions of the demand side, a credible doctor is likely to attract more e-consultations. Therefore, we propose the following hypothesis:

  • Hypothesis 2: The conduct of medical live streaming by doctors positively impacts their e-consultation volume on web-based health care communities.

Moderating Roles of Offline and Digital Reputation

As doctors’ proactive and reactive behaviors potentially affect their consultation performance, based on 2 distinct theoretical foundations of human nature, there exists a discrepancy in how doctors’ reputations influence the relationship between various prosocial behaviors and e-consultation.

We formulate hypotheses regarding the moderating effects within the context of digital health care, by taking into account the inherent information asymmetry and the significance of establishing patient trust. Specifically, our hypotheses explore the influence of reputation on the relationship between doctors’ proactive behaviors and e-consultation volume, with a focus on reducing uncertainty. Additionally, we examine how reputation moderates the impact of doctors’ reactive behaviors, emphasizing the perspective of trust building.

First, in the marketing literature, service providers’ reputations, which can reduce information asymmetry and purchase uncertainty [ 49 ], are key factors influencing purchasing behavior and sales performance in the digital context [ 50 - 52 ]. Similarly, for doctors, reputations are related to the experiences and beliefs of other stakeholders [ 53 ]. As health care services are credence goods [ 54 ]—whose quality patients cannot discern even after experiencing the services—and given the nature of web-based platforms (eg, the absence of face-to-face meetings), there is a significant information asymmetry [ 51 ]. This increases patients’ uncertainty regarding the quality of doctors. Consequently, doctors’ reputations play crucial roles in patients’ decision-making processes [ 18 , 39 ]. We use doctors’ professional titles and patients’ recommendations on web-based health care communities to measure doctors’ offline and digital reputations.

Proactive behaviors by low-reputation doctors can create deeper professional impressions [ 34 , 35 ] to reduce uncertainty in e-consultations than high-reputation doctors, who are less uncertain in medical services. Then, doctors’ reputations—measured by offline professional titles and digital patients’ recommendations on web-based health care communities—will negatively moderate the relationship between proactive behavior and e-consultation volume. Thus, we propose the following hypotheses:

  • Hypothesis 3a: Doctors’ offline professional titles negatively moderate the relationship between the posting of professional articles and e-consultation volume on web-based health care communities.
  • Hypothesis 3b: Doctors’ digital recommendations from patients negatively moderate the relationship between the posting of professional articles and e-consultation volume on web-based health care communities.

Second, one of the central elements of SET is the concept of trust between actors in the exchange process [ 55 - 58 ]. In the context of digital health, patient’s trust in doctors is important to establish in order to refine the doctor-patient relationship. Doctors’ reputations can reflect their personality traits [ 39 ] and promote trust from patients [ 53 ]. Conducting medical live streaming, a form of reactive prosocial behavior, includes doctors’ cooperative social value orientations that are preferred in e-consultations. For low-reputation doctors, such as those with relatively junior professional titles and few digital patient recommendations, conducting medical live streaming will build patients’ confidence in e-consultations to a greater extent than doctors with high reputations, who are usually already highly trusted. Then, offline and digital reputation may negatively moderate the relationship between engaging in medical live streaming and e-consultation volume. Thus, we propose the final hypotheses:

  • Hypothesis 4a: Doctors’ offline professional titles will negatively moderate the relationship between conducting medical live streaming and e-consultation volume on web-based health care communities.
  • Hypothesis 4b: Doctors’ digital recommendations from patients will negatively moderate the relationship between conducting medical live streaming and e-consultation volume on web-based health care communities.

Research Context and Data Collection

Our research context is one of the largest web-based health care communities in China. This platform, established in 2006, offers e-consultation services to patients. As of July 2023, it boasts over 260,000 active doctors from 10,000 hospitals nationwide and has provided web-based medical services to 79 million patients.

The platform allows doctors to create home pages where they can display relevant information such as offline professional titles, experiences shared by other patients, and personal introductions. Patients can select doctors for e-consultation by browsing this information. Besides e-consultation, doctors can engage in prosocial behavior primarily focused on knowledge sharing. This includes posting professional articles in various formats (text, voice, and short videos) and conducting medical live streams for real-time interaction with patients.

We collected data over a 22-month period, from January 2021 to October 2022, focusing on common diseases such as diabetes, depression, infertility, skin diseases, and gynecological diseases. To ensure that our findings are generalizable to a typical and active doctor on the platform, we included doctors who had posted at least 1 article and conducted at least 1 live stream before the end of the study period in our analysis [ 59 - 61 ]. Our sample consists of 2880 doctors and includes the following information for each doctor: professional title, patient recommendations, records of experiences shared by the doctor’s patients, records of professional articles posted, records of live streams conducted, and records of the doctor’s e-consultations.

Variable Operationalization

Our unit of analysis is each doctor. We investigate how doctors’ prosocial behaviors, including proactive behaviors (posting professional articles) and reactive behaviors (conducting medical live streams), influence their e-consultation volume.

Dependent Variable

Our dependent variable is the doctors’ e-consultation volume, denoted as Consultation it , which is measured by the number of e-consultations of doctor i in month t .

Independent Variables

Our independent variables are doctors’ proactive behaviors and reactive behaviors. Doctors’ proactive behavior is operationalized as the posting of professional articles. Specifically, we denote proactive behavior as Articles it , which is measured by the number of professional articles posted by doctor i in month t . Doctors’ reactive behavior is operationalized as medical live streaming. This variable is denoted as LiveStreaming it , which is calculated as the number of medical live streams conducted by doctor i in month t .

Moderating Variables

We are also interested in how doctors’ external reputation, including their offline professional titles and digital recommendations from patients, influences the relationship between prosocial behaviors and e-consultation volume. A doctor’s offline professional title is denoted as Title i , which is a dummy variable indicating whether doctor i is a chief doctor ( Title i =1 indicates the doctor is a chief doctor, and Title i =0 indicates the doctor has a lower-ranked title). Digital recommendations are captured by Recommendations i , which is the digital recommendation level of doctor i as calculated by the platform based on the recommendations provided by their past patients.

Control Variables

We incorporated several control variables to account for factors that may influence patient’s choices of doctors in the digital context. The shared experiences of patients regarding a doctor’s treatment [ 39 ], as well as the number of patients who have previously consulted with the doctors [ 17 , 62 ], can indicate the doctor’s overall popularity. This, in turn, may affect patient choice. Therefore, we controlled for (1) the total number of patients who consulted with doctor i in the digital context before month t ( TotalPatients it ) and (2) the total number of patient-shared experiences about offline treatment by doctor i before month t ( TotalExperiences it ). Furthermore, doctors’ past behaviors, including article publishing and live streaming, can influence their current practices in posting articles and conducting live streams. Simultaneously, these factors may also act as signals affecting patients’ judgments and selection of doctors [ 12 ]. To account for these influences, we also controlled for (1) the total number of articles posted by doctor i before month t ( TotalArticles it ) and (2) the total number of medical live streams conducted by doctor i before month t ( TotalLiveStreaming it ).

To control for both observed and unobserved doctor-specific factors that do not change over time, individual-fixed effects were added. Additionally, time-fixed effects were introduced into our analysis to account for both observed and unobserved factors that vary over time but remain constant across doctors. Table 1 shows the variables and their definitions.

Estimation Model

To estimate the direct impact of doctors’ proactive behaviors and reactive behaviors on their e-consultation volume, the following 2-way fixed effects regression model was used:

Consultation it = β 0 + β 1 Articles it + β 2 LiveStreaming it + β 3 TotalPatients it + β 4 TotalExperiences it + β 5 TotalArticles it + β 6 TotalLiveStreaming it + α i + δ t + μ it (1)

where i denotes doctor, t denotes month, α i is doctor-fixed effects, δ t is month-fixed effects, Consultation it is the number of e-consultations of doctor i in month t , Articles it is the number of professional articles posted by doctor i in month t , LiveStreaming it is the number of medical live streams conducted by doctor i in month t , TotalPatients it is the total number of patients who consulted doctor i in the digital context before month t , TotalExperiences it is the total number of patient-shared experiences about offline treatment by doctor i before month t , TotalArticles it is the total number of articles posted by doctor i before month t , TotalLiveStreaming it is the total number of medical live streams doctor i conducted before month t , β is the coefficient, and μ it is the error term. We took the log transformation for our continuous variables in the model to reduce the skewness of the variables [ 63 ].

Next, the moderating effects of doctors’ offline professional titles and digital recommendations by patients were investigated based on the following specification:

Consultation it = β 0 + β 1 Articles it + β 2 LiveStreaming it + β 3 Articles it × Title i + β 4 LiveStreaming it × Title i + β 5 Articles it × Recommendation i + β 6 LiveStreaming it × Recommendation i + β 7 TotalPatients it + β 8 TotalExperiences it + β 9 TotalArticles it + β 10 TotalLiveStreaming it + α i + δ t + μ it (2)

where Title i indicates whether doctor i is a chief doctor ( Title i =1 indicates the doctor is a chief doctor, and Title i =0 indicates the doctor has a lower-ranked title). Recommendations i is the digital recommendation level of doctor i by other patients.

Ethical Considerations

This study used secondary publicly available data obtained from a website and did not involve the collection of original data pertaining to human participants. As such, there is no evidence of unethical behavior in the study. Consequently, ethics approval by an ethics committee or institutional review board was not deemed necessary.

In this section, we present our empirical results. The descriptive statistics are shown in Table 2 , and the correlation matrix is shown in Table 3 .

Empirical Results

Results for direct effects.

The analysis was conducted progressively. We first estimated the equation without control variables (model 1) and then added control variables in model 2. The estimated results are shown in Table 4 . From the results, we can see that the coefficient of Articles is significant and positive in model 2 (β=.093; P <.001), indicating that doctors’ proactive behaviors (ie, posting professional articles) can help them obtain more e-consultations. Thus, hypothesis 1 is supported. Regarding doctors’ engagement in medical live streaming, the results show that the coefficient of LiveStreaming is significantly positive (β=.214; P <.001), which suggests that doctors’ reactive behaviors (ie, conducting medical live streaming) can increase their e-consultation volume. This supports hypothesis 2.

a All models include doctor-fixed effects and month-fixed effects; robust SEs clustered by doctors are reported; the number of doctors is 2880, and the number of observations is 63,360.

b R 2 =0.843; F 2,2879 =175.98; P <.001.

c R 2 =0.851; F 6,2879 =119.72; P <.001.

d N/A: not applicable.

Results for Moderating Effects

The results for moderating effects are shown in Table 5 . In model 1, interaction terms were initially introduced between Title and Articles , as well as between Title and LiveStreaming , to estimate the moderating effect of doctors’ offline professional titles. The interaction terms were then added between Recommendations and Articles , as well as between Recommendations and LiveStreaming , to estimate the moderating effect of doctors’ digital recommendations in model 2. Finally, a full model was estimated by incorporating all interaction terms. We find that the results are consistent across all models. Wald tests and likelihood ratio were used to compare the fit among nested models [ 64 , 65 ], and the results show that the inclusion of moderating variables significantly enhances the model’s fit.

Regarding the moderating effect of doctors’ offline professional titles, we find that the coefficient of Articles × Title in model 1 of Table 5 is significantly negative (β=–.058; P <.001), which supports hypothesis 3a that doctors’ offline professional titles have a negative moderating effect on the relationship between doctors’ proactive behaviors and e-consultation volume. However, the coefficient of LiveStreaming × Title is insignificant (β=–.024; P =.45), which suggests that doctors’ offline professional titles have no moderating effect on the relationship between doctors’ reactive behaviors and e-consultation volume. Thus, hypothesis 4a is not supported.

b R 2 =0.851; F 8,2879 =89.98; P <.001; Wald test: P <.001; likelihood ratio: P <.001.

c R 2 =0.851; F 8,2879 =89.13; P <.001; Wald test: P <.001; likelihood ratio: P <.001.

d R 2 =0.852; F 10,2879 =71.44; P <.001; Wald test: P <.001; likelihood ratio: P <.001.

e N/A: not applicable.

For the moderating effect of digital patient recommendations, we find that both of the coefficients of Articles​ × Recommendations and LiveStreaming × Recommendations are negative and significant (β=–.055; P <.001 and β=–.100; P <.001, respectively, in model 2 of Table 5 ). This indicates that digital recommendations from patients have negative moderating effects on the relationship between doctors’ proactive behaviors and e-consultation volume as well as on the relationship between doctors’ reactive behaviors and e-consultation volume; this finding supports hypotheses 3b and 4b.

Robustness Check

First, additional analysis was performed to check whether our findings are robust to different measures of doctors’ reactive behaviors. In the main analysis, we used the number of medical live streams to construct doctors’ reactive behaviors. In the robustness check, doctors’ reactive behaviors were measured using the following measures: (1) the length of time spent in medical live streaming ( LSDuration it ), which is calculated as the total duration of all medical live streams conducted by doctor i in month t ; and (2) the number of doctor-patient interactions in the medical live streams ( LSInteractions it ), which is calculated as the total number of interactions between doctor i and patients in medical live streams in month t . This measure is likely to more effectively capture the reactive element of the behavior. The estimated results are shown in Table 6 , and we can see that the results are consistent with the main results.

Second, in the above analysis, the total number of articles posted by the doctors was used to measure doctors’ proactive behaviors. As doctors can post articles that are either their own original work or reposts from others, we further used the number of original articles ( OriArticles it ) to measure doctors’ proactive prosocial behaviors. Specifically, the number of articles was replaced with the number of original articles posted by doctor i in month t ( OriArticles it ). Models 1 and 2 in Table 7 show the results. We can see that using this alternative measure of proactive behavior does not materially change the results.

Third, as our dependent variable takes nonnegative values, negative binomial regression was further used to re-estimate our models. We find that the results (models 3 and 4 in Table 7 ) are similar to the main results.

Fourth, to further enhance the robustness and validity of our findings, article quality was used as a measure of doctors’ proactive behaviors. This approach is based on the premise that article quality more accurately reflects the effort and time invested by doctors in content creation. Specifically, we assessed article quality based on either the length of each article or the number of likes it received and then re-estimated our model. As indicated in Table 8 , the results remain consistent with our main findings, thereby further reinforcing the validity of our conclusions.

b R 2 =0.851; F 6,2879 =131.71; P <.001.

c R 2 =0.851; F 10,2879 =79.29; P <.001; Wald test: P <.001; likelihood ratio: P <.001.

d R 2 =0.850; F 6,2879 =112.52; P <.001.

e R 2 =0.851; F 10,2879 =68.43; P <.001; Wald test: P <.001; likelihood ratio: P <.001.

f N/A: not applicable.

a All models include doctor-fixed effects and month-fixed effects; robust SEs clustered by doctors are reported in models 1 and 2; bootstrap SEs in models 3 and 4.

b R 2 =0.851; F 6,2879 =118.99; P <.001.

c R 2 =0.852; F 10,2879 =71.04; P <.001; Wald test: P <.001; likelihood ratio: P <.001.

d Log likelihood=–150,015.36.

e Log likelihood=–149,888.24.

b R 2 =0.851; F 6,2879 =127.75; P <.001.

c R 2 =0.851; F 10,2879 =89.97; P <.001; Wald test: P <.001; likelihood ratio: P <.001.

d R 2 =0.851; F 6 , 2879 =133.39; P <.001.

e R 2 =0.852; F 10 , 2879 =84.94; P <.001; Wald test: P <.001; likelihood ratio: P <.001.

Analysis of Results

Web-based medical platforms offer a variety of functions to support doctors’ engagement in different types of prosocial behaviors. However, few studies have investigated the effects of these behaviors. Drawing on FMT and SET, this study categorized doctors’ prosocial practices in web-based health care communities into proactive and reactive actions and examined their effects on e-consultation volume. Briefly, prosocial behaviors positively impact on e-consultation, and a doctor’s digital and offline reputation moderates the relationship between prosocial behavior and e-consultation, albeit with some nuances.

First, we expanded upon existing literature on proactive prosocial behaviors, concluding that these actions can help doctors create professional images [ 43 ] in the medical consultation context. Our panel data analysis reveals that doctors’ posting of professional articles, which contribute to their professional image in the digital context, attracts more e-consultations. This finding aligns with the prior study [ 31 ], which observed that a health professional’s previous asynchronous prosocial behavior positively influences their future economic performance.

Second, drawing from SET, we analyzed the impact of synchronous reactive prosocial behaviors, a less explored area in prior literature. Our findings confirm that engaging in medical live streaming, a form of reactive prosocial behavior, leads to higher e-consultation volumes. Interestingly, we found that the positive impact of conducting a live stream exceeds that of posting an article.

Third, we expanded our research by testing the moderating roles of digital and offline reputations, measured by doctors’ offline professional titles and patients’ recommendations on web-based health care communities. We found that digital reputations significantly moderate the relationships between both types of prosocial behaviors and e-consultation volume. Specifically, doctors who post professional articles or conduct medical live streams attract more e-consultations when they have fewer patient recommendations compared to those with higher recommendations. Regarding offline professional titles, our results indicate a significant moderating effect on the relationship between proactive prosocial behaviors and e-consultation volume. Notably, junior doctors should focus more on posting articles in web-based health care communities to compensate for limitations associated with their titles [ 66 ]. However, the moderating effect of offline titles on the impact of reactive prosocial behaviors was found to be insignificant. We attribute this to the unique dynamics of trust conversion in Chinese health care settings. As doctors’ offline titles are granted by medical institutions, these titles could enhance patients’ trust in doctors only if there is a conversion of trust from the organization to the individual doctor, which represents different types of trust [ 67 ]. Consequently, doctors with the same offline titles from different hospitals may be perceived differently. For example, a senior doctor from a 3-A hospital is usually seen as highly professional in their clinical field, while a doctor with the same title in a 1-A hospital might typically handle primary diseases. Due to this trust conversion phenomenon, patients may not uniformly trust doctors from different hospitals with the same offline titles, leading to the insignificant moderating effect of offline titles on the impact of reactive prosocial behaviors.

In summary, this study underscores the importance of prosocial behaviors and reputation in shaping doctors’ e-consultation volumes on web-based health care communities, offering valuable insights for health care professionals aiming to increase their consultation outreach.

Implications

This study makes several theoretical implications. First, this study contributes to web-based health care community literature by offering a nuanced understanding of how doctors’ prosocial behaviors enhance e-consultation volume. While a limited number of studies have examined the effects of doctors’ freely provided behaviors in the digital context [ 31 ], the specific impact of different types of prosocial behaviors on e-consultation volume remains largely unexplored. This study addresses this knowledge gap by theoretically categorizing doctors’ prosocial behaviors in web-based health care communities into proactive and reactive types and exploring their impacts on e-consultations.

Second, this study enriches web-based health care communities and live streaming literature by validating the role of medical live streaming in web-based health services. Prior research on live streaming has mainly concentrated on e-commerce [ 68 ], web-based gaming [ 69 ], and web-based learning [ 70 ]. Our study extends this research to the health care context, highlighting the importance of live streaming on web-based health care platforms. Specifically, this study delves into how doctors’ synchronous, reactive volunteer interactions via live streaming influence patient decision-making.

Finally, this study advances FMT and SET by highlighting the importance of context in theory development and providing guidance for context-specific theorizing on web-based health platforms. It also sheds light on how the impact of different prosocial behaviors on e-consultation volume varies depending on a doctor’s offline and digital reputations. Notably, this study validates that proactive behaviors work more effectively in promoting e-consultations for doctors with lower titles or fewer digital recommendations, while reactive behaviors are more effective for doctors with fewer digital recommendations.

This study offers several practical implications for doctors and platform managers. First, the beneficial effects of prosocial behaviors suggest that doctors should adapt their engagement activities when participating in web-based health care platforms. Nowadays, an increasing number of doctors are joining web-based health care communities and focusing on e-consultations, attracted by the economic and social benefits. Based on our results, posting professional articles can help doctors establish a professional image, potentially leading to more e-consultations. Additionally, conducting medical live streams can bolster e-consultations by fostering cooperative social value for doctors and enhancing their credibility among patient audiences. Therefore, doctors may prefer engaging in both proactive and reactive prosocial activities in web-based health care communities to attract more patients to their e-consultation services.

Second, the boundary conditions of the effects of prosocial behaviors imply that doctors should strategically leverage the beneficial effect of proactive and reactive behaviors according to their offline and digital reputations. Doctors with fewer digital recommendations should focus more on prosocial behavior to attract patients to e-consultations. Meanwhile, doctors with lower titles should devote their efforts to proactive behaviors to demonstrate their capability in fulfilling the e-consultations, thereby reducing information asymmetry between patients and themselves.

Third, our findings offer implications for web-based health care platform managers in designing effective functions. An increasing number of platforms are launching various features to better serve doctors and patients, meeting the needs of both groups more effectively. Our empirical findings suggest that doctors’ proactive and reactive prosocial behaviors, such as posting professional articles and conducting medical live streams, can help them establish professional image and enhance patient trust, leading to improved performance. Importantly, these behaviors also benefit patients by enhancing their health knowledge and literacy. Thus, platform managers could introduce functions (eg, article posting, live streaming, and doctor-driven communities) to encourage more prosocial behaviors by doctors. Additionally, platform managers might consider incorporating guidelines or incentive mechanisms for prosocial behaviors into their platforms. For example, it is recommended that platforms collect and analyze doctors’ proactive and reactive prosocial behaviors and guide them on how to effectively use these functions and engage in different types of activities.

Limitations

Despite its contributions, this study also presents several limitations that future research should consider. First, various classifications of prosocial behavior are available; for instance, Richaud et al [ 71 ] classified such behavior as altruistic, compliant, emotional, public, anonymous, or dire actions. Given the intricacy of web-based medical services, future studies would benefit from further exploring the roles of these other types of prosocial behavior exhibited by doctors on web-based health care communities. Second, our research model was constructed primarily from the doctor’s perspective and thus did not investigate the influence of doctors’ prosocial behaviors on patients’ satisfaction and well-being. Future research should delve into these relationships to obtain a more comprehensive understanding of the impacts of doctors’ prosocial behaviors. Finally, this study focused only on the quantity of medical live-streaming sessions, overlooking the quality aspect, which could be a crucial factor influencing e-consultation volume. Future research will concentrate on exploring this aspect.

Conclusions

Building upon prior studies on doctors’ prosocial behaviors on web-based health care communities, this study further delineates doctors’ beneficial actions into proactive and synchronous reactive behaviors. This distinction is based on the divergence in doctors’ motives for engaging and patients’ levels of involvement. Drawing from FMT and SET, this study offers insights that could aid doctors in increasing their e-consultation volume by adopting these beneficial behaviors. Concurrently, this research augments our understanding of the roles a doctor’s reputation plays in the relationships between various prosocial behaviors—specifically, proactive and reactive actions—and their e-consultation volume. This study may inspire doctors with comparatively lower offline professional titles and digital popularity to achieve their desired e-consultation volume.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (72001170 and 72102179), the Fundamental Research Funds for the Central Universities (SK2024028), the Ministry of Education in China Project of Humanities and Social Sciences (21XJC630003), the China Postdoctoral Science Foundation (2022T150515, 2023M742818, and 2020M673432), the National Natural Science Foundation of China (72004042), and the Heilongjiang Natural Science Foundation (YQ2023G003), and the grants from City University of Hong Kong (projects 7005959, 7006152, and 7200725).

Conflicts of Interest

None declared.

  • Qi M, Cui J, Li X, Han Y. Influence of e-consultation on the intention of first-visit patients to select medical services: results of a scenario survey. J Med Internet Res. 2023;25:e40993. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Cao B, Huang W, Chao N, Yang G, Luo N. Patient activeness during online medical consultation in China: multilevel analysis. J Med Internet Res. 2022;24(5):e35557. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Jiang S. Talk to your doctors online: an internet-based intervention in China. Health Commun. 2021;36(4):405-411. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Jiang J, Cameron AF, Yang M. Analysis of massive online medical consultation service data to understand physicians' economic return: observational data mining study. JMIR Med Inform. 2020;8(2):e16765. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Street RL, Millay B. Analyzing patient participation in medical encounters. Health Commun. 2001;13(1):61-73. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ren D, Ma B. Effectiveness of interactive tools in online health care communities: social exchange theory perspective. J Med Internet Res. 2021;23(3):e21892. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Guo S, Guo X, Fang Y, Vogel D. How doctors gain social and economic returns in online health-care communities: a professional capital perspective. J Manag Inf Syst. 2017;34(2):487-519. [ FREE Full text ] [ CrossRef ]
  • Tande AJ, Berbari EF, Ramar P, Ponamgi SP, Sharma U, Philpot L, et al. Association of a remotely offered infectious diseases eConsult service with improved clinical outcomes. Open Forum Infect Dis. 2020;7(1):ofaa003. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Richardson BR, Truter P, Blumke R, Russell TG. Physiotherapy assessment and diagnosis of musculoskeletal disorders of the knee via telerehabilitation. J Telemed Telecare. 2017;23(1):88-95. [ CrossRef ] [ Medline ]
  • Castaneda PR, Duffy B, Andraska EA, Stevens J, Reschke K, Osborne N, et al. Outcomes and safety of electronic consult use in vascular surgery. J Vasc Surg. 2020;71(5):1726-1732. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Jiang S. The relationship between face-to-face and online patient-provider communication: examining the moderating roles of patient trust and patient satisfaction. Health Commun. 2020;35(3):341-349. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Li J, Tang J, Jiang L, Yen DC, Liu X. Economic success of physicians in the online consultation market: a signaling theory perspective. Int J Electron Commer. 2019;23(2):244-271. [ FREE Full text ] [ CrossRef ]
  • Guo S, Guo X, Zhang X, Vogel D. Doctor–patient relationship strength’s impact in an online healthcare community. Inf Technol Dev. 2017;24(2):279-300. [ FREE Full text ] [ CrossRef ]
  • Audrain-Pontevia AF, Menvielle L. Do online health communities enhance patient-physician relationship? an assessment of the impact of social support and patient empowerment. Health Serv Manage Res. 2018;31(3):154-162. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Yang Y, Zhang X, Lee PK. Improving the effectiveness of online healthcare platforms: an empirical study with multi-period patient-doctor consultation data. Int J Prod Econ. 2019;207:70-80. [ FREE Full text ] [ CrossRef ]
  • Fan W, Zhou Q, Qiu L, Kumar S. Should doctors open online consultation services? An empirical investigation of their impact on offline appointments. Inf Syst Res. 2023;34(2):629-651. [ FREE Full text ] [ CrossRef ]
  • Liu QB, Liu X, Guo X. The effects of participating in a physician-driven online health community in managing chronic disease: evidence from two natural experiments. MIS Q. 2020;44(1):391-419. [ FREE Full text ] [ CrossRef ]
  • Yan Z, Wang T, Chen Y, Zhang H. Knowledge sharing in online health communities: a social exchange theory perspective. Inf Manag. 2016;53(5):643-653. [ FREE Full text ] [ CrossRef ]
  • Luo P, Chen K, Wu C, Li Y. Exploring the social influence of multichannel access in an online health community. J Assoc Inf Sci Technol. 2018;69(1):98-109. [ FREE Full text ] [ CrossRef ]
  • Chai S, Bagchi-Sen S, Morrell C, Rao HR, Upadhyaya SJ. Internet and online information privacy: an exploratory study of preteens and early teens. IEEE Trans Profess Commun. 2009;52(2):167-182. [ FREE Full text ] [ CrossRef ]
  • Ahearne M, Rapp A, Hughes DE, Jindal R. Managing sales force product perceptions and control systems in the success of new product introductions. J Mark Res. 2010;47(4):764-776. [ FREE Full text ] [ CrossRef ]
  • Awaysheh A, Heron RA, Perry T, Wilson JI. On the relation between corporate social responsibility and financial performance. Strateg Manag J. 2020;41(6):965-987. [ FREE Full text ] [ CrossRef ]
  • Coll MP, Grégoire M, Eugène F, Jackson PL. Neural correlates of prosocial behavior towards persons in pain in healthcare providers. Biol Psychol. 2017;128:1-10. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Kapıkıran NA. Sources of ethnocultural empathy: personality, intergroup relations, affects. Curr Psychol. 2021;42(14):11510-11528. [ FREE Full text ] [ CrossRef ]
  • Yin Y, Wang Y. Is empathy associated with more prosocial behaviour? a meta‐analysis. Asian J Soc Psychol. 2023;26(1):3-22. [ FREE Full text ] [ CrossRef ]
  • Finset A. "I am worried, Doctor!" emotions in the doctor-patient relationship. Patient Educ Couns. 2012;88(3):359-363. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Larson EB, Yao X. Clinical empathy as emotional labor in the patient-physician relationship. JAMA. 2005;293(9):1100-1106. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Bloom G, Standing H, Lloyd R. Markets, information asymmetry and health care: towards new social contracts. Soc Sci Med. 2008;66(10):2076-2087. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Guo F, Zou B, Guo J, Shi Y, Bo Q, Shi L. What determines academic entrepreneurship success? A social identity perspective. Int Entrep Manag J. 2019;15(3):929-952. [ FREE Full text ] [ CrossRef ]
  • Yang H, Zhang X. Investigating the effect of paid and free feedback about physicians' telemedicine services on patients' and physicians' behaviors: panel data analysis. J Med Internet Res. 2019;21(3):e12156. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Yan Z, Kuang L, Qiu L. Prosocial behaviors and economic performance: evidence from an online mental healthcare platform. Prod Oper Manag. 2022;31(10):3859-3876. [ FREE Full text ] [ CrossRef ]
  • Frese M, Fay D. 4. Personal initiative: an active performance concept for work in the 21st century. Res Organ Behav. 2001;23:133-187. [ FREE Full text ] [ CrossRef ]
  • Frese M, Kring W, Soose A, Zempel J. Personal initiative at work: differences between East and West Germany. Acad Manage J. 1996;39(1):37-63. [ FREE Full text ] [ CrossRef ]
  • Spitzmuller M, Van Dyne L. Proactive and reactive helping: contrasting the positive consequences of different forms of helping. J Organ Behavior. 2013;34(4):560-580. [ FREE Full text ] [ CrossRef ]
  • Bandura A. Social cognitive theory: an agentic perspective. Annu Rev Psychol. 2001;52(1):1-26. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Mittal S, Sengupta A, Agrawal NM, Gupta S. How prosocial is proactive: developing and validating a scale and process model of knowledge-based proactive helping. J Manag Organ. 2018;26(4):625-650. [ FREE Full text ] [ CrossRef ]
  • Walter A, Ritter T, Gemünden HG. Value creation in buyer–seller relationships: theoretical considerations and empirical results from a supplier's perspective. Ind Mark Manag. 2001;30(4):365-377. [ FREE Full text ] [ CrossRef ]
  • Eggert A, Ulaga W, Schultz F. Value creation in the relationship life cycle: a quasi-longitudinal analysis. Ind Mark Manag. 2006;35(1):20-27. [ FREE Full text ] [ CrossRef ]
  • Deng Z, Hong Z, Zhang W, Evans R, Chen Y. The effect of online effort and reputation of physicians on patients' choice: 3-wave data analysis of China's good doctor website. J Med Internet Res. 2019;21(3):e10170. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Kurihara H, Maeno T, Maeno T. Importance of physicians' attire: factors influencing the impression it makes on patients, a cross-sectional study. Asia Pac Fam Med. 2014;13(1):2. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Cooper ML, Shapiro CM, Powers AM. Motivations for sex and risky sexual behavior among adolescents and young adults: a functional perspective. J Pers Soc Psychol. 1998;75(6):1528-1558. [ CrossRef ] [ Medline ]
  • Clary EG, Snyder M, Ridge RD, Copeland J, Stukas AA, Haugen J, et al. Understanding and assessing the motivations of volunteers: a functional approach. J Pers Soc Psychol. 1998;74(6):1516-1530. [ CrossRef ] [ Medline ]
  • Epstein RM, Hundert EM. Defining and assessing professional competence. JAMA. 2002;287(2):226-235. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Zhang L, Qiu Y, Zhang N, Li S. How difficult doctor‒patient relationships impair physicians' work engagement: the roles of prosocial motivation and problem-solving pondering. Psychol Rep. 2020;123(3):885-902. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Dabholkar PA, Johnston WJ, Cathey AS. The dynamics of long-term business-to-business exchange relationships. J Acad Mark Sci. 1994;22(2):130-145. [ FREE Full text ] [ CrossRef ]
  • Ochs M, Mestre D, de Montcheuil G, Pergandi JM, Saubesty J, Lombardo E, et al. Training doctors’ social skills to break bad news: evaluation of the impact of virtual environment displays on the sense of presence. J Multimodal User Interfaces. 2019;13(1):41-51. [ FREE Full text ] [ CrossRef ]
  • Schroeder T, Seaman K, Nguyen A, Gewald H, Georgiou A. Enablers and inhibitors to the adoption of mHealth apps by patients—a qualitative analysis of German doctors' perspectives. Patient Educ Couns. 2023;114:107865. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Liu X, Hu M, Xiao BS, Shao J. Is my doctor around me? investigating the impact of doctors’ presence on patients’ review behaviors on an online health platform. J Assoc Inf Sci Technol. 2022;73(9):1279-1296. [ FREE Full text ] [ CrossRef ]
  • Chen Y, Xie J. Online consumer review: word-of-mouth as a new element of marketing communication mix. Manage Sci. 2008;54(3):477-491. [ FREE Full text ] [ CrossRef ]
  • Ye Q, Li Y, Kiang M, Wu W. The impact of seller reputation on the performance of online sales: evidence from TaoBao Buy-It-Now (BIN) data. SIGMIS Database. 2009;40(1):12-19. [ FREE Full text ] [ CrossRef ]
  • Liu X, Guo X, Wu H, Wu T. The impact of individual and organizational reputation on physicians’ appointments online. Int J Electron Commer. 2016;20(4):551-577. [ FREE Full text ] [ CrossRef ]
  • Dewan S, Hsu V. Adverse selection in electronic markets: evidence from online stamp auctions. J Ind Econ. 2004;52(4):497-516. [ CrossRef ]
  • Torres E, Vasquez-Parraga AZ, Barra C. The path of patient loyalty and the role of doctor reputation. Health Mark Q. 2009;26(3):183-197. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Gottschalk F, Mimra W, Waibel C. Health services as credence goods: a field experiment. Econ J. 2020;130(629):1346-1383. [ FREE Full text ] [ CrossRef ]
  • Nunkoo R, Ramkissoon H. Power, trust, social exchange and community support. Ann Tour Res. 2012;39(2):997-1023. [ FREE Full text ] [ CrossRef ]
  • Blau PM. Exchange and Power in Social Life. New Brunswick. Transaction Publishers; 1964.
  • Molm LD, Takahashi N, Peterson G. Risk and trust in social exchange: an experimental test of a classical proposition. Am J Sociol. 2000;105(5):1396-1427. [ FREE Full text ] [ CrossRef ]
  • Lioukas CS, Reuer JJ. Isolating trust outcomes from exchange relationships: social exchange and learning benefits of prior ties in alliances. Acad Manage J. 2015;58(6):1826-1847. [ FREE Full text ] [ CrossRef ]
  • Malgonde OS, Saldanha TJ, Mithas S. Resilience in the open source software community: how pandemic and unemployment shocks influence contributions to others’ and one’s own projects. MIS Q. 2023;47(1):361-390. [ FREE Full text ] [ CrossRef ]
  • Mayya R, Ye S, Viswanathan S, Agarwal R. Who forgoes screening in online markets and why? Evidence from Airbnb. MIS Q. 2021;45(4):1745-1776. [ FREE Full text ] [ CrossRef ]
  • Moqri M, Mei X, Qiu L, Bandyopadhyay S. Effect of “following” on contributions to open source communities. J Manag Inf Syst. 2018;35(4):1188-1217. [ FREE Full text ] [ CrossRef ]
  • Chen Q, Jin J, Zhang T, Yan X. The effects of log-in behaviors and web reviews on patient consultation in online health communities: longitudinal study. J Med Internet Res. 2021;23(6):e25367. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Mo J, Sarkar S, Menon S. Competing tasks and task quality: an empirical study of crowdsourcing contests. MIS Q. 2021;45(4):1921-1948. [ FREE Full text ] [ CrossRef ]
  • Gourieroux C, Holly A, Monfort A. Likelihood ratio test, Wald test, and Kuhn-Tucker test in linear models with inequality constraints on the regression parameters. Econometrica. 1982;50(1):63. [ CrossRef ]
  • Peng CH, Yin D, Zhang H. More than words in medical question-and-answer sites: a content-context congruence perspective. Inf Syst Res. 2020;31(3):913-928. [ FREE Full text ] [ CrossRef ]
  • Guo L, Jin B, Yao C, Yang H, Huang D, Wang F. Which doctor to trust: a recommender system for identifying the right doctors. J Med Internet Res. 2016;18(7):e186. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Zheng S, Hui SF, Yang Z. Hospital trust or doctor trust? A fuzzy analysis of trust in the health care setting. J Bus Res. 2017;78:217-225. [ FREE Full text ] [ CrossRef ]
  • Mao Z, Du Z, Yuan R, Miao Q. Short-term or long-term cooperation between retailer and MCN? new launched products sales strategies in live streaming e-commerce. J Retail Consum Serv. 2022;67:102996. [ FREE Full text ] [ CrossRef ]
  • Hilvert-Bruce Z, Neill JT, Sjöblom M, Hamari J. Social motivations of live-streaming viewer engagement on Twitch. Comput Hum Behav. 2018;84:58-67. [ FREE Full text ] [ CrossRef ]
  • Tang YM, Chen PC, Law KMY, Wu CH, Lau YY, Guan J, et al. Comparative analysis of student's live online learning readiness during the coronavirus (COVID-19) pandemic in the higher education sector. Comput Educ. 2021;168:104211. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Richaud MC, Mesurado B, Cortada AK. Analysis of dimensions of prosocial behavior in an Argentinean sample of children. Psychol Rep. 2012;111(3):687-696. [ FREE Full text ] [ CrossRef ] [ Medline ]

Abbreviations

Edited by G Eysenbach; submitted 11.09.23; peer-reviewed by P Luo, Y Zhu, C Fu; comments to author 05.10.23; revised version received 30.12.23; accepted 09.03.24; published 25.04.24.

©Xiaoxiao Liu, Huijing Guo, Le Wang, Mingye Hu, Yichan Wei, Fei Liu, Xifu Wang. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 25.04.2024.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

About 1 in 5 U.S. teens who’ve heard of ChatGPT have used it for schoolwork

(Maskot/Getty Images)

Roughly one-in-five teenagers who have heard of ChatGPT say they have used it to help them do their schoolwork, according to a new Pew Research Center survey of U.S. teens ages 13 to 17. With a majority of teens having heard of ChatGPT, that amounts to 13% of all U.S. teens who have used the generative artificial intelligence (AI) chatbot in their schoolwork.

A bar chart showing that, among teens who know of ChatGPT, 19% say they’ve used it for schoolwork.

Teens in higher grade levels are particularly likely to have used the chatbot to help them with schoolwork. About one-quarter of 11th and 12th graders who have heard of ChatGPT say they have done this. This share drops to 17% among 9th and 10th graders and 12% among 7th and 8th graders.

There is no significant difference between teen boys and girls who have used ChatGPT in this way.

The introduction of ChatGPT last year has led to much discussion about its role in schools , especially whether schools should integrate the new technology into the classroom or ban it .

Pew Research Center conducted this analysis to understand American teens’ use and understanding of ChatGPT in the school setting.

The Center conducted an online survey of 1,453 U.S. teens from Sept. 26 to Oct. 23, 2023, via Ipsos. Ipsos recruited the teens via their parents, who were part of its KnowledgePanel . The KnowledgePanel is a probability-based web panel recruited primarily through national, random sampling of residential addresses. The survey was weighted to be representative of U.S. teens ages 13 to 17 who live with their parents by age, gender, race and ethnicity, household income, and other categories.

This research was reviewed and approved by an external institutional review board (IRB), Advarra, an independent committee of experts specializing in helping to protect the rights of research participants.

Here are the  questions used for this analysis , along with responses, and its  methodology .

Teens’ awareness of ChatGPT

Overall, two-thirds of U.S. teens say they have heard of ChatGPT, including 23% who have heard a lot about it. But awareness varies by race and ethnicity, as well as by household income:

A horizontal stacked bar chart showing that most teens have heard of ChatGPT, but awareness varies by race and ethnicity, household income.

  • 72% of White teens say they’ve heard at least a little about ChatGPT, compared with 63% of Hispanic teens and 56% of Black teens.
  • 75% of teens living in households that make $75,000 or more annually have heard of ChatGPT. Much smaller shares in households with incomes between $30,000 and $74,999 (58%) and less than $30,000 (41%) say the same.

Teens who are more aware of ChatGPT are more likely to use it for schoolwork. Roughly a third of teens who have heard a lot about ChatGPT (36%) have used it for schoolwork, far higher than the 10% among those who have heard a little about it.

When do teens think it’s OK for students to use ChatGPT?

For teens, whether it is – or is not – acceptable for students to use ChatGPT depends on what it is being used for.

There is a fair amount of support for using the chatbot to explore a topic. Roughly seven-in-ten teens who have heard of ChatGPT say it’s acceptable to use when they are researching something new, while 13% say it is not acceptable.

A diverging bar chart showing that many teens say it’s acceptable to use ChatGPT for research; few say it’s OK to use it for writing essays.

However, there is much less support for using ChatGPT to do the work itself. Just one-in-five teens who have heard of ChatGPT say it’s acceptable to use it to write essays, while 57% say it is not acceptable. And 39% say it’s acceptable to use ChatGPT to solve math problems, while a similar share of teens (36%) say it’s not acceptable.

Some teens are uncertain about whether it’s acceptable to use ChatGPT for these tasks. Between 18% and 24% say they aren’t sure whether these are acceptable use cases for ChatGPT.

Those who have heard a lot about ChatGPT are more likely than those who have only heard a little about it to say it’s acceptable to use the chatbot to research topics, solve math problems and write essays. For instance, 54% of teens who have heard a lot about ChatGPT say it’s acceptable to use it to solve math problems, compared with 32% among those who have heard a little about it.

Note: Here are the  questions used for this analysis , along with responses, and its  methodology .

  • Artificial Intelligence
  • Technology Adoption
  • Teens & Tech

Olivia Sidoti's photo

Olivia Sidoti is a research assistant focusing on internet and technology research at Pew Research Center

Jeffrey Gottfried's photo

Jeffrey Gottfried is an associate director focusing on internet and technology research at Pew Research Center

Many Americans think generative AI programs should credit the sources they rely on

Americans’ use of chatgpt is ticking up, but few trust its election information, q&a: how we used large language models to identify guests on popular podcasts, striking findings from 2023, what the data says about americans’ views of artificial intelligence, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

A new method for satellite-based remote sensing analysis of plant-specific biomass yield patterns for precision farming applications

  • Open access
  • Published: 28 April 2024

Cite this article

You have full access to this open access article

what is method of data analysis in research

  • Ludwig Hagn   ORCID: orcid.org/0009-0003-9472-6223 1 ,
  • Johannes Schuster 1 ,
  • Martin Mittermayer 1 &
  • Kurt-Jürgen Hülsbergen 1  

This study describes a new method for satellite-based remote sensing analysis of plant-specific biomass yield patterns for precision farming applications. The relative biomass potential (rel. BMP) serves as an indicator for multiyear stable and homogeneous yield zones. The rel. BMP is derived from satellite data corresponding to specific growth stages and the normalized difference vegetation index (NDVI) to analyze crop-specific yield patterns. The development of this methodology is based on data from arable fields of two research farms; the validation was conducted on arable fields of commercial farms in southern Germany. Close relationships (up to r > 0.9) were found between the rel. BMP of different crop types and study years, indicating stable yield patterns in arable fields. The relative BMP showed moderate correlations (up to r = 0.64) with the yields determined by the combine harvester, strong correlations with the vegetation index red edge inflection point (REIP) (up to r = 0.88, determined by a tractor-mounted sensor system) and moderate correlations with the yield determined by biomass sampling (up to r = 0.57). The study investigated the relationship between the rel. BMP and key soil parameters. There was a consistently strong correlation between multiyear rel. BMP and soil organic carbon (SOC) and total nitrogen (TN) contents (r = 0.62 to 0.73), demonstrating that the methodology effectively reflects the impact of these key soil properties on crop yield. The approach is well suited for deriving yield zones, with extensive application potential in agriculture.

Avoid common mistakes on your manuscript.

Introduction

Spatial variability in crop yields on arable fields.

Arable fields are characterized by a more or less pronounced spatial variability in crop yields (Schuster et al., 2023 ). One of the main causes of spatial variability in plant growth and biomass production is heterogeneous soil properties (Godwin et al., 2003 ; Hatfield, 2000 ; Mittermayer et al., 2021 , 2022 ), such as soil texture, soil organic carbon content (SOC), total nitrogen content (TN), macro- and micronutrient content, and available water capacity (López-Lozano et al., 2010 ; Servadio et al., 2017 ). The spatial variation in soil properties is influenced by pedogenesis, topography and soil erosion (Gregory et al., 2015 ; Raimondi et al., 2010 ). Cultivation practices can also contribute substantially to yield variability (Ngoune & Shelton, 2020 ), e.g., through soil compaction by heavy machinery (Horn & Fleige, 2003 ; Shaheb et al., 2021 ) or management practices (fertilizer and pesticide application, weed control). Natural field boundaries through adjacent forest or tree strips and agroforestry systems also influence yield variability within fields (Karlson et al., 2023 ; Pardon et al., 2018 ). In addition, yield variability is influenced by weather conditions. In years with drought stress, yield zones are more pronounced than in years with better rainfall distribution (Heil et al., 2023 ; Maestrini & Basso, 2018 ; Martinez-Feria & Basso, 2020 ). Some factors influencing yield variability are stable over a long-term period (e.g., soil texture), whereas others change from year to year.

Consideration of spatial yield variation is an important factor for precision agriculture and the key to optimizing crop production through more efficient use of inputs (fertilizers and pesticides) (Gebbers & Adamchuk, 2010 ; Mulla, 2013 ).

Although some farmers are currently considering the use of precision farming applications with variable, yield-dependent application rates, the use of these digital technologies rarely exceeds more than 20% of farms, as farmers are not yet convinced of the benefits of these methods (Lowenberg‐DeBoer & Erickson, 2019 ; Gabriel & Gandorfer, 2022 ). Considering that uniform nitrogen fertilization of arable fields is still a common practice, spatial variability in yields may lead to nitrogen oversupply in low-yield zones, which can cause high nitrogen losses, e.g., nitrate leaching (Mittermayer et al., 2021 ; Schuster et al., 2022 ). In general, the yield potential should be accounted for to optimally adapt crop management measures, such as fertilization and plant protection accordingly, which requires yield analysis methods that are as precise, cost-effective and widely available as possible.

Research needs

To delineate yield zones for precision farming applications, knowledge of the spatial variation of crop yield is crucial. In agricultural practice, digital combine harvester yield sensing systems are most commonly used for the determination of yield variability within fields, although raw data from combine harvesters have a large error potential (Bachmaier, 2010 ; Fulton et al., 2018 ; Kharel et al., 2019 ). Ground truth data on spatial variation in grain yield may be collected using nondigital methods, such as georeferenced plant sampling or plot harvesting with a plot combine harvester (Mittermayer et al., 2021 ; Spicker, 2017 ; Stettmer et al., 2022b ). These methods are expensive and labor intensive and can therefore only be used for scientific studies.

Several studies have been conducted on spatial yield estimation based on multispectral measurements by remote and proximal sensing (Aranguren et al., 2020 ; Barmeier et al., 2017 ; Maidl et al., 2019 ). Based on reflectance data, vegetation indices (VI), such as the normalized difference vegetation index (NDVI), were found to be closely related to grain yield, plant biomass and nitrogen uptake at specific growth stages (Cabrera-Bosquet et al., 2011 ; Prabhakara et al., 2015 ). Various methods for spatial yield estimation have been developed using artificial intelligence (AI) (Ruan et al., 2022 ; van Klompenburg et al., 2020 ).

However, most methodical approaches for digital spatial yield analysis are not fully transparent and comprehensible because the algorithms used are not described in sufficient detail. In some cases, commercial suppliers use very complex soil process and plant growth models that are difficult for users to understand. Moreover, important agronomic parameters (e.g., crop type, growth stages and weather conditions) are neglected in some satellite-based yield estimation systems (Li et al., 2007 ). Furthermore, in some cases, the methods have not been sufficiently validated; thus, the accuracy of the delineated zones is questionable.

Independent validations showed that in some cases substantial deviations in the satellite-derived yields from measured yields can occure (yield differences by several Mg ha −1 ) (Mittermayer et al., 2021 ; Stettmer et al., 2022b ). Therefore, management decisions should not be based on such large deviations between estimated yields and actual yields.

Most studies analyzing spatial yield variability focus on plant-based variables (e.g., grain yield, biomass, nitrogen uptake), while soil-related causes are neglected. Due to high costs, high-resolution soil mapping is not often conducted, and thus, important influencing factors that are partly responsible for the variability in yield and biomass formation of crops are not accounted for (Feng et al., 2022 ; Juhos et al., 2015 ).

Although there are numerous scientific studies on satellite-based yield analysis, as well as commercial service providers selling yield maps to farmers, there is a need to further develop satellite-based yield analysis methods, improve their accuracy and validate them under differentiated management conditions.

This study describes a new approach to generate relative biomass potential maps (rel. BMP). In this context, relative biomass potential means the determination of multiyear stable yield zones within fields at a high spatial resolution, without information on the absolute yield level in the yield zones. For many applications, knowledge of relative yield differences is sufficient; estimating absolute yields requires more input data and more complicated models.

Data (time series of several observation dates) from Sentinel-2 satellites of the European Space Agency (ESA), the vegetation index NDVI and agronomic knowledge were used to determine the relative biomass potential.

Over a twenty-year research period at the Technical University of Munich, multispectral proximal sensor systems have been systematically used to determine the vegetation indices, and at what vegetation stages, that correlate best with yield, nitrogen uptake, and biomass formation (Mistele & Schmidhalter, 2010 ; Mistele et al., 2004 ; Schmidhalter et al., 2003a ; Spicker, 2017 ; Sticksel et al., 2004 ). Analysis of the relationships between vegetation indices and agronomic parameters has shown the importance of considering the correct growth stages of plant stands as influencing factors (Erdle et al., 2011 ; Prey & Schmidhalter, 2019 ; Schmidhalter et al., 2003b )). Therefore, one aim of this study was to test whether the knowledge gained from previous proximal sensor-based studies, the relationships found between vegetation indices, and agronomic parameters can be transferred to satellite-based yield estimation methods. Satellite data from observation dates corresponding to specific growth stages were used to analyze crop-specific yield patterns. For winter wheat, for example, the growth stages jointing (GS 32), booting (GS 39) and flowering (GS 65) were considered (AHDB, 2023 ; Zadoks et al., 1974 ). To achieve a high accuracy of the biomass potential estimates, data from many observations and different crop types in the crop rotation were analyzed and combined. In this study, the crop species winter wheat ( Triticum aestivum L.), winter barley ( Hordeum vulgare L.), canola ( Brassica napus L.), corn ( Zea mays L.) and soybeans ( Glycine max L. Merr.) were analyzed. Due to yearly changing weather conditions, site-specific yield patterns may vary from year to year, and yield maps can be year specific. Therefore, the rel. BMP maps were analyzed for years with different weather conditions (dry, wet, normal conditions), and whether a multiyear data analysis increases accuracy and validity was investigated.

An analysis of the relationship among yield patterns with spatial variability in soil property contents (e.g. SOC, TN, phosphorus (P), potassium (K), pH and soil texture) was part of this study. In addition, multispectral reflectance measurements were conducted with a tractor-mounted sensor system to obtain high-quality validation data using existing and validated yield algorithms, independent of the satellite data.

Based on the current state of knowledge, the following hypotheses were formulated:

Consideration of the crop type and crop-specific growth stages increases the accuracy in deriving yield zones compared to methods that do not include this information.

The yield patterns of the respective crops are similar if the correct crop-specific growth stages are selected.

When deriving yield zones, satellite data almost reach the same accuracy as data from tractor-mounted sensor systems.

The spatial distribution of crop-specific relative biomass yield potential is closely related to the spatial distribution of ground truth data (e.g., biomass yield, soil properties influencing yield).

Materials and methods

Site and weather conditions.

The investigations were conducted on arable fields at three different sites. The methodology for compiling biomass potential maps was derived from fields at two research stations (Roggenstein (site A) and Dürnast (site B)) of the Technical University of Munich (Bavaria, Germany) and was validated on arable fields of farms in the Burghausen region (80 km east of Munich 48° 7′ 51″ N 12°44′ 5″ E, 450 m a.s.l., site C) under different management conditions. Research station Dürnast is located 30 km north of Munich (48° 24′ 3″ N 11°38′ 42″ E, 425 m a.s.l.) and research station Roggenstein is located 20 km west of Munich (48° 10′ 47″ N 11° 18′50″ E, 480 m a.s.l.).

Due to the high availability of yield data (determined with different systems) and many years of precision farming experience, the research stations were used to derive the relative BMP algorithm. Sites A and B are located in the tertiary hill country of southern Germany. The major soil types are cambisols (medium to deep brown soil of medium quality) (FAO, 2014 ). The 30-year mean annual precipitation was 888 mm (site A) and 813 mm (site B), and the temperature was 8.9 °C (Online Resource 1, Online Resource 2). Site C is located on the Alzplatte, which is characterized by a smooth, hilly landscape. The 30-year mean annual precipitation was 849 mm, and the mean annual temperature was 8.9 °C (Online Resource 3).

To derive and validate the satellite-based method for analyzing relative yield potential, multiyear data (2018–2022) were used to account for different weather conditions in the study regions. A dry and warm spring and a hot summer characterized 2018 and 2019. At all sites, the mean precipitation in 2018 and 2019 was 10 to 20% below average. In 2020, the spring was dry at all sites, while the summer was within the normal range with some heavy rainfall. The year 2021 was very wet with heavy rainfall. The temperatures were average. In 2022, the spring was dry, and the summer months were warmer with less precipitation (12 to 25%) than the 30-year average.

Farm management of the investigated fields

The investigated fields were cultivated in conventional arable farming systems. All fields were at least four hectares in size (above average size in the regions). The crop rotation of each field is shown in Table  1 . In fields A1 (site A) and B1 (site B), only mineral fertilizer was applied. In fields C1 (site C) and C2 (site C), organic fertilizers have been applied for several years. The major crops of all farm sites were winter wheat, winter barley, corn, canola and soybeans (Online Resource 4).

Remote sensing data

The algorithm was developed using Sentinel-2 MSI-Level 2A (MAJA Tiles) satellite data provided by the German Aerospace Center (DLR). The Sentinel-2A mission from the Copernicus program by the European Space Agency (ESA) provides satellite images with 13 spectral bands, four of them (red (665 nm), green (560 nm), blue (490 nm), and VNIR (842 nm)) at a 10 × 10 m resolution. The return rate of the two satellites of the Sentinel-2 mission is 5 days (Sentinel Online, 2023 ). The satellite data were preprocessed using the time-series-based MAJA processor, a multitemporal atmospheric correction and cloud screening algorithm developed by the DLR (German Aerospace Center, 2019 ; Hagolle et al., 2017 ).

Description of the relative biomass potential map algorithm

To develop the algorithm, satellite data from 2018 to 2022 were retrospectively acquired from DLR. To display within-field spatial variation, a 5-year time series of Sentinel-2A images was processed. As the vegetation index NDVI has already been demonstrated to estimate plant aboveground biomass (Kross et al., 2015 ; Perry et al., 2022 ), NDVI values were used as an indicator of the biomass growth potential on cropland. An essential aspect of the algorithm is the knowledge of the cultivated crop types and the dates of the characteristic development stages. This information was available in detail for the fields to derive the algorithm at the research stations, but also on the validation fields of farmers. An overview of the workflow for determining the rel. BMP map according to Hagn et al. ( 2023 ) is shown in Fig.  1 . The work steps are described as follows:

figure 1

Workflow of the rel. BMP (%) map algorithm, presented using the example of winter wheat

Step (1): Selecting the satellite scenes according to the grown crops

Depending on the crops grown in the field, satellite scenes at characteristic growth stages are selected (Online Resource 5). The growth stages of booting (GS 30–32), jointing (GS 39) and flowering (GS 65) of winter wheat and winter barley correlate well with yield and biomass growth (Barmeier et al., 2017 ; Erdle et al., 2011 ; Maidl et al., 2019 ; Mistele & Schmidhalter, 2008a ; Prey & Schmidhalter, 2019 ; Spicker, 2017 ). However, for corn and soybeans sown in split rows, growth stages have to be selected at which row closure has already been reached, for corn the growth stages GS 39 and GS 65 (Mistele & Schmidhalter, 2008b ), and for soybeans the growth stages V5 (fifth trifoliate), R2 (full bloom) and R5 (beginning of seed filling) (Crusiol et al., 2016 ; Farias et al., 2023 ). For canola, the growth stages budding (GS 50), beginning of flowering (GS 60), where no yellow coloration occurs yet, and podding (GS 70), where the yellow coloration of the flowers has already faded again, are used (Spicker, 2017 ).

Step (2): Clipping of Sentinel-2A data to the field and checking for clouds

The satellite scenes are clipped to the field. Then, for each satellite scene date, the NIR and red bands are used to check whether the area to be analyzed was covered by clouds. If so, the image is rejected.

Step (3): Calculation of the NDVI

The vegetation index NDVI is calculated for each 10 × 10 m raster cell of each satellite scene according to the growth stages, and the mean NDVI of the whole field of each satellite scene is calculated. Steps (1) to (3) are repeated for all growth stages of the cultivated crop mentioned in Step (1).

Step (4): Calculation of the relative NDVI (rel. NDVI)

The rel. NDVI (%) is calculated by dividing the NDVI of each 10 × 10 m raster cell of each satellite scene by the mean NDVI ( \(\overline{NDVI }\) ) of the entire field of each satellite scene and multiplying it by 100. Meaning that in total three rel. NDVI maps are generated per year for each crop (exept for corn) of the crop rotation.

Step (5): Calculation of the singleyear rel. BMP (%)

The singleyear rel. BMP is determined by calculating the arithmetic mean of all relative NDVI values of the raster cells of the rel. NDVI maps generated in Step (4). In the case of wheat, the rel. NDVI values of the respective grid cells of the rel. NDVI maps of GS 32, GS 39 and GS 65 are summarized and divided by their number. Steps (4) and (5) are repeated for all crops of the crop rotation, or at least for a period of five years, resulting in five singleyear rel. BMP maps.

Step (6): Calculation of the multiyear rel. BMP

The multiyear rel. BMP (%) is determined by calculating the the arithmetic mean of all singleyear rel. BMP maps. For a five year crop rotation, five singleyear rel. BMP are created in Step (5), meaning that the total of all singleyear rel. BMP are divided by five.

Step (7): Meaning and interpretation of the rel. BMP map

The map of relative biomass potential reflects the multiyear site-specific yield potential of a crop rotation. By accounting for different crops and observation dates, greater precision should be achieved than with a single analysis of a specific crop. The primary objective of the relative BMP maps is the identification of different yield zones within arable fields to identify high- and low-yield zones for site-specific management.

Methods of determining grain yield

At field A1 and field B1, the yield was measured by combine harvesters with an integrated yield sensing system (Claas Lexion 5500 and New Holland CX 790). The grain yield was determined by three main components (GPS-position with Real Time Kinematic, determination of the harvested area, determination of the grain moisture and the grain yield by means of a moisture sensor and volume flow measurement sensor (Noack, 2006 ).

At fields C1 and C2 the yield was derived based on the spectral reflectance measurements from the tractor-mounted sensor system in combination with a yield algorithm according to Maidl et al. ( 2019 ).

As a nondigital method for grain yield determination, 50 georeferenced biomass samples were taken before grain harvest at field A1. Eight 2 m long winter wheat rows were cut close to the ground with hand shears. The samples were threshed with a stationary combine thresher (Wintersteiger, 2023 ). After drying the grain at 60 °C, the dry matter (DM) content and the yield (t ha −1 ) at 86% DM were determined.

Methods of determining spatial reflectance data by proximal sensing

Spectral reflectance measurements during the flowering of winter wheat were carried out with a tractor-mounted multispectral sensor system (TEC5 2010) in 2018, 2021 and 2022. The system is equipped with two multispectral reflectance sensors (360 nm to 900 nm). Approximately every second reflectance measurements are conducted. Natural influences of solar radiation are considered in the data output by the implementation of a reflectance reference module. Based on the reflectance measurements, the vegetation index REIP (red edge inflection point) was calculated (Guyot et al., 1988 ). Since various studies have shown that REIP is closely related to the aboveground biomass and N content of winter wheat (Mistele & Schmidhalter, 2008a ; Prey & Schmidhalter, 2019 ), the REIP index based on data from tractor-mounted sensing was used as an indicator of the spatial variability in plant biomass. In addition, there are reliable yield algorithms based on REIP (Maidl et al., 2019 ) that have been validated in several studies (Mittermayer et al., 2021 , 2022 ; Schuster et al., 2022 , 2023 ); thus, the REIP map was used to verify the rel. BMP map from satellite-sensing data.

Methods of determining soil properties

Georeferenced soil samples (SOC, TN, P CAL , K CAL , pH and texture) were collected after the grain harvest between 2018 and 2022 from the investigated. Eight soil samples at a depth of 0.3 m were taken at a maximum radius of 0.5 m around a georeferenced sampling point and combined into a composite sample. The distribution pattern of the georeferenced points was ‘systematically random’ (Thompson, 2002 ). SOC and TN were analyzed with a C/N Analyzer (DIN ISO 10694, 1996 ), K CAL and P CAL were determined by the CAL method (VDLUFA, 2012 ), and pH (VDLUFA, 2016 ) was measured with the CaCl 2 method (VDLUFA, 2016 ). The soil texture was determined by the feel method.

Statistical and geostatistical analysis

The geostatistical data analysis was performed using R (RStudio Version 2022.12.0). The spatial resolution of the collected data varied greatly; thus, all data had to be transferred to the same raster grid and the same resolution of 10 × 10 m. Georeferenced soil samples, combine harvester data and sensor data were interpolated using ordinary kriging (Oliver & Webster, 2015 ). To reduce distortions of the output due to errors in the reflectance datasets, satellite imagery, combine harvester data and sensor data, outliers were cleared from the dataset using a twofold standard deviation. Before conducting ordinary kriging, for each dataset, a semivariogram was created. A semivariogram is the variance in the data according to distance classes and shows the spatial relationship of the variable with increasing separating distance (spatial autocorrelation effect). According to the distribution of the data variance and the distance classes of the semivariogram, a model was fitted. Depending on the fitted model, the data are weighted in the kriging neighborhood to predict values between sample points (Oliver & Webster, 2015 ). Ordinary kriging was performed for all datasets using the same target raster grid, which was based on the field boundaries of the fields.

Using the same target raster grid enabled the performance of a correlation analysis of all data points of the available datasets. Based on the Pearson correlation coefficients (r), the relationship between the digital variables and soil parameters was analyzed. The R libraries ‘tiff’, ‘rgdal’, ‘rgeos’, ‘gstat’, and ‘raster’ were used for spatial analyses and loading vector or raster files. The correlation coefficients were classified as very strong ( r  > 0.9), strong (0.9 >  r  > 0.7), moderate (0.7 >  r  > 0.5), weak (0.5 >  r  > 0.3), or very weak ( r  < 0.3) according to (Mittermayer et al., 2021 ).

Results of field A1

Spatial variation in the yield pattern of winter wheat.

On field A 1, was is investigated (a) whether the relative biomass potential of winter wheat determined via the NDVI shows similar distribution patterns in two cultivation years (2018 and 2020), (b) whether two-year relative biomass potential maps (2018 and 2020) have a higher accuracy and informative value than singleyear maps, (c) how close the relationships between the relative biomass potential and measured or digitally determined yields are and (d) how close the relationships between the relative biomass potential and soil parameters are.

The relative BMP maps of winter wheat in 2018 (Fig.  2 a) and 2020 (Fig.  2 b) showed similar yield patterns, although the weather in 2018 was clearly different from that in 2020, especially the temperature and rainfall distribution in spring (Online Resource 1). Accordingly, the relative BMP map of 2018 and 2020 (Fig.  2 c) also showed a similar pattern of high- and low-yield zones.

figure 2

Interpolated maps of the spatial distribution (in a 10 × 10 m grid) of the relative biomass potential of winter wheat ( a – c ), the winter wheat yield determined with the combine harvester ( d ) and by biomass sampling ( e ), the REIP determined by spectral reflectance measurements ( f ) and the soil parameters soil organic carbon (SOC) ( g ), total nitrogen (TN) ( h ) and sand content ( i ) at field A1

The yield patterns derived with other digital methods (combine yield sensing system, Fig.  2 d, tractor-mounted sensor system, Fig.  2 f)) and the ground truth data (biomass samples, Fig.  2 e) matched well with the pattern of the relative BMP maps.

The biomass potential according to the rel. BMP map of winter wheat (2018) ranged from 87.8% to 110.6% (Table  2 ). The absolute grain yield measured with the combine harvester yield sensing system (2018) averaged 8.6 t ha −1 and varied from 5.4 t ha −1 (62.8%) to 11.3 t ha −1 (131.4%). The absolute grain yield determined with biomass samples (2018) was higher than the yield measured at the combine, with an average of 9.9 t ha −1 , varying from 6.3 t ha −1 (63.6%) to 12.9 t ha −1 (130.3%). In purely mathematical terms, this means that a change by one percent relative BMP corresponds to an absolute yield increase or decrease by approximately 3%.

The soil parameters SOC, TN and texture (sand content) also showed considerable variability and clearly visible zones within the field (Fig.  2 g–i and Table  3 ). While SOC and TN showed an almost equal distribution within the field, the sand fraction showed an inverse relationship. In areas with high sand content, SOC and NT contents were low, and conversely, in areas with low sand contents, SOC and NT contents were high. The relative BMP maps showed a similar distribution pattern as the soil parameters SOC and TN. Accordingly, the yield potential is higher when the SOC and TN contents are higher, while the yield potential is lower when the sand content is higher.

Correlations between the plant and soil parameters

The rel. BMP of 2018 and 2020 were strongly correlated (r = 0.77), while the combination of 2018 and 2020 was very strongly correlated with the individual BMPs (2018, 2020) (r = 0.95 and 0.93) (Table  4 ). The yield measured by the combine harvester yield sensing system was moderately correlated with the rel. BMP (r = 0.57 to 0.61). The correlations of the biomass yield (r = 0.43 to 0.53) and the tractor-mounted reflectance measurements (r = 0.47 to 0.64) with the rel. BMP were weak to moderate. The relationship with the rel. BMP was greater in 2018 and in both years combined (2018 & 2020). The correlations between the relative BMP and the soil parameters SOC (r = 0.37 to 0.46), TN (r = 0.39 to 0.47) and AWC (r = 0.47 to 0.49) were closer than those to the other measured soil parameters; there was a negative relationship to the sand content (r = − 0.29 to 0.34).

Results of field B1

Spatial variation in the yield pattern of different crop types at different growth stages.

In field B1, the pattern of the rel. BMPs of winter wheat (2018), winter barley (2019) and canola (2020) was compared at different growth stages (Fig.  3 ). The rel. BMP had a similar pattern at the different development stages of the analyzed crops. However, there were more or less clear differences between the relative BMP patterns of winter wheat, winter barley and canola. With the exception of canola at GS 70 (Fig.  3 i), there were nonetheless stable areas in the field that had higher or lower biomass potential across crop types (Fig.  3 a–h), even though weather conditions varied considerably from 2018 to 2020 (Online resource 2).

figure 3

Interpolated maps of the spatial distribution (in a 10 × 10 m grid) of the relative biomass potential of winter wheat ( a – c ), winter barley ( d – f ) and canola ( g – i ) at crop-specific growth stages at field B1

The variation in the rel. BMP (Online Resource 8) was initially greater for winter wheat at GS 32 and GS 39 (Fig.  3 a and b) as well as for canola at GS50 and GS 60 (Fig.  3 g and h) and then decreased at GS 65 and GS 70 (Fig.  3 c and i). The variation in the relative biomass potential of winter barley was consistent throughout the different growth stages (Fig.  3 d–f).

The biomass potential according to the rel. BMP of winter wheat (2018) ranged from 72.8 to 122.5% in growth stage GS 39 and from 88.5 to 108.4% in GS 65; thus, the variability is stage dependent. The absolute grain yield measured with the combine harvester yield sensing system (2018) averaged 10 t ha −1 and ranged from 6.2 t ha −1 (62.0%) to 13.6 t ha −1 (136.0%). A change in relative BMP by one percent is equivalent to a change in grain yield by approximately 1.5% (GS 39) to over 3% (GS 65).

For canola, the relative BMP at GS 50 ranged between 62 and 136%. At GS 60, the variation decreases (84% to 116%). After flowering (GS 70), the variation in the rel. BMP was even lower (95% to 106%).

The soil properties in field B1 varied greatly (Online Resource 9), e.g., SOC content from 1.2 to 2.1% DM, TN content from 0.11 to 0.23% DM, sand content from 16.9 to 35.2%, P CAL content from 3.4 to 12.4, and AWC from 15.9 to 22.0%. Thus, the study area was characterized by substantial differences in yield-relevant soil properties, particularly regarding nutrient supply and water retention capacity. In contrast, there were only slight differences in elevation (471 m and 487 m) across the area.

The correlations between the rel. BMP at different growth stages of the crops were strong to very strong (Table  5 ). The strongest correlations were found for winter wheat (r = 0.94 to 0.97). The correlations between the growth stages of winter barley were strong (r = 0.74 to 0.90), and for canola, they were moderate to strong (r = 0.58 to 0.79). Between the different crops, the correlations ranged from r = 0.20 to 0.77 and were predominantly moderate. Correlations between the rel. BMP of winter wheat and winter barley were strongest at GS 39 (r = 0.65) and GS 65 (r = 0.68). The rel. BMP of canola correlated best at GS 50 with winter wheat at GS 39 (r = 0.64) and with winter barley at GS 65 (r = 0.77).

The highest correlation of the relative BMP of winter wheat with the grain yield of winter wheat measured by the combine harvester yield measurement system was found at GS 39 (r = 0.64). Surprisingly, the correlation between the winter wheat yield measured in 2018 and the rel. BMP of the winter barley and canola was in some cases closer than to the rel. BMP of winter wheat (e.g., r = 0.79 for canola, GS 60). This also indicates that the yield zones are very stable over the years.

The spectral reflectance measurements of the tractor-mounted sensor system correlated strongly with the rel. BMP of winter wheat during GS 32 and GS 39 (r = 0.86). This demonstrates that the satellite-based rel. BMP estimated based on the NDVI leads to a similar yield differentiation as the REIP determined by the tractor-mounted sensor system. The correlations of the rel. BMP with the soil parameters were weak to very weak. The highest correlations between soil parameters (SOC, TN, silt) and the rel. BMP of winter wheat were found at GS 65 (r = 0.40, r = 0.42 and r = 0.54). No relationships were found between elevation and rel. BMP.

Results of field C1

Spatial variation in the yield pattern of different crop types.

The fields C1 and C2, which were used for model validation under practical conditions, had slightly less measurement data and results than the fields (A1 and B1) of the test stations. Nevertheless, in principle, the same analyses could be carried out, and correlations could be investigated. The rel. BMP maps of the individual crops from 2018 to 2022 (Fig.  4 a–e) showed a similar yield pattern, although weather conditions were different in these years, including droughts, wet conditions and heavy rainfall (Online resource 3). The winter wheat patterns of 2018 and 2020 matched well with the rel. BMP pattern of canola 2019 (Fig.  4 a, b and e). The patterns of winter barley and corn were similar to those of winter wheat, winter barley and corn, but with some differences (Fig.  4 c and d). However, the main parts of the high- and low-yield zones coincided for all crops. The map of multiyear rel. BMP (Fig.  4 f) showed the integrated results of the rel. BMP of all crops grown in the crop rotation.

figure 4

Interpolated maps of the spatial distribution (in a 10 × 10 m grid) of the relative biomass potential of winter wheat 2018 ( a ), of canola 2019 ( b ), of winter barley 2020 ( c ), of corn 2021 ( d ), of winter wheat 2022 ( e ) and of the multiyear relative biomass potential 2018–2022 ( f ) and the soil parameters soil organic carbon (SOC) ( g ), total nitrogen (TN) ( h ) and pH ( i ) on field C1

All rel. BMP of the crops showed a similar spatial variability, with minima of 91.8 to 94.5% and maxima of 105.2 to 106.9% (Online Resource 10). The rel. BMP of winter wheat (2022) and the yield derived from the tractor-mounted sensor system had a similar variation and ranged from 94.0 to 105.4% (rel. BMP) and from 8.9 t ha −1 (94.2%) to 10 t ha −1 (106.3%) (grain yield). Therefore, a 1% change in rel. BMP corresponds to an absolute change in yield by 1.07%.

The spatial distribution of the rel. BMP of all crops was consistent with the spatial distribution of the soil parameters SOC and TN, indicating higher yield potential in zones with higher SOC and TN contents (Fig.  4 g and h). PH had a slightly different distribution pattern (Fig.  4 i).

There was great variation in the soil parameters. The maps of SOC and TN had very similar distribution patterns. The values are shown as follows: SOC content 1.1–2.1% DM, TN content 0.12–0.22% DM, P CAL content 3.1–31.7 mg (100 g −1 ), K CAL content 7.0–25.3 mg (100 g −1 ) and pH 6.0–7.2 (Online Resource 11).

The correlations between the rel. BMPs of the different crops were moderate to strong (Table  6 ). The highest correlation between years and crops was found between the rel. BMP of winter wheat 2018 and BMP of winter wheat 2022 (r = 0.86). The highest correlations between the rel. BMP of the crops were found between winter wheat and canola (r = 0.77 and 0.84), and the lowest correlations were found between corn and winter barley (r = 0.61) as well as between canola and winter barley (r = 0.60). The rel. BMP over all crops correlated strongly to very strongly with the individual rel. BMP of the crops (r = 0.80 to 0.92).

The correlations between the rel. BMP and the yield derived from the tractor-mounted sensor were moderate (r = 0.54 to r = 0.66). The highest correlation (r = 0.66) was found between REIP and the multiyear rel. BMP.

The rel. BMP maps correlated weakly to moderately with the soil parameters. The correlations with SOC and TN were highest with corn (r = 0.71 and 0.66), winter barley (r = 0.68 and 0.65) and over all crops (r = 0.66 and 0.62). The relationships between the rel. BMP of winter wheat (2018 & 2022) and SOC and TN were similar (r = 0.49 to 0.53). P CAL correlated moderately over all crops with the rel. BMP (r = 0.50 to 0.64). The highest correlation with P was found with the rel. BMP over all crops (2018–2022). The correlations with K CAL (r = 0.19 to 0.44) and pH (r = − 0.05 to 0.38) were very weak to weak.

Results of site C2

Field C2 was highly variable in terms of rel. BMP (Fig.  5 ). A comparison of the distribution pattern of the yield potential of the individual crops revealed some differences (Fig.  5 a–e). The rel. BMP maps of corn (2018), soybeans (2019), winter wheat (2020) and corn (2022) matched well in most parts of the field (Fig.  5 a–c and e). However, the map of rel. BMP of winter barley (2021) showed a different distribution pattern (Fig.  5 d). The multiyear rel. BMP indicated a stable yield pattern (Fig.  5 f).

figure 5

Interpolated maps of the spatial distribution (in a 10 × 10 m grid) of the relative biomass potential of winter wheat 2018 ( a ), of soybeans 2019 ( b ), of winter wheat 2020 ( c ), of winter barley 2021 ( d ), of corn 2022 ( e ) and of the multiyear relative biomass potential 2018–2022 ( f ) and the soil parameters soil organic carbon (SOC) ( g ), total nitrogen (TN) ( h ) and pH ( i ) on field C2

The variation in the relative yield potential of corn (2018) and soybeans was low (6.98% and 7.73% variation) and ranged from 96.1 to 103.0% and from 95.7 to 103.5%, respectively (Online Resource 12). In contrast, the relative yield potential of winter barley (2021) and corn (2022) varied by a far greater margin (15.08% and 18.25%) and ranged from 90.9% to 106.0% and 91.3% to 109.6%, respectively. The variability in the relative BMP of winter wheat (2020) was not as high (93.5% to 105.5%) as the variability in the yield derived from the tractor-mounted sensor system (90.3% to 108.8%). An approximately one percent change in relative BMP corresponds to a 1.5% change in absolute yield.

The soil parameters SOC, TN and pH also showed considerable heterogeneity and distinct zones within the field (Fig.  5 g–i). SOC and TN were almost evenly distributed, while pH had a different distribution pattern. The comparison of the rel. BMP maps, the multiyear rel. BMP maps and soil maps (SOC and TN) in particular, indicated that the relative yield potential is higher in areas where the SOC and TN contents are higher. The soil parameters varied considerably: SOC content 1.4–1.8% DM, TN content 0.13–0.19% DM, P CAL content 2.8–5.9 mg (100 g −1 ), K CAL content 3.2–14.1 mg (100 g −1 ) and pH 6.0–6.9 (Online Resource 13).

The correlations between the crop-specific rel. BMP maps ranged from very weak to moderate (r = 0.10 to 0.53) (Table  7 ). Winter wheat (2022) and winter barley correlated almost equally to the other crops (r = 0.40 to 0.53). However, there was no match between corn (2022) and winter barley (2021) (r = 0.10). Corn (2018) and corn (2022) were also weakly correlated (r = 0.21). The rel. BMP map of corn (2022) only matched well with winter wheat (2020). The multiyear rel. BMP map correlated moderately to strongly with the individual crop-specific maps, while soybeans (2019) and winter wheat (2020) had the highest correlations with the multiyear map (r = 0.75 and 0.80).

The yield derived from the tractor-mounted sensor correlated strongly with the rel. BMP of winter wheat (2020) (r = 0.73) and the multiyear rel. BMP (r = 0.81) and correlated moderately with the rel. BMP of soybeans (2019) and corn (2022).

The rel. BMP maps, with the exception of winter barley (2021), were well correlated with the soil parameters SOC and TN. The correlations ranged from r = 0.50 to 0.73. The highest agreement with the maps of SOC and TN was observed for the multiyear rel. BMP. P CAL , K CAL and pH were only weakly correlated with rel. BMP maps.

Discussion of methods

This study describes a new method for satellite-based remote sensing of plant-specific biomass yield patterns to determine yield zones, involving multiple observation dates, crop-specific evaluation and consideration of relevant development stages. The aim was to achieve a high level of accuracy with a simple, cost-effective and, in principle, large-scale application. The relative biomass potential is an indicator for multiyear stable and homogeneous yield zones. Areas with a higher relative biomass potential indicate a higher yield potential within the field, and information about the absolute yield level is not given by this method. For absolute yield estimation, more input data and more complicated models are needed (Klompenburg et al., 2020 ). However, for many applications in agriculture, knowledge of relative yield differences is sufficient, e.g., georeferenced soil sampling, measures to improve soil properties in areas with low rel. BMP, variable-rate applications of organic fertilizers, variable-rate seeding, variable-rate irrigation, and detection of unproductive areas (Bökle et al., 2023 ; Schuster et al., 2023 ).

The relative BMP maps serve as a suitable alternative to established methods based on sensor measurements or direct yield measurements for the delineation of yield zones. For instance, tractor-mounted multispectral sensor systems have sophisticated technology and methodology as well as advanced algorithms that have been sufficiently validated (Mittermayer et al., 2021 , 2022 ; Schuster et al., 2022 , 2023 ; Stettmer et al., 2022b ); nonetheless, they are expensive and therefore not widely used in practice. They require expert knowledge and are not suitable for large-scale applications.

Yield mapping with a yield sensing system on the combine harvester is the most common method of delineating yield patterns and yield zones in modern agriculture (Chung et al., 2016 ). Many modern combine harvesters are equipped with yield sensing systems; however, these have a high potential for error, especially if calibration is omitted (Bachmaier, 2010 ; Fulton et al., 2018 ; Kharel et al., 2019 ). Yield recording with combine harvesters can provide accurate values; however, they cannot be relied upon, especially with data of unknown origin (Mittermayer et al., 2021 , 2022 ; Stettmer et al., 2022b ).

Yield measurement using a plot combine harvester and georeferenced biomass sampling is not applicable in agricultural practice and is only suitable for scientific applications. In order to derive high-quality yield maps, a sufficient number of samples must be obtained. Sample distribution as well as sample density may affect the performance of the spatial interpolation (Li & Heap, 2011 ); thus, the quality of the interpolated map may be insufficient if the number of samples is too low. Since the biomass samples are manually cut, they are subject to errors due to plot selection or cutting area (Petersen et al., 2005 ). Therefore, the biomass samples are also not the "true" values. Previous studies have shown that yields determined with biomass samples were almost always higher than yields determined with other digital and nondigital methods (Mittermayer et al., 2021 , 2022 ; Stettmer et al., 2022a ).

To conclude, the only suitable data sources for plant-based delineation of yield zones are either sensor-based or satellite-based systems. The large-scale availability of satellite data is favorable; provided that the data quality is as high as that of sensor data and that there is no loss of information. There are also satellite-based models (Promet) and commercial applications that can be used to estimate the absolute yields of crops (e.g., winter wheat) (Bach & Mauser, 2018 ; Hank et al., 2015 ). Independent validations have shown that this method is well suited for the delineation of yield zones; however, in terms of absolute yield estimations, significant yield deviations can occur (Mittermayer et al., 2021 ; Schuster et al., 2023 ; Stettmer et al., 2022b ).

Discussion of results

The results at field A1 show that the rel. BMP method provides well interpretable and reliable data. The singleyear relative BMP matched well with the yield patterns of winter wheat derived from the combine harvester and derived from ground truth data (tractor-mounted sensor system and biomass samples) (Fig.  2 ).

The results of site B show few variations in the rel. BMP pattern during the growth period of the individual crops (Fig.  3 ); however, only suitable growth stages are shown. For instance, very early growth stages with low biomass development were unsuitable, as was the flowering stage in canola, which does not allow any differentiation (not shown in the figure). Therefore, the accuracy of the rel. BMP (which is based on the vegetation index NDVI) is mainly dependent on the choice of the correct growth stages according to the crop type. If incorrect growth stages are chosen, e.g., too early stages, the spatial distribution of the yield pattern will not be represented correctly, as the reflection of bare soil will lead to disturbances due to the sensitivity of the NDVI to bare soil (Mistele, 2006 ; Rondeaux et al., 1996 ). In particular, for plants that are grown in split rows, such as corn or soybeans, a growth stage in which row closure is reached must be selected. For winter wheat and winter barley, the flowering stage is one of the most suitable growth stages (Maidl et al., 2019 ; Prücklmaier, 2020 ; Spicker, 2017 ). This is not the case with canola. The yellow-coloured flowers lead to distortions in the yield pattern. Thus, growth stages before flowering are more suitable for canola (Spicker, 2017 ). For soybeans, the growth stages V5 (fifth trifoliate, R2 (full bloom) and R5 (beginning of seed filling) were selected and performed well in the yield pattern compared to the other crops. According to Andrade et al. ( 2022 ), the NDVI derived from Sentinel 2 and Landsat 8 at growth stages V5 and R2 was promising for predicting soybean grain yield.

For the delineation of yield zones, multiyear data are crucial since weather conditions are variable from year to year. The yield level in wet years can deviate from the yield level in dry years, especially if weather extremes (drought, excess water) occur (Eck et al., 2020 ; Gammans et al., 2017 ; Sjulgård et al., 2023 ), meaning that the yield pattern also varies. In dry years, the effects of soil properties (e.g., available water capacity and texture) on yield are more pronounced than in wet years, particularly at sites with limited water availability (Godwin & Miller, 2003 ; Lawes et al., 2009 ; Taylor et al., 2003 ). The relative BMP approach is a multiyear approach, so the variability in weather conditions is accounted for (Figs. 3 – 5 ).

SOC and TN are long-term stable soil parameters (Wiesmeier et al., 2019 ) and one of the main reasons for soil-related yield variability (Mittermayer et al., 2021 , 2022 ; Schuster et al., 2022 , 2023 ). As shown in the results, the relationships between the multiyear rel. BMP maps and SOC and TN were always well correlated, indicating that by this approach, the effects of soil properties on yield are well reflected (Tables 6 and 7 ).

Conclusion, outlook and further research

The new methodology for determining the relative BMP described in this paper can contribute to the extended application of precision farming technologies. The method is an important step towards the delineation of yield zones. The main yield zones (low-yield and high-yield zones) are well mapped using this method. The main low-yield and high-yield zones are mainly determined by soil parameters (e.g. soil texture, available water capacity) and are therefore rather stable in the long term. Influenced by the amount of precipitation, these zones are sometimes more and sometimes less important. Crop-specific patterns can vary from year to year, as the crops have different nutrient and growth requirements and there can be year-specific differences in terms of weed and disease pressure influencing the yield pattern derived from remote sensing technologies. Nonetheless, the rel. BMP approach can help to identify areas with low yield potential to manage them accordingly. This can include an adaptation of inputs to the low yield potential (e.g., seeds, mineral and organic fertilizers) or extensification by converting arable land into permanent grassland or biotopes as a contribution to environmental protection and nature conservation (Kvítek et al., 2009 ; Münier et al., 2004 ). Conversely, the BMP approach can be used to reliably delineate high-yield zones. Corresponding to the higher yield potential, these areas have higher nutrient uptake by plant stands, which must be compensated for by appropriate fertilization to avoid a decline in soil fertility (Hartemink, 2006 ; Sun et al., 2020 ). Further applications can be developed if the rel. BMP approach is consistently improved to determine both relative and absolute yield potentials. In this study, the crops grown and the respective stages of development were known. For a general scalability of this method to larger areas and regions, an algorithm that recognizes crop types and development stages dependent on the crop types must be implemented (Goldberg et al., 2021 ). We will address these questions in further research work. The examination of the hypothesis led to the following results:

Hypothesis 1:

The consideration of the crop type and crop-specific growth stages increases the accuracy in deriving yield zones compared to methods that do not include this information.

The results of the application of the rel. BMP method show that the choice of correct growth stages has a decisive influence on the accuracy of the derivation in yield zones.

Hypothesis 2:

Similar yield patterns were observed among the crops, not only between winter cereals with similar nutrient and growth requirements, but also for soybeans (field C1 and partly field C2). In field C2, the distribution pattern of corn (2022) differed from that of the other crops. The correlations between the rel. BMP of the individual crops were moderate to strong (r = 0.80–0.92) in field C1. In field C2, the correlations were very weak to moderate (r = 0.1–0.51).

Hypothesis 3:

The correlations between the rel. BMP and REIP derived from the tractor-mounted sensor were (a) strong to moderate (r = 0.56–0.86), (b) the yield patterns were similar (Fig.  2 ), and (c) similar correlations between rel. BMP and REIP to key soil factors SOC and TN were found (r = 0.46; 0.51 at field A1, r = 0.51; 0.76 at field C1, and r = 0.50; 0.56 at field C2).

Hypothesis 4:

The multiyear rel. BMP was moderately to strongly correlated with SOC (r = 0.62; 0.68) and TN (r = 0.64; 0.73) (sites C1 and C2).

Thus, Hypotheses 1, 3 and 4 are confirmed. Hypothesis 2 can only be accepted with reservations.

Further research

A new methodology was successfully tested in this study. However, further validation and optimization of the BMP algorithm under completely different soil, climate and farming conditions −, e.g., large fields (> 50 ha) with extreme heterogeneity due to soil genesis −, is needed. In addition, further crop-specific validation must be carried out at different yield levels, e.g., under the conditions of organic farming.

In addition, an algorithm for estimating absolute yields will be developed by using AI methods and possibly other indices or other satellite-based spectra.

Data availability

Not applicable.

Code availability

AHDB. (2023). The growth stages of cereals. Agriculture and Horticulture Development Board. Retrieved Nov 20, 2023, from https://ahdb.org.uk/knowledge-library/the-growth-stages-of-cereals

Andrade, T. G., De Andrade Junior, A. S., Souza, M. O., Lopes, J. W. B., & Vieira, P. F. D. M. J. (2022). Soybean yield prediction using remote sensing in southwestern Piauí State. Brazil. Revista Caatinga, 35 (1), 105–116. https://doi.org/10.1590/1983-21252022v35n111rc

Article   Google Scholar  

Aranguren, M., Castellón, A., & Aizpurua, A. (2020). Wheat yield estimation with NDVI values using a proximal sensing tool. Remote Sensing, 12 (17), 2749. https://doi.org/10.3390/rs12172749

Bach, H., & Mauser, W. (2018). Sustainable agriculture and smart farming. In P. P. Mathieu & C. Aubrecht (Eds.), Earth observation open science and innovation (pp. 261–269). Springer International Publishing.

Chapter   Google Scholar  

Bachmaier, M. (2010). Yield mapping based on moving butterfly neighborhoods and the optimization of their length and width by comparing with yield data from a combine harvester. In M. A. Rosen & R. Perryman (Eds.), Proceedings of the 5th IASME/WSEAS International Conference on Energy & Environment (pp. 76–82). UK.

Barmeier, G., Hofer, K., & Schmidhalter, U. (2017). Mid-season prediction of grain yield and protein content of spring barley cultivars using high-throughput spectral sensing. European Journal of Agronomy, 90 , 108–116. https://doi.org/10.1016/j.eja.2017.07.005

Bökle, S., Karampoiki, M., Paraforos, D. S., & Griepentrog, H. W. (2023). Using an open source and resilient technology framework to generate and execute prescription maps for site-specific manure application. Smart Agricultural Technology, 5 , 100272. https://doi.org/10.1016/j.atech.2023.100272

Cabrera-Bosquet, L., Molero, G., Stellacci, A., Bort, J., Nogués, S., & Araus, J. (2011). NDVI as a potential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes subjected to different water and nitrogen conditions. Cereal Research Communications, 39 (1), 147–159. https://doi.org/10.1556/crc.39.2011.1.15

Chung, S. O., Choi, M. C., Lee, K. H., Kim, Y. J., Hong, S. J., & Li, M. (2016). Sensing technologies for grain crop yield monitoring systems: A review. Journal of Biosystems Engineering, 41 (4), 408–417. https://doi.org/10.5307/jbe.2016.41.4.408

Crusiol, L. G. T., Carvalho, J. D. F. C., Sibaldelli, R. N. R., Neiverth, W., do Rio, A., Ferreira, L. C., Procópio, S. D. O., Mertz-Henning, L. M., Nepomuceno, A. L., Neumaier, N., & Farias, J. R. B. (2016). NDVI variation according to the time of measurement, sampling size, positioning of sensor and water regime in different soybean cultivars. Precision Agriculture, 18 (4), 470–490. https://doi.org/10.1007/s11119-016-9465-6

DIN ISO 10694. (1996). Bestimmung von organischem Kohlenstoff und Gesamtkohlenstoff nach trockener Verbrennung (Elementaranalyse)

Eck, M. A., Murray, A. R., Ward, A. R., & Konrad, C. E. (2020). Influence of growing season temperature and precipitation anomalies on crop yield in the southeastern United States. Agricultural and Forest Meteorology, 291 , 108053. https://doi.org/10.1016/j.agrformet.2020.108053

Erdle, K., Mistele, B., & Schmidhalter, U. (2011). Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Research, 124 (1), 74–84. https://doi.org/10.1016/j.fcr.2011.06.007

FAO. (2014). World reference base for soil resources 2014: International soil classifcation system for naming soils and creating legends for soil maps . World soil resources reports. Food and Agriculture Organization of the United Nations.

Farias, G. D., Bremm, C., Bredemeier, C., de Lima Menezes, J., Alves, L. A., Tiecher, T., Martins, A. P., Fioravanço, G. P., da Silva, G. P., & de Faccio Carvalho, P. C. (2023). Normalized Difference Vegetation Index (NDVI) for soybean biomass and nutrient uptake estimation in response to production systems and fertilization strategies. Frontiers in Sustainable Food Systems, 6 , 959681. https://doi.org/10.3389/fsufs.2022.959681

Feng, P., Wang, B., Harrison, M. T., Wang, J., Liu, K., Huang, M., Liu, D. L., Yu, Q., & Hu, K. (2022). Soil properties resulting in superior maize yields upon climate warming. Agronomy for Sustainable Development, 42 (5), 1–13. https://doi.org/10.1007/s13593-022-00818-z

Article   CAS   Google Scholar  

Fulton, J., Hawkins, E., Taylor, R., & Franzen, A. (2018). Yield monitoring and mapping. In D. K. Shannon, D. E. Clay, & N. R. Kitchen (Eds.), Precision agriculture basics (pp. 63–77). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

Gabriel, A., & Gandorfer, M. (2022). Adoption of digital technologies in agriculture—An inventory in a european small-scale farming region. Precision Agriculture, 24 (1), 68–91. https://doi.org/10.1007/s11119-022-09931-1

Gammans, M., Mérel, P., & Ortiz-Bobea, A. (2017). Negative impacts of climate change on cereal yields: Statistical evidence from France. Environmental Research Letters, 12 (5), 054007. https://doi.org/10.1088/1748-9326/aa6b0c

Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327 (5967), 828–831. https://doi.org/10.1126/science.1183899

Article   CAS   PubMed   Google Scholar  

German Aerospace Center. (2019). Sentinel-2 MSI - Level 2A (MAJA Tiles) . DLR. Retrieved Sep 25, 2023, from https://doi.org/10.15489/ifczsszkcp63

Godwin, R. J., & Miller, P. C. H. (2003). A review of the technologies for mapping within-field variability. Biosystems Engineering, 84 (4), 393–407. https://doi.org/10.1016/s1537-5110(02)00283-0

Godwin, R. J., Wood, G. A., Taylor, J. C., Knight, S. M., & Welsh, J. P. (2003). Precision farming of cereal crops: A review of a six year experiment to develop management guidelines. Biosystems Engineering, 84 (4), 375–391. https://doi.org/10.1016/s1537-5110(03)00031-x

Goldberg, K., Herrmann, I., Hochberg, U., & Rozenstein, O. (2021). Generating up-to-date crop maps optimized for sentinel-2 imagery in Israel. Remote Sensing, 13 (17), 3488. https://doi.org/10.3390/rs13173488

Gregory, A. S., Ritz, K., McGrath, S. P., Quinton, J. N., Goulding, K. W. T., Jones, R. J. A., Harris, J. A., Bol, R., Wallace, P., Pilgrim, E. S., & Whitmore, A. P. (2015). A review of the impacts of degradation threats on soil properties in the UK. Soil Use and Management, 31 (Suppl 1), 1–15. https://doi.org/10.1111/sum.12212

Article   CAS   PubMed   PubMed Central   Google Scholar  

Guyot, G., Baret, F., & Major, D. J. (1988). High spectral resolution: Determination of spectral shifts between thered and infrared. International Archives of Photogrammetry and Remote Sensing, 11 , 750–760.

Google Scholar  

Hagn, L., Mittermayer, M., Schuster, J., Hu, Y., & Hülsbergen, K. J. (2023). Identifying key soil factors influencing spatial and temporal variability of cereal crops estimated using time-series of satellite-sensing data. In J. V. Stafford (Ed.), Precision agriculture ’23. 14th European Conference on Precision Agriculture (pp. 903–908). Wageningen Academic Publishers.

Hagolle, O., Huc, M., Desjardins, C., Auer, S., & Richter, R. (2017). Maja algorithm theoretical basis document . Zenodo. Retrieved September 25, 2023, from https://zenodo.org/record/1209633

Hank, T., Bach, H., & Mauser, W. (2015). Using a remote sensing-supported hydro-agroecological model for field-scale simulation of heterogeneous crop growth and yield: Application for wheat in Central Europe. Remote Sensing, 7 (4), 3934–3965. https://doi.org/10.3390/rs70403934

Hartemink, A. E. (2006). Soil fertility decline: Definitions and assessment. In R. Lal (Ed.), Encyclopedia of soil science (pp. 1618–1621). Taylor & Francis.

Hatfield, J. L. (2000). Precision agriculture and environmental quality; challenges for research and education . National Soil Tilth Laboratory, Agricultural Research Service, USDA.

Heil, K., Klöpfer, C., Hülsbergen, K.-J., & Schmidhalter, U. (2023). Description of meteorological indices presented based on long-term yields of winter wheat in Southern Germany. Agriculture, 13 (10), 1904. https://doi.org/10.3390/agriculture13101904

Horn, R., & Fleige, H. (2003). A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil and Tillage Research, 73 (1–2), 89–99. https://doi.org/10.1016/s0167-1987(03)00102-8

Juhos, K., Szabó, S., & Ladányi, M. (2015). Influence of soil properties on crop yield: A multivariate statistical approach. International Agrophysics, 29 (4), 433–440. https://doi.org/10.1515/intag-2015-0049

Karlson, M., Bolin, D., Bazié, H. R., Ouedraogo, A. S., Soro, B., Sanou, J., Bayala, J., & Ostwald, M. (2023). Exploring the landscape scale influences of tree cover on crop yield in an agroforestry parkland using satellite data and spatial statistics. Journal of Arid Environments, 218 , 105051. https://doi.org/10.1016/j.jaridenv.2023.105051

Kharel, T. P., Swink, S. N., Maresma, A., Youngerman, C., Kharel, D., Czymmek, K. J., & Ketterings, Q. M. (2019). Yield monitor data cleaning is essential for accurate corn grain and silage yield determination. Agronomy Journal, 111 (2), 509–516. https://doi.org/10.2134/agronj2018.05.0317

Kross, A., McNairn, H., Lapen, D., Sunohara, M., & Champagne, C. (2015). Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. International Journal of Applied Earth Observation and Geoinformation, 34 , 235–248. https://doi.org/10.1016/j.jag.2014.08.002

Kvítek, T., Žlábek, P., Bystřický, V., Fučík, P., Lexa, M., Gergel, J., Novák, P., & Ondr, P. (2009). Changes of nitrate concentrations in surface waters influenced by land use in the crystalline complex of the Czech Republic. Physics and Chemistry of the Earth, Parts a/b/c, 34 (8–9), 541–551. https://doi.org/10.1016/j.pce.2008.07.003

Lawes, R. A., Oliver, Y. M., & Robertson, M. J. (2009). Integrating the effects of climate and plant available soil water holding capacity on wheat yield. Field Crops Research, 113 (3), 297–305. https://doi.org/10.1016/j.fcr.2009.06.008

Li, J., & Heap, A. D. (2011). A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6 (3–4), 228–241. https://doi.org/10.1016/j.ecoinf.2010.12.003

Li, Y., Shi, Z., Li, F., & Li, H.-Y. (2007). Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Computers and Electronics in Agriculture, 56 (2), 174–186. https://doi.org/10.1016/j.compag.2007.01.013

López-Lozano, R., Casterad, M. A., & Herrero, J. (2010). Site-specific management units in a commercial maize plot delineated using very high resolution remote sensing and soil properties mapping. Computers and Electronics in Agriculture, 73 (2), 219–229. https://doi.org/10.1016/j.compag.2010.04.011

Lowenberg-DeBoer, J., & Erickson, B. (2019). Setting the record straight on precision agriculture adoption. Agronomy Journal, 111 (4), 1552–1569. https://doi.org/10.2134/agronj2018.12.0779

Maestrini, B., & Basso, B. (2018). Drivers of within-field spatial and temporal variability of crop yield across the US Midwest. Scientific Reports, 8 (1), 14833. https://doi.org/10.1038/s41598-018-32779-3

Maidl, F. X., Spicker, A. B., Weng, A., & Hülsbergen, K. J. (2019). Ableitung des teilflächenspezifischen Kornertrags von Getreide aus Reflexionsdaten [Derivation of the site-specific grain yield from reflection data]. In M. Aurich (Ed.), Informatik in der Land-, Forst- und Ernährungswirtschaft. Digitalisierung für landwirtschaftliche Betriebe in kleinstrukturierten Regionen - ein Widerspruch in sich? (pp. 131–134). Gesellschaft für Informatik.

Martinez-Feria, R. A., & Basso, B. (2020). Unstable crop yields reveal opportunities for site-specific adaptations to climate variability. Scientific Reports, 10 (1), 2885. https://doi.org/10.1038/s41598-020-59494-2

Mistele, B., Gutser, R., & Schmidhalter, U. (2004). Validation of field-scaled spectral measurements of the nitrogen status of winter wheat. In R. Khosla (Ed.), 7th International Conference on Precision Agriculture and other Precision Resources Management (pp. 629-639) , Mineapolis.

Mistele, B. (2006). Tractor based spectral reflectance measurements using an oligo view optic to detect biomass, nitrogen content and nitrogen uptake of wheat and maize and the nitrogen nutrition index of wheat . [Dissertation, Technische Universität München]. Freising-Weihenstephan.

Mistele, B., & Schmidhalter, U. (2008a). Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. European Journal of Agronomy, 29 (4), 184–190. https://doi.org/10.1016/j.eja.2008.05.007

Mistele, B., & Schmidhalter, U. (2008b). Spectral measurements of the total aerial N and biomass dry weight in maize using a quadrilateral-view optic. Field Crops Research, 106 (1), 94–103. https://doi.org/10.1016/j.fcr.2007.11.002

Mistele, B., & Schmidhalter, U. (2010). Tractor-based quadrilateral spectral reflectance measurements to detect biomass and total aerial nitrogen in winter wheat. Agronomy Journal, 102 (2), 499–506. https://doi.org/10.2134/agronj2009.0282

Mittermayer, M., Gilg, A., Maidl, F.-X., Nätscher, L., & Hülsbergen, K.-J. (2021). Site-specific nitrogen balances based on spatially variable soil and plant properties. Precision Agriculture, 22 (5), 1416–1436. https://doi.org/10.1007/s11119-021-09789-9

Mittermayer, M., Maidl, F.-X., Nätscher, L., & Hülsbergen, K.-J. (2022). Analysis of site-specific N balances in heterogeneous croplands using digital methods. European Journal of Agronomy, 133 , 126442. https://doi.org/10.1016/j.eja.2021.126442

Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering, 114 (4), 358–371. https://doi.org/10.1016/j.biosystemseng.2012.08.009

Münier, B., Birr-Pedersen, K., & Schou, J. S. (2004). Combined ecological and economic modelling in agricultural land use scenarios. Ecological Modelling, 174 (1–2), 5–18. https://doi.org/10.1016/j.ecolmodel.2003.12.040

Ngoune, L. T., & Shelton, C. M. (2020). Factors affecting yield of crops. In Amanullah (Ed.), Agronomy. IntechOpen.

Noack, P. O. (2006). Entwicklung fahrspurbasierter algorithmen zur korrektur von ertragsdaten im precision farming . Retrieved 5 November, 2020, from https://www.tec.wzw.tum.de/downloads/diss/2006_noack.pdf

Oliver, M. A., & Webster, R. (2015). Basic steps in geostatistics: The variogram and kriging . Springer International Publishing.

Book   Google Scholar  

Sentinel Online. (2023, August 9). Spatial resolutions - Sentinel-2 MSI . Retrieved 9 August, 2023, from https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial

Pardon, P., Reubens, B., Mertens, J., Verheyen, K., De Frenne, P., De Smet, G., Van Waes, C., & Reheul, D. (2018). Effects of temperate agroforestry on yield and quality of different arable intercrops. Agricultural Systems, 166 , 135–151. https://doi.org/10.1016/j.agsy.2018.08.008

Perry, E., Sheffield, K., Crawford, D., Akpa, S., Clancy, A., & Clark, R. (2022). Spatial and temporal biomass and growth for grain crops using NDVI time series. Remote Sensing, 14 (13), 3071. https://doi.org/10.3390/rs14133071

Petersen, L., Minkkinen, P., & Esbensen, K. H. (2005). Representative sampling for reliable data analysis: Theory of Sampling. Chemometrics and Intelligent Laboratory Systems, 77 (1–2), 261–277. https://doi.org/10.1016/j.chemolab.2004.09.013

Prabhakara, K., Hively, W. D., & McCarty, G. W. (2015). Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. International Journal of Applied Earth Observation and Geoinformation, 39 , 88–102. https://doi.org/10.1016/j.jag.2015.03.002

Prey, L., & Schmidhalter, U. (2019). Simulation of satellite reflectance data using high-frequency ground based hyperspectral canopy measurements for in-season estimation of grain yield and grain nitrogen status in winter wheat. ISPRS Journal of Photogrammetry and Remote Sensing, 149 , 176–187. https://doi.org/10.1016/j.isprsjprs.2019.01.023

Prücklmaier, J. X. (2020). Feldexperimentielle Analysen zur Ertragsbildung und Stickstoffeffizienz bei organisch-mineralischer Düngung auf heterogenen Standorten und Möglichkeiten zur Effizienzsteigerung durch computer- und sensortgestützte Düngesysteme . [Dissertation, Technische Universität München].Freising-Weihenstephan.

Raimondi, S., Perrone, E., & Barbera, V. (2010). Pedogenesis and variability in soil properties in a floodplain of a semiarid environment in southwestern sicily (Italy). Soil Science, 175 (12), 614–623. https://doi.org/10.1097/ss.0b013e3181fe2ec8

Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55 (2), 95–107. https://doi.org/10.1016/0034-4257(95)00186-7

Ruan, G., Li, X., Yuan, F., Cammarano, D., Ata-Ui-Karim, S. T., Liu, X., Tian, Y., Zhu, Y., Cao, W., & Cao, Q. (2022). Improving wheat yield prediction integrating proximal sensing and weather data with machine learning. Computers and Electronics in Agriculture, 195 , 106852. https://doi.org/10.1016/j.compag.2022.106852

Schmidhalter, U., Jungert, S. B., S., Gutser, R., Manhart, R., Mistele, B., & Gerl, G. (2003a). Field spectroscopic measurements to characterize nitrogen status and dry matter production of winter wheat. In J. V. Stafford & A. Werner (Eds.), Precision agriculture '03 . 4th European Conference on Precision Agriculture (pp. 615–619). Wageningen Academic Publishers.

Schmidhalter, U., Jungert, S., Bredemeier, S., Gutser, R., Manhart, R., Mistele, B., & Gerl, G. (2003b). Field-scale validation of a tractor based multispectral crop scanner to determine biomass and nitrogen uptake of winter wheat. In J. V. Stafford & A. Werner (Eds.), Precision agriculture '03. 4th European Conference on Precision Agriculture (pp. 615–619). Wageningen Academic Publishers.

Schuster, J., Hagn, L., Mittermayer, M., Maidl, F.-X., & Hülsbergen, K.-J. (2023). Using remote and proximal sensing in organic agriculture to assess yield and environmental performance. Agronomy, 13 (7), 1868. https://doi.org/10.3390/agronomy13071868

Schuster, J., Mittermayer, M., Maidl, F.-X., Nätscher, L., & Hülsbergen, K.-J. (2022). Spatial variability of soil properties, nitrogen balance and nitrate leaching using digital methods on heterogeneous arable fields in southern Germany. Precision Agriculture, 24 (2), 647–676. https://doi.org/10.1007/s11119-022-09967-3

Servadio, P., Bergonzoli, S., & Verotti, M. (2017). Delineation of management zones based on soil mechanical-chemical properties to apply variable rates of inputs throughout a field (VRA). Engineering in Agriculture, Environment and Food, 10 (1), 20–30. https://doi.org/10.1016/j.eaef.2016.07.001

Shaheb, M. R., Venkatesh, R., & Shearer, S. A. (2021). A review on the effect of soil compaction and its management for sustainable crop production. Journal of Biosystems Engineering, 46 (4), 417–439. https://doi.org/10.1007/s42853-021-00117-7

Sjulgård, H., Keller, T., Garland, G., & Colombi, T. (2023). Relationships between weather and yield anomalies vary with crop type and latitude in Sweden. Agricultural Systems, 211 , 103757. https://doi.org/10.1016/j.agsy.2023.103757

Spicker, A. B. (2017). Entwicklung von Verfahren der teilflächenspezifischen Stickstoffdüngung zu Wintergerste (Hordeum vulgare L.) und Winterraps (Brassica napus L.) auf Grundlage reflexionsoptischer Messungen. (Development of sensorbased nitrogen fertilization systems for oilseed rape (Brassica napus L.) and winter wheat (Hordeum vulgare L.)) . [Dissertation, Technische Universität München]. Freising-Weihenstephan.

Stettmer, M., Maidl, F.-X., Schwarzensteiner, J., Hülsbergen, K.-J., & Bernhardt, H. (2022a). Analysis of nitrogen uptake in winter wheat using sensor and satellite data for site-specific fertilization. Agronomy, 12 (6), 1455. https://doi.org/10.3390/agronomy12061455

Stettmer, M., Mittermayer, M., Maidl, F.-X., Schwarzensteiner, J., Hülsbergen, K.-J., & Bernhardt, H. (2022b). Three methods of site-specific yield mapping as a data source for the delineation of management zones in winter wheat. Agriculture, 12 (8), 1128. https://doi.org/10.3390/agriculture12081128

Sticksel, E., Huber, G., Liebler, J., Schächtl, J., & Maidl, F. X. (2004). The effect of diurnal variations of canopy reflectance on the assessment of biomass formation in wheat. In D. J. Mulla (Ed.), Proceedings of the 7th International Conference on Precision Agriculture and Other Precision Resources Management (pp.509.520). Hyatt Regency.

Sun, J., Li, W., Li, C., Chang, W., Zhang, S., Zeng, Y., Zeng, C., & Peng, M. (2020). Effect of different rates of nitrogen fertilization on crop yield, soil properties and leaf physiological attributes in banana under subtropical regions of China. Frontiers in Plant Science, 11 , 613760. https://doi.org/10.3389/fpls.2020.613760

Article   PubMed   PubMed Central   Google Scholar  

Taylor, J. C., Wood, G. A., Earl, R., & Godwin, R. J. (2003). Soil factors and their influence on within-field crop variability, part II: Spatial analysis and determination of management zones. Biosystems Engineering, 84 (4), 441–453. https://doi.org/10.1016/s1537-5110(03)00005-9

Thompson, S. K. (2002). On sampling and experiments. Environmetrics, 13 (5–6), 429–436. https://doi.org/10.1002/env.532

van Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177 , 105709. https://doi.org/10.1016/j.compag.2020.105709

VDLUFA. (2012). Methodenbuch I Verband deutscher landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA); Methode A 6.2.1.1 Bestimmung von Phosphor und Kalium im Calcium-Acetat-Lactat-Auszug. In VDLUFA-Methodenbuch (Ed.), Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik: Direkte Bestimmung von organischen Kohlenstoff durch Verbrennung von 550 °C und Gasanalyse . VDLUFA-Verlag.

VDLUFA. (2016). Methodenbuch I Verband deutscher landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA); Methode A 5.1.1 Bestimmung des pH-Wertes. In VDLUFA-Methodenbuch (Ed.), Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch) . VDLUFA-Verlag.

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H.-J., & Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333 , 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026

Wintersteiger, A. G. (2023). Classic ST . Retrieved 18 August, 2023, from https://www.wintersteiger.com/us/Plant-Breeding-and-Research/Products/Product-range/Stationary-thresher/39-Classic-ST

Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14 (6), 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

Download references

Open Access funding enabled and organized by Projekt DEAL. This study was funded by the Bavarian State Ministry of Food, Agriculture and Forestry (Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten).

Author information

Authors and affiliations.

Chair of Organic Agriculture and Agronomy, Technische Universität München, Liesel – Beckmann – Straße 2, 85354, Freising, Germany

Ludwig Hagn, Johannes Schuster, Martin Mittermayer & Kurt-Jürgen Hülsbergen

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization, L.H. and K.-J.H.; methodology, L.H., J.S., M.M., and K.-J.H.; validation, L.H. and J.S.; formal analysis, L.H., M.M. and J.S.; investigation, L.H. and J.S.; data curation, M.M., J.S. and L.H.; writing—original draft preparation, L.H.; writing—review and editing, L.H., M.M., K.-J.H. and J.S.; supervision, K.-J.H.; project administration, K.-J.H.; funding acquisition, K.-J.H. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ludwig Hagn .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 599 KB)

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Hagn, L., Schuster, J., Mittermayer, M. et al. A new method for satellite-based remote sensing analysis of plant-specific biomass yield patterns for precision farming applications. Precision Agric (2024). https://doi.org/10.1007/s11119-024-10144-x

Download citation

Accepted : 07 April 2024

Published : 28 April 2024

DOI : https://doi.org/10.1007/s11119-024-10144-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Satellite data
  • Remote sensing
  • Multispectral sensor
  • Model validation
  • Yield zones
  • Yield potential
  • Find a journal
  • Publish with us
  • Track your research

ORIGINAL RESEARCH article

This article is part of the research topic.

Advances in Infrared Lasers and Their Applications

Fine Grained Analysis Method for Unmanned Aerial Vehicle Measurement Based on Laser-based Light Scattering Particle Sensing Provisionally Accepted

  • 1 Qinhuangdao Tianda Environmental Research Protection Institute Co., LTD, China

The final, formatted version of the article will be published soon.

As an effective particle measurement method, laser-based particle sensors combined with unmanned aerial vehicles (UAVs) can be used for measuring air quality in near ground space. In order to assess the air quality between flight trajectories, a new fine-grained analysis method, Co-KNN-DNN is proposed to present the continuous distribution of air quality in more detail. First of all, the overall scheme was designed, M30T UAV was selected to carry the portable air quality monitoring equipment, with laser-based laser particulate matter sensor and Mini2, to collect AQI and related attributes of the near-ground layer in the selected research area, to do the necessary processing of the collected data, to build a data set suitable for model input, etc., to train and optimize the model, and to carry out practical application of the model. Based on the spatial dimension-based air quality finegrained analysis model Co-KNN-DNN, three experiments were conducted at different altitudes within the study area. 290 samples from each altitude data set were randomly selected to form the initial marker sample set, and 200 samples from each altitude were randomly selected as the test sample set. The remaining samples were unlabeled sample sets. The experimental results show that the average R-squared value can reach 0.99. The effectiveness and practicability of the Co-KNN-DNN model were verified by application research.

Keywords: air quality fine-grained, Sniffer4D Mini2, M30T UAV, Laser Particulate Matter Sensor, Co-KNN-DNN

Received: 06 Apr 2024; Accepted: 26 Apr 2024.

Copyright: © 2024 Jia, Song and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Mr. Xutao Jia, Qinhuangdao Tianda Environmental Research Protection Institute Co., LTD, Qinhuangdao, China

People also looked at

IMAGES

  1. 5 Steps of the Data Analysis Process

    what is method of data analysis in research

  2. What is Data Analysis ?

    what is method of data analysis in research

  3. Top 4 Data Analysis Techniques

    what is method of data analysis in research

  4. Your Guide to Qualitative and Quantitative Data Analysis Methods

    what is method of data analysis in research

  5. Data Analysis: What it is + Free Guide with Examples

    what is method of data analysis in research

  6. What is Data Analysis in Research

    what is method of data analysis in research

VIDEO

  1. Analysis of Data? Some Examples to Explore

  2. How to Assess the Quantitative Data Collected from Questionnaire

  3. Data organization in Biology

  4. NVIVO 14 Training Day-13: Thematic & Content Analysis

  5. How to interpret Reliability analysis results

  6. Data Analysis & Interpretation

COMMENTS

  1. Data Analysis in Research: Types & Methods

    Methods used for data analysis in qualitative research. There are several techniques to analyze the data in qualitative research, but here are some commonly used methods, Content Analysis: It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented ...

  2. Data analysis

    data analysis, the process of systematically collecting, cleaning, transforming, describing, modeling, and interpreting data, generally employing statistical techniques. Data analysis is an important part of both scientific research and business, where demand has grown in recent years for data-driven decision making.Data analysis techniques are used to gain useful insights from datasets, which ...

  3. What is data analysis? Methods, techniques, types & how-to

    A method of data analysis that is the umbrella term for engineering metrics and insights for additional value, direction, and context. By using exploratory statistical evaluation, data mining aims to identify dependencies, relations, patterns, and trends to generate advanced knowledge.

  4. What is Data Analysis? An Expert Guide With Examples

    Data analysis is a comprehensive method of inspecting, cleansing, transforming, and modeling data to discover useful information, draw conclusions, and support decision-making. It is a multifaceted process involving various techniques and methodologies to interpret data from various sources in different formats, both structured and unstructured.

  5. Data Analysis

    Data Analysis. Definition: Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets.

  6. Data Analysis: Types, Methods & Techniques (a Complete List)

    Description: Quantitative data analysis is a high-level branch of data analysis that designates methods and techniques concerned with numbers instead of words. It accounts for more than 50% of all data analysis and is by far the most widespread and well-known type of data analysis.

  7. What Is Data Analysis? (With Examples)

    What Is Data Analysis? (With Examples) Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions. "It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock Holme's proclaims ...

  8. Quantitative Data Analysis Methods & Techniques 101

    Quantitative data analysis is one of those things that often strikes fear in students. It's totally understandable - quantitative analysis is a complex topic, full of daunting lingo, like medians, modes, correlation and regression.Suddenly we're all wishing we'd paid a little more attention in math class…. The good news is that while quantitative data analysis is a mammoth topic ...

  9. Research Methods Guide: Data Analysis

    Data Analysis and Presentation Techniques that Apply to both Survey and Interview Research. Create a documentation of the data and the process of data collection. Analyze the data rather than just describing it - use it to tell a story that focuses on answering the research question. Use charts or tables to help the reader understand the data ...

  10. Data Analysis in Quantitative Research

    Abstract. Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative counterpart, quantitative data analysis has less flexibility.

  11. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  12. Data Analysis in Research

    Data analysis in research is the systematic process of investigating facts and figures to make conclusions about a specific question or topic; there are two major types of data analysis methods in ...

  13. LibGuides: Research Methods: Data Analysis & Interpretation

    Qualitative Data. Data analysis for a qualitative study can be complex because of the variety of types of data that can be collected. Qualitative researchers aren't attempting to measure observable characteristics, they are often attempting to capture an individual's interpretation of a phenomena or situation in a particular context or setting.

  14. Learning to Do Qualitative Data Analysis: A Starting Point

    For many researchers unfamiliar with qualitative research, determining how to conduct qualitative analyses is often quite challenging. Part of this challenge is due to the seemingly limitless approaches that a qualitative researcher might leverage, as well as simply learning to think like a qualitative researcher when analyzing data. From framework analysis (Ritchie & Spencer, 1994) to content ...

  15. What Is Data Analysis: A Comprehensive Guide

    Data analysis is a catalyst for continuous improvement. It allows organizations to monitor performance metrics, track progress, and identify areas for enhancement. This iterative process of analyzing data, implementing changes, and analyzing again leads to ongoing refinement and excellence in processes and products.

  16. Data Analysis Techniques In Research

    Data analysis techniques in research are essential because they allow researchers to derive meaningful insights from data sets to support their hypotheses or research objectives.. Data Analysis Techniques in Research: While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition captures its essence.

  17. Qualitative Data Analysis Methods: Top 6 + Examples

    Grounded theory is a powerful qualitative analysis method where the intention is to create a new theory (or theories) using the data at hand, through a series of "tests" and "revisions". Strictly speaking, GT is more a research design type than an analysis method, but we've included it here as it's often referred to as a method.

  18. The Beginner's Guide to Statistical Analysis

    Statistical analysis means investigating trends, patterns, and relationships using quantitative data. It is an important research tool used by scientists, governments, businesses, and other organizations. To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process. You need to specify ...

  19. (PDF) Different Types of Data Analysis; Data Analysis Methods and

    Data analysis is simply the process of converting the gathered data to meanin gf ul information. Different techniques such as modeling to reach trends, relatio nships, and therefore conclusions to ...

  20. Research Guide: Data analysis and reporting findings

    Data analysis is the most crucial part of any research. Data analysis summarizes collected data. It involves the interpretation of data gathered through the use of analytical and logical reasoning to determine patterns, relationships or trends. ... and several triangulative and mixed-method research designs. This volume is recommended for ...

  21. Qualitative Data Analysis: What is it, Methods + Examples

    Method 1: Content Analysis. Content analysis is a methodical technique for analyzing textual or visual data in a structured manner. In this method, you will categorize qualitative data by splitting it into manageable pieces and assigning the manual coding process to these units.

  22. Data Collection

    Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem. While methods and aims may differ between fields, the overall process of ...

  23. What Is Data Collection: Methods, Types, Tools

    This could lead to incomplete research or analysis, re-collecting data again and again, or shutting down the study. Deciding the Data to Collect. ... What is mixed methods research? User research that includes both qualitative and quantitative techniques is known as mixed methods research. For deeper user insights, mixed methods research ...

  24. A New Use for Wegovy Opens the Door to Medicare Coverage for ...

    Based on KFF analysis of Medicare data from 2020, an estimated 7% of Medicare beneficiaries, or 3.6 million overall, had established cardiovascular disease and obesity or overweight in 2020, and ...

  25. Journal of Medical Internet Research

    Methods: A panel data set containing information on 2880 doctors over a 22-month period was obtained from one of the largest web-based health care communities in China. Data analysis was conducted using a 2-way fixed effects model with robust clustered SEs.

  26. What Is Qualitative Research?

    Qualitative research is the opposite of quantitative research, which involves collecting and analyzing numerical data for statistical analysis. Qualitative research is commonly used in the humanities and social sciences, in subjects such as anthropology, sociology, education, health sciences, history, etc. Qualitative research question examples

  27. Use of ChatGPT for schoolwork among US teens

    Pew Research Center conducted this analysis to understand American teens' use and understanding of ChatGPT in the school setting. The Center conducted an online survey of 1,453 U.S. teens from Sept. 26 to Oct. 23, 2023, via Ipsos. Ipsos recruited the teens via their parents, who were part of its KnowledgePanel. The KnowledgePanel is a ...

  28. A new method for satellite-based remote sensing analysis of ...

    This study describes a new method for satellite-based remote sensing analysis of plant-specific biomass yield patterns for precision farming applications. The relative biomass potential (rel. BMP) serves as an indicator for multiyear stable and homogeneous yield zones. The rel. BMP is derived from satellite data corresponding to specific growth stages and the normalized difference vegetation ...

  29. Frontiers

    As an effective particle measurement method, laser-based particle sensors combined with unmanned aerial vehicles (UAVs) can be used for measuring air quality in near ground space. In order to assess the air quality between flight trajectories, a new fine-grained analysis method, Co-KNN-DNN is proposed to present the continuous distribution of air quality in more detail. First of all, the ...

  30. Full article: Collection of time activity data to support exposure

    This research will not consider mechanical hazards (e.g. vibration, lifting) or psychosocial hazards (e.g. violence, stress) (Institute of Medicine 1995) in its analysis. The Methods included in this review will be all methods used to generate TAD, such as videography (Beamer et al. Citation 2008), direct observation (Ezzati et al. Citation ...