• School Guide
  • Mathematics
  • Number System and Arithmetic
  • Trigonometry
  • Probability
  • Mensuration
  • Maths Formulas
  • Class 8 Maths Notes
  • Class 9 Maths Notes
  • Class 10 Maths Notes
  • Class 11 Maths Notes
  • Class 12 Maths Notes

Graphical Representation of Data

Graphical Representation of Data: Graphical Representation of Data,” where numbers and facts become lively pictures and colorful diagrams . Instead of staring at boring lists of numbers, we use fun charts, cool graphs, and interesting visuals to understand information better. In this exciting concept of data visualization, we’ll learn about different kinds of graphs, charts, and pictures that help us see patterns and stories hidden in data.

There is an entire branch in mathematics dedicated to dealing with collecting, analyzing, interpreting, and presenting numerical data in visual form in such a way that it becomes easy to understand and the data becomes easy to compare as well, the branch is known as Statistics .

The branch is widely spread and has a plethora of real-life applications such as Business Analytics, demography, Astro statistics, and so on . In this article, we have provided everything about the graphical representation of data, including its types, rules, advantages, etc.

Graphical-Representation-of-Data

Table of Content

What is Graphical Representation

Types of graphical representations, line graphs, histograms , stem and leaf plot , box and whisker plot .

  • Graphical Representations used in Maths

Value-Based or Time Series Graphs 

Frequency based, principles of graphical representations, advantages and disadvantages of using graphical system, general rules for graphical representation of data, frequency polygon, solved examples on graphical representation of data.

Graphics Representation is a way of representing any data in picturized form . It helps a reader to understand the large set of data very easily as it gives us various data patterns in visualized form.

There are two ways of representing data,

  • Pictorial Representation through graphs.

They say, “A picture is worth a thousand words”.  It’s always better to represent data in a graphical format. Even in Practical Evidence and Surveys, scientists have found that the restoration and understanding of any information is better when it is available in the form of visuals as Human beings process data better in visual form than any other form.

Does it increase the ability 2 times or 3 times? The answer is it increases the Power of understanding 60,000 times for a normal Human being, the fact is amusing and true at the same time.

Check: Graph and its representations

Comparison between different items is best shown with graphs, it becomes easier to compare the crux of the data about different items. Let’s look at all the different types of graphical representations briefly: 

A line graph is used to show how the value of a particular variable changes with time. We plot this graph by connecting the points at different values of the variable. It can be useful for analyzing the trends in the data and predicting further trends. 

a graphical representation of data is called what

A bar graph is a type of graphical representation of the data in which bars of uniform width are drawn with equal spacing between them on one axis (x-axis usually), depicting the variable. The values of the variables are represented by the height of the bars. 

a graphical representation of data is called what

This is similar to bar graphs, but it is based frequency of numerical values rather than their actual values. The data is organized into intervals and the bars represent the frequency of the values in that range. That is, it counts how many values of the data lie in a particular range. 

a graphical representation of data is called what

It is a plot that displays data as points and checkmarks above a number line, showing the frequency of the point.  

a graphical representation of data is called what

This is a type of plot in which each value is split into a “leaf”(in most cases, it is the last digit) and “stem”(the other remaining digits). For example: the number 42 is split into leaf (2) and stem (4).  

a graphical representation of data is called what

These plots divide the data into four parts to show their summary. They are more concerned about the spread, average, and median of the data. 

a graphical representation of data is called what

It is a type of graph which represents the data in form of a circular graph. The circle is divided such that each portion represents a proportion of the whole. 

a graphical representation of data is called what

Graphical Representations used in Math’s

Graphs in Math are used to study the relationships between two or more variables that are changing. Statistical data can be summarized in a better way using graphs. There are basically two lines of thoughts of making graphs in maths: 

  • Value-Based or Time Series Graphs

These graphs allow us to study the change of a variable with respect to another variable within a given interval of time. The variables can be anything. Time Series graphs study the change of variable with time. They study the trends, periodic behavior, and patterns in the series. We are more concerned with the values of the variables here rather than the frequency of those values. 

Example: Line Graph

These kinds of graphs are more concerned with the distribution of data. How many values lie between a particular range of the variables, and which range has the maximum frequency of the values. They are used to judge a spread and average and sometimes median of a variable under study.

Also read: Types of Statistical Data
  • All types of graphical representations follow algebraic principles.
  • When plotting a graph, there’s an origin and two axes.
  • The x-axis is horizontal, and the y-axis is vertical.
  • The axes divide the plane into four quadrants.
  • The origin is where the axes intersect.
  • Positive x-values are to the right of the origin; negative x-values are to the left.
  • Positive y-values are above the x-axis; negative y-values are below.

graphical-representation

  • It gives us a summary of the data which is easier to look at and analyze.
  • It saves time.
  • We can compare and study more than one variable at a time.

Disadvantages

  • It usually takes only one aspect of the data and ignores the other. For example, A bar graph does not represent the mean, median, and other statistics of the data. 
  • Interpretation of graphs can vary based on individual perspectives, leading to subjective conclusions.
  • Poorly constructed or misleading visuals can distort data interpretation and lead to incorrect conclusions.
Check : Diagrammatic and Graphic Presentation of Data

We should keep in mind some things while plotting and designing these graphs. The goal should be a better and clear picture of the data. Following things should be kept in mind while plotting the above graphs: 

  • Whenever possible, the data source must be mentioned for the viewer.
  • Always choose the proper colors and font sizes. They should be chosen to keep in mind that the graphs should look neat.
  • The measurement Unit should be mentioned in the top right corner of the graph.
  • The proper scale should be chosen while making the graph, it should be chosen such that the graph looks accurate.
  • Last but not the least, a suitable title should be chosen.

A frequency polygon is a graph that is constructed by joining the midpoint of the intervals. The height of the interval or the bin represents the frequency of the values that lie in that interval. 

frequency-polygon

Question 1: What are different types of frequency-based plots? 

Types of frequency-based plots:  Histogram Frequency Polygon Box Plots

Question 2: A company with an advertising budget of Rs 10,00,00,000 has planned the following expenditure in the different advertising channels such as TV Advertisement, Radio, Facebook, Instagram, and Printed media. The table represents the money spent on different channels. 

Draw a bar graph for the following data. 

  • Put each of the channels on the x-axis
  • The height of the bars is decided by the value of each channel.

a graphical representation of data is called what

Question 3: Draw a line plot for the following data 

  • Put each of the x-axis row value on the x-axis
  • joint the value corresponding to the each value of the x-axis.

a graphical representation of data is called what

Question 4: Make a frequency plot of the following data: 

  • Draw the class intervals on the x-axis and frequencies on the y-axis.
  • Calculate the midpoint of each class interval.
Class Interval Mid Point Frequency
0-3 1.5 3
3-6 4.5 4
6-9 7.5 2
9-12 10.5 6

Now join the mid points of the intervals and their corresponding frequencies on the graph. 

a graphical representation of data is called what

This graph shows both the histogram and frequency polygon for the given distribution.

Related Article:

Graphical Representation of Data| Practical Work in Geography Class 12 What are the different ways of Data Representation What are the different ways of Data Representation? Charts and Graphs for Data Visualization

Conclusion of Graphical Representation

Graphical representation is a powerful tool for understanding data, but it’s essential to be aware of its limitations. While graphs and charts can make information easier to grasp, they can also be subjective, complex, and potentially misleading . By using graphical representations wisely and critically, we can extract valuable insights from data, empowering us to make informed decisions with confidence.

Graphical Representation of Data – FAQs

What are the advantages of using graphs to represent data.

Graphs offer visualization, clarity, and easy comparison of data, aiding in outlier identification and predictive analysis.

What are the common types of graphs used for data representation?

Common graph types include bar, line, pie, histogram, and scatter plots , each suited for different data representations and analysis purposes.

How do you choose the most appropriate type of graph for your data?

Select a graph type based on data type, analysis objective, and audience familiarity to effectively convey information and insights.

How do you create effective labels and titles for graphs?

Use descriptive titles, clear axis labels with units, and legends to ensure the graph communicates information clearly and concisely.

How do you interpret graphs to extract meaningful insights from data?

Interpret graphs by examining trends, identifying outliers, comparing data across categories, and considering the broader context to draw meaningful insights and conclusions.

Please Login to comment...

Similar reads.

  • School Learning
  • Maths-Class-9
  • How to Get a Free SSL Certificate
  • Best SSL Certificates Provider in India
  • Elon Musk's xAI releases Grok-2 AI assistant
  • What is OpenAI SearchGPT? How it works and How to Get it?
  • Full Stack Developer Roadmap [2024 Updated]

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • Math Article

Graphical Representation

Class Registration Banner

Graphical Representation is a way of analysing numerical data. It exhibits the relation between data, ideas, information and concepts in a diagram. It is easy to understand and it is one of the most important learning strategies. It always depends on the type of information in a particular domain. There are different types of graphical representation. Some of them are as follows:

  • Line Graphs – Line graph or the linear graph is used to display the continuous data and it is useful for predicting future events over time.
  • Bar Graphs – Bar Graph is used to display the category of data and it compares the data using solid bars to represent the quantities.
  • Histograms – The graph that uses bars to represent the frequency of numerical data that are organised into intervals. Since all the intervals are equal and continuous, all the bars have the same width.
  • Line Plot – It shows the frequency of data on a given number line. ‘ x ‘ is placed above a number line each time when that data occurs again.
  • Frequency Table – The table shows the number of pieces of data that falls within the given interval.
  • Circle Graph – Also known as the pie chart that shows the relationships of the parts of the whole. The circle is considered with 100% and the categories occupied is represented with that specific percentage like 15%, 56%, etc.
  • Stem and Leaf Plot – In the stem and leaf plot, the data are organised from least value to the greatest value. The digits of the least place values from the leaves and the next place value digit forms the stems.
  • Box and Whisker Plot – The plot diagram summarises the data by dividing into four parts. Box and whisker show the range (spread) and the middle ( median) of the data.

Graphical Representation

General Rules for Graphical Representation of Data

There are certain rules to effectively present the information in the graphical representation. They are:

  • Suitable Title: Make sure that the appropriate title is given to the graph which indicates the subject of the presentation.
  • Measurement Unit: Mention the measurement unit in the graph.
  • Proper Scale: To represent the data in an accurate manner, choose a proper scale.
  • Index: Index the appropriate colours, shades, lines, design in the graphs for better understanding.
  • Data Sources: Include the source of information wherever it is necessary at the bottom of the graph.
  • Keep it Simple: Construct a graph in an easy way that everyone can understand.
  • Neat: Choose the correct size, fonts, colours etc in such a way that the graph should be a visual aid for the presentation of information.

Graphical Representation in Maths

In Mathematics, a graph is defined as a chart with statistical data, which are represented in the form of curves or lines drawn across the coordinate point plotted on its surface. It helps to study the relationship between two variables where it helps to measure the change in the variable amount with respect to another variable within a given interval of time. It helps to study the series distribution and frequency distribution for a given problem.  There are two types of graphs to visually depict the information. They are:

  • Time Series Graphs – Example: Line Graph
  • Frequency Distribution Graphs – Example: Frequency Polygon Graph

Principles of Graphical Representation

Algebraic principles are applied to all types of graphical representation of data. In graphs, it is represented using two lines called coordinate axes. The horizontal axis is denoted as the x-axis and the vertical axis is denoted as the y-axis. The point at which two lines intersect is called an origin ‘O’. Consider x-axis, the distance from the origin to the right side will take a positive value and the distance from the origin to the left side will take a negative value. Similarly, for the y-axis, the points above the origin will take a positive value, and the points below the origin will a negative value.

Principles of graphical representation

Generally, the frequency distribution is represented in four methods, namely

  • Smoothed frequency graph
  • Pie diagram
  • Cumulative or ogive frequency graph
  • Frequency Polygon

Merits of Using Graphs

Some of the merits of using graphs are as follows:

  • The graph is easily understood by everyone without any prior knowledge.
  • It saves time
  • It allows us to relate and compare the data for different time periods
  • It is used in statistics to determine the mean, median and mode for different data, as well as in the interpolation and the extrapolation of data.

Example for Frequency polygonGraph

Here are the steps to follow to find the frequency distribution of a frequency polygon and it is represented in a graphical way.

  • Obtain the frequency distribution and find the midpoints of each class interval.
  • Represent the midpoints along x-axis and frequencies along the y-axis.
  • Plot the points corresponding to the frequency at each midpoint.
  • Join these points, using lines in order.
  • To complete the polygon, join the point at each end immediately to the lower or higher class marks on the x-axis.

Draw the frequency polygon for the following data

10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
4 6 8 10 12 14 7 5

Mark the class interval along x-axis and frequencies along the y-axis.

Let assume that class interval 0-10 with frequency zero and 90-100 with frequency zero.

Now calculate the midpoint of the class interval.

0-10 5 0
10-20 15 4
20-30 25 6
30-40 35 8
40-50 45 10
50-60 55 12
60-70 65 14
70-80 75 7
80-90 85 5
90-100 95 0

Using the midpoint and the frequency value from the above table, plot the points A (5, 0), B (15, 4), C (25, 6), D (35, 8), E (45, 10), F (55, 12), G (65, 14), H (75, 7), I (85, 5) and J (95, 0).

To obtain the frequency polygon ABCDEFGHIJ, draw the line segments AB, BC, CD, DE, EF, FG, GH, HI, IJ, and connect all the points.

a graphical representation of data is called what

Frequently Asked Questions

What are the different types of graphical representation.

Some of the various types of graphical representation include:

  • Line Graphs
  • Frequency Table
  • Circle Graph, etc.

Read More:  Types of Graphs

What are the Advantages of Graphical Method?

Some of the advantages of graphical representation are:

  • It makes data more easily understandable.
  • It saves time.
  • It makes the comparison of data more efficient.
MATHS Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

a graphical representation of data is called what

Very useful for understand the basic concepts in simple and easy way. Its very useful to all students whether they are school students or college sudents

Thanks very much for the information

a graphical representation of data is called what

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

a graphical representation of data is called what

Graphical Representation

Graphical representation definition.

Graphical representation refers to the use of charts and graphs to visually display, analyze, clarify, and interpret numerical data, functions, and other qualitative structures. ‍

a graphical representation of data is called what

What is Graphical Representation?

Graphical representation refers to the use of intuitive charts to clearly visualize and simplify data sets. Data is ingested into graphical representation of data software and then represented by a variety of symbols, such as lines on a line chart, bars on a bar chart, or slices on a pie chart, from which users can gain greater insight than by numerical analysis alone. 

Representational graphics can quickly illustrate general behavior and highlight phenomenons, anomalies, and relationships between data points that may otherwise be overlooked, and may contribute to predictions and better, data-driven decisions. The types of representational graphics used will depend on the type of data being explored.

Types of Graphical Representation

Data charts are available in a wide variety of maps, diagrams, and graphs that typically include textual titles and legends to denote the purpose, measurement units, and variables of the chart. Choosing the most appropriate chart depends on a variety of different factors -- the nature of the data, the purpose of the chart, and whether a graphical representation of qualitative data or a graphical representation of quantitative data is being depicted. There are dozens of different formats for graphical representation of data. Some of the most popular charts include:

  • Bar Graph -- contains a vertical axis and horizontal axis and displays data as rectangular bars with lengths proportional to the values that they represent; a useful visual aid for marketing purposes
  • Choropleth -- thematic map in which an aggregate summary of a geographic characteristic within an area is represented by patterns of shading proportionate to a statistical variable
  • Flow Chart -- diagram that depicts a workflow graphical representation with the use of arrows and geometric shapes; a useful visual aid for business and finance purposes
  • Heatmap -- a colored, two-dimensional matrix of cells in which each cell represents a grouping of data and each cell’s color indicates its relative value
  • Histogram – frequency distribution and graphical representation uses adjacent vertical bars erected over discrete intervals to represent the data frequency within a given interval; a useful visual aid for meteorology and environment purposes
  • Line Graph – displays continuous data; ideal for predicting future events over time;  a useful visual aid for marketing purposes
  • Pie Chart -- shows percentage values as a slice of pie; a useful visual aid for marketing purposes
  • Pointmap -- CAD & GIS contract mapping and drafting solution that visualizes the location of data on a map by plotting geographic latitude and longitude data
  • Scatter plot -- a diagram that shows the relationship between two sets of data, where each dot represents individual pieces of data and each axis represents a quantitative measure
  • Stacked Bar Graph -- a graph in which each bar is segmented into parts, with the entire bar representing the whole, and each segment representing different categories of that whole; a useful visual aid for political science and sociology purposes
  • Timeline Chart -- a long bar labelled with dates paralleling it that display a list of events in chronological order, a useful visual aid for history charting purposes
  • Tree Diagram -- a hierarchical genealogical tree that illustrates a family structure; a useful visual aid for history charting purposes
  • Venn Diagram -- consists of multiple overlapping usually circles, each representing a set; the default inner join graphical representation

Proprietary and open source software for graphical representation of data is available in a wide variety of programming languages. Software packages often provide spreadsheets equipped with built-in charting functions.

Advantages and Disadvantages of Graphical Representation of Data

Tabular and graphical representation of data are a vital component in analyzing and understanding large quantities of numerical data and the relationship between data points. Data visualization is one of the most fundamental approaches to data analysis, providing an intuitive and universal means to visualize, abstract, and share complex data patterns. The primary advantages of graphical representation of data are:

  • Facilitates and improves learning: graphics make data easy to understand and eliminate language and literacy barriers
  • Understanding content: visuals are more effective than text in human understanding
  • Flexibility of use: graphical representation can be leveraged in nearly every field involving data
  • Increases structured thinking: users can make quick, data-driven decisions at a glance with visual aids
  • Supports creative, personalized reports for more engaging and stimulating visual  presentations 
  • Improves communication: analyzing graphs that highlight relevant themes is significantly faster than reading through a descriptive report line by line
  • Shows the whole picture: an instantaneous, full view of all variables, time frames, data behavior and relationships

Disadvantages of graphical representation of data typically concern the cost of human effort and resources, the process of selecting the most appropriate graphical and tabular representation of data, greater design complexity of visualizing data, and the potential for human bias.

Why Graphical Representation of Data is Important

Graphic visual representation of information is a crucial component in understanding and identifying patterns and trends in the ever increasing flow of data. Graphical representation enables the quick analysis of large amounts of data at one time and can aid in making predictions and informed decisions. Data visualizations also make collaboration significantly more efficient by using familiar visual metaphors to illustrate relationships and highlight meaning, eliminating complex, long-winded explanations of an otherwise chaotic-looking array of figures. 

Data only has value once its significance has been revealed and consumed, and its consumption is best facilitated with graphical representation tools that are designed with human cognition and perception in mind. Human visual processing is very efficient at detecting relationships and changes between sizes, shapes, colors, and quantities. Attempting to gain insight from numerical data alone, especially in big data instances in which there may be billions of rows of data, is exceedingly cumbersome and inefficient.

Does HEAVY.AI Offer a Graphical Representation Solution?

HEAVY.AI's visual analytics platform is an interactive data visualization client that works seamlessly with server-side technologies HEAVY.AIDB and Render to enable data science analysts to easily visualize and instantly interact with massive datasets. Analysts can interact with conventional charts and data tables, as well as big data graphical representations such as massive-scale scatterplots and geo charts. Data visualization contributes to a broad range of use cases, including performance analysis in business and guiding research in academia.

Introduction to Graphs

Table of Contents

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

15 December 2020                 

Read time: 6 minutes

Introduction

What are graphs?

What are the different types of data?

What are the different types of graphical representations?

The graph is nothing but an organized representation of data. It helps us to understand the data. Data are the numerical information collected through observation.

The word data came from the Latin word Datum which means “something given”

After a research question is developed, data is being collected continuously through observation. Then it is organized, summarized, classified, and then represented graphically.

Differences between Data and information: Data is the raw fact without any add on but the information is the meaning derived from data.

Data

Information

Raw facts of things

Data with exact meaning

No contextual meaning

Processed data and organized context

Just numbers and text

 

Introduction to Graphs-PDF

The graph is nothing but an organized representation of data. It helps us to understand the data. Data are the numerical information collected through observation. Here is a downloadable PDF to explore more.

📥

  • Line and Bar Graphs Application
  • Graphs in Mathematics & Statistics

What are the different Types of Data?

There are two types of Data :

Types of Data

Quantitative

The data which are statistical or numerical are known as Quantitive data. Quantitive data is generated through. Quantitative data is also known as Structured data. Experiments, Tests, Surveys, Market Report.

Quantitive data is again divided into Continuous data and Discrete data.

Continuous Data

Continuous data is the data which can have any value. That means Continuous data can give infinite outcomes so it should be grouped before representing on a graph.

  • The speed of a vehicle as it passes a checkpoint
  • The mass of a cooking apple
  • The time taken by a volunteer to perform a task

Discrete Data

Discrete data can have certain values. That means only a finite number can be categorized as discrete data.

  • Numbers of cars sold at a dealership during a given month
  • Number of houses in certain block
  • Number of fish caught on a fishing trip
  • Number of complaints received at the office of airline on a given day
  • Number of customers who visit at bank during any given hour
  • Number of heads obtained in three tosses of a coin

Differences between Discrete and Continuous data

  • Numerical data could be either discrete or continuous
  • Continuous data can take any numerical value (within a range); For example, weight, height, etc.
  • There can be an infinite number of possible values in continuous data
  • Discrete data can take only certain values by finite ‘jumps’, i.e., it ‘jumps’ from one value to another but does not take any intermediate value between them (For example, number of students in the class)

Qualitative

Data that deals with description or quality instead of numbers are known as Quantitative data. Qualitative data is also known as unstructured data. Because this type of data is loosely compact and can’t be analyzed conventionally.

Different Types of Graphical Representations

There are many types of graph we can use to represent data. They are as follows,

A bar graph or chart is a way to represent data by rectangular column or bar. The heights or length of the bar is proportional to the values.

A bar graph or chart

A line graph is a type of graph where the information or data is plotted as some dots which are known as markers and then they are added to each other by a straight line.

The line graph is normally used to represent the data that changes over time.

A line graph

A histogram graph is a graph where the information is represented along with the height of the rectangular bar. Though it does look like a bar graph, there is a fundamental difference between them. With the histogram, each column represents a range of quantitative data when a bar graph represents categorical variables.

Histogram and Piechart

The other name of the pie chart is a circle graph. It is a circular chart where numerical information represents as slices or in fractional form or percentage where the whole circle is 100%.

Pie chart

  • Stem and leaf plot

The stem and leaf plot is a way to represents quantitative data according to frequency ranges or frequency distribution.

In the stem and leaf plot, each data is split into stem and leaf, which is 32 will be split into 3 stems and 2 leaves.

Stem and leaf plot

Frequency table: Frequency means the number of occurrences of an event. A frequency distribution table is a graph or chart which shows the frequency of events. It is denoted as ‘f’ .

Frequency table

Pictograph or Pictogram is the earliest way to represents data in a pictorial form or by using symbols or images. And each image represents a particular number of things.

Pictograph or Pictogram

According to the above-mentioned Pictograph, the number of Appels sold on Monday is 6x2=12.

  • Scatter diagrams

Scatter diagram or scatter plot is a way of graphical representation by using cartesian coordinates of two variables. The plot shows the relationship between two variables. Below there is a data table as well as a Scattergram as per the given data.

ºc
14.2º $215
16.4º $325
11.9º $185
15.2º $332
18.5º $406
22.1º $522
19.4º $412
25.1º $614

What is the meaning of Graphical representation?

Graphical representation is a way to represent and analyze quantitive data. A graph is a kind of a chart where data are plotted as variables across the coordinate. It became easy to analyze the extent of change of one variable based on the change of other variables.

Principles of graphical representation

The principles of graphical representation are algebraic. In a graph, there are two lines known as Axis or Coordinate axis. These are the X-axis and Y-axis. The horizontal axis is the X-axis and the vertical axis is the Y-axis. They are perpendicular to each other and intersect at O or point of Origin.

On the right side of the Origin, the Xaxis has a positive value and on the left side, it has a negative value. In the same way, the upper side of the Origin Y-axis has a positive value where the down one is with a negative value.

When X-axis and y-axis intersected each other at the origin it divides the plane into four parts which are called Quadrant I, Quadrant II, Quadrant III, Quadrant IV.

Principles of graphical representation

The location on the coordinate plane is known as the ordered pair and it is written as (x,y). That means the first value will be on the x-axis and the second one is on the y-axis. When we will plot any coordinate, we always have to start counting from the origin and have to move along the x-axis, if it is positive then to the right side, and if it is negative then to the left side. Then from the x-axis, we have to plot the y’s value, which means we have to move up for positive value or down if the value is negative along with the y-axis.

In the following graph, 1st ordered pair (2,3) where both the values of x and y are positive and it is on quadrant I. 2nd ordered pair (-3,1), here the value of x is negative and value of y is positive and it is in quadrant II. 3rd ordered pair (-1.5, -2.5), here the value of x as well as y both are Negative and in quadrant III.

Principles of graphical representation

Methods of representing a frequency distribution

There are four methods to represent a frequency distribution graphically. These are,

  • Smoothed Frequency graph
  • Cumulative frequency graph or Ogive.
  • Pie diagram.

Advantages and Disadvantages of Graphical representation of data

  • It improves the way of analyzing and learning as the graphical representation makes the data easy to understand.
  • It can be used in almost all fields from mathematics to physics to psychology and so on.
  • It is easy to understand for its visual impacts.
  • It shows the whole and huge data in an instance.

The main disadvantage of graphical representation of data is that it takes a lot of effort as well as resources to find the most appropriate data and then represents it graphically.

You may also like:

  • Graphing a Quadratic Function
  • Empirical Relationship Between Mean, Median, and Mode

Not only in mathematics but almost in every field the graph is a very important way to store, analyze, and represents information. After any research work or after any survey the next step is to organize the observation or information and plotting them on a graph paper or plane. The visual representation of information makes the understanding of crucial components or trends easier.

A huge amount of data can be store or analyze in a small space.

The graphical representation of data helps to decide by following the trend.

A complete Idea: Graphical representation constitutes a clear and comprehensive idea in the minds of the audience. Reading a large number (say hundreds) of pages may not help to make a decision. Anyone can get a clear idea just by looking into the graph or design.

Graphs are a very conceptual topic, so it is essential to get a complete understanding of the concept. Graphs are great visual aids and help explain numerous things better, they are important in everyday life. Get better at graphs with us, sign up for a free trial . 

About Cuemath

Cuemath, a student-friendly mathematics and coding platform, conducts regular Online Classes for academics and skill-development, and their Mental Math App, on both iOS and Android , is a one-stop solution for kids to develop multiple skills. Understand the Cuemath Fee structure and sign up for a free trial.

Frequently Asked Questions (FAQs)

What is data.

Data are characteristics or information, usually numerical, that are collected through observation.

How do you differentiate between data and information?

Data is the raw fact without any add on but the information is the meaning derived from data.

What are the types of data?

There are two types of Data:

Two types of Data

What are the ways to represent data?

Tables, charts and graphs are all ways of representing data , and they can be used for two broad purposes. The first is to support the collection, organisation and analysis of data as part of the process of a scientific study.

- Tables, charts and graphs are all ways of representing data, and they can be used for two broad purposes. The first is to support the collection, organisation and analysis of data as part of the process of a scientific study.

What are the different types of graphs?

Different types of graphs include:

What Is Data Visualization: Brief Theory, Useful Tips and Awesome Examples

  • Share on Facebook
  • Share on Twitter

By Al Boicheva

in Insights , Inspiration

3 years ago

Viewed 11,766 times

Spread the word about this article:

What Is Data Visualization Brief Theory, Useful Tips and Awesome Examples

Updated: June 23, 2022

To create data visualization in order to present your data is no longer just a nice to have skill. Now, the skill to effectively sort and communicate your data through charts is a must-have for any business in any field that deals with data. Data visualization helps businesses quickly make sense of complex data and start making decisions based on that data. This is why today we’ll talk about what is data visualization. We’ll discuss how and why does it work, what type of charts to choose in what cases, how to create effective charts, and, of course, end with beautiful examples.

So let’s jump right in. As usual, don’t hesitate to fast-travel to a particular section of your interest.

Article overview: 1. What Does Data Visualization Mean? 2. How Does it Work? 3. When to Use it? 4. Why Use it? 5. Types of Data Visualization 6. Data Visualization VS Infographics: 5 Main Differences 7. How to Create Effective Data Visualization?: 5 Useful Tips 8. Examples of Data Visualization

1. What is Data Visualization?

Data Visualization is a graphic representation of data that aims to communicate numerous heavy data in an efficient way that is easier to grasp and understand . In a way, data visualization is the mapping between the original data and graphic elements that determine how the attributes of these elements vary. The visualization is usually made by the use of charts, lines, or points, bars, and maps.

  • Data Viz is a branch of Descriptive statistics but it requires both design, computer, and statistical skills.
  • Aesthetics and functionality go hand in hand to communicate complex statistics in an intuitive way.
  • Data Viz tools and technologies are essential for making data-driven decisions.
  • It’s a fine balance between form and functionality.
  • Every STEM field benefits from understanding data.

2. How Does it Work?

If we can see it, our brains can internalize and reflect on it. This is why it’s much easier and more effective to make sense of a chart and see trends than to read a massive document that would take a lot of time and focus to rationalize. We wouldn’t want to repeat the cliche that humans are visual creatures, but it’s a fact that visualization is much more effective and comprehensive.

In a way, we can say that data Viz is a form of storytelling with the purpose to help us make decisions based on data. Such data might include:

  • Tracking sales
  • Identifying trends
  • Identifying changes
  • Monitoring goals
  • Monitoring results
  • Combining data

3. When to Use it?

Data visualization is useful for companies that deal with lots of data on a daily basis. It’s essential to have your data and trends instantly visible. Better than scrolling through colossal spreadsheets. When the trends stand out instantly this also helps your clients or viewers to understand them instead of getting lost in the clutter of numbers.

With that being said, Data Viz is suitable for:

  • Annual reports
  • Presentations
  • Social media micronarratives
  • Informational brochures
  • Trend-trafficking
  • Candlestick chart for financial analysis
  • Determining routes

Common cases when data visualization sees use are in sales, marketing, healthcare, science, finances, politics, and logistics.

4. Why Use it?

Short answer: decision making. Data Visualization comes with the undeniable benefits of quickly recognizing patterns and interpret data. More specifically, it is an invaluable tool to determine the following cases.

  • Identifying correlations between the relationship of variables.
  • Getting market insights about audience behavior.
  • Determining value vs risk metrics.
  • Monitoring trends over time.
  • Examining rates and potential through frequency.
  • Ability to react to changes.

5. Types of Data Visualization

As you probably already guessed, Data Viz is much more than simple pie charts and graphs styled in a visually appealing way. The methods that this branch uses to visualize statistics include a series of effective types.

Map visualization is a great method to analyze and display geographically related information and present it accurately via maps. This intuitive way aims to distribute data by region. Since maps can be 2D or 3D, static or dynamic, there are numerous combinations one can use in order to create a Data Viz map.

COVID-19 Spending Data Visualization POGO by George Railean

The most common ones, however, are:

  • Regional Maps: Classic maps that display countries, cities, or districts. They often represent data in different colors for different characteristics in each region.
  • Line Maps: They usually contain space and time and are ideal for routing, especially for driving or taxi routes in the area due to their analysis of specific scenes.
  • Point Maps: These maps distribute data of geographic information. They are ideal for businesses to pinpoint the exact locations of their buildings in a region.
  • Heat Maps: They indicate the weight of a geographical area based on a specific property. For example, a heat map may distribute the saturation of infected people by area.

Charts present data in the form of graphs, diagrams, and tables. They are often confused with graphs since graphs are indeed a subcategory of charts. However, there is a small difference: graphs show the mathematical relationship between groups of data and is only one of the chart methods to represent data.

Gluten in America - chart data visualization

Infographic Data Visualization by Madeline VanRemmen

With that out of the way, let’s talk about the most basic types of charts in data visualization.

Finance Statistics - Bar Graph visualization

They use a series of bars that illustrate data development.  They are ideal for lighter data and follow trends of no more than three variables or else, the bars become cluttered and hard to comprehend. Ideal for year-on-year comparisons and monthly breakdowns.

Pie chart visualization type

These familiar circular graphs divide data into portions. The bigger the slice, the bigger the portion. They are ideal for depicting sections of a whole and their sum must always be 100%. Avoid pie charts when you need to show data development over time or lack a value for any of the portions. Doughnut charts have the same use as pie charts.

Line graph - common visualization type

They use a line or more than one lines that show development over time. It allows tracking multiple variables at the same time. A great example is tracking product sales by a brand over the years. Area charts have the same use as line charts.

Scatter Plot

Scatter Plot - data visualization idea

These charts allow you to see patterns through data visualization. They have an x-axis and a y-axis for two different values. For example, if your x-axis contains information about car prices while the y-axis is about salaries, the positive or negative relationship will tell you about what a person’s car tells about their salary.

Unlike the charts we just discussed, tables show data in almost a raw format. They are ideal when your data is hard to present visually and aim to show specific numerical data that one is supposed to read rather than visualize.

Creative data table visualization

Data Visualisation | To bee or not to bee by Aishwarya Anand Singh

For example, charts are perfect to display data about a particular illness over a time period in a particular area, but a table comes to better use when you also need to understand specifics such as causes, outcomes, relapses, a period of treatment, and so on.

6. Data Visualization VS Infographics

5 main differences.

They are not that different as both visually represent data. It is often you search for infographics and find images titled Data Visualization and the other way around. In many cases, however, these titles aren’t misleading. Why is that?

  • Data visualization is made of just one element. It could be a map, a chart, or a table. Infographics , on the other hand, often include multiple Data Viz elements.
  • Unlike data visualizations that can be simple or extremely complex and heavy, infographics are simple and target wider audiences. The latter is usually comprehensible even to people outside of the field of research the infographic represents.
  • Interestingly enough, data Viz doesn’t offer narratives and conclusions, it’s a tool and basis for reaching those. While infographics, in most cases offer a story and a narrative. For example, a data visualization map may have the title “Air pollution saturation by region”, while an infographic with the same data would go “Areas A and B are the most polluted in Country C”.
  • Data visualizations can be made in Excel or use other tools that automatically generate the design unless they are set for presentation or publishing. The aesthetics of infographics , however, are of great importance and the designs must be appealing to wider audiences.
  • In terms of interaction, data visualizations often offer interactive charts, especially in an online form. Infographics, on the other hand, rarely have interaction and are usually static images.

While on topic, you could also be interested to check out these 50 engaging infographic examples that make complex data look great.

7. Tips to Create Effective Data Visualization

The process is naturally similar to creating Infographics and it revolves around understanding your data and audience. To be more precise, these are the main steps and best practices when it comes to preparing an effective visualization of data for your viewers to instantly understand.

1. Do Your Homework

Preparation is half the work already done. Before you even start visualizing data, you have to be sure you understand that data to the last detail.

Knowing your audience is undeniable another important part of the homework, as different audiences process information differently. Who are the people you’re visualizing data for? How do they process visual data? Is it enough to hand them a single pie chart or you’ll need a more in-depth visual report?

The third part of preparing is to determine exactly what you want to communicate to the audience. What kind of information you’re visualizing and does it reflect your goal?

And last, think about how much data you’ll be working with and take it into account.

2. Choose the Right Type of Chart

In a previous section, we listed the basic chart types that find use in data visualization. To determine best which one suits your work, there are a few things to consider.

  • How many variables will you have in a chart?
  • How many items will you place for each of your variables?
  • What will be the relation between the values (time period, comparison, distributions, etc.)

With that being said, a pie chart would be ideal if you need to present what portions of a whole takes each item. For example, you can use it to showcase what percent of the market share takes a particular product. Pie charts, however, are unsuitable for distributions, comparisons, and following trends through time periods. Bar graphs, scatter plots,s and line graphs are much more effective in those cases.

Another example is how to use time in your charts. It’s way more accurate to use a horizontal axis because time should run left to right. It’s way more visually intuitive.

3. Sort your Data

Start with removing every piece of data that does not add value and is basically excess for the chart. Sometimes, you have to work with a huge amount of data which will inevitably make your chart pretty complex and hard to read. Don’t hesitate to split your information into two or more charts. If that won’t work for you, you could use highlights or change the entire type of chart with something that would fit better.

Tip: When you use bar charts and columns for comparison, sort the information in an ascending or a descending way by value instead of alphabetical order.

4. Use Colors to Your Advantage

In every form of visualization, colors are your best friend and the most powerful tool. They create contrasts, accents, and emphasis and lead the eye intuitively. Even here, color theory is important.

When you design your chart, make sure you don’t use more than 5 or 6 colors. Anything more than that will make your graph overwhelming and hard to read for your viewers. However, color intensity is a different thing that you can use to your advantage. For example, when you compare the same concept in different periods of time, you could sort your data from the lightest shade of your chosen color to its darker one. It creates a strong visual progression, proper to your timeline.

Things to consider when you choose colors:

  • Different colors for different categories.
  • A consistent color palette for all charts in a series that you will later compare.
  • It’s appropriate to use color blind-friendly palettes.

5. Get Inspired

Always put your inspiration to work when you want to be at the top of your game. Look through examples, infographics, and other people’s work and see what works best for each type of data you need to implement.

This Twitter account Data Visualization Society is a great way to start. In the meantime, we’ll also handpick some amazing examples that will get you in the mood to start creating the visuals for your data.

8. Examples for Data Visualization

As another art form, Data Viz is a fertile ground for some amazing well-designed graphs that prove that data is beautiful. Now let’s check out some.

Dark Souls III Experience Data

We start with Meng Hsiao Wei’s personal project presenting his experience with playing Dark Souls 3. It’s a perfect example that infographics and data visualization are tools for personal designs as well. The research is pretty massive yet very professionally sorted into different types of charts for the different concepts. All data visualizations are made with the same color palette and look great in infographics.

Data of My Dark Souls 3 example

My dark souls 3 playing data by Meng Hsiao Wei

Greatest Movies of all Time

Katie Silver has compiled a list of the 100 greatest movies of all time based on critics and crowd reviews. The visualization shows key data points for every movie such as year of release, oscar nominations and wins, budget, gross, IMDB score, genre, filming location, setting of the film, and production studio. All movies are ordered by the release date.

Greatest Movies visualization chart

100 Greatest Movies Data Visualization by Katie Silver

The Most Violent Cities

Federica Fragapane shows data for the 50 most violent cities in the world in 2017. The items are arranged on a vertical axis based on population and ordered along the horizontal axis according to the homicide rate.

The Most Violent Cities example

The Most Violent Cities by Federica Fragapane

Family Businesses as Data

These data visualizations and illustrations were made by Valerio Pellegrini for Perspectives Magazine. They show a pie chart with sector breakdown as well as a scatter plot for contribution for employment.

Family Businesses as Data Visual

PERSPECTIVES MAGAZINE – Family Businesses by Valerio Pellegrini

Orbit Map of the Solar System

The map shows data on the orbits of more than 18000 asteroids in the solar system. Each asteroid is shown at its position on New Years’ Eve 1999, colored by type of asteroid.

Orbit Map of the Solar System graphic

An Orbit Map of the Solar System by Eleanor Lutz

The Semantics Of Headlines

Katja Flükiger has a take on how headlines tell the story. The data visualization aims to communicate how much is the selling influencing the telling. The project was completed at Maryland Institute College of Art to visualize references to immigration and color-coding the value judgments implied by word choice and context.

The Semantics Of Headlines graph

The Semantics of Headlines by Katja Flükiger

Moon and Earthquakes

This data visualization works on answering whether the moon is responsible for earthquakes. The chart features the time and intensity of earthquakes in response to the phase and orbit location of the moon.

Moon and Earthquakes statistics visual

Moon and Earthquakes by Aishwarya Anand Singh

Dawn of the Nanosats

The visualization shows the satellites launched from 2003 to 2015. The graph represents the type of institutions focused on projects as well as the nations that financed them. On the left, it is shown the number of launches per year and satellite applications.

Dawn of the Nanosats visualization

WIRED UK – Dawn of the by Nanosats by Valerio Pellegrini

Final Words

Data visualization is not only a form of science but also a form of art. Its purpose is to help businesses in any field quickly make sense of complex data and start making decisions based on that data. To make your graphs efficient and easy to read, it’s all about knowing your data and audience. This way you’ll be able to choose the right type of chart and use visual techniques to your advantage.

You may also be interested in some of these related articles:

  • Infographics for Marketing: How to Grab and Hold the Attention
  • 12 Animated Infographics That Will Engage Your Mind from Start to Finish
  • 50 Engaging Infographic Examples That Make Complex Ideas Look Great

Good Color Combinations That Go Beyond Trends: Inspirational Examples and Ideas

a graphical representation of data is called what

Add some character to your visuals

Cartoon Characters, Design Bundles, Illustrations, Backgrounds and more...

Like us on Facebook

Subscribe to our newsletter

Be the first to know what’s new in the world of graphic design and illustrations.

  • [email protected]

Browse High Quality Vector Graphics

E.g.: businessman, lion, girl…

Related Articles

The 4 big social media trends that rock now, email newsletter examples: 10 brands that enchant the inbox, graphic design trends 2020: breaking the rules, top 80+ sources to find design resources and assets, check out our infographics bundle with 500+ infographic templates:, enjoyed this article.

Don’t forget to share!

  • Comments (2)

a graphical representation of data is called what

Al Boicheva

Al is an illustrator at GraphicMama with out-of-the-box thinking and a passion for anything creative. In her free time, you will see her drooling over tattoo art, Manga, and horror movies.

a graphical representation of data is called what

Thousands of vector graphics for your projects.

Hey! You made it all the way to the bottom!

Here are some other articles we think you may like:

20 Flyer Design Tips to Put into Practice (+ Awesome Real-Life Examples)

20 Flyer Design Tips to Put into Practice (+ Awesome Real-Life Examples)

by Iveta Pavlova

How to Turn Yourself into Animated Cartoon in Zoom.us

How-To Tutorials

How to turn yourself into animated cartoon in zoom.us.

by Lyudmil Enchev

a graphical representation of data is called what

Best HTML Email Templates: 16 of the Best Sources

Looking for design bundles or cartoon characters.

A source of high-quality vector graphics offering a huge variety of premade character designs, graphic design bundles, Adobe Character Animator puppets, and more.

a graphical representation of data is called what

beautiful.ai logo

The Ultimate Guide to Data Visualization

The Ultimate Guide to Data Visualization

Data visualization is important because it breaks down complex data and extracts meaningful insights in a more digestible way. Displaying the data in a more engaging way helps audiences make sense of the information with a higher chance of retention. But with a variety of charts and graphs, how can you tell which is best for your specific content and audience?

Consider this your ultimate guide to data visualization. We’re breaking down popular charts and graphs and explaining the differences between each so that you can choose the best slide for your story. 

Charts vs. graphs

We know that numbers don’t lie and are a strong way to back up your story, but that doesn’t always mean they’re easy to understand. By packaging up complex numbers and metrics in visually appealing graphics you’re telling your audience exactly what they need to know without having to rack their brain to comprehend it. Graphs and charts are important in your presentation because they take your supporting statistics, and story, and make them more relatable. 

Charts present data or complex information through tables, infographics , and diagrams, while graphs show a connection between two or more sets of data.

A histogram is a visual representation of the distribution of data. The graph itself consists of a set of rectangles— each rectangle represents a range of values (called a "bin"), while the height corresponds to the numbers of the data that fall within that range.

Histograms are oftentimes used to visualize the frequency distribution of continuous data. Things such as measurements of height, weight, or time can all be organized in the graph. They can also be used to display the distribution of discrete data, like the number of shoes sold in a shoe department during any given period of time.

Histograms are a useful tool for analyzing data, as they allow you to quickly see the shape of the data distribution, the location of the central tendency (the mean or median), and the full spread of the data. They’re a great chart that can also reveal any changes in the data, making it easier to digest.

Need to add a little visual interest to your business presentation? A bar graph slide can display your data easily and effectively. Whether you use a vertical bar graph or horizontal bar graph, a bar graph gives you options to help simplify and present complex data, ensuring you get your point across.

Use it to track long-term changes.

Vertical bar graphs are great for comparing different groups that change over a long period of time. Small or short-term changes may not be as obvious in bar graph form.

Don’t be afraid to play with design .

You can use one bar graph template slide to display a lot of information, as long as you differentiate between data sets. Use colors, spacing, and labels to make the differences obvious.

Use a horizontal graph when necessary.

If your data labels are long, a horizontal bar graph may be easier to read and organize than a vertical bar graph. 

Don’t use a horizontal graph to track time.

A vertical bar graph makes more sense when graphing data over time, since the x-axis is usually read from left to right.

Histograms vs. bar graphs

While a histogram is similar to a bar graph, it groups numbers into ranges and displays data in a different way.

Bar graphs are used to represent categorical data, where each bar represents a different category with a height or length proportional to the associated value. The categories of a bar graph don’t overlap, and the bars are usually separated by a gap to differentiate from one another. Bar graphs are ideal when you need to compare the data of different categories.

On the other hand, histograms divide data into a set of intervals or "bins". The bars of a histogram are typically adjacent to each other, with no gaps, as the bins are continuous and can overlap. Histograms are used to visualize the shape, center, and spread of a distribution of numerical data.

A pie chart is a circular graph (hence the name ‘pie’) that’s used to show or compare different segments — or ‘slices’ — of data. Each slice represents a proportion that relates to the whole. When added up, each slice should equal the total. Pie charts are best used for showcasing part-to-whole relationships. In other words, if you have different parts or percentages of a whole, using a pie chart is likely the way to go. Just make sure the total sum equals 100%, or the chart won’t make a lot of sense or convey the message you want it to. Essentially, any type of content or data that can be broken down into comparative categories is suitable to use. Revenue, demographics, market shares, survey results — these are just a few examples of the type of content to use in a pie chart. However, you don’t want to display more than six categories of data or the pie chart can be difficult to read and compare the relative size of slices. 

Donut Charts

A donut chart is almost identical to a pie chart, but the center is cut out (hence the name ‘donut’). Donut charts are also used to show proportions of categories that make up the whole, but the center can also be used to display data. Like pie charts, donut charts can be used to display different data points that total 100%. These are also best used to compare a handful of categories at-a-glance and how they relate to the whole. The same type of content you’d use for a pie chart can also work for a donut chart. However, with donut charts, you have room for fewer categories than pie charts — anywhere from 2 to 5. That’s because you want your audience to be able to quickly tell the difference between arc lengths, which can help tell a more compelling story and get your point across more efficiently. 

Pie charts vs. donut charts

You may notice that a donut chart and a pie chart look almost identical . While a donut chart is essentially the same as a pie chart in function, with its center cut out, the “slices” in a donut chart are sometimes more clearly defined than in a pie chart.

When deciding between a pie chart or a donut chart for your presentation, make sure the data you’re using is for comparison analysis only. Pie and donut charts are usually limited to just that — comparing the differences between categories. The easiest way to decide which one to use? 

The number of categories you’re comparing. If you have more than 4 or 5 categories, go with a pie chart. If you have between 2 and 4 categories, go with a donut chart. Another way to choose? If you have an extra data point to convey (e.g. all of your categories equal an increase in total revenue), use a donut chart so you can take advantage of the space in the middle.

Comparison charts

As its name implies, a comparison chart or comparison graph draws a comparison between two or more items across different parameters. You might use a comparison chart to look at similarities and differences between items, weigh multiple products or services in order to choose one, or present a lot of data in an easy-to-read format.

For a visually interesting twist on a plain bar chart, add a data comparison slide to your presentation. Our data comparison template is similar to a bar graph, using bars of varying lengths to display measured data. The data comparison template, however, displays percentages instead of exact numbers. One of the best things about using Beautiful.ai’s data comparison slide? You can customize it for your presentation. Create a horizontal or vertical slide, remove or add grid lines, play with its design, and more.

Gantt charts

A Gantt chart , named after its early 20th century inventor Henry Gantt, is a birds-eye view of a project. It visually organizes tasks displayed over time. Gantt charts are incredibly useful tools that work for projects and groups of all sizes. 

It’s a type of bar chart that you would use to show the start and finish dates of several elements of a project such as what the project tasks are, who is working on each task, how long each task will take, and how tasks group together, overlap, and link with each other. The left side of a Gantt chart lists each task in a project by name. Running along the top of the chart from left to right is a timeline. Depending on the demands and details of your project, the timeline may be broken down by quarter, month, week, or even day.

Project management can be complex, so it’s important to keep your chart simple by using a color scheme with cool colors like blues or greens. You can color code items thematically or by department or person, or even highlight a single task with a contrasting color to call attention to it. You can also choose to highlight important tasks using icons or use images for other annotations. This will make your chart easier to read and more visually appealing. 

Additional tips for creating an effective Gantt chart slide .

Use different colors

How many colors you use and how you assign them is up to you. You might choose one color to represent a specific team or department so that you can see who is responsible for which tasks on your chart, for example. 

Set milestones

Don’t forget to set milestones where they make sense: deadlines required by clients or customers, when a new department takes over the next phase of the project, or when a long list of tasks is completed. 

Label your tasks

When used with a deliberate color scheme, labeling your tasks with its project owner will prevent confusion and make roles clear to everyone. 

Jordan Turner

Jordan Turner

Jordan is a Bay Area writer, social media manager, and content strategist.

Recommended Articles

Guide to doing market analysis: best practices and templates, how to find a graph or chart that makes your data look good, when and how to use the venn diagram, reports can be boring but they don’t have to be: learn from these reporting templates to level up.

Illustration with collage of pictograms of clouds, pie chart, graph pictograms on the following

Data visualization is the representation of data through use of common graphics, such as charts, plots, infographics and even animations. These visual displays of information communicate complex data relationships and data-driven insights in a way that is easy to understand.

Data visualization can be utilized for a variety of purposes, and it’s important to note that is not only reserved for use by data teams. Management also leverages it to convey organizational structure and hierarchy while data analysts and data scientists use it to discover and explain patterns and trends.  Harvard Business Review  (link resides outside ibm.com) categorizes data visualization into four key purposes: idea generation, idea illustration, visual discovery, and everyday dataviz. We’ll delve deeper into these below:

Idea generation

Data visualization is commonly used to spur idea generation across teams. They are frequently leveraged during brainstorming or  Design Thinking  sessions at the start of a project by supporting the collection of different perspectives and highlighting the common concerns of the collective. While these visualizations are usually unpolished and unrefined, they help set the foundation within the project to ensure that the team is aligned on the problem that they’re looking to address for key stakeholders.

Idea illustration

Data visualization for idea illustration assists in conveying an idea, such as a tactic or process. It is commonly used in learning settings, such as tutorials, certification courses, centers of excellence, but it can also be used to represent organization structures or processes, facilitating communication between the right individuals for specific tasks. Project managers frequently use Gantt charts and waterfall charts to illustrate  workflows .  Data modeling  also uses abstraction to represent and better understand data flow within an enterprise’s information system, making it easier for developers, business analysts, data architects, and others to understand the relationships in a database or data warehouse.

Visual discovery

Visual discovery and every day data viz are more closely aligned with data teams. While visual discovery helps data analysts, data scientists, and other data professionals identify patterns and trends within a dataset, every day data viz supports the subsequent storytelling after a new insight has been found.

Data visualization

Data visualization is a critical step in the data science process, helping teams and individuals convey data more effectively to colleagues and decision makers. Teams that manage reporting systems typically leverage defined template views to monitor performance. However, data visualization isn’t limited to performance dashboards. For example, while  text mining  an analyst may use a word cloud to to capture key concepts, trends, and hidden relationships within this unstructured data. Alternatively, they may utilize a graph structure to illustrate relationships between entities in a knowledge graph. There are a number of ways to represent different types of data, and it’s important to remember that it is a skillset that should extend beyond your core analytics team.

Use this model selection framework to choose the most appropriate model while balancing your performance requirements with cost, risks and deployment needs.

Register for the ebook on generative AI

The earliest form of data visualization can be traced back the Egyptians in the pre-17th century, largely used to assist in navigation. As time progressed, people leveraged data visualizations for broader applications, such as in economic, social, health disciplines. Perhaps most notably, Edward Tufte published  The Visual Display of Quantitative Information  (link resides outside ibm.com), which illustrated that individuals could utilize data visualization to present data in a more effective manner. His book continues to stand the test of time, especially as companies turn to dashboards to report their performance metrics in real-time. Dashboards are effective data visualization tools for tracking and visualizing data from multiple data sources, providing visibility into the effects of specific behaviors by a team or an adjacent one on performance. Dashboards include common visualization techniques, such as:

  • Tables: This consists of rows and columns used to compare variables. Tables can show a great deal of information in a structured way, but they can also overwhelm users that are simply looking for high-level trends.
  • Pie charts and stacked bar charts:  These graphs are divided into sections that represent parts of a whole. They provide a simple way to organize data and compare the size of each component to one other.
  • Line charts and area charts:  These visuals show change in one or more quantities by plotting a series of data points over time and are frequently used within predictive analytics. Line graphs utilize lines to demonstrate these changes while area charts connect data points with line segments, stacking variables on top of one another and using color to distinguish between variables.
  • Histograms: This graph plots a distribution of numbers using a bar chart (with no spaces between the bars), representing the quantity of data that falls within a particular range. This visual makes it easy for an end user to identify outliers within a given dataset.
  • Scatter plots: These visuals are beneficial in reveling the relationship between two variables, and they are commonly used within regression data analysis. However, these can sometimes be confused with bubble charts, which are used to visualize three variables via the x-axis, the y-axis, and the size of the bubble.
  • Heat maps:  These graphical representation displays are helpful in visualizing behavioral data by location. This can be a location on a map, or even a webpage.
  • Tree maps, which display hierarchical data as a set of nested shapes, typically rectangles. Treemaps are great for comparing the proportions between categories via their area size.

Access to data visualization tools has never been easier. Open source libraries, such as D3.js, provide a way for analysts to present data in an interactive way, allowing them to engage a broader audience with new data. Some of the most popular open source visualization libraries include:

  • D3.js: It is a front-end JavaScript library for producing dynamic, interactive data visualizations in web browsers.  D3.js  (link resides outside ibm.com) uses HTML, CSS, and SVG to create visual representations of data that can be viewed on any browser. It also provides features for interactions and animations.
  • ECharts:  A powerful charting and visualization library that offers an easy way to add intuitive, interactive, and highly customizable charts to products, research papers, presentations, etc.  Echarts  (link resides outside ibm.com) is based in JavaScript and ZRender, a lightweight canvas library.
  • Vega:   Vega  (link resides outside ibm.com) defines itself as “visualization grammar,” providing support to customize visualizations across large datasets which are accessible from the web.
  • deck.gl: It is part of Uber's open source visualization framework suite.  deck.gl  (link resides outside ibm.com) is a framework, which is used for  exploratory data analysis  on big data. It helps build high-performance GPU-powered visualization on the web.

With so many data visualization tools readily available, there has also been a rise in ineffective information visualization. Visual communication should be simple and deliberate to ensure that your data visualization helps your target audience arrive at your intended insight or conclusion. The following best practices can help ensure your data visualization is useful and clear:

Set the context: It’s important to provide general background information to ground the audience around why this particular data point is important. For example, if e-mail open rates were underperforming, we may want to illustrate how a company’s open rate compares to the overall industry, demonstrating that the company has a problem within this marketing channel. To drive an action, the audience needs to understand how current performance compares to something tangible, like a goal, benchmark, or other key performance indicators (KPIs).

Know your audience(s): Think about who your visualization is designed for and then make sure your data visualization fits their needs. What is that person trying to accomplish? What kind of questions do they care about? Does your visualization address their concerns? You’ll want the data that you provide to motivate people to act within their scope of their role. If you’re unsure if the visualization is clear, present it to one or two people within your target audience to get feedback, allowing you to make additional edits prior to a large presentation.

Choose an effective visual:  Specific visuals are designed for specific types of datasets. For instance, scatter plots display the relationship between two variables well, while line graphs display time series data well. Ensure that the visual actually assists the audience in understanding your main takeaway. Misalignment of charts and data can result in the opposite, confusing your audience further versus providing clarity.

Keep it simple:  Data visualization tools can make it easy to add all sorts of information to your visual. However, just because you can, it doesn’t mean that you should! In data visualization, you want to be very deliberate about the additional information that you add to focus user attention. For example, do you need data labels on every bar in your bar chart? Perhaps you only need one or two to help illustrate your point. Do you need a variety of colors to communicate your idea? Are you using colors that are accessible to a wide range of audiences (e.g. accounting for color blind audiences)? Design your data visualization for maximum impact by eliminating information that may distract your target audience.

An AI-infused integrated planning solution that helps you transcend the limits of manual planning.

Build, run and manage AI models. Prepare data and build models on any cloud using open source code or visual modeling. Predict and optimize your outcomes.

Unlock the value of enterprise data and build an insight-driven organization that delivers business advantage with IBM Consulting.                                   

Your trusted Watson co-pilot for smarter analytics and confident decisions.

Use features within IBM Watson® Studio that help you visualize and gain insights into your data, then cleanse and transform your data to build high-quality predictive models.

Data Refinery makes it easy to explore, prepare, and deliver data that people across your organization can trust.

Learn how to use Apache Superset (a modern, enterprise-ready business intelligence web application) with Netezza database to uncover the story behind the data.

Predict outcomes with flexible AI-infused forecasting and analyze what-if scenarios in real-time. IBM Planning Analytics is an integrated business planning solution that turns raw data into actionable insights. Deploy as you need, on premises or on cloud.

Talk to our experts

1800-120-456-456

  • Graphical Representation of Data

ffImage

Overview to Graphical Representation of Data

Mathematics is a field that deals with the gathering, analysis, interpretation, and presentation of numerical information in a very approach that's straightforward to know and compare. Business statistics, demographics,  statistics, and in other spheres of work graphical representation is used.

Tables and graphs show the area of information. People capture more information as soon as it is presented in a more attractive way than in any other format. Graphs are an effective way for showing comparisons between things completely as it has always been straightforward to explore the full information associated with different things.

The use of accurate charts to properly visualize and modify information sets is called image processing. The information is redirected to a computer image code and is represented by a variety of symbols, such as lines on a line chart, bar charts, or chart items, wherever users will gain more insight than numbers. analysis only.

Standalone images will help, predict and create advanced data-driven options by quickly depicting common behaviours and simple, unusual events, and interactions between information objects that cannot be marked. The categories of graphic images used are determined by the type of information being investigated.

Data charts are available in a variety of formats, as well as maps, diagrams, and graphs, and often contain written articles and fables to show the purpose of the chart, units of measurement, and variations, type of information, target chart and whether or not a general image in choosing the most effective chart.

Different Formats

1. Line Graphs - A line graph could be a visual illustration of how the worth of variables changes over time. Points with completely different variable values are coupled to create this graph. It may help evaluate information trends and predict future trends.

2. Graphs Bars - A bar chart could be a form of illustration of knowledge during which bars of a similar dimension are drawn on one axis (usually x-axis) with an equal area between them, showing dynamics. The length of the bars represents the variable values.

3. Histograms - this is often just like bar graphs, except that it supports the numbers' frequency instead of their actual values. The info is broken into intervals, and also the bars represent the frequency vary at intervals. That is, it calculates what percentage information values fall at intervals a given distance.

4. Pie Chart - A kind of graph during which information is pictured as a circular graph. A circle is split into sections, each representing a share of the full.

5. Heatmap - A heatmap could be a two-dimensional, matrix-coloured matrix during which every cell represents a group of knowledge and also the colour of every cell indicates its relative importance.

6. Purpose Map - Point map could be a contract answer for CAD and GIS for writing and an answer that edits the world and line of longitude inform variables to check information mapping.

Benefits of Graphics Illustration

The ability to investigate and perceive giant amounts of numerical information and also the relationship between information points needs table usage and graphical illustration of knowledge. One of the foremost vital ways to investigate information is to check information, providing a straightforward and comprehensive way to represent, visualize, and discuss advanced information patterns.

1. Graphics build information easier to interpret and clear language and learning barriers, simplifying and rising learning.

2. Content comprehension is easily done by human understanding.

3. Performance flexibility: Image displays may be employed in nearly any data-related field.

4. Increase organized thinking: visual aids enable users to create quicker, data-driven selections at a look.

5. Supports engaging and fun visual displays by permitting inventive, relevant reports.

6. Improves communication: reading graphics that emphasize key themes is quicker than reading a close line-by-line report.

7. Shows the full picture: all dynamics, time frames, information behaviour, and relationships are displayed in real-time.

Understanding and distinguishing patterns and trends within the ever-increasing flow of knowledge need a transparent visual illustration of the info. The employment of image displays permits speedy synchronous testing of massive information, which might facilitate the formation of foreseeable predictions and knowledgeable selections.

Graphical representation is a method of numerical data analysis. It shows a diagram of the relationship between knowledge, ideas, information, and concepts. It is easy to understand and one of the key learning strategies. The knowledge in a particular domain always depends on the type of information.

The visual representation forms are distinct. Some of the following are:

1. Line Graphs: Linear graphs display the continuous data and are useful for the prediction of future events over time.

2. Bar Graphs: Bar Graph is used for displaying the classification of details and compares data to the amounts by using solid bars.

3. Histograms: This chart, which uses bars to represent the frequency of numerical data, which are grouped in intervals, has the same width. Since all intervals are similar and continuous.

4. Line Plot: It shows the data frequency on a given line. 

5. Frequency Table: The table shows the number of data pieces within the interval given.

6. Circle Graph: Circle graph is a diagram which shows the relationships of the entire component. The circle shall be 100% and the categories occupied shall be represented by a certain percentage, such as 15%, 56%, etc.

7. Stem and Leaf Plot: Data from the lowest value to the highest value are arranged in the stem and leaf plot. The pictures of the lowest places in the sheets and the next places are the numbers.

8. Box and Whisker Plot: The diagram sums up the data in four sections. The graph is shown. Box and whisker indicate the range of information (distribution) and the medium data range.

General Rules for Graphical Representation of Data

There are some rules to display the data and information effectively in the graphical picture. They are as stated below:

Suitable Title: Ensure that the chart showing the topic of the presentation is given the appropriate title.

Measurement Unit: Make sure to mention the unit of measurement in the graph.

Proper Scale: Choose a proper scale to represent the data in an accurate manner.

Index: Index the corresponding colours, shades, rows, graphs format to better understand.

Data Sources: Include the information source at the bottom of the graph wherever necessary.

Keep it Simple: Construct a graph in an easy way that everyone can understand.

Neat: Choose the correct size, lettering, colours, etc. so that the chart is a visual aid to the screen.

Graphical Representation in Maths:

For mathematics, a diagram is a graph with statistical data represented by curves or lines across the coordinate point on its surface. It helps to research the relation between two variables whereby the change of the variable amount in respect of another variable can be calculated within a certain time interval. The distribution of the sequence and the frequency distribution can be analysed for a particular problem.

The data can be visually represented with two types of graphs. As listed below, they are as follows:

Time Series Graphs

Example: Line Graph.

Frequency Distribution Graphs

Example: Frequency Polygon Graph.

Principles of Graphical Representation:

All forms of graphical data representation are governed by algebraic principles. For diagrams, the co-ordinate axis is represented with two rows. The X-axis is a horizontal axis, while the Y-axis is indicated on the vertical axis. The intersecting point of two lines is called ‘O’. Take x-axis into account that the distance between origin and right is good and the distance between the source and left is good. The distance above the origin is also positive for the y-axis, and the distance below the origin is negative.

Generally, frequency distribution is represented in the following methods, namely:

Smoothed frequency graph.

Pie diagram.

Cumulative or ogive frequency graph.

Frequency Polygon.

Merits of Using Graphs.

Advantages of Graphical Representation of Data

The visual depiction of documents has different advantages that are as follows: 

This report is suitable for busy people because it emphasizes the subject of the report comfortably. It helps to avoid wasting time.

Data can be contrasted in terms of graphic representation. This kind of comparative analysis helps to understand and focus easily.

It takes a lot of time to correctly present concise data.

Corporate managers study the diagrams and very easily decide about the feasibility of the document.

A logical sequence is developed to clarify the public definition when tables, models, and graphs are used for data.

Poorly trained or illiterate people can easily understand graphics because a line-by-line diagram does not require a concise text.

Tables need less effort and less time for modelling, graphs, and pictures. This approach is always easy to understand the details.

Errors are reliable, insightful or descriptive. Since graphic figures, tablets and diagrams show less error and error usually.

The viewer gets a simple, complete idea from this depiction. There can be no place to judge 100 words.

Disadvantages of Graphical Representation of Data:

Document graphic representation is not unrestricted. The graphical representation problems of data or reports are as follows: 

The reports of graphical representation are costly because of the images, and colours. Combining content with human effort is costly in terms of visual layout.

It takes less time to represent a normal file, but the representation of the graph takes time since graphs and figures rely on more time.

Inconsistencies are all likely to occur due to the sophistication of the graphical representations. It leads to community awareness problems.

Graphs show the complete view of data that can keep anything from being kept secret.

Sample Example for Frequency polygon:

Here are the steps to be followed in order to find the frequency distribution of a polygon and it is graphically represented.

Get the frequency distribution and find the intervals of each group.

Mark the middle points along with the X-axis and y-axis frequencies.

At each mid-point, draw the points that are the same as the frequency.

Using lines in order to incorporate these details.

To complete the polygon, attach the point to the bottom or high-class points in the X-axis immediately at each end.

arrow-right

NCERT Study Material

a graphical representation of data is called what

What Is Data Visualization and Why Is It Important?

The sheer amount of data generated today means we need new ways to understand what’s happening in order to take action faster. Every click, transaction, subscription, loyalty card swipe, and social media interaction contributes to a digital footprint that continues to grow exponentially. The result? A massive explosion of data that is revolutionizing the way we live and work. Data visualization, in particular, plays a critical role in presenting data in a meaningful and understandable format. By using a visual representation of data , it’s much easier to identify patterns, trends, and relationships that may not be immediately apparent when sifting through large data sets.

Here’s what we’ll cover in this guide to data visualization: 

  • Data Visualization Definition 

Benefits of Data Visualization

Why data visualization is important .

  • Types of Data Visualization and Examples
  • Evaluating Data Visualization Tools
  • Take the Next Step and Start Analyzing With Data Visualization 

‍ Data Visualization Definition

Data visualization is the process of transforming raw data into visual formats, such as charts, graphs, or maps, to help identify patterns, trends, and insights that might not be apparent from numerical data alone. 

Additionally, it enables data to be more accessible, understandable, and impactful, especially when communicating with stakeholders, investors, or team members who may not be familiar with the data.

For example, data visualization could help:

  • In retail, gaining insights into customer behavior, purchase patterns, and product performance.
  • In finance, monitoring market trends, tracking portfolio performance, and conducting risk analysis. 
  • In public health, showing the geographical distribution of outbreaks and helping track the spread of infectious diseases.
  • In supply chain industries, tracking inventory levels, monitoring logistics operations, and optimizing resource allocation. 
  • In sports, evaluating player performance, game strategies, and match statistics.
  • In education, tracking student performance, analyzing learning outcomes, and identifying areas for improvement.

Data visualization has several benefits for businesses including: the ability to process information faster, identify trends at scale, and make data more digestible. Companies regularly use data to make decisions, and through data visualization, can find insights quickly and move to action. Data visualization specifically helps with the following:

  • Visualizing patterns and relationships
  • Storytelling, including specifically data storytelling
  • Accessibility to information 

Exploration

Let’s take a look at each of these benefits in detail. 

‍ Visualize patterns and relationships

Data visualization constitutes an excellent method for the discernment of interconnections and patterns amidst vast collections of information. For example, a scatter plot can be used to display the relationship between two variables, such as the correlation between temperature and sales. This enables users to understand the relationship and identify trends and outliers more quickly and easily.

Read a guide of Sigma’s visual library.

a graphical representation of data is called what

Storytelling

Your audience, whether it's coworkers or clients, want to hear a coherent story from your data. Storytelling with data cannot be done successfully without visualizations. Colorful charting and dynamic pivots are just as important as characters and plots are in a traditional story, so using them to communicate information makes data that much more engaging and memorable for audiences. Data can be complex and convoluted for some audiences, so data storytelling is an approach to convey important information effectively through a captivating narrative. Good visualizations are a vital part of that narrative.  

For example, if an analyst is investigating the performance of e-commerce sales for their retail company over time, they may leverage several data sources such as spreadsheets, calculations, code, etc. to do so. However, when they report these new insights to their stakeholders, the analyst will need to summarize and communicate their findings in a digestible way. 

An easy way the analyst could do this is by using the data to create a map of the U.S. with a color gradient overlaying every state that is lighter or darker based on its total sales volume. This visual story tells the least and most successful retail locations at a glance.

a graphical representation of data is called what

Accessibility / Easily Share Information

Data visualization serves as an invaluable mechanism for the facilitation of accessibility, allowing for the communication of information amongst individuals, even for those who may not usually engage with data , which broadens the audience.

Visualizations help simplify complex information by leveraging people’s ability to naturally recognize patterns. A viewer typically does not have to be taught that bigger means more and that smaller means less. In a case where an analyst wants to highlight the difference in scale between one product’s profitability vs. another, a bar chart can clearly show the user which product is more profitable and by how much, making it easy for even non-technical team members to understand and compare the performance of different products.

Exploration is a key component of successful data visualization. The more flexible charting and dashboarding is, the more follow-up questions end users can ask directly of their data. For example, an interactive dashboard can be used to explore retail sales data over time, enabling users to filter and drill down into the data to identify trends and patterns.

Data visualization exploration is often associated with the concept of “drill downs.” Drill downs in data visualization refer to the process of starting with an overview of data and then narrowing the focus to more specific aspects of it. As an example, one might start with a visualization of global climate data and drill down to data about a specific country, a specific state, a specific city, or even a specific neighborhood within that city. Each drill down reveals more precise, detailed, and nuanced information. 

The main goal of data visualization is that it helps unify and bring teams onto the same page. The human mind is wired to grasp visual information more effortlessly than raw data in spreadsheets or detailed reports. Thus, graphical representation of voluminous and intricate data is more user-friendly. Data visualization offers a swift and straightforward method to communicate ideas in a universally understood format, with the added benefit of enabling scenario testing through minor modifications.

By translating information into visual form, it ensures everyone, irrespective of the complexity of the data or the depth of the analysis, can share a unified understanding. Any industry can benefit from using data visualization, because pretty much every industry relies on data to power it. That includes finance, marketing, consumer goods, education, government, sports, history, and many more. ‍ Another thing to keep in mind is that data visualization can be a double-edged sword. For example, charts can be manipulated and skewed to force a desired outcome. Ungoverned, static, desktop tools can become the wild west in suggesting an inaccurate outcome “proven by data.” Even in the cases where the visualization builder is acting in good faith, there are still pitfalls to watch out for. Always be considerate of:

  • Individual outliers having an outsized impact, skewing the visual direction of a chart
  • The need for for business users to see the underlying data
  • Allowing for transparency down to row-level detail in data sets

a graphical representation of data is called what

Types of Data Visualizations & Examples

There is a long list of types of data visualization techniques and methods that can be used to represent data. While no type of data visualization is perfect, we’ll walk through different examples and when to apply each one. 

We’ll be looking at:

  • Line charts and area charts
  • Scatter plots 
  • Pivot tables
  • Box-and-whisker plots
  • Sankey charts 

Tables, although more commonly thought of as a data source, can also be considered a type of data visualization. Especially when conditional formatting is applied to the table’s rows and columns, the data within the table becomes more visually engaging and informative. With conditional formatting, important insights and patterns can be highlighted, making it easier for viewers to identify trends and outliers at a glance. Additionally, tables offer a structured and organized way to present information, allowing for a comprehensive comparison of data points, which further enhances data understanding and analysis. ‍ For example, Sigma’s UI is based on a spreadsheet-like interface, which means almost everything in Sigma begins in a table format. That said, you can also create visual tables that display a smaller amount of data in order to tell a clearer story. In data visualization, tables are a simplified way of representing this interface. 

When to use tables:

  • For detailed numeric comparisons, or when precision of data is key
  • For displaying multidimensional data; tables can handle this complexity quite well

When to avoid tables: 

  • When patterns, trends, or relationships need to be highlighted at a glance
  • When dealing with large amounts of data

a graphical representation of data is called what

Pie charts —similar to stacked bar charts—are useful for displaying categorical data, such as market share or customer demographics. Pie charts are often used to display data that can be divided into categories or subgroups, and to show how each category or subgroup contributes to the whole. For example, a pie chart could be used to show the proportion of sales for different product categories in a given period of time, or the percent of a company's revenue broken down by various regions.

When to use pie charts:

  • You want to display a proportion or percentage of a whole
  • You’re visualizing only seven categories or less

When to avoid pie charts:

  • You’re visualizing more than seven categories
  • You want to compare something with more details, rather than just proportion
  • You want to display and pinpoint exact values 

a graphical representation of data is called what

A bar chart, or bar graph, constitutes a variety of graphs that employ rectangular bars to depict data. These bars can be oriented either horizontally or vertically, with their extent being directly proportional to the numerical values they are intended to embody. Predominantly utilized for juxtaposing data across disparate categories or illustrating shifts in data over temporal progressions, bar charts offer a straightforward, yet potent means of conveying information visually. They frequently function as the initial tool in the exploratory process of data investigation.

When to use bar charts:

  • Emphasizing and contrasting different sets of data, making the disparities or similarities between categories clear
  • To display a subset of a larger dataset

When to avoid bar charts: 

  • When a particular field encompasses an overwhelming variety of data types
  • When the differences between fields are too subtle, or when these differences exist on different scales, as it could lead to confusion or misinterpretation

Line Charts & Area Charts

a graphical representation of data is called what

Line charts and area charts are two types of charts that are commonly used to visualize data trends over time. A line chart, also called a line graph, is a distinct type of graphical representation that exhibits information in the form of a multitude of data points, which are interconnected by unbroken lines. These line charts are typically employed to demonstrate transformations in data over a certain duration, where the horizontal axis symbolizes time, and the vertical axis signifies the values under scrutiny. Furthermore, they can serve to juxtapose several series of data within the same chart, or to graphically illustrate predicted time periods. 

For example, a line chart can be used to visualize a company's stock prices over the course of a year. Similarly, an area chart can be used to visualize the temperature changes over a day.

When to use line charts:

  • When you’re displaying time-based continuous data 
  • When you have multiple series or larger datasets 

When to avoid line charts:

  • When you have smaller datasets, bar charts are likely a better way to present the information 
  • Avoid when you need to compare multiple categories at once

a graphical representation of data is called what

When to use area charts:

  • When you want to display the volume of the data you have 
  • When comparing data across more than one time period 

When to avoid area charts:

  • Avoid if you need to compare multiple categories, as well as when you need to examine the specific data value

Scatter Plots

a graphical representation of data is called what

A scatter plot , also called a scatter chart or scatter graph, is a specialized form of chart that demonstrates the correlation between two distinct variables by mapping them as a succession of individual data points. Each data point denotes a combined value of the two variables, with its specific placement within the chart dictated by these values.

Scatter charts prove instrumental in discerning patterns and trends within data, and they also help us understand how strong and in what direction the relationship is between two variables. They also serve as effective tools for identifying outliers, or those data points that deviate significantly from anticipated values based on the pattern displayed by other data points. These charts find widespread use across a range of fields including, but not limited to, statistics, engineering, and social sciences, for the purpose of analyzing and visualizing intricate data sets. In the realm of business, they are frequently utilized to identify correlations between different variables, for instance, examining the relationship between marketing outlays and resultant sales revenue. ‍ For example, a scatter plot might be used to visualize the relationship between the age and income of a group of people. Another example would be to plot the correlation between the amount of rainfall and the crop yield for a particular region.

When to use scatter plots:

  • Highlight correlations within your data
  • They are useful tools for statistical investigations
  • Consider scatter plots to reveal underlying patterns or trends

When to avoid scatter plots:

  • For smaller datasets, scatter plots may not be optimal
  • Avoid scatter plots for excessively large datasets to prevent unintelligible data clustering
  • If your data lacks correlations, scatter plots may not be the best choice

Pivot Tables

While pivot tables may not be what first comes to mind for data visualization, they can give important context with hard numbers and provide strong visual indicators through formatting. ‍ Pivot tables can also be enhanced with conditional formatting to provide color scales that make performance trends more visible. Data bars can also be added to cells to run either red or green for positive and negative values. 

When to Use Pivot Tables:

  • Cohort analysis performance trends or portfolio analysis with a mix of positive and negative values

What Not to Use Pivot Tables:

  • When your dataset is too large to get a good understanding of the whole
  • When data can easily be summarized with a bar chart instead

a graphical representation of data is called what

An example of a pivot table, where colors are used to show positive or negative progress on a company’s portfolio. The user can pivot the table to show multiple categories in different ways.

A heat map is a type of chart that uses color to represent data values. It is often used to visualize data that is organized in a matrix or table format. The color of each cell in the matrix is determined by the value of the corresponding data point. Heat maps are best used when analyzing data that is organized in a two-dimensional grid or matrix.

For example, a heat map can be used to visualize a company's website traffic, where the rows represent different pages on the website, and the columns represent different periods of time.

When to use heat maps:

  • When you need to visualize the density or intensity of variables
  • When you want to display patterns or trends over time or space 

When to avoid heat maps:

  • When precise values are needed; heat maps are better at showing relative differences rather than precise values
  • When working with small data sets 

A tree map is a type of chart that is used to visualize hierarchical data. It consists of a series of nested rectangles, where the size and color of each rectangle represent a different variable. Tree maps are best used when analyzing data that has a hierarchical structure.

For example, a tree map can be used to visualize the market share of different companies in an industry. The largest rectangle would represent the entire industry, with smaller rectangles representing the market share of each individual company.

When to use tree maps:

  • When you want to visualize hierarchical data
  • When you need to illustrate the proportion of different categories within a whole 

When to avoid tree maps:

  • When exact values are important
  • When there are too many categories

Box-and-Whisker Plots

a graphical representation of data is called what

Box plots are useful for quickly summarizing the distribution of a dataset, particularly its central tendency and variability. For example, a box-and-whisker plot can be used to visualize the test scores of a group of students. 

Colloquially recognized as a box-and-whisker plot, a box plot is a distinct form of chart that showcases the distribution of a collection of numerical data through its quartile divisions. Box plots serve as efficient tools for rapidly encapsulating the distribution of a dataset, specifically its central propensity and variability. 

A box-and-whisker plot consists of a rectangle (the "box") and a pair of "whiskers" that extend from it. The box embodies the middle 50% of the data, with the lower boundary of the box signaling the first quartile (25th percentile) and the upper boundary of the box indicating the third quartile (75th percentile). The line situated within the box signifies the median value of the data. The whiskers project from the box to the minimum and maximum values of the data, or to a designated distance from the box referred to as the "fences." Any data points that reside outside the whiskers or fences are categorized as outliers and are plotted as individual points. When to use box plot charts:

  • When you want to display data spread and skewness
  • When showcasing the distribution of data, including the range, quartiles, and potential outliers
  • When comparing multiple groups or categories side-by-side; they allow for easy comparison of different distributions.

When to avoid box plot charts:

  • If you need to show more detail, since box plots focus on a high-level summary 
  • When individual data points are important to the story you’re telling
  • When your audience isn’t familiar with them, since they can sometimes be less intuitive than other types of visualizations

A histogram is a type of chart that displays the distribution of a dataset. It consists of a series of vertical bars, where the height of each bar represents the number of observations in a particular range. Histograms are best used when analyzing continuous data. It’s used the most when you want to understand the frequency distribution of a numerical variable, like height, weight, or age. For example, a histogram can be used to visualize the distribution of heights in a population. Read more about building histograms in Sigma here.

When to Use a Histogram:

  • When understanding the shape of a distribution; for example, whether it’s symmetric, skewed to the left or right, or bimodal
  • When identifying outliers, like which data points are significantly different from the rest of the data
  • When comparing distribution of a variable across different groups, such as males and females, or different age groups.
  • To set boundaries for data ranges; for example, you might use a histogram to determine what constitutes a "normal" or "abnormal" value for a particular variable

When to Avoid a Histogram:

  • When you need to look at multiple dimensions at the same time
  • If your data isn’t all on the same scale

Sankey Charts

a graphical representation of data is called what

We end our guide with the controversial Sankey chart. A Sankey chart is a type of diagram that illustrates the movement or transfer of data, resources, or quantities through various stages of a system or process. Common applications of Sankey charts include visualizing complex sequences like energy usage, material distribution, or even a website's user journey. The structure of the chart includes nodes and links—with nodes representing the starting points, endpoints, or intermediate steps, and links depicting the transition of quantities or data between these nodes.

The thickness of the links in a Sankey chart directly corresponds to the volume of data or resources being moved, offering an intuitive comparison of the relative sizes of these transfers. They can be invaluable for recognizing inefficiencies, bottlenecks, or potential areas for enhancement in a system or process. These charts serve as a powerful tool for communicating complex information in a straightforward and comprehensible way. However, if there are too many nodes or links, Sankey charts can become cluttered and challenging to interpret, hence their use should be considerate and targeted.

‍ When to use Sankey charts:

  • When you want to show the data as part of a process

When to avoid Sankey charts:

  • When it starts to feel too confusing, which can quickly happen when there are too many nodes or links
  • When you need to see exact values, it might not be the most intuitive option. 

Evaluating Data Visualization Tools 

Data visualization tools have become increasingly popular in recent years, with a wide variety of options available to choose from. However, determining which tool best suits your needs can be challenging with so many options. When evaluating data visualization tools, there are several key questions to consider:

  • What are your goals and needs?   It's crucial to clearly understand your goals and needs before selecting a data visualization tool. Are you looking to explore your data, communicate a specific message, or both? Understanding your objectives will help you choose the right tool for your project.
  • What features do you require?   Different data visualization tools come with different features. Before selecting a tool, you should consider what features you need to achieve your goals. For example, do you require interactive capabilities or the ability to create custom visualizations?
  • Where will your data come from?   The source of your data is another critical factor to consider when selecting a data visualization tool. Some tools are better suited for specific types of data, such as structured or unstructured data, while others may require specific file formats or data storage solutions.
  • Where will you need to see your data?   Different data visualization tools may be more suitable for specific platforms or devices. For example, some tools may be optimized for mobile devices, while others are designed for desktop computers or specific web browsers. You may also be interested in embedding visualizations elsewhere , such as internal applications or external portals.
  • Where would you like to publish your visualization?   Finally, consider where you would like to publish your visualization. Some tools may provide built-in publishing capabilities, while others may require you to export your visualization to a separate platform. Selecting a tool that supports your publishing needs is important to ensure your visualization reaches your intended audience.

By considering these key questions, you can evaluate different data visualization tools and select the one that best meets your needs.

Read a side-by-side comparison of Sigma against similar BI tools.

Take the Next Step & Start Analyzing With Data Visualization

Data visualization is a powerful tool for understanding and communicating complex data. While there are many data visualization tools on the market, Sigma offers an intuitive and familiar spreadsheet interface that allows users to easily explore, analyze, and collaborate on their data. 

Explore Sigma’s capabilities and start transforming your data today via a free trial of Sigma .

Related resources

a graphical representation of data is called what

This is the default text value

Watch on-DEMAND DEMOS

ATTEND A LIVE LAB

Get a free trial

SEE WORKBOOK EXAMPLES

JOIN THE COMMUNITY

SCHEDULE A CALL

JOIN THE SIGMA COMMUNITY

Robot

Download the Learning Outcomes App Today

Embibe Logo

Share this article

link

Table of Contents

Latest updates.

1 Million Means: 1 Million in Rupees, Lakhs and Crores

1 Million Means: 1 Million in Rupees, Lakhs and Crores

Ways To Improve Learning Outcomes: Learn Tips & Tricks

Ways To Improve Learning Outcomes: Learn Tips & Tricks

The Three States of Matter: Solids, Liquids, and Gases

The Three States of Matter: Solids, Liquids, and Gases

Types of Motion: Introduction, Parameters, Examples

Types of Motion: Introduction, Parameters, Examples

Understanding Frequency Polygon: Detailed Explanation

Understanding Frequency Polygon: Detailed Explanation

Uses of Silica Gel in Packaging?

Uses of Silica Gel in Packaging?

Visual Learning Style for Students: Pros and Cons

Visual Learning Style for Students: Pros and Cons

Air Pollution: Know the Causes, Effects & More

Air Pollution: Know the Causes, Effects & More

Sexual Reproduction in Flowering Plants

Sexual Reproduction in Flowering Plants

Integers Introduction: Check Detailed Explanation

Integers Introduction: Check Detailed Explanation

Tag cloud :.

  • entrance exams
  • engineering
  • ssc cgl 2024
  • Written By Priya_Singh
  • Last Modified 24-01-2023

Data Representation: Definition, Types, Examples

Data Representation: Data representation is a technique for analysing numerical data. The relationship between facts, ideas, information, and concepts is depicted in a diagram via data representation. It is a fundamental learning strategy that is simple and easy to understand. It is always determined by the data type in a specific domain. Graphical representations are available in many different shapes and sizes.

In mathematics, a graph is a chart in which statistical data is represented by curves or lines drawn across the coordinate point indicated on its surface. It aids in the investigation of a relationship between two variables by allowing one to evaluate the change in one variable’s amount in relation to another over time. It is useful for analysing series and frequency distributions in a given context. On this page, we will go through two different types of graphs that can be used to graphically display data. Continue reading to learn more.

Learn Informative Blog

Data Representation in Maths

Definition: After collecting the data, the investigator has to condense them in tabular form to study their salient features. Such an arrangement is known as the presentation of data.

Any information gathered may be organised in a frequency distribution table, and then shown using pictographs or bar graphs. A bar graph is a representation of numbers made up of equally wide bars whose lengths are determined by the frequency and scale you choose.

The collected raw data can be placed in any one of the given ways:

  • Serial order of alphabetical order
  • Ascending order
  • Descending order

Data Representation Example

Example: Let the marks obtained by \(30\) students of class VIII in a class test, out of \(50\)according to their roll numbers, be:

\(39,\,25,\,5,\,33,\,19,\,21,\,12,41,\,12,\,21,\,19,\,1,\,10,\,8,\,12\)

\(17,\,19,\,17,\,17,\,41,\,40,\,12,41,\,33,\,19,\,21,\,33,\,5,\,1,\,21\)

The data in the given form is known as raw data or ungrouped data. The above-given data can be placed in the serial order as shown below:

Data Representation Example

Now, for say you want to analyse the standard of achievement of the students. If you arrange them in ascending or descending order, it will give you a better picture.

Ascending order:

\(1,\,1,\,5,\,5,\,8,\,10,\,12,12,\,12,\,12,\,17,\,17,\,17,\,19,\,19\)

\(19,\,19,\,21,\,21,\,21,\,25,\,33,33,\,33,\,39,\,40,\,41,\,41,\,41\)

Descending order:

\(41,\,41,\,41,\,40,\,39,\,33,\,33,33,\,25,\,21,\,21,\,21,\,21,\,19,\,19\)

\(19,\,19,\,17,\,17,\,17,\,12,\,12,12,\,12,\,10,\,8,\,5,\,5,1,\,1\)

When the raw data is placed in ascending or descending order of the magnitude is known as an array or arrayed data.

Graph Representation in Data Structure

A few of the graphical representation of data is given below:

  • Frequency distribution table

Pictorial Representation of Data: Bar Chart

The bar graph represents the ​qualitative data visually. The information is displayed horizontally or vertically and compares items like amounts, characteristics, times, and frequency.

The bars are arranged in order of frequency, so more critical categories are emphasised. By looking at all the bars, it is easy to tell which types in a set of data dominate the others. Bar graphs can be in many ways like single, stacked, or grouped.

Bar Chart

Graphical Representation of Data: Frequency Distribution Table

A frequency table or frequency distribution is a method to present raw data in which one can easily understand the information contained in the raw data.

The frequency distribution table is constructed by using the tally marks. Tally marks are a form of a numerical system with the vertical lines used for counting. The cross line is placed over the four lines to get a total of \(5\).

Frequency Distribution Table

Consider a jar containing the different colours of pieces of bread as shown below:

Frequency Distribution Table Example

Construct a frequency distribution table for the data mentioned above.

Frequency Distribution Table Example

Graphical Representation of Data: Histogram

The histogram is another kind of graph that uses bars in its display. The histogram is used for quantitative data, and ranges of values known as classes are listed at the bottom, and the types with greater frequencies have the taller bars.

A histogram and the bar graph look very similar; however, they are different because of the data level. Bar graphs measure the frequency of the categorical data. A categorical variable has two or more categories, such as gender or hair colour.

Histogram

Graphical Representation of Data: Pie Chart

The pie chart is used to represent the numerical proportions of a dataset. This graph involves dividing a circle into different sectors, where each of the sectors represents the proportion of a particular element as a whole. Thus, it is also known as a circle chart or circle graph.

Pie Chart

Graphical Representation of Data: Line Graph

A graph that uses points and lines to represent change over time is defined as a line graph. In other words, it is the chart that shows a line joining multiple points or a line that shows the link between the points.

The diagram illustrates the quantitative data between two changing variables with the straight line or the curve that joins a series of successive data points. Linear charts compare two variables on the vertical and the horizontal axis.

Line Graph

General Rules for Visual Representation of Data

We have a few rules to present the information in the graphical representation effectively, and they are given below:

  • Suitable Title:  Ensure that the appropriate title is given to the graph, indicating the presentation’s subject.
  • Measurement Unit:  Introduce the measurement unit in the graph.
  • Proper Scale:  To represent the data accurately, choose an appropriate scale.
  • Index:  In the Index, the appropriate colours, shades, lines, design in the graphs are given for better understanding.
  • Data Sources:  At the bottom of the graph, include the source of information wherever necessary.
  • Keep it Simple:  Build the graph in a way that everyone should understand easily.
  • Neat:  You have to choose the correct size, fonts, colours etc., in such a way that the graph must be a model for the presentation of the information.

Solved Examples on Data Representation

Q.1. Construct the frequency distribution table for the data on heights in \(({\rm{cm}})\) of \(20\) boys using the class intervals \(130 – 135,135 – 140\) and so on. The heights of the boys in \({\rm{cm}}\) are: 

Data Representation Example 1

Ans: The frequency distribution for the above data can be constructed as follows:

Data Representation Example

Q.2. Write the steps of the construction of Bar graph? Ans: To construct the bar graph, follow the given steps: 1. Take a graph paper, draw two lines perpendicular to each other, and call them horizontal and vertical. 2. You have to mark the information given in the data like days, weeks, months, years, places, etc., at uniform gaps along the horizontal axis. 3. Then you have to choose the suitable scale to decide the heights of the rectangles or the bars and then mark the sizes on the vertical axis. 4. Draw the bars or rectangles of equal width and height marked in the previous step on the horizontal axis with equal spacing. The figure so obtained will be the bar graph representing the given numerical data.

Q.3. Read the bar graph and then answer the given questions: I. Write the information provided by the given bar graph. II. What is the order of change of the number of students over several years? III. In which year is the increase of the student maximum? IV. State whether true or false. The enrolment during \(1996 – 97\) is double that of \(1995 – 96\)

pictorial representation of data

Ans: I. The bar graph represents the number of students in class \({\rm{VI}}\) of a school during the academic years \(1995 – 96\,to\,1999 – 2000\). II. The number of stcccccudents is changing in increasing order as the heights of bars are growing. III. The increase in the number of students in uniform and the increase in the height of bars is uniform. Hence, in this case, the growth is not maximum in any of the years. The enrolment in the years is \(1996 – 97\, = 200\). and the enrolment in the years is \(1995 – 96\, = 150\). IV. The enrolment in \(1995 – 97\,\) is not double the enrolment in \(1995 – 96\). So the statement is false.

Q.4. Write the frequency distribution for the given information of ages of \(25\) students of class VIII in a school. \(15,\,16,\,16,\,14,\,17,\,17,\,16,\,15,\,15,\,16,\,16,\,17,\,15\) \(16,\,16,\,14,\,16,\,15,\,14,\,15,\,16,\,16,\,15,\,14,\,15\) Ans: Frequency distribution of ages of \(25\) students:

Data Representation Example

Q.5. There are \(20\) students in a classroom. The teacher asked the students to talk about their favourite subjects. The results are listed below:

Data Representation Example

By looking at the above data, which is the most liked subject? Ans: Representing the above data in the frequency distribution table by using tally marks as follows:

Data Representation Example

From the above table, we can see that the maximum number of students \((7)\) likes mathematics.

Also, Check –

  • Diagrammatic Representation of Data

In the given article, we have discussed the data representation with an example. Then we have talked about graphical representation like a bar graph, frequency table, pie chart, etc. later discussed the general rules for graphic representation. Finally, you can find solved examples along with a few FAQs. These will help you gain further clarity on this topic.

Test Informative Blog

FAQs on Data Representation

Q.1: How is data represented? A: The collected data can be expressed in various ways like bar graphs, pictographs, frequency tables, line graphs, pie charts and many more. It depends on the purpose of the data, and accordingly, the type of graph can be chosen.

Q.2: What are the different types of data representation? A : The few types of data representation are given below: 1. Frequency distribution table 2. Bar graph 3. Histogram 4. Line graph 5. Pie chart

Q.3: What is data representation, and why is it essential? A: After collecting the data, the investigator has to condense them in tabular form to study their salient features. Such an arrangement is known as the presentation of data. Importance: The data visualization gives us a clear understanding of what the information means by displaying it visually through maps or graphs. The data is more natural to the mind to comprehend and make it easier to rectify the trends outliners or trends within the large data sets.

Q.4: What is the difference between data and representation? A: The term data defines the collection of specific quantitative facts in their nature like the height, number of children etc., whereas the information in the form of data after being processed, arranged and then presented in the state which gives meaning to the data is data representation.

Q.5: Why do we use data representation? A: The data visualization gives us a clear understanding of what the information means by displaying it visually through maps or graphs. The data is more natural to the mind to comprehend and make it easier to rectify the trends outliners or trends within the large data sets.

Related Articles

1 Million Means: 1 million in numerical is represented as 10,00,000. The Indian equivalent of a million is ten lakh rupees. It is not a...

Ways To Improve Learning Outcomes: With the development of technology, students may now rely on strategies to enhance learning outcomes. No matter how knowledgeable a...

The Three States of Matter: Anything with mass and occupied space is called ‘Matter’. Matters of different kinds surround us. There are some we can...

Motion is the change of a body's position or orientation over time. The motion of humans and animals illustrates how everything in the cosmos is...

Understanding Frequency Polygon: Students who are struggling with understanding Frequency Polygon can check out the details here. A graphical representation of data distribution helps understand...

When you receive your order of clothes or leather shoes or silver jewellery from any online shoppe, you must have noticed a small packet containing...

Visual Learning Style: We as humans possess the power to remember those which we have caught visually in our memory and that too for a...

Air Pollution: In the past, the air we inhaled was pure and clean. But as industrialisation grows and the number of harmful chemicals in the...

In biology, flowering plants are known by the name angiosperms. Male and female reproductive organs can be found in the same plant in flowering plants....

Integers Introduction: To score well in the exam, students must check out the Integers introduction and understand them thoroughly. The collection of negative numbers and whole...

Human Respiratory System – Detailed Explanation

Human Respiratory System: Students preparing for the NEET and Biology-related exams must have an idea about the human respiratory system. It is a network of tissues...

Place Value of Numbers: Detailed Explanation

Place Value of Numbers: Students must understand the concept of the place value of numbers to score high in the exam. In mathematics, place value...

The Leaf: Types, Structures, Parts

The Leaf: Students who want to understand everything about the leaf can check out the detailed explanation provided by Embibe experts. Plants have a crucial role...

Factors Affecting Respiration: Definition, Diagrams with Examples

In plants, respiration can be regarded as the reversal of the photosynthetic process. Like photosynthesis, respiration involves gas exchange with the environment. Unlike photosynthesis, respiration...

General Terms Related to Spherical Mirrors

General terms related to spherical mirrors: A mirror with the shape of a portion cut out of a spherical surface or substance is known as a...

Number System: Types, Conversion and Properties

Number System: Numbers are highly significant and play an essential role in Mathematics that will come up in further classes. In lower grades, we learned how...

Types of Respiration

Every living organism has to "breathe" to survive. The process by which the living organisms use their food to get energy is called respiration. It...

Animal Cell: Definition, Diagram, Types of Animal Cells

Animal Cell: An animal cell is a eukaryotic cell with membrane-bound cell organelles without a cell wall. We all know that the cell is the fundamental...

Conversion of Percentages: Conversion Method & Examples

Conversion of Percentages: To differentiate and explain the size of quantities, the terms fractions and percent are used interchangeably. Some may find it difficult to...

Arc of a Circle: Definition, Properties, and Examples

Arc of a circle: A circle is the set of all points in the plane that are a fixed distance called the radius from a fixed point...

Ammonia (NH3): Preparation, Structure, Properties and Uses

Ammonia, a colourless gas with a distinct odour, is a chemical building block and a significant component in producing many everyday items. It is found...

CGPA to Percentage: Calculator for Conversion, Formula, & More

CGPA to Percentage: The average grade point of a student is calculated using their cumulative grades across all subjects, omitting any supplemental coursework. Many colleges,...

Uses of Ether – Properties, Nomenclature, Uses, Disadvantages

Uses of Ether:  Ether is an organic compound containing an oxygen atom and an ether group connected to two alkyl/aryl groups. It is formed by the...

General and Middle Terms: Definitions, Formula, Independent Term, Examples

General and Middle terms: The binomial theorem helps us find the power of a binomial without going through the tedious multiplication process. Further, the use...

Mutually Exclusive Events: Definition, Formulas, Solved Examples

Mutually Exclusive Events: In the theory of probability, two events are said to be mutually exclusive events if they cannot occur simultaneously or at the...

Geometry: Definition, Shapes, Structure, Examples

Geometry is a branch of mathematics that is largely concerned with the forms and sizes of objects, their relative positions, and the qualities of space....

Bohr’s Model of Hydrogen Atom: Expressions for Radius, Energy

Rutherford’s Atom Model was undoubtedly a breakthrough in atomic studies. However, it was not wholly correct. The great Danish physicist Niels Bohr (1885–1962) made immediate...

a graphical representation of data is called what

39 Insightful Publications

World Economic Forum

Embibe Is A Global Innovator

accenture

Innovator Of The Year Education Forever

Interpretable And Explainable AI

Interpretable And Explainable AI

Tedx

Revolutionizing Education Forever

Amazon AI Conclave

Best AI Platform For Education

Forbes India

Enabling Teachers Everywhere

ACM

Decoding Performance

World Education Summit

Leading AI Powered Learning Solution Provider

Journal of Educational Data Mining

Auto Generation Of Tests

BW Disrupt

Disrupting Education In India

Springer

Problem Sequencing Using DKT

Fortune India Forty Under Fourty

Help Students Ace India's Toughest Exams

Edtech Digest

Best Education AI Platform

Nasscom Product Connect

Unlocking AI Through Saas

Tech In Asia

Fixing Student’s Behaviour With Data Analytics

Your Story

Leveraging Intelligence To Deliver Results

City AI

Brave New World Of Applied AI

vccircle

You Can Score Higher

INK Talks

Harnessing AI In Education

kstart

Personalized Ed-tech With AI

StartUpGrind

Exciting AI Platform, Personalizing Education

Digital Women Award

Disruptor Award For Maximum Business Impact

The Mumbai Summit 2020 AI

Top 20 AI Influencers In India

USPTO

Proud Owner Of 9 Patents

StartUpGrind

Innovation in AR/VR/MR

StartUpGrind

Best Animated Frames Award 2024

Close

Trending Searches

Previous year question papers, sample papers.

Unleash Your True Potential With Personalised Learning on EMBIBE

Pattern

Ace Your Exam With Personalised Learning on EMBIBE

Enter mobile number.

By signing up, you agree to our Privacy Policy and Terms & Conditions

Graphical summaries of data #

Many powerful approaches to data analysis communicate their findings via graphs. These are an important counterpart to data analysis approaches that communicate their findings via numbers or tabless.

Here we will illustrate some of the most common approaches for graphical data analysis. Throughout this discussion, it is important to remember that graphical data analysis methods are subject to the same principles as non-graphical methods. A graph can be either informative or misleading, just like any other type of statistical result. To understand whether a graph is informative, we should consider the following:

Every graph should provide insight into the specific research question that is the overall goal of the data analysis.

The graph is constructed using a sample of data, but the purpose of the graph is to learn about the population that the sample represents.

What statistical principal or concept is the graph based on?

What are the theoretical properties of any numerical summaries that are shown in the graph?

Almost every statistical graphic conveys a statistical concept that can be defined in a non-graphical manner. Graphs may show associations, location, dispersion, tails, conditioning, or almost any other statistical feature of the data or population. Graphs make it easier for the viewer to digest such information, but when interpreting a graph it is always important to keep in mind the specific statistical concept on which the graph is based.

Statistical graphics have an aesthetic dimension that is usually not evident when presenting findings through, say, tables. Our goal here is to focus on the content of graphs, not their aesthetic properties. Very crude graphs that have deep content are much more informative than beautiful graphs that convey only superficial content. In recent years, the field of infographics has grown rapidly. There is no sharp line dividing infographics from statistical graphs, however in general, the former tend to convey relatively simple insights in an aesthetically engaging way, while the latter aim to convey deeper and more subtle insight, with less focus on presentation.

Challenges and limitations of graphs #

One of the main challenges in statistical graphics is to fit the greatest amount of useful information into a single graph, while allowing the graph to remain interpretable. More complex graphs can suffer from overplotting , in which the plot elements are so crowded on the page that they fall on top of each other. This can limit the legibility of plots formed from large datasets unless a great deal of preliminary summarization of the data is performed.

Another challenge that arises in graphing complex datasets is that most graphs are two-dimensional, so that they can be viewed on a screen (or printed on paper). Some graphing techniques extend to three dimensions, but many datasets have a natural dimensionality that is much greater than 2 or 3. A few methods for graphing work around this, but require more effort from the person viewing the graph.

Boxplots are a graphical representation of the distribution of a single quantitative variable. A boxplot is based on a set of quantiles calculated using a sample of data. Below is an example of a single boxplot, drawn horizontally, showing the distribution of income values based on a sample of 100 individuals.

The “box” in a boxplot (shaded blue above) spans from the 25th to the 75th percentiles of the data, with an additional line drawn cross-wise through the box at the median. “Whiskers” extend from either end of the box, and are intended to cover the range of the data, excluding “outliers”.

The concept of an outlier is extremely problematic and no generically useful definition of outliers has been proposed. For the purpose of drawing a boxplot, the most common convention is to plot the upper (right-most) whisker at the 75th percentile plus 1.5 times the IQR, or to the greatest data value less than this quantity. Analogously, the lower (left-most) whisker is drawn at the 25th percentile minus 1.5 times the IQR, or to the least data value greater than this quantity. Finally, individual points sometimes called “fliers” are drawn corresponding to any value that falls outside the range spanned by the whiskers. A single box-plot, as above, is often drawn horizontally, but may also be drawn vertically.

There are many alternative ways of defining the locations of the whiskers in a boxplot. The approach described above is most common, and is chosen so that with “light tailed” distributions, well under 1% of the data will fall outside of of the whiskers.

The boxplot above shows a right-skewed distribution. This is evident because the upper whisker is further from the box than the lower whisker. Also, within the box, the median is closer to the lower side of the box than to the upper side of the box. Overall, the lower quantiles are more compressed, and the upper quantiles are more spread out, which is a feature of right-skewed distributions.

Side-by-side boxplots #

Boxplots are commonly used to compare distributions. A “side-by-side” or “grouped” boxplot is a collection of boxplots drawn for different subsets of data, plotted on the same axes. These subsets usually result from a stratification of the data, according to some stratifying factor that partially accounts for the heterogeneity within the population of interest. For example, below we consider boxplots showing the distribution of income, stratified by sex.

Histograms #

A histogram is a very familiar way to visualize quantitative data. A histogram is constructed by breaking the range of the values into bins and counting the number (or proportion) of observations that fall into each bin. The shape of a histogram shows visually how likely we are to observe data value in each part of the range. We are more likely to observe values where the histogram bars are higher, and less likely to observe values where the histogram bars are lower.

Histograms closely resemble “bar charts”, but with the added statistical aspect that the goal is to capture the density at each possible point in the population. “Density” is a measure of how commonly we observe data “near”, rather than “at” a point. For example, the density of household incomes at 45,000 USD would not be the exact number or frequency of households with this income. Instead, it reflects the frequency of households that have an income near 45,000 USD.

A histogram can be used to assess almost any property of a distribution. The common measures of location and dispersion can be judged from visual inspection of the histogram. As always, we should remember that features of the histogram may not always reflect features of the population from which the data were sampled. For example, a histogram may show two modes (i.e. is bimodal ) even when the underlying distribution only has one mode (i.e. is unimodal ). Moreover, the number of modes in a histogram can change as the bin width is varied.

Histograms are easy to communicate about, but may not be effective when working with small samples, where they can accentuate non-generalizable features of the sample (i.e. characteristics of the sample that are not present in the population). This is reflected in the following mathematical fact. For many statistics, if we wish to reduce the error relative to the population value of the statistic by a factor of two, we need to increase the sample size by a factor of four. In the case where we are aiming to estimate a density, in order to reduce the error by a factor of two, we need to increase the sample size by a factor of eight.

With a sufficiently large collection of representative data, the histogram should closely match the population’s probability density function (PDF). The PDF is usually a smooth curve, rather than a series of steps as in a histogram. This fact inspired the development of a modified version of a histogram that presents us with a smooth curve instead of a series of steps. This technique is called kernel density estimation ( KDE ). It produces graphs such as shown below.

Kernel density estimates may provide a somewhat more accurate estimation of the underlying density function compared to a histogram. But like a histogram, they can be unstable and produce artifacts. For example, the KDE above shows positive density for negative income values, even though all of the income values used to fit the KDE were positive (in some cases, income can take a negative value, but in this case no such values were present). More advanced KDE methods not used here can mitigate this issue.

One advantage of using a KDE rather than a histogram is that it is easier to overlay multiple KDEs on the same axes for comparison without too much overplotting. This might allow us to compare, say, the distributions of female and male incomes as follows.

Quantile plots #

A quantile plot is a plot of the pairs \((p, q_p)\) , where \(q_p\) is the p’th quantile of a collection of quantitative values. Since \(p\) can be any real number between 0 and 1, the graph of these pairs constitutes a function. By construction, this must be a non-decreasing function. A quantile plot contains essentially the same information as a histogram, but is represented in a very different way. Note that unlike the histogram, for which the bin width is a parameter that must be selected, there is no such parameter in the quantile plot. Arguably, the quantile plot is a more stable and informative summary of a sample, especially if the sample size is moderate. However most people are more comfortable interpreting histograms than quantile functions.

As an example, the following plot shows simulated systolic blood pressure values for a sample of females and a sample of males. In this case, at every probability point \(p\) , the blood pressure quantile for males is greater than the blood pressure quantile for females, indicating that male blood pressure is “stochastically greater” than female blood pressure.

Below is another example that shows two quantile functions, but in this case the quantile functions cross. As a result, there is no “stochastic ordering” between the data for females and for males. Also note that the quantile curve for females is steeper than the curve for males, indicating that the female blood pressure values are more dispersed than those for the males.

Quantile-quantile plots #

A quantile-quantile plot , or QQ plot , is a plot based on quantiles that is used to compare two distributions. Recall that a quantile plot plots the pairs \((p, q_p)\) for one sample. A QQ plot plots the pairs \((q^{(1)}_p, q^{(2)}_p)\) , where \(q^{(1)}_p\) are the quantiles for the first sample, and \(q^{(2)}_p\) are the quantiles for the second sample. In a QQ-plot, the value of p is “implicit” – each point on the graph corresponds to a specific value of p, but you cannot see what this value is by inspecting the graph.

As an example, suppose we are comparing the number of minutes of sleep during one night for teenagers and adults. This might give us the following QQ-plot:

The above QQ-plot shows us that teenagers tend to sleep longer than adults, and this is especially true at the upper end of the range. The QQ-plot approximately passes through the point (600, 800), meaning that for some probability p, 600 is the p’th quantile for adults and 800 is the p’th quantile for teenagers.

The slope of the curve in the QQ-plot reflects the relative levels of dispersion in the two distributions being compared. Since the slope of the curve in the above QQ-plot is greater than that of the diagonal reference line, it follows that the values plotted on the vertical axis (teenager’s values) are more dispersed than the values plotted on the horizontal axis (adult’s values).

An important property of a QQ-plot is that if the plot shows a linear relationship between the quantiles, then the two distributions are related via a location/scale transformation . That is, there is a linear function \(a + bx\) that maps one distribution to the other. In the example above, there is a substantial amount of curvature in the graph, so it does not seem to be the case that the sleep durations for adults and teenagers are related via a location/scale transformation.

Dot plots #

Dot plots display quantitative data that are stratified into groups. One axis of the plot is used to display the quantitative measure, and the other axis is used to separate the results for different groups. A series of parallel “guide lines” are used to show which points belong to each group. Dot plots are often used to display a collection of numerical summary statistics in visual form. Sometimes people say that dot plots are used to “convert tables into graphs”. Due to overplotting, dot plots are less commonly used to show raw data. The example below shows how dot plots can be used to display the median age stratified by sex, for people living in each of eleven countries.

The plot above shows that the median age for females is greater than the median age for males in every country. This is mainly due to females having longer life expectancies than males. We also see that some countries have much lower median ages for both sexes compared to other countries. Countries that have recently had high birth rates, such as Ethiopia and Nigeria, tend to have much lower median ages than countries with lower birth rates, such as Japan.

Scatterplots #

A scatterplot is a very widely-used method for visualizing bivariate data. They have many uses, but the most relevant for us is to plot the joint (empirical) distribution of two quantitative values. As an example, suppose that we observe paired data values giving the annual minimum and annual maximum temperature at a location. We could view these data with a scatterplot, placing, say, the minimum temperature value on the horizontal (x) axis, and the maximum temperature value on the vertical (y) axis. The number of points is the sample size, here being the number of locations for which temperature data are available. A possible graph of this type is shown below.

Several characteristics of the relationship between minimum and maximum temperature are evident from the plot above. The maximum temperature at each location is at least as large as the minimum temperature. There is a positive association in which locations with a lower minimum temperature tend to have a lower maximum temperature compared to places with a higher maximum temperature, but there is a lot of scatter around this trend. Warmer places tend to have a smaller range between their minimum and maximum temperatures. Concretely, locations on the equator and at low elevation, such as Singapore, have relatively constant temperature throughout the year. Locations near the center of large continents, like Winnipeg, Canada, can have extremely cold winters and also rather hot summers. Coastal regions that are far from the equator, such as Dublin, Ireland, have mild winters and cool summers.

To aid in interpreting a scatterplot, it is useful to plot a smooth curve that runs through the center of the data. This is called scatterplot smoothing , and can be accomplished with several algorithms, one of which is known as lowess . The population analogue of a scatterplot smooth is the conditional mean , or conditional expectation , denoted \(E[Y|X=x]\) , for the conditional mean of \(Y\) given \(X\) . The conditional mean is a function of \(x\) , and can be evaluated at any point \(x\) in the domain of \(X\) . The conditional mean is (roughly speaking), the average of all values of \(Y\) whose corresponding value of \(X\) is near \(x\) .

The plot below adds the estimated conditional mean (orange curve) to the scatterplot of temperature data discussed above. The conditional mean curve is increasing, showing that, as noted above, a location with lower annual minimum temperature tends on average to have a lower annual maximum temperature (relative to other locations).

Time series plots #

Some data have a serial structure, meaning that the values are observed with an ordering. Very often, such observations are made over time, which gives us time series or longitudinal data. Sometimes we observe a single time series over a long period of time, such as the value of a commodity in a market recorded every day over many years. Other times, we observe many short time series recorded irregularly. We may plot these time series together, leading to what is sometimes called a “spaghetti plot”. For example, in a study of human growth, we may observe measurements of the body weight of research subjects at various ages, giving us the spaghetti plot below:

Parallel coordinate plots #

Scatterplots in the plane are limited to two dimensions. Various techniques have been developed to overcome this limitation, one of which is the parallel coordinate plot . A parallel coordinate plot places the coordinate axes for the multiple dimensions as parallel lines, rather than as perpendicular lines. Using parallel lines means that data for far more than two or three variables can be placed on a single page.

Below is an example of a parallel coordinates plot, showing four attributes of a set of ten countries. A scatterplot of these points would live in four-dimensional space, which is quite challenging to visualize directly. Note that the attributes are converted to Z-scores, which is common in a parallel coordinates plot when the variables being plotted fall in very different ranges. The plot shows us that the life expectancies for females and for males are quite similar – the country with the highest life expectancy for females also has the highest life expectancy for males, and the country with the lowest life expectancy for females also has the lowest life expectancy for males. There is also a substantial positive relationship between the economic status of a country, as measured by its gross domestic product (GDP) and life expectancy. However no relationship is evident between GDP and population, or between either of the life expectancy variables and population.

Mosaic plots #

The graphs above primarily use quantitative data. A mosaic plot is a plot that is used with nominal data. Specifically mosaic plots are used when the units of analysis are cross-classified according to two nominal factors. In the example below, people with cancer are cross-classified by their biological sex, and by the type of cancer that they have:

The width of each box in the mosaic plot corresponds to the relative overall prevalence of the corresponding cancer type. The heights of the boxes correspond to the sex-specific prevalences. Based on this graph, we see that digestive, lung, and breast cancers are much more common than, say, oral and endocrine cancers. The mosaic plot also shows us that while breast and endocrine cancers are more common in females, the other cancer types are more common in males.

An important property of a mosaic plot is that the area of each box is proportional to the number of units that fall into the box. Thus, we can see that the area of the female breast cancer box is larger than the the combined areas of the female and male lung cancer boxes. Thus, there are more cases of breast cancer in females than the combined cases of lung cancer for both sexes.

Profile Picture

Students also studied

Profile Picture

Types of Graphs and Charts And Their Uses

If you are wondering what are the different types of graphs and charts ,   their uses and names, this page summarizes them with examples and pictures.

Although it is hard to tell what are all the types of graphs, this page consists all of the common types of statistical graphs and charts (and their meanings) widely used in any science.

1. Line Graphs

A line chart graphically displays data that changes continuously over time. Each line graph consists of points that connect data to show a trend (continuous change). Line graphs have an x-axis and a y-axis. In the most cases, time is distributed on the horizontal axis.

Uses of line graphs:

  • When you want  to show trends . For example, how house prices have increased over time.
  • When you want  to make predictions based on a data history over time.
  • When comparing  two or more different variables, situations, and information over a given period of time.

The following line graph shows annual sales of a particular business company for the period of six consecutive years:

Note: the above example is with 1 line. However, one line chart can compare multiple trends by several distributing lines.

2. Bar Charts

Bar charts represent categorical data with rectangular bars (to understand what is categorical data see categorical data examples ). Bar graphs are among the most popular types of graphs and charts in economics, statistics, marketing, and visualization in digital customer experience . They are commonly used to compare several categories of data.

Each rectangular bar has length and height proportional to the values that they represent.

One axis of the bar chart presents the categories being compared. The other axis shows a measured value.

Bar Charts Uses:

  • When you want to display data that are grouped into nominal or ordinal categories (see nominal vs ordinal data ).
  • To compare data among different categories.
  • Bar charts can also show large   data changes over time.
  • Bar charts are ideal for visualizing the distribution of data when we have more than three categories.

The bar chart below represents the total sum of sales for Product A and Product B over three years.

The bars are 2 types: vertical or horizontal. It doesn’t matter which kind you will use. The above one is a vertical type.

3. Pie Charts

When it comes to statistical types of graphs and charts, the pie chart (or the circle chart) has a crucial place and meaning. It displays data and statistics in an easy-to-understand ‘pie-slice’ format and illustrates numerical proportion.

Each pie slice is relative to the size of a particular category in a given group as a whole. To say it in another way, the pie chart brakes down a group into smaller pieces. It shows part-whole relationships.

To make a pie chart, you need a list of categorical variables and numerical variables.

Pie Chart Uses:

  • When you want to create and represent the composition of something.
  • It is very useful for displaying nominal or ordinal categories of data.
  • To show percentage or proportional data.
  • When comparing areas of growth within a business such as profit.
  • Pie charts work best for displaying data for 3 to 7 categories.

The pie chart below represents the proportion of types of transportation used by 1000 students to go to their school.

Pie charts are widely used by data-driven marketers for displaying marketing data.

4. Histogram

A histogram shows continuous data in ordered rectangular columns (to understand what is continuous data see our post discrete vs continuous data ). Usually, there are no gaps between the columns.

The histogram displays a frequency distribution (shape) of a data set. At first glance, histograms look alike to bar graphs. However, there is a key difference between them. Bar Chart represents categorical data and histogram represent continuous data.

Histogram Uses:

  • When the data is continuous .
  • When you want to represent the shape of the data’s distribution .
  • When you want to see whether the outputs of two or more processes are different.
  • To summarize large data sets graphically.
  • To communicate the data distribution quickly to others.

The histogram below represents per capita income for five age groups.

Histograms are very widely used in statistics, business, and economics.

5. Scatter plot

The scatter plot is an X-Y diagram that shows a relationship between two variables. It is used to plot data points on a vertical and a horizontal axis. The purpose is to show how much one variable affects another.

Usually, when there is a relationship between 2 variables, the first one is called independent. The second variable is called dependent because its values depend on the first variable.

Scatter plots also help you predict the behavior of one variable (dependent) based on the measure of the other variable (independent).

Scatter plot uses:

  • When trying to find out whether there is a relationship between 2 variables .
  • To predict  the behavior of dependent variable based on the measure of the independent variable.
  • When having paired numerical data.
  • When working with  root cause analysis tools  to identify the potential for problems.
  • When you just want to visualize the correlation between 2 large datasets without regard to time .

The below Scatter plot presents data for 7 online stores, their monthly e-commerce sales, and online advertising costs for the last year.

The orange line you see in the plot is called “line of best fit” or a “trend line”. This line is used to help us make predictions that are based on past data.

The Scatter plots are used widely in data science and statistics. They are a great tool for visualizing linear regression models .

More examples and explanation for scatter plots you can see in our post what does a scatter plot show and simple linear regression examples .

6. Venn Chart

Venn Diagram (also called primary diagram, set diagram or logic diagrams) uses overlapping circles to visualize the logical relationships between two or more group of items.

Venn Diagram is one of the types of graphs and charts used in scientific and engineering presentations, in computer applications, in maths, and in statistics.

The basic structure of the Venn diagram is usually overlapping circles. The items in the overlapping section have specific common characteristics. Items in the outer portions of the circles do not have common traits.

Venn Chart Uses:

  • When you want to compare and contrast groups of things.
  • To categorize or group items.
  • To illustrate logical relationships from various datasets.
  • To identify all the possible relationships between collections of datasets.

The following science example of Venn diagram compares the features of birds and bats.

7. Area Charts 

Area Chart Uses:

  • When you want to show trends , rather than express specific values.
  • To show a simple comparison of the trend of data sets over the period of time.
  • To display the magnitude of a change.
  • To compare a small number of categories.

The area chart has 2 variants: a variant with data plots overlapping each other and a variant with data plots stacked on top of each other (known as stacked area chart – as the shown in the following example).

The area chart below shows quarterly sales for product categories A and B for the last year.

This area chart shows you a quick comparison of the trend in the quarterly sales of Product A and Product B over the period of the last year.

8. Spline Chart

The Spline Chart is one of the most widespread types of graphs and charts used in statistics. It is a form of the line chart that represent smooth curves through the different data points.

Spline charts possess all the characteristics of a line chart except that spline charts have a fitted curved line to join the data points. In comparison, line charts connect data points with straight lines.

Spline Chart   Uses:

  • When you want to plot data that requires the usage of curve-fitting such as a product lifecycle chart or an impulse-response chart.
  • Spline charts are often used in designing Pareto charts .
  • Spline chart also is often used for data modeling by when you have limited number of data points and estimating the intervening values.

The following spline chart example shows sales of a company through several months of a year:

9. Box and Whisker Chart

A box and whisker chart is a statistical graph for displaying sets of numerical data through their quartiles. It displays a frequency distribution of the data.

The box and whisker chart helps you to display the spread and skewness for a given set of data using the five number summary principle: minimum, maximum, median, lower and upper quartiles. The ‘five-number summary’ principle allows providing a statistical summary for a particular set of numbers. It shows you the range (minimum and maximum numbers), the spread (upper and lower quartiles), and the center (median) for the set of data numbers.

A very simple figure of a box and whisker plot you can see below:

Box and Whisker Chart Uses:

  • When you want to observe the upper, lower quartiles, mean, median, deviations, etc. for a large set of data.
  • When you want to see a quick view of the dataset distribution .
  • When you have multiple data sets that come from independent sources and relate to each other in some way.
  • When you need to compare data from different categories.

The table and box-and-whisker plots below shows test scores for Maths and Literature for the same class.

3577924355667370
3543404350607092

Box and Whisker charts have applications in many scientific areas and types of analysis such as statistical analysis, test results analysis, marketing analysis, data analysis, and etc.

10. Bubble Chart

Bubble charts are super useful types of graphs for making a comparison of the relationships between data in 3 numeric-data dimensions: the Y-axis data, the X-axis data, and data depicting the bubble size.

Bubble charts are very similar to XY Scatter plots but the bubble chart adds more functionality – a third dimension of data that can be extremely valuable.

Both axes (X and Y) of a bubble chart are numeric.

Bubble Chart Uses:

  • When you have to display three or four dimensions of data.
  • When you want to compare and display the relationships between categorized circles, by the use of proportions.

The bubble chart below shows the relationship between Cost (X-Axis), Profit (Y-Axis), and Probability of Success (%) (Bubble Size).

11. Pictographs

The pictograph or a pictogram is one of the more visually appealing types of graphs and charts that display numerical information with the use of icons or picture symbols to represent data sets.

They are very easy to read statistical way of data visualization. A pictogram shows the frequency of data as images or symbols. Each image/symbol may represent one or more units of a given dataset.

Pictograph Uses:

  • When your audience prefers and understands better displays that include icons and illustrations. Fun can promote learning.
  • It’s habitual for infographics to use of a pictogram.
  • When you want to compare two points  in an emotionally powerful way.

The following pictographic represents the number of computers sold by a business company for the period from January to March.

The pictographic example above shows that in January are sold 20 computers (4×5 = 20), in February are sold 30 computers (6×5 = 30) and in March are sold 15 computers.

12. Dot Plot

Dot plot or dot graph is just one of the many types of graphs and charts to organize statistical data. It uses dots to represent data. A Dot Plot is used for relatively small sets of data and the values fall into a number of discrete categories.

If a value appears more than one time, the dots are ordered one above the other. That way the column height of dots shows the frequency for that value.

Dot Plot Uses:

  • To plot frequency counts when you have a small number of categories .
  • Dot plots are very useful when the variable is quantitative or categorical .
  • Dot graphs are also used for univariate data (data with only one variable that you can measure).

Suppose you have a class of 26 students. They are asked to tell their favorite color. The dot plot below represents their choices:

It is obvious that blue is the most preferred color by the students in this class.

13. Radar Chart

A radar chart is one of the most modern types of graphs and charts – ideal for multiple comparisons. Radar charts use a circular display with several different quantitative axes looking like spokes on a wheel. Each axis shows a quantity for a different categorical value.

Radar charts are also known as spider charts, web charts, star plots, irregular polygons, polar charts, cobweb charts or Kiviat diagram.

Radar Chart has many applications nowadays in statistics, maths, business, sports analysis, data intelligence, and etc.

Radar Chart Uses:

  • When you want to observe which variables have similar values or whether there are any outliers amongst each variable.
  • To represent  multiple comparisons .
  • When you want to see which variables are scoring low or high within a dataset. This makes radar chart ideal for displaying performance .

For example, we can compare employee’s performance with the scale of 1-8 on subjects such as Punctuality, Problem-solving, Meeting Deadlines, Marketing Knowledge, Communications. A point that is closer to the center on an axis shows a lower value and a worse performance.

PunctualityProblem-solvingMeeting DeadlinesMarketing KnowledgeCommunications
65878
75548

It is obvious that Jane has a better performance than Samanta.

14. Pyramid Graph

When it comes to easy to understand and good looking types of graphs and charts, pyramid graph has a top place.

A pyramid graph is a chart in a pyramid shape or triangle shape. These types of charts are best for data that is organized in some kind of hierarchy. The levels show a progressive order.

Pyramid Graph Uses:

  • When you want to indicate a hierarchy level among the topics or other types of data.
  • Pyramid graph is often used to represent progressive orders such as: “older to newer”, “more important to least important”, “specific to least specific”‘ and etc.
  • When you have a proportional or interconnected relationship between data sets.

A classic pyramid graph example is the healthy food pyramid that shows fats, oils, and sugar (at the top) should be eaten less than many other foods such as vegetables and fruits (at the bottom of the pyramid).

Conclusion:

You might know that choosing the right type of chart is some kind of tricky business.

Anyway, you have a wide choice of types of graphs and charts. Used in the right way, they are a powerful weapon to help you make your reports and presentations both professional and clear.

What are your favorite types of graphs and charts? Share your thoughts on the field below.

About The Author

a graphical representation of data is called what

Silvia Valcheva

Silvia Valcheva is a digital marketer with over a decade of experience creating content for the tech industry. She has a strong passion for writing about emerging software and technologies such as big data, AI (Artificial Intelligence), IoT (Internet of Things), process automation, etc.

10 Comments

' src=

I have learned a lot from your presentation. Very informative

' src=

Nicely described different graphs, I learned a lot.

' src=

very useful. exiting

' src=

I love this. I learned a lot.

' src=

Very good representation of date. I would suggest an addition of “stem and leaf” diagrams.

' src=

I have only one thing to say and that is this is the best representation of every graphs and charts I have ever seen 😀

' src=

Very well described. Great learning article for beginners on Charts.

' src=

Really helpful thanks

' src=

Very Helpful text; Thanks Silvia Valcheva for your hard work

Leave a Reply Cancel Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed .

arXiv's Accessibility Forum starts next month!

Help | Advanced Search

Computer Science > Machine Learning

Title: neural spacetimes for dag representation learning.

Abstract: We propose a class of trainable deep learning-based geometries called Neural Spacetimes (NSTs), which can universally represent nodes in weighted directed acyclic graphs (DAGs) as events in a spacetime manifold. While most works in the literature focus on undirected graph representation learning or causality embedding separately, our differentiable geometry can encode both graph edge weights in its spatial dimensions and causality in the form of edge directionality in its temporal dimensions. We use a product manifold that combines a quasi-metric (for space) and a partial order (for time). NSTs are implemented as three neural networks trained in an end-to-end manner: an embedding network, which learns to optimize the location of nodes as events in the spacetime manifold, and two other networks that optimize the space and time geometries in parallel, which we call a neural (quasi-)metric and a neural partial order, respectively. The latter two networks leverage recent ideas at the intersection of fractal geometry and deep learning to shape the geometry of the representation space in a data-driven fashion, unlike other works in the literature that use fixed spacetime manifolds such as Minkowski space or De Sitter space to embed DAGs. Our main theoretical guarantee is a universal embedding theorem, showing that any $k$-point DAG can be embedded into an NST with $1+\mathcal{O}(\log(k))$ distortion while exactly preserving its causal structure. The total number of parameters defining the NST is sub-cubic in $k$ and linear in the width of the DAG. If the DAG has a planar Hasse diagram, this is improved to $\mathcal{O}(\log(k)) + 2)$ spatial and 2 temporal dimensions. We validate our framework computationally with synthetic weighted DAGs and real-world network embeddings; in both cases, the NSTs achieve lower embedding distortions than their counterparts using fixed spacetime geometries.
Comments: 12 pages: main body and 19 pages: appendix
Subjects: Machine Learning (cs.LG); Discrete Mathematics (cs.DM); Neural and Evolutionary Computing (cs.NE); Metric Geometry (math.MG); Machine Learning (stat.ML)
Cite as: [cs.LG]
  (or [cs.LG] for this version)
  Focus to learn more arXiv-issued DOI via DataCite (pending registration)

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Representation Learning of Geometric Trees

New citation alert added.

This alert has been successfully added and will be sent to:

You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.

New Citation Alert!

Please log in to your account

Information & Contributors

Bibliometrics & citations, view options, supplemental material, index terms.

Computing methodologies

Machine learning

Learning paradigms

Unsupervised learning

Machine learning approaches

Neural networks

Recommendations

Curvanet: geometric deep learning based on directional curvature for 3d shape analysis.

Over the last decade, deep learning research has achieved tremendous success in computer vision and natural language processing. The current widely successful deep learning models are largely based on convolution and pooling operations on a Euclidean ...

RingNet: Geometric Deep Representation Learning for 3D Multi-domain Protein Shape Retrieval

Many applications use three-dimensional polygon meshes as geometric representation to achieve central tasks, such as 3D object retrieval and classification. However, implementing a deep learning approach dedicated to 3D meshes is a bit hard due to ...

Self Supervised Multi-view Graph Representation Learning in Digital Pathology

Graph Neural Networks (GNNs) hold great promise for solving many challenges in digital pathology by leveraging the rich relationships between cells and tissues in histology images. However, the shortage of annotated data in digital pathology ...

Information

Published in.

cover image ACM Conferences

  • General Chairs:

Northeastern University, USA

CENTAI / Eurecat, Italy

  • SIGMOD: ACM Special Interest Group on Management of Data
  • SIGKDD: ACM Special Interest Group on Knowledge Discovery in Data

Association for Computing Machinery

New York, NY, United States

Publication History

Permissions, check for updates, author tags.

  • geometric deep learning
  • graph representation learning
  • self supervised learning
  • Research-article

Funding Sources

Acceptance rates, contributors, other metrics, bibliometrics, article metrics.

  • 0 Total Citations
  • 0 Total Downloads
  • Downloads (Last 12 months) 0
  • Downloads (Last 6 weeks) 0

View options

View or Download as a PDF file.

View online with eReader .

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Full Access

Share this publication link.

Copying failed.

Share on social media

Affiliations, export citations.

  • Please download or close your previous search result export first before starting a new bulk export. Preview is not available. By clicking download, a status dialog will open to start the export process. The process may take a few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress. Download
  • Download citation
  • Copy citation

We are preparing your search results for download ...

We will inform you here when the file is ready.

Your file of search results citations is now ready.

Your search export query has expired. Please try again.

IMAGES

  1. Graphical Representation

    a graphical representation of data is called what

  2. Graphical Representation

    a graphical representation of data is called what

  3. Graphical Representation of Data

    a graphical representation of data is called what

  4. What Is Data Representation

    a graphical representation of data is called what

  5. Graphical Representation

    a graphical representation of data is called what

  6. Types Of Graph Representation In Data Structure

    a graphical representation of data is called what

COMMENTS

  1. Graphical Representation of Data

    Examples on Graphical Representation of Data. Example 1: A pie chart is divided into 3 parts with the angles measuring as 2x, 8x, and 10x respectively. Find the value of x in degrees. Solution: We know, the sum of all angles in a pie chart would give 360º as result. ⇒ 2x + 8x + 10x = 360º. ⇒ 20 x = 360º.

  2. Graphical Representation of Data

    Graphical Representation of Data: Graphical Representation of Data," where numbers and facts become lively pictures and colorful diagrams. ... Observation is the value of a particular variable at a particular period.OREach entry in the given data is called an observation. (ii) Raw data Solution: Raw data is the data collected in its original ...

  3. Graphical Representation

    Frequency Distribution Graphs - Example: Frequency Polygon Graph; Principles of Graphical Representation. Algebraic principles are applied to all types of graphical representation of data. In graphs, it is represented using two lines called coordinate axes. The horizontal axis is denoted as the x-axis and the vertical axis is denoted as the y ...

  4. 2: Graphical Representations of Data

    2.3: Histograms, Frequency Polygons, and Time Series Graphs. A histogram is a graphic version of a frequency distribution. The graph consists of bars of equal width drawn adjacent to each other. The horizontal scale represents classes of quantitative data values and the vertical scale represents frequencies. The heights of the bars correspond ...

  5. What is Graphical Representation? Definition and FAQs

    Graphical representation refers to the use of intuitive charts to clearly visualize and simplify data sets. Data is ingested into graphical representation of data software and then represented by a variety of symbols, such as lines on a line chart, bars on a bar chart, or slices on a pie chart, from which users can gain greater insight than by ...

  6. Introduction to Graphs

    Principles of graphical representation . The principles of graphical representation are algebraic. In a graph, there are two lines known as Axis or Coordinate axis. These are the X-axis and Y-axis. The horizontal axis is the X-axis and the vertical axis is the Y-axis. They are perpendicular to each other and intersect at O or point of Origin.

  7. Data and information visualization

    v. t. e. Data and information visualization ( data viz/vis or info viz/vis) [ 2] is the practice of designing and creating easy-to-communicate and easy-to-understand graphic or visual representations of a large amount [ 3] of complex quantitative and qualitative data and information with the help of static, dynamic or interactive visual items.

  8. What Is Data Visualization: Definition, Types, Tips, and Examples

    Data Visualization is a graphic representation of data that aims to communicate numerous heavy data in an efficient way that is easier to grasp and understand. In a way, data visualization is the mapping between the original data and graphic elements that determine how the attributes of these elements vary. The visualization is usually made by ...

  9. What Is Data Visualization? Definition & Examples

    Data visualization is the graphical representation of information and data. By using v isual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data. Additionally, it provides an excellent way for employees or business owners to present data to non ...

  10. 2.1: Introduction

    Then patterns can more easily be discerned. Figure 2.1.1 2.1. 1: When you have large amounts of data, you will need to organize it in a way that makes sense. These ballots from an election are rolled together with similar ballots to keep them organized. (credit: William Greeson) In this chapter, you will study graphical ways to describe and ...

  11. Chart

    A pie chart showing the composition of the 38th Parliament of Canada.. A chart (sometimes known as a graph) is a graphical representation for data visualization, in which "the data is represented by symbols, such as bars in a bar chart, lines in a line chart, or slices in a pie chart". [1] A chart can represent tabular numeric data, functions or some kinds of quality structure and provides ...

  12. Analyzing and Visualizing Data Flashcards

    Study with Quizlet and memorize flashcards containing terms like The graphical representation of data, usually in a visually appealing way, is called _____., Data visualization refers to _____., What is data visualization? and more.

  13. The Ultimate Guide to Data Visualization| The Beautiful Blog

    A histogram is a visual representation of the distribution of data. The graph itself consists of a set of rectangles— each rectangle represents a range of values (called a "bin"), while the height corresponds to the numbers of the data that fall within that range. ... A vertical bar graph makes more sense when graphing data over time, since ...

  14. What Is Data Visualization?

    Data visualization is the representation of data through use of common graphics, such as charts, plots, infographics and even animations. ... Heat maps: These graphical representation displays are helpful in visualizing behavioral data by location. This can be a location on a map, or even a webpage.

  15. Graphical Representation, Its Advantages & Uses

    Graphical data representation is crucial in understanding and identifying trends and patterns in the ever-increasing data flow. Graphical representation helps in quick analysis of large quantities and can support making predictions and informed decisions. ... A circle is the set of all points in the plane that are a fixed distance called the ...

  16. Graphical Representation: Types, Rules, Principles & Examples

    A graphical representation is the geometrical image of a set of data that preserves its characteristics and displays them at a glance. It is a mathematical picture of data points. It enables us to think about a statistical problem in visual terms. It is an effective tool for the preparation, understanding and interpretation of the collected data.

  17. Data Visualization: Definition, Benefits, and Examples

    Data visualization is the representation of information and data using charts, graphs, maps, and other visual tools. These visualizations allow us to easily understand any patterns, trends, or outliers in a data set. Data visualization also presents data to the general public or specific audiences without technical knowledge in an accessible ...

  18. Graphical Representation of Data

    Graphical representation is a method of numerical data analysis. It shows a diagram of the relationship between knowledge, ideas, information, and concepts. It is easy to understand and one of the key learning strategies. The knowledge in a particular domain always depends on the type of information.

  19. What is Data Visualization & Why Is It Important?

    A line chart, also called a line graph, is a distinct type of graphical representation that exhibits information in the form of a multitude of data points, which are interconnected by unbroken lines. These line charts are typically employed to demonstrate transformations in data over a certain duration, where the horizontal axis symbolizes time ...

  20. Data Representation: Definition, Types, Examples

    Data Representation: Data representation is a technique for analysing numerical data. The relationship between facts, ideas, information, and concepts is depicted in a diagram via data representation. It is a fundamental learning strategy that is simple and easy to understand. It is always determined by the data type in a specific domain.

  21. Graphical Summaries

    Graphical summaries of data # Many powerful approaches to data analysis communicate their findings via graphs. These are an important counterpart to data analysis approaches that communicate their findings via numbers or tabless. Here we will illustrate some of the most common approaches for graphical data analysis. Throughout this discussion, it is important to remember that graphical data ...

  22. Quiz 6 Flashcards

    Study with Quizlet and memorize flashcards containing terms like A _____ is a graphic representation of data., A _____ is a graphic representation of trends in a data series., A _____ is a visual representation of information and ideas. and more. ... An Excel feature that helps you choose a chart type by previewing suggested charts based on ...

  23. Types of Graphs and Charts And Their Uses

    The pictographic example above shows that in January are sold 20 computers (4×5 = 20), in February are sold 30 computers (6×5 = 30) and in March are sold 15 computers. 12. Dot Plot. Dot plot or dot graph is just one of the many types of graphs and charts to organize statistical data. It uses dots to represent data.

  24. QGRL: Quaternion Graph Representation Learning for Heterogeneous

    Clustering is one of the most commonly used techniques for unsupervised data analysis. As real data sets are usually composed of numerical and categorical features that are heterogeneous in nature, the heterogeneity in the distance metric and feature coupling prevents deep representation learning from achieving satisfactory clustering accuracy.

  25. Ensemble Predicate Decoding for Unbiased Scene Graph Generation

    Scene Graph Generation (SGG) aims to generate a comprehensive graphical representation that accurately captures the semantic information of a given scenario. However, the SGG model's performance in predicting more fine-grained predicates is hindered by a significant predicate bias. According to existing works, the long-tail distribution of predicates in training data results in the biased ...

  26. Flexible Graph Neural Diffusion with Latent Class Representation

    In existing graph data, the connection relationships often exhibit uniform weights, leading to the model aggregating neighboring nodes with equal weights across various connection types. However, this uniform aggregation of diverse information diminishes the discriminability of node representations, contributing significantly to the over ...

  27. Disentangled Generative Graph Representation Learning

    Recently, generative graph models have shown promising results in learning graph representations through self-supervised methods. However, most existing generative graph representation learning (GRL) approaches rely on random masking across the entire graph, which overlooks the entanglement of learned representations. This oversight results in non-robustness and a lack of explainability ...

  28. Optimizing Long-tailed Link Prediction in Graph Neural Networks through

    Link prediction, as a fundamental task for graph neural networks (GNNs), has boasted significant progress in varied domains. Its success is typically influenced by the expressive power of node representation, but recent developments reveal the inferior performance of low-degree nodes owing to their sparse neighbor connections, known as the degree-based long-tailed problem.

  29. [2408.13885] Neural Spacetimes for DAG Representation Learning

    We propose a class of trainable deep learning-based geometries called Neural Spacetimes (NSTs), which can universally represent nodes in weighted directed acyclic graphs (DAGs) as events in a spacetime manifold. While most works in the literature focus on undirected graph representation learning or causality embedding separately, our differentiable geometry can encode both graph edge weights ...

  30. Representation Learning of Geometric Trees

    This inherent hierarchical structure plays a crucial role in domains such as neuron morphology and river geomorphology, but traditional graph representation methods often overlook these specific characteristics of tree structures. To address this, we introduce a new representation learning framework tailored for geometric trees.