Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Fostering Critical Thinking, Reasoning, and Argumentation Skills through Bioethics Education

* E-mail: [email protected]

Affiliation Northwest Association for Biomedical Research, Seattle, Washington, United States of America

Affiliation Center for Research and Learning, Snohomish, Washington, United States of America

  • Jeanne Ting Chowning, 
  • Joan Carlton Griswold, 
  • Dina N. Kovarik, 
  • Laura J. Collins

PLOS

  • Published: May 11, 2012
  • https://doi.org/10.1371/journal.pone.0036791
  • Reader Comments

Table 1

Developing a position on a socio-scientific issue and defending it using a well-reasoned justification involves complex cognitive skills that are challenging to both teach and assess. Our work centers on instructional strategies for fostering critical thinking skills in high school students using bioethical case studies, decision-making frameworks, and structured analysis tools to scaffold student argumentation. In this study, we examined the effects of our teacher professional development and curricular materials on the ability of high school students to analyze a bioethical case study and develop a strong position. We focused on student ability to identify an ethical question, consider stakeholders and their values, incorporate relevant scientific facts and content, address ethical principles, and consider the strengths and weaknesses of alternate solutions. 431 students and 12 teachers participated in a research study using teacher cohorts for comparison purposes. The first cohort received professional development and used the curriculum with their students; the second did not receive professional development until after their participation in the study and did not use the curriculum. In order to assess the acquisition of higher-order justification skills, students were asked to analyze a case study and develop a well-reasoned written position. We evaluated statements using a scoring rubric and found highly significant differences (p<0.001) between students exposed to the curriculum strategies and those who were not. Students also showed highly significant gains (p<0.001) in self-reported interest in science content, ability to analyze socio-scientific issues, awareness of ethical issues, ability to listen to and discuss viewpoints different from their own, and understanding of the relationship between science and society. Our results demonstrate that incorporating ethical dilemmas into the classroom is one strategy for increasing student motivation and engagement with science content, while promoting reasoning and justification skills that help prepare an informed citizenry.

Citation: Chowning JT, Griswold JC, Kovarik DN, Collins LJ (2012) Fostering Critical Thinking, Reasoning, and Argumentation Skills through Bioethics Education. PLoS ONE 7(5): e36791. https://doi.org/10.1371/journal.pone.0036791

Editor: Julio Francisco Turrens, University of South Alabama, United States of America

Received: February 7, 2012; Accepted: April 13, 2012; Published: May 11, 2012

Copyright: © 2012 Chowning et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The “Collaborations to Understand Research and Ethics” (CURE) program was supported by a Science Education Partnership Award grant ( http://ncrrsepa.org ) from the National Center for Research Resources and the Division of Program Coordination, Planning, and Strategic Initiatives of the National Institutes of Health through Grant Number R25OD011138. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Introduction

While the practice of argumentation is a cornerstone of the scientific process, students at the secondary level have few opportunities to engage in it [1] . Recent research suggests that collaborative discourse and critical dialogue focused on student claims and justifications can increase student reasoning abilities and conceptual understanding, and that strategies are needed to promote such practices in secondary science classrooms [2] . In particular, students need structured opportunities to develop arguments and discuss them with their peers. In scientific argument, the data, claims and warrants (that relate claims to data) are strictly concerned with scientific data; in a socio-scientific argument, students must consider stakeholder perspectives and ethical principles and ideas, in addition to relevant scientific background. Regardless of whether the arguments that students employ point towards scientific or socio-scientific issues, the overall processes students use in order to develop justifications rely on a model that conceptualizes arguments as claims to knowledge [3] .

Prior research in informal student reasoning and socio-scientific issues also indicates that most learners are not able to formulate high-quality arguments (as defined by the ability to articulate justifications for claims and to rebut contrary positions), and highlights the challenges related to promoting argumentation skills. Research suggests that students need experience and practice justifying their claims, recognizing and addressing counter-arguments, and learning about elements that contribute to a strong justification [4] , [5] .

Proponents of Socio-scientific Issues (SSI) education stress that the intellectual development of students in ethical reasoning is necessary to promote understanding of the relationship between science and society [4] , [6] . The SSI approach emphasizes three important principles: (a) because science literacy should be a goal for all students, science education should be broad-based and geared beyond imparting relevant content knowledge to future scientists; (b) science learning should involve students in thinking about the kinds of real-world experiences that they might encounter in their lives; and (c) when teaching about real-world issues, science teachers should aim to include contextual elements that are beyond traditional science content. Sadler and Zeidler, who advocate a SSI perspective, note that “people do not live their lives according to disciplinary boundaries, and students approach socio-scientific issues with diverse perspectives that integrate science and other considerations” [7] .

Standards for science literacy emphasize not only the importance of scientific content and processes, but also the need for students to learn about science that is contextualized in real-world situations that involve personal and community decision-making [7] – [10] . The National Board for Professional Teaching Standards stresses that students need “regular exposure to the human contexts of science [and] examples of ethical dilemmas, both current and past, that surround particular scientific activities, discoveries, and technologies” [11] . Teachers are mandated by national science standards and professional teaching standards to address the social dimensions of science, and are encouraged to provide students with the tools necessary to engage in analyzing bioethical issues; yet they rarely receive training in methods to foster such discussions with students.

The Northwest Association for Biomedical Research (NWABR), a non-profit organization that advances the understanding and support of biomedical research, has been engaging students and teachers in bringing the discussion of ethical issues in science into the classroom since 2000 [12] . The mission of NWABR is to promote an understanding of biomedical research and its ethical conduct through dialogue and education. The sixty research institutions that constitute our members include academia, industry, non-profit research organizations, research hospitals, professional societies, and volunteer health organizations. NWABR connects the scientific and education communities across the Northwestern United States and helps the public understand the vital role of research in promoting better health outcomes. We have focused on providing teachers with both resources to foster student reasoning skills (such as activities in which students practice evaluating arguments using criteria for strong justifications), as well as pedagogical strategies for fostering collaborative discussion [13] – [15] . Our work draws upon socio-scientific elements of functional scientific literacy identified by Zeidler et al. [6] . We include support for teachers in discourse issues, nature of science issues, case-based issues, and cultural issues – which all contribute to cognitive and moral development and promote functional scientific literacy. Our Collaborations to Understand Research and Ethics (CURE) program, funded by a Science Education Partnership Award from the National Institutes of Health (NIH), promotes understanding of translational biomedical research as well as the ethical considerations such research raises.

Many teachers find a principles-based approach most manageable for introducing ethical considerations. The principles include respect for persons (respecting the inherent worth of an individual and his or her autonomy), beneficence/nonmaleficence (maximizing benefits/minimizing harms), and justice (distributing benefits/burdens equitably across a group of individuals). These principles, which are articulated in the Belmont Report [16] in relation to research with human participants (and which are clarified and defended by Beauchamp and Childress [17] ), represent familiar concepts and are widely used. In our professional development workshops and in our support resources, we also introduce teachers to care, feminist, virtue, deontological and consequentialist ethics. Once teachers become familiar with principles, they often augment their teaching by incorporating these additional ethical approaches.

The Bioethics 101 materials that were the focus of our study were developed in conjunction with teachers, ethicists, and scientists. The curriculum contains a series of five classroom lessons and a culminating assessment [18] and is described in more detail in the Program Description below. For many years, teachers have shared with us the dramatic impacts that the teaching of bioethics can have on their students; this research study was designed to investigate the relationship between explicit instruction in bioethical reasoning and resulting student outcomes. In this study, teacher cohorts and student pre/post tests were used to investigate whether CURE professional development and the Bioethics 101 curriculum materials made a significant difference in high school students’ abilities to analyze a case study and justify their positions. Our research strongly indicates that such reasoning approaches can be taught to high school students and can significantly improve their ability to develop well-reasoned justifications to bioethical dilemmas. In addition, student self-reports provide additional evidence of the extent to which bioethics instruction impacted their attitudes and perceptions and increased student motivation and engagement with science content.

Program Description

Our professional development program, Ethics in the Science Classroom, spanned two weeks. The first week, a residential program at the University of Washington (UW) Pack Forest Conference Center, focused on our Bioethics 101 curriculum, which is summarized in Table S1 and is freely available at http://www.nwabr.org . The curriculum, a series of five classroom lessons and a culminating assessment, was implemented by all teachers who were part of our CURE treatment group. The lessons explore the following topics: (a) characteristics of an ethical question; (b) bioethical principles; (c) the relationship between science and ethics and the roles of objectivity/subjectivity and evidence in each; (d) analysis of a case study (including identifying an ethical question, determining relevant facts, identifying stakeholders and their concerns and values, and evaluating options); and (e) development of a well-reasoned justification for a position.

Additionally, the first week focused on effective teaching methods for incorporating ethical issues into science classrooms. We shared specific pedagogical strategies for helping teachers manage classroom discussion, such as asking students to consider the concerns and values of individuals involved in the case while in small single and mixed stakeholder groups. We also provided participants with background knowledge in biomedical research and ethics. Presentations from colleagues affiliated with the NIH Clinical and Translational Science Award program, from the Department of Bioethics and Humanities at the UW, and from NWABR member institutions helped participants develop a broad appreciation for the process of biomedical research and the ethical issues that arise as a consequence of that research. Topics included clinical trials, animal models of disease, regulation of research, and ethical foundations of research. Participants also developed materials directly relevant and applicable to their own classrooms, and shared them with other educators. Teachers wrote case studies and then used ethical frameworks to analyze the main arguments surrounding the case, thereby gaining experience in bioethical analysis. Teachers also developed Action Plans to outline their plans for implementation.

The second week provided teachers with first-hand experiences in NWABR research institutions. Teachers visited research centers such as the Tumor Vaccine Group and Clinical Research Center at the UW. They also had the opportunity to visit several of the following institutions: Amgen, Benaroya Research Institute, Fred Hutchinson Cancer Research Center, Infectious Disease Research Institute, Institute for Stem Cells and Regenerative Medicine at the UW, Pacific Northwest Diabetes Research Institute, Puget Sound Blood Center, HIV Vaccine Trials Network, and Washington National Primate Research Center. Teachers found these experiences in research facilities extremely valuable in helping make concrete the concepts and processes detailed in the first week of the program.

We held two follow-up sessions during the school year to deepen our relationship with the teachers, promote a vibrant ethics in science education community, provide additional resources and support, and reflect on challenges in implementation of our materials. We also provided the opportunity for teachers to share their experiences with one another and to report on the most meaningful longer-term impacts from the program. Another feature of our CURE program was the school-year Institutional Review Board (IRB) and Institutional Animal Care and Use Committee (IACUC) follow-up sessions. Teachers chose to attend one of NWABR’s IRB or IACUC conferences, attend a meeting of a review board, or complete NIH online ethics training. Some teachers also visited the UW Embryonic Stem Cell Research Oversight Committee. CURE funding provided substitutes in order for teachers to be released during the workday. These opportunities further engaged teachers in understanding and appreciating the actual process of oversight for federally funded research.

Participants

Most of the educators who have been through our intensive summer workshops teach secondary level science, but we have welcomed teachers at the college, community college, and even elementary levels. Our participants are primarily biology teachers; however, chemistry and physical science educators, health and career specialists, and social studies teachers have also used our strategies and materials with success.

The research design used teacher cohorts for comparison purposes and recruited teachers who expressed interest in participating in a CURE workshop in either the summer of 2009 or the summer of 2010. We assumed that all teachers who applied to the CURE workshop for either year would be similarly interested in ethics topics. Thus, Cohort 1 included teachers participating in CURE during the summer of 2009 (the treatment group). Their students received CURE instruction during the following 2009–2010 academic year. Cohort 2 (the comparison group) included teachers who were selected to participate in CURE during the summer of 2010. Their students received a semester of traditional classroom instruction in science during the 2009–2010 academic year. In order to track participation of different demographic groups, questions pertaining to race, ethnicity, and gender were also included in the post-tests.

Using an online sample size calculator http://www.surveysystem.com/sscalc.htm , a 95% Confidence Level, and a Confidence Interval of 5, it was calculated that a sample size of 278 students would be needed for the research study. For that reason, six Cohort 1 teachers were impartially chosen to be in the study. For the comparison group, the study design also required six teachers from Cohort 2. The external evaluator contacted all Cohort 2 teachers to explain the research study and obtain their consent, and successfully recruited six to participate.

Ethics Statement

This study was conducted according to the principles expressed in the Declaration of Helsinki. Prior to the study, research processes and materials were reviewed and approved by the Western Institutional Review Board (WIRB Study #1103180). CURE staff and evaluators received written permission from parents to have their minor children participate in the Bioethics 101 curriculum, for the collection and subsequent analysis of students’ written responses to the assessment, and for permission to collect and analyze student interview responses. Teachers also provided written informed consent prior to study participation. All study participants and/or their legal guardians provided written informed consent for the collection and subsequent analysis of verbal and written responses.

Research Study

Analyzing a case study: cure and comparison students..

Teacher cohorts and pre/post tests were used to investigate whether CURE professional development and curriculum materials made a significant difference in high school students’ abilities to analyze a case study and justify their positions. Cohort 1 teachers (N = 6) received CURE professional development and used the Bioethics 101 curriculum with their students (N = 323); Cohort 2 teachers (N = 6) did not receive professional development until after their participation in the study and did not use the curriculum with their students (N = 108). Cohort 2 students were given the test case study and questions, but with only traditional science instruction during the semester. Each Cohort was further divided into two groups (A and B). Students in Group A were asked to complete a pre-test prior to the case study, while students in Group B did not. All four student groups completed a post-test after analysis of the case study. This four-group model ( Table 1 ) allowed us to assess: 1) the effect of CURE treatment relative to conventional education practices, 2) the effect of the pre-test relative to no pre-test, and 3) the interaction between the pre-test and CURE treatment condition. Random assignment of students to treatment and comparison groups was not possible; consequently we used existing intact classes. In all, 431 students and 12 teachers participated in the research study ( Table 2 ).

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0036791.t001

thumbnail

https://doi.org/10.1371/journal.pone.0036791.t002

In order to assess the acquisition of higher-order justification skills, students used the summative assessment provided in our curriculum as the pre- and post-test. We designed the curriculum to scaffold students’ ability to write a persuasive bioethical position; by the time they participated in the assessment, Cohort 1 students had opportunities to discuss the elements of a strong justification as well as practice in analyzing case studies. For our research, both Cohort 1 and 2 students were asked to analyze the case study of “Ashley X” ( Table S2 ), a young girl with a severe neurological impairment whose parents wished to limit her growth through a combination of interventions so that they could better care for her. Students were asked to respond to the ethical question: “Should one or more medical interventions be used to limit Ashley’s growth and physical maturation? If so, which interventions should be used and why?” In their answer, students were encouraged to develop a well-reasoned written position by responding to five questions that reflected elements of a strong justification. One difficulty in evaluating a multifaceted science-related learning task (analyzing a bioethical case study and justifying a position) is that a traditional multiple-choice assessment may not adequately reflect the subtlety and depth of student understanding. We used a rubric to assess student responses to each of the following questions (Q) on a scale of 1 to 4; these questions represent key elements of a strong justification for a bioethical argument:

  • Q1: Student Position: What is your decision?
  • Q2: Factual Support: What facts support your decision? Is there missing information that could be used to make a better decision?
  • Q3: Interests and Views of Others: Who will be impacted by the decision and how will they be impacted?
  • Q4: Ethical Considerations: What are the main ethical considerations?
  • Q5: Evaluating Alternative Options: What are some strengths and weaknesses of alternate solutions?

In keeping with our focus on the process of reasoning rather than on having students draw any particular conclusion, we did not assess students on which position they took, but on how well they stated and justified the position they chose.

We used a rubric scoring guide to assess student learning, which aligned with the complex cognitive challenges posed by the task ( Table S3 ). Assessing complex aspects of student learning is often difficult, especially evaluating how students represent their knowledge and competence in the domain of bioethical reasoning. Using a scoring rubric helped us more authentically score dimensions of students’ learning and their depth of thinking. An outside scorer who had previously participated in CURE workshops, has secondary science teaching experience, and who has a Masters degree in Bioethics blindly scored all student pre- and post-tests. Development of the rubric was an iterative process, refined after analyzing a subset of surveys. Once finalized, we confirmed the consistency and reliability of the rubric and grading process by re-testing a subset of student surveys randomly selected from all participating classes. The Cronbach alpha reliability result was 0.80 [19] .

The rubric closely followed the framework introduced through the curricular materials and reinforced through other case study analyses. For example, under Q2, Factual Support , a student rated 4 out of 4 if their response demonstrated the following:

  • The justification uses the relevant scientific reasons to support student’s answer to the ethical question.
  • The student demonstrates a solid understanding of the context in which the case occurs, including a thoughtful description of important missing information.
  • The student shows logical, organized thinking. Both facts supporting the decision and missing information are presented at levels exceeding standard (as described above).

An example of a student response that received the highest rating for Q2 asking for factual support is: “Her family has a history of breast cancer and fibrocystic breast disease. She is bed-bound and completely dependent on her parents. Since she is bed-bound, she has a higher risk of blood clots. She has the mentality of an infant. Her parents’ requests offer minimal side effects. With this disease, how long is she expected to live? If not very long then her parents don’t have to worry about growth. Are there alternative measures?”

In contrast, a student rated a 1 for responses that had the following characteristics:

  • Factual information relevant to the case is incompletely described or is missing.
  • Irrelevant information may be included and the student demonstrates some confusion.

An example of a student response that rated a 1 for Q2 is: “She is unconscious and doesn’t care what happens.”

All data were entered into SPSS (Statistical Package for the Social Sciences) and analyzed for means, standard deviations, and statistically significant differences. An Analysis of Variance (ANOVA) was used to test for significant overall differences between the two cohort groups. Pre-test and post-test composite scores were calculated for each student by adding individual scores for each item on the pre- and post-tests. The composite score on the post-test was identical in form and scoring to the composite score on the pre-test. The effect of the CURE treatment on post-test composite scores is referred to as the Main Effect, and was determined by comparing the post-test composite scores of the Cohort 1 (CURE) and Cohort 2 (Comparison) groups. In addition, Cohort 1 and Cohort 2 means scores for each test question (Questions 1–5) were compared within and between cohorts using t-tests.

CURE student perceptions of curriculum effect.

During prior program evaluations, we asked teachers to identify what they believed to be the main impacts of bioethics instruction on students. From this earlier work, we identified several themes. These themes, listed below, were further tested in our current study by asking students in the treatment group to assess themselves in these five areas after participation in the lesson, using a retrospective pre-test design to measure self-reported changes in perceptions and abilities [20] .

  • Interest in the science content of class (before/after) participating in the Ethics unit.
  • Ability to analyze issues related to science and society and make well-justified decisions (before/after) participating in the Ethics unit.
  • Awareness of ethics and ethical issues (before/after) participating in the Ethics unit.
  • Understanding of the connection between science and society (before/after) participating in the Ethics unit.
  • Ability to listen to and discuss different viewpoints (before/after) participating in the Ethics unit.

After Cohort 1 (CURE) students participated in the Bioethics 101 curriculum, we asked them to indicate the extent to which they had changed in each of the theme areas we had identified using Likert-scale items on a retrospective pre-test design [21] , with 1 =  None and 5 =  A lot!. We used paired t-tests to examine self-reported changes in their perceptions and abilities. The retrospective design avoids response-shift bias that results from overestimation or underestimation of change since both before and after information is collected at the same time [20] .

Student Demographics

Demographic information is provided in Table 3 . Of those students who reported their gender, a larger number were female (N = 258) than male (N = 169), 60% and 40%, respectively, though female students represented a larger proportion of Cohort 1 than Cohort 2. Students ranged in age from 14 to 18 years old; the average age of the students in both cohorts was 15. Students were enrolled in a variety of science classes (mostly Biology or Honors Biology). Because NIH recognizes a difference between race and ethnicity, students were asked to respond to both demographic questions. Students in both cohorts were from a variety of ethnic and racial backgrounds.

thumbnail

https://doi.org/10.1371/journal.pone.0036791.t003

Pre- and Post-Test Results for CURE and Comparison Students

Post-test composite means for each cohort (1 and 2) and group (A and B) are shown in Table 4 . Students receiving CURE instruction earned significantly higher (p<0.001) composite mean scores than students in comparison classrooms. Cohort 1 (CURE) students (N = 323) post-test composite means were 10.73, while Cohort 2 (Comparison) students (N = 108) had post-test composite means of 9.16. The ANOVA results ( Table 5 ) showed significant differences in the ability to craft strong justifications between Cohort 1 (CURE) and Cohort 2 (Comparison) students F (1, 429) = 26.64, p<0.001.

thumbnail

https://doi.org/10.1371/journal.pone.0036791.t004

thumbnail

https://doi.org/10.1371/journal.pone.0036791.t005

We also examined if the pre-test had a priming effect on the students’ scores because it provides an opportunity to practice or think about the content. The pre-test would not have this effect on the comparison group because they were not exposed to CURE teaching or materials. If the pre-test provides a practice or priming effect, this would result in higher post-test performance by CURE students receiving the pre-test than by CURE students not receiving the pre-test. For this comparison, the F (1, 321) = 0.10, p = 0.92. This result suggests that the differences between the CURE and comparison groups are attributable to the treatment condition and not a priming effect of the pre-test.

After differences in main effects were investigated, we analyzed differences between and within cohorts on individual items (Questions 1–5) using t-tests. The Mean scores of individual questions for each cohort are shown in Figure 1 . There were no significant differences between Cohort 1 (CURE) and Cohort 2 (Comparison) on pre-test scores. In fact, for Q5, the mean pre-test scores for the Cohort 2 (Comparison) group were slightly higher (1.8) than the Cohort 1 (CURE) group (1.6). On the post-test, the Cohort 1 (CURE) students significantly outscored the Cohort 2 (Comparison) students on all questions; Q1, Q3, and Q4 were significant at p<0.001, Q2 was significant at p<0.01, and Q5 was significant at p<0.05. The largest post-test difference between Cohort 1 (CURE) students and Cohort 2 (Comparison) students was for Q3, with an increase of 0.6; all the other questions showed changes of 0.3 or less. Comparing Cohort 1 (CURE) post-test performance on individual questions yields the following results: scores were highest for Q1 (mean = 2.8), followed by Q3 (mean = 2.2), Q2 (mean = 2.1), and Q5 (mean = 1.9). Lowest Cohort 1 (CURE) post-test scores were associated with Q4 (mean = 1.8).

thumbnail

Mean scores for individual items of the pre-test for each cohort revealed no differences between groups for any of the items (Cohort 1, CURE, N = 323; Cohort 2, Comparison, N = 108). Post-test gains of Cohort 1 (CURE) relative to Cohort 2 (Comparison) were statistically significant for all questions. (Question (Q) 1) What is your decision? (Q2) What facts support your decision? Is there missing information that could be used to make a better decision? (Q3) Who will be impacted by the decision and how will they be impacted? (Q4) What are the main ethical considerations? and (Q5)What are some strengths and weaknesses of alternate solutions? Specifically: (Q1), (Q3), (Q4) were significant at p<0.001 (***); (Q2) was significant at p<0.01 (**); and (Q5) was significant at p<0.05 (*). Lines represent standard deviations.

https://doi.org/10.1371/journal.pone.0036791.g001

Overall, across all four groups, mean scores for Q1 were highest (2.6), while scores for Q4 were lowest (1.6). When comparing within-Cohort scores on the pre-test versus post-test, Cohort 2 (Comparison Group) showed little to no change, while CURE students improved on all test questions.

CURE Student Perceptions of Curriculum Effect

After using our resources, Cohort 1 (CURE) students showed highly significant gains (p<0.001) in all areas examined: interest in science content, ability to analyze socio-scientific issues and make well-justified decisions, awareness of ethical issues, understanding of the connection between science and society, and the ability to listen to and discuss viewpoints different from their own ( Figure 2 ). Overall, students gave the highest score to their ability to listen to and discuss viewpoints different than their own after participating in the CURE unit (mean = 4.2). Also highly rated were the changes in understanding of the connection between science and society (mean = 4.1) and the awareness of ethical issues (mean = 4.1); these two perceptions also showed the largest change pre-post (from 2.8 to 4.1 and 2.7 to 4.1, respectively).

thumbnail

Mean scores for individual items of the retrospective items on the post-test for Cohort 1 students revealed significant gains (p<0.001) in all self-reported items: Interest in science (N = 308), ability to Analyze issues related to science and society and make well-justified decisions (N = 306), Awareness of ethics and ethical issues (N = 309), Understanding of the connection between science and society (N = 308), and the ability to Listen and discuss different viewpoints (N = 308). Lines represent standard deviations.

https://doi.org/10.1371/journal.pone.0036791.g002

NWABR’s teaching materials provide support both for general ethics and bioethics education, as well as for specific topics such as embryonic stem cell research. These resources were developed to provide teachers with classroom strategies, ethics background, and decision-making frameworks. Teachers are then prepared to share their understanding with their students, and to support their students in using analysis tools and participating in effective classroom discussions. Our current research grew out of a desire to measure the effectiveness of our professional development and teaching resources in fostering student ability to analyze a complex bioethical case study and to justify their positions.

Consistent with the findings of SSI researchers and our own prior anecdotal observations of teacher classrooms and student work, we found that students improve in their analytical skill when provided with reasoning frameworks and background in concepts such as beneficence, respect, and justice. Our research demonstrates that structured reasoning approaches can be effectively taught at the secondary level and that they can improve student thinking skills. After teachers participated in a two-week professional development workshop and utilized our Bioethics 101 curriculum, within a relatively short time period (five lessons spanning approximately one to two weeks), students grew significantly in their ability to analyze a complex case and justify their position compared to students not exposed to the program. Often, biology texts present a controversial issue and ask students to “justify their position,” but teachers have shared with us that students frequently do not understand what makes a position or argument well-justified. By providing students with opportunities to evaluate sample justifications, and by explicitly introducing a set of elements that students should include in their justifications, we have facilitated the development of this important cognitive skill.

The first part of our research examined the impact of CURE instruction on students’ ability to analyze a case study. Although students grew significantly in all areas, the highest scores for the Cohort 1 (CURE) students were found in response to Q1 of the case analysis, which asked them to clearly state their own position, and represented a relatively easy cognitive task. This question also received the highest score in the comparison group. Not surprisingly, students struggled most with Q4 and Q5, which asked for the ethical considerations and the strengths and weaknesses of different solutions, respectively, and which tested specialized knowledge and sophisticated analytical skills. The area in which we saw the most growth in Cohort 1 (CURE) (both in comparison to the pre-test and in relation to the comparison group) was in students’ ability to identify stakeholders in a case and state how they might be impacted by a decision (Q3). Teachers have shared with us that secondary students are often focused on their own needs and perspectives; stepping into the perspectives of others helps enlarge their understanding of the many views that can be brought to bear upon a socio-scientific issue.

Many of our teachers go far beyond these introductory lessons, revisiting key concepts throughout the year as new topics are presented in the media or as new curricular connections arise. Although we have observed this phenomenon for many years, it has been difficult to evaluate these types of interventions, as so many teachers implement the concepts and ideas differently in response to their unique needs. Some teachers have used the Bioethics 101 curriculum as a means for setting the tone and norms for the entire year in their classes and fostering an atmosphere of respectful discussion. These teachers note that the “opportunity cost” of investing time in teaching basic bioethical concepts, decision-making strategies, and justification frameworks pays off over the long run. Students’ understanding of many different science topics is enhanced by their ability to analyze issues related to science and society and make well-justified decisions. Throughout their courses, teachers are able to refer back to the core ideas introduced in Bioethics 101, reinforcing the wide utility of the curriculum.

The second part of our research focused on changes in students’ self-reported attitudes and perceptions as a result of CURE instruction. Obtaining accurate and meaningful data to assess student self-reported perceptions can be difficult, especially when a program is distributed across multiple schools. The traditional use of the pretest-posttest design assumes that students are using the same internal standard to judge attitudes or perceptions. Considerable empirical evidence suggests that program effects based on pre-posttest self-reports are masked because people either overestimate or underestimate their pre-program perceptions [20] , [22] – [26] . Moore and Tananis [27] report that response shift can occur in educational programs, especially when they are designed to increase students’ awareness of a specific construct that is being measured. The retrospective pre-test design (RPT), which was used in this study, has gained increasing prominence as a convenient and valid method for measuring self-reported change. RPT has been shown to reduce response shift bias, providing more accurate assessment of actual effect. The retrospective design avoids response-shift bias that results from overestimation or underestimation of change since both before and after information is collected at the same time [20] . It is also convenient to implement, provides comparison data, and may be more appropriate in some situations [26] . Using student self-reported measures concerning perceptions and attitudes is also a meta-cognitive strategy that allows students to think about their learning and justify where they believe they are at the end of a project or curriculum compared to where they were at the beginning.

Our approach resulted in a significant increase in students’ own perceived growth in several areas related to awareness, understanding, and interest in science. Our finding that student interest in science can be significantly increased through a case-study based bioethics curriculum has implications for instruction. Incorporating ethical dilemmas into the classroom is one strategy for increasing student motivation and engagement with science content. Students noted the greatest changes in their own awareness of ethical issues and in understanding the connection between science and society. Students gave the highest overall rating to their ability to listen to and discuss viewpoints different from their own after participation in the bioethics unit. This finding also has implications for our future citizenry; in an increasingly diverse and globalized society, students need to be able to engage in civil and rational dialogue with others who may not share their views.

Conducting research studies about ethical learning in secondary schools is challenging; recruiting teachers for Cohort 2 and obtaining consent from students, parents, and teachers for participation was particularly difficult, and many teachers faced restraints from district regulations about curriculum content. Additional studies are needed to clarify the extent to which our curricular materials alone, without accompanying teacher professional development, can improve student reasoning skills.

Teacher pre-service training programs rarely incorporate discussion of how to address ethical issues in science with prospective educators. Likewise, with some noticeable exceptions, such as the work of the University of Pennsylvania High School Bioethics Project, the Genetic Science Learning Center at the University of Utah, and the Kennedy Institute of Ethics at Georgetown University, relatively few resources exist for high school curricular materials in this area. Teachers have shared with us that they know that such issues are important and engaging for students, but they do not have the experience in either ethical theory or in managing classroom discussion to feel comfortable teaching bioethics topics. After participating in our workshops or using our teaching materials, teachers shared that they are better prepared to address such issues with their students, and that students are more engaged in science topics and are better able to see the real-world context of what they are learning.

Preparing students for a future in which they have access to personalized genetic information, or need to vote on proposals for stem cell research funding, necessitates providing them with the tools required to reason through a complex decision containing both scientific and ethical components. Students begin to realize that, although there may not be an absolute “right” or “wrong” decision to be made on an ethical issue, neither is ethics purely relative (“my opinion versus yours”). They come to realize that all arguments are not equal; there are stronger and weaker justifications for positions. Strong justifications are built upon accurate scientific information and solid analysis of ethical and contextual considerations. An informed citizenry that can engage in reasoned dialogue about the role science should play in society is critical to ensure the continued vitality of the scientific enterprise.

“I now bring up ethical issues regularly with my students, and use them to help students see how the concepts they are learning apply to their lives…I am seeing positive results from my students, who are more clearly able to see how abstract science concepts apply to them.” – CURE Teacher “In ethics, I’ve learned to start thinking about the bigger picture. Before, I based my decisions on how they would affect me. Also, I made decisions depending on my personal opinions, sometimes ignoring the facts and just going with what I thought was best. Now, I know that to make an important choice, you have to consider the other people involved, not just yourself, and take all information and facts into account.” – CURE Student

Supporting Information

Bioethics 101 Lesson Overview.

https://doi.org/10.1371/journal.pone.0036791.s001

Case Study for Assessment.

https://doi.org/10.1371/journal.pone.0036791.s002

Grading Rubric for Pre- and Post-Test: Ashley’s Case.

https://doi.org/10.1371/journal.pone.0036791.s003

Acknowledgments

We thank Susan Adler, Jennifer M. Pang, Ph.D., Leena Pranikay, and Reitha Weeks, Ph.D., for their review of the manuscript, and Nichole Beddes for her assistance scoring student work. We also thank Carolyn Cohen of Cohen Research and Evaluation, former CURE Evaluation Consultant, who laid some of the groundwork for this study through her prior work with us. We also wish to thank the reviewers of our manuscript for their thoughtful feedback and suggestions.

Author Contributions

Conceived and designed the experiments: JTC LJC. Performed the experiments: LJC. Analyzed the data: LJC JTC DNK. Contributed reagents/materials/analysis tools: JCG. Wrote the paper: JTC LJC DNK JCG. Served as Principal Investigator on the CURE project: JTC. Provided overall program leadership: JTC. Led the curriculum and professional development efforts: JTC JCG. Raised funds for the CURE program: JTC.

  • 1. Bell P (2004) Promoting students’ argument construction and collaborative debate in the science classroom. Mahwah, NJ: Erlbaum.
  • View Article
  • Google Scholar
  • 3. Toulmin S (1958) The Uses of Argument. Cambridge: Cambridge University Press.
  • 6. Zeidler DL, Sadler TD, Simmons ML, Howes , EV (2005) Beyond STS: A research-based framework for socioscientific issues education. Wiley InterScience. pp. 357–377.
  • 8. AAAS (1990) Science for All Americans. New York: Oxford University Press.
  • 9. National Research Council (1996) National Science Education Standards. Washington, DC: National Academies Press.
  • 10. National Research Council (2011) A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: National Academies Press.
  • 11. National Board for Professional Teaching Standards (2007) Adolescence and Young Adulthood Science Standards. Arlington, VA.
  • 17. Beauchamp T, Childress JF (2001) Principles of biomedical ethics. New York: Oxford University Press.
  • 18. Chowning JT, Griswold JC (2010) Bioethics 101. Seattle, WA: NWABR.
  • 26. Klatt J, Taylor-Powell E (2005) Synthesis of literature relative to the retrospective pretest design. Presentation to the 2005 Joint CES/AEA Conference, Toronto.

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Humanities LibreTexts

1: Introduction to Critical Thinking, Reasoning, and Logic

  • Last updated
  • Save as PDF
  • Page ID 29580

  • Golden West College via NGE Far Press

What is thinking? It may seem strange to begin a logic textbook with this question. ‘Thinking’ is perhaps the most intimate and personal thing that people do. Yet the more you ‘think’ about thinking, the more mysterious it can appear. It is the sort of thing that one intuitively or naturally understands, and yet cannot describe to others without great difficulty. Many people believe that logic is very abstract, dispassionate, complicated, and even cold. But in fact the study of logic is nothing more intimidating or obscure than this: the study of good thinking.

  • 1.1: Prelude to Chapter
  • 1.2: Introduction and Thought Experiments- The Trolley Problem
  • 1.3: Truth and Its Role in Argumentation - Certainty, Probability, and Monty Hall Only certain sorts of sentences can be used in arguments. We call these sentences propositions, statements or claims.
  • 1.4: Distinction of Proof from Verification; Our Biases and the Forer Effect
  • 1.5: The Scientific Method The procedure that scientists use is also a standard form of argument. Its conclusions only give you the likelihood or the probability that something is true (if your theory or hypothesis is confirmed), and not the certainty that it’s true. But when it is done correctly, the conclusions it reaches are very well-grounded in experimental evidence.
  • 1.6: Diagramming Thoughts and Arguments - Analyzing News Media
  • 1.7: Creating a Philosophical Outline

Pursuing Truth: A Guide to Critical Thinking

Chapter 2 arguments.

The fundamental tool of the critical thinker is the argument. For a good example of what we are not talking about, consider a bit from a famous sketch by Monty Python’s Flying Circus : 3

2.1 Identifying Arguments

People often use “argument” to refer to a dispute or quarrel between people. In critical thinking, an argument is defined as

A set of statements, one of which is the conclusion and the others are the premises.

There are three important things to remember here:

  • Arguments contain statements.
  • They have a conclusion.
  • They have at least one premise

Arguments contain statements, or declarative sentences. Statements, unlike questions or commands, have a truth value. Statements assert that the world is a particular way; questions do not. For example, if someone asked you what you did after dinner yesterday evening, you wouldn’t accuse them of lying. When the world is the way that the statement says that it is, we say that the statement is true. If the statement is not true, it is false.

One of the statements in the argument is called the conclusion. The conclusion is the statement that is intended to be proved. Consider the following argument:

Calculus II will be no harder than Calculus I. Susan did well in Calculus I. So, Susan should do well in Calculus II.

Here the conclusion is that Susan should do well in Calculus II. The other two sentences are premises. Premises are the reasons offered for believing that the conclusion is true.

2.1.1 Standard Form

Now, to make the argument easier to evaluate, we will put it into what is called “standard form.” To put an argument in standard form, write each premise on a separate, numbered line. Draw a line underneath the last premise, the write the conclusion underneath the line.

  • Calculus II will be no harder than Calculus I.
  • Susan did well in Calculus I.
  • Susan should do well in Calculus II.

Now that we have the argument in standard form, we can talk about premise 1, premise 2, and all clearly be referring to the same thing.

2.1.2 Indicator Words

Unfortunately, when people present arguments, they rarely put them in standard form. So, we have to decide which statement is intended to be the conclusion, and which are the premises. Don’t make the mistake of assuming that the conclusion comes at the end. The conclusion is often at the beginning of the passage, but could even be in the middle. A better way to identify premises and conclusions is to look for indicator words. Indicator words are words that signal that statement following the indicator is a premise or conclusion. The example above used a common indicator word for a conclusion, ‘so.’ The other common conclusion indicator, as you can probably guess, is ‘therefore.’ This table lists the indicator words you might encounter.

Each argument will likely use only one indicator word or phrase. When the conlusion is at the end, it will generally be preceded by a conclusion indicator. Everything else, then, is a premise. When the conclusion comes at the beginning, the next sentence will usually be introduced by a premise indicator. All of the following sentences will also be premises.

For example, here’s our previous argument rewritten to use a premise indicator:

Susan should do well in Calculus II, because Calculus II will be no harder than Calculus I, and Susan did well in Calculus I.

Sometimes, an argument will contain no indicator words at all. In that case, the best thing to do is to determine which of the premises would logically follow from the others. If there is one, then it is the conclusion. Here is an example:

Spot is a mammal. All dogs are mammals, and Spot is a dog.

The first sentence logically follows from the others, so it is the conclusion. When using this method, we are forced to assume that the person giving the argument is rational and logical, which might not be true.

2.1.3 Non-Arguments

One thing that complicates our task of identifying arguments is that there are many passages that, although they look like arguments, are not arguments. The most common types are:

  • Explanations
  • Mere asssertions
  • Conditional statements
  • Loosely connected statements

Explanations can be tricky, because they often use one of our indicator words. Consider this passage:

Abraham Lincoln died because he was shot.

If this were an argument, then the conclusion would be that Abraham Lincoln died, since the other statement is introduced by a premise indicator. If this is an argument, though, it’s a strange one. Do you really think that someone would be trying to prove that Abraham Lincoln died? Surely everyone knows that he is dead. On the other hand, there might be people who don’t know how he died. This passage does not attempt to prove that something is true, but instead attempts to explain why it is true. To determine if a passage is an explanation or an argument, first find the statement that looks like the conclusion. Next, ask yourself if everyone likely already believes that statement to be true. If the answer to that question is yes, then the passage is an explanation.

Mere assertions are obviously not arguments. If a professor tells you simply that you will not get an A in her course this semester, she has not given you an argument. This is because she hasn’t given you any reasons to believe that the statement is true. If there are no premises, then there is no argument.

Conditional statements are sentences that have the form “If…, then….” A conditional statement asserts that if something is true, then something else would be true also. For example, imagine you are told, “If you have the winning lottery ticket, then you will win ten million dollars.” What is being claimed to be true, that you have the winning lottery ticket, or that you will win ten million dollars? Neither. The only thing claimed is the entire conditional. Conditionals can be premises, and they can be conclusions. They can be parts of arguments, but that cannot, on their own, be arguments themselves.

Finally, consider this passage:

I woke up this morning, then took a shower and got dressed. After breakfast, I worked on chapter 2 of the critical thinking text. I then took a break and drank some more coffee….

This might be a description of my day, but it’s not an argument. There’s nothing in the passage that plays the role of a premise or a conclusion. The passage doesn’t attempt to prove anything. Remember that arguments need a conclusion, there must be something that is the statement to be proved. Lacking that, it simply isn’t an argument, no matter how much it looks like one.

2.2 Evaluating Arguments

The first step in evaluating an argument is to determine what kind of argument it is. We initially categorize arguments as either deductive or inductive, defined roughly in terms of their goals. In deductive arguments, the truth of the premises is intended to absolutely establish the truth of the conclusion. For inductive arguments, the truth of the premises is only intended to establish the probable truth of the conclusion. We’ll focus on deductive arguments first, then examine inductive arguments in later chapters.

Once we have established that an argument is deductive, we then ask if it is valid. To say that an argument is valid is to claim that there is a very special logical relationship between the premises and the conclusion, such that if the premises are true, then the conclusion must also be true. Another way to state this is

An argument is valid if and only if it is impossible for the premises to be true and the conclusion false.

An argument is invalid if and only if it is not valid.

Note that claiming that an argument is valid is not the same as claiming that it has a true conclusion, nor is it to claim that the argument has true premises. Claiming that an argument is valid is claiming nothing more that the premises, if they were true , would be enough to make the conclusion true. For example, is the following argument valid or not?

  • If pigs fly, then an increase in the minimum wage will be approved next term.
  • An increase in the minimum wage will be approved next term.

The argument is indeed valid. If the two premises were true, then the conclusion would have to be true also. What about this argument?

  • All dogs are mammals
  • Spot is a mammal.
  • Spot is a dog.

In this case, both of the premises are true and the conclusion is true. The question to ask, though, is whether the premises absolutely guarantee that the conclusion is true. The answer here is no. The two premises could be true and the conclusion false if Spot were a cat, whale, etc.

Neither of these arguments are good. The second fails because it is invalid. The two premises don’t prove that the conclusion is true. The first argument is valid, however. So, the premises would prove that the conclusion is true, if those premises were themselves true. Unfortunately, (or fortunately, I guess, considering what would be dropping from the sky) pigs don’t fly.

These examples give us two important ways that deductive arguments can fail. The can fail because they are invalid, or because they have at least one false premise. Of course, these are not mutually exclusive, an argument can be both invalid and have a false premise.

If the argument is valid, and has all true premises, then it is a sound argument. Sound arguments always have true conclusions.

A deductively valid argument with all true premises.

Inductive arguments are never valid, since the premises only establish the probable truth of the conclusion. So, we evaluate inductive arguments according to their strength. A strong inductive argument is one in which the truth of the premises really do make the conclusion probably true. An argument is weak if the truth of the premises fail to establish the probable truth of the conclusion.

There is a significant difference between valid/invalid and strong/weak. If an argument is not valid, then it is invalid. The two categories are mutually exclusive and exhaustive. There can be no such thing as an argument being more valid than another valid argument. Validity is all or nothing. Inductive strength, however, is on a continuum. A strong inductive argument can be made stronger with the addition of another premise. More evidence can raise the probability of the conclusion. A valid argument cannot be made more valid with an additional premise. Why not? If the argument is valid, then the premises were enough to absolutely guarantee the truth of the conclusion. Adding another premise won’t give any more guarantee of truth than was already there. If it could, then the guarantee wasn’t absolute before, and the original argument wasn’t valid in the first place.

2.3 Counterexamples

One way to prove an argument to be invalid is to use a counterexample. A counterexample is a consistent story in which the premises are true and the conclusion false. Consider the argument above:

By pointing out that Spot could have been a cat, I have told a story in which the premises are true, but the conclusion is false.

Here’s another one:

  • If it is raining, then the sidewalks are wet.
  • The sidewalks are wet.
  • It is raining.

The sprinklers might have been on. If so, then the sidewalks would be wet, even if it weren’t raining.

Counterexamples can be very useful for demonstrating invalidity. Keep in mind, though, that validity can never be proved with the counterexample method. If the argument is valid, then it will be impossible to give a counterexample to it. If you can’t come up with a counterexample, however, that does not prove the argument to be valid. It may only mean that you’re not creative enough.

  • An argument is a set of statements; one is the conclusion, the rest are premises.
  • The conclusion is the statement that the argument is trying to prove.
  • The premises are the reasons offered for believing the conclusion to be true.
  • Explanations, conditional sentences, and mere assertions are not arguments.
  • Deductive reasoning attempts to absolutely guarantee the truth of the conclusion.
  • Inductive reasoning attempts to show that the conclusion is probably true.
  • In a valid argument, it is impossible for the premises to be true and the conclusion false.
  • In an invalid argument, it is possible for the premises to be true and the conclusion false.
  • A sound argument is valid and has all true premises.
  • An inductively strong argument is one in which the truth of the premises makes the the truth of the conclusion probable.
  • An inductively weak argument is one in which the truth of the premises do not make the conclusion probably true.
  • A counterexample is a consistent story in which the premises of an argument are true and the conclusion is false. Counterexamples can be used to prove that arguments are deductively invalid.

( Cleese and Chapman 1980 ) . ↩︎

Logo for OPEN OKSTATE

Unit 1: What Is Philosophy?

LOGOS: Critical Thinking, Arguments, and Fallacies

Heather Wilburn, Ph.D

Critical Thinking:

With respect to critical thinking, it seems that everyone uses this phrase. Yet, there is a fear that this is becoming a buzz-word (i.e. a word or phrase you use because it’s popular or enticing in some way). Ultimately, this means that we may be using the phrase without a clear sense of what we even mean by it. So, here we are going to think about what this phrase might mean and look at some examples. As a former colleague of mine, Henry Imler, explains:

By critical thinking, we refer to thinking that is recursive in nature. Any time we encounter new information or new ideas, we double back and rethink our prior conclusions on the subject to see if any other conclusions are better suited. Critical thinking can be contrasted with Authoritarian thinking. This type of thinking seeks to preserve the original conclusion. Here, thinking and conclusions are policed, as to question the system is to threaten the system. And threats to the system demand a defensive response. Critical thinking is short-circuited in authoritarian systems so that the conclusions are conserved instead of being open for revision. [1]

A condition for being recursive is to be open and not arrogant. If we come to a point where we think we have a handle on what is True, we are no longer open to consider, discuss, or accept information that might challenge our Truth. One becomes closed off and rejects everything that is different or strange–out of sync with one’s own Truth. To be open and recursive entails a sense of thinking about your beliefs in a critical and reflective way, so that you have a chance to either strengthen your belief system or revise it if needed. I have been teaching philosophy and humanities classes for nearly 20 years; critical thinking is the single most important skill you can develop. In close but second place is communication, In my view, communication skills follow as a natural result of critical thinking because you are attempting to think through and articulate stronger and rationally justified views. At the risk of sounding cliche, education isn’t about instilling content; it is about learning how to think.

In your philosophy classes your own ideas and beliefs will very likely be challenged. This does not mean that you will be asked to abandon your beliefs, but it does mean that you might be asked to defend them. Additionally, your mind will probably be twisted and turned about, which can be an uncomfortable experience. Yet, if at all possible, you should cherish these experiences and allow them to help you grow as a thinker. To be challenged and perplexed is difficult; however, it is worthwhile because it compels deeper thinking and more significant levels of understanding. In turn, thinking itself can transform us not only in thought, but in our beliefs, and our actions. Hannah Arendt, a social and political philosopher that came to the United States in exile during WWII, relates the transformative elements of philosophical thinking to Socrates. She writes:

Socrates…who is commonly said to have believed in the teachability of virtue, seems to have held that talking and thinking about piety, justice, courage, and the rest were liable to make men more pious, more just, more courageous, even though they were not given definitions or “values” to direct their further conduct. [2]

Thinking and communication are transformative insofar as these activities have the potential to alter our perspectives and, thus, change our behavior. In fact, Arendt connects the ability to think critically and reflectively to morality. As she notes above, morality does not have to give a predetermined set of rules to affect our behavior. Instead, morality can also be related to the open and sometimes perplexing conversations we have with others (and ourselves) about moral issues and moral character traits. Theodor W. Adorno, another philosopher that came to the United States in exile during WWII, argues that autonomous thinking (i.e. thinking for oneself) is crucial if we want to prevent the occurrence of another event like Auschwitz, a concentration camp where over 1 million individuals died during the Holocaust. [3] To think autonomously entails reflective and critical thinking—a type of thinking rooted in philosophical activity and a type of thinking that questions and challenges social norms and the status quo. In this sense thinking is critical of what is, allowing us to think beyond what is and to think about what ought to be, or what ought not be. This is one of the transformative elements of philosophical activity and one that is useful in promoting justice and ethical living.

With respect to the meaning of education, the German philosopher Hegel uses the term bildung, which means education or upbringing, to indicate the differences between the traditional type of education that focuses on facts and memorization, and education as transformative. Allen Wood explains how Hegel uses the term bildung: it is “a process of self-transformation and an acquisition of the power to grasp and articulate the reasons for what one believes or knows.” [4] If we think back through all of our years of schooling, particularly those subject matters that involve the teacher passing on information that is to be memorized and repeated, most of us would be hard pressed to recall anything substantial. However, if the focus of education is on how to think and the development of skills include analyzing, synthesizing, and communicating ideas and problems, most of us will use those skills whether we are in the field of philosophy, politics, business, nursing, computer programming, or education. In this sense, philosophy can help you develop a strong foundational skill set that will be marketable for your individual paths. While philosophy is not the only subject that will foster these skills, its method is one that heavily focuses on the types of activities that will help you develop such skills.

Let’s turn to discuss arguments. Arguments consist of a set of statements, which are claims that something is or is not the case, or is either true or false. The conclusion of your argument is a statement that is being argued for, or the point of view being argued for. The other statements serve as evidence or support for your conclusion; we refer to these statements as premises. It’s important to keep in mind that a statement is either true or false, so questions, commands, or exclamations are not statements. If we are thinking critically we will not accept a statement as true or false without good reason(s), so our premises are important here. Keep in mind the idea that supporting statements are called premises and the statement that is being supported is called the conclusion. Here are a couple of examples:

Example 1: Capital punishment is morally justifiable since it restores some sense of

balance to victims or victims’ families.

Let’s break it down so it’s easier to see in what we might call a typical argument form:

Premise: Capital punishment restores some sense of balance to victims or victims’ families.

Conclusion: Capital punishment is morally justifiable.

Example 2 : Because innocent people are sometimes found guilty and potentially

executed, capital punishment is not morally justifiable.

Premise: Innocent people are sometimes found guilty and potentially executed.

Conclusion: Capital punishment is not morally justifiable.

It is worth noting the use of the terms “since” and “because” in these arguments. Terms or phrases like these often serve as signifiers that we are looking at evidence, or a premise.

Check out another example:

Example 3 : All human beings are mortal. Heather is a human being. Therefore,

Heather is mortal.

Premise 1: All human beings are mortal.

Premise 2: Heather is a human being.

Conclusion: Heather is mortal.

In this example, there are a couple of things worth noting: First, there can be more than one premise. In fact, you could have a rather complex argument with several premises. If you’ve written an argumentative paper you may have encountered arguments that are rather complex. Second, just as the arguments prior had signifiers to show that we are looking at evidence, this argument has a signifier (i.e. therefore) to demonstrate the argument’s conclusion.

So many arguments!!! Are they all equally good?

No, arguments are not equally good; there are many ways to make a faulty argument. In fact, there are a lot of different types of arguments and, to some extent, the type of argument can help us figure out if the argument is a good one. For a full elaboration of arguments, take a logic class! Here’s a brief version:

Deductive Arguments: in a deductive argument the conclusion necessarily follows the premises. Take argument Example 3 above. It is absolutely necessary that Heather is a mortal, if she is a human being and if mortality is a specific condition for being human. We know that all humans die, so that’s tight evidence. This argument would be a very good argument; it is valid (i.e the conclusion necessarily follows the premises) and it is sound (i.e. all the premises are true).

Inductive Arguments : in an inductive argument the conclusion likely (at best) follows the premises. Let’s have an example:

Example 4 : 98.9% of all TCC students like pizza. You are a TCC student. Thus, you like pizza.

Premise 1: 98.9% of all TCC students like pizza

Premise 2: You are a TCC student.

Conclusion: You like pizza. (*Thus is a conclusion indicator)

In this example, the conclusion doesn’t necessarily follow; it likely follows. But you might be part of that 1.1% for whatever reason. Inductive arguments are good arguments if they are strong. So, instead of saying an inductive argument is valid, we say it is strong. You can also use the term sound to describe the truth of the premises, if they are true. Let’s suppose they are true and you absolutely love Hideaway pizza. Let’s also assume you are a TCC student. So, the argument is really strong and it is sound.

There are many types of inductive argument, including: causal arguments, arguments based on probabilities or statistics, arguments that are supported by analogies, and arguments that are based on some type of authority figure. So, when you encounter an argument based on one of these types, think about how strong the argument is. If you want to see examples of the different types, a web search (or a logic class!) will get you where you need to go.

Some arguments are faulty, not necessarily because of the truth or falsity of the premises, but because they rely on psychological and emotional ploys. These are bad arguments because people shouldn’t accept your conclusion if you are using scare tactics or distracting and manipulating reasoning. Arguments that have this issue are called fallacies. There are a lot of fallacies, so, again, if you want to know more a web search will be useful. We are going to look at several that seem to be the most relevant for our day-to-day experiences.

  • Inappropriate Appeal to Authority : We are definitely going to use authority figures in our lives (e.g. doctors, lawyers, mechanics, financial advisors, etc.), but we need to make sure that the authority figure is a reliable one.

Things to look for here might include: reputation in the field, not holding widely controversial views, experience, education, and the like. So, if we take an authority figure’s word and they’re not legit, we’ve committed the fallacy of appeal to authority.

Example 5 : I think I am going to take my investments to Voya. After all, Steven Adams advocates for Voya in an advertisement I recently saw.

If we look at the criteria for evaluating arguments that appeal to authority figures, it is pretty easy to see that Adams is not an expert in the finance field. Thus, this is an inappropropriate appeal to authority.

  • Slippery Slope Arguments : Slippery slope arguments are found everywhere it seems. The essential characteristic of a slippery slope argument is that it uses problematic premises to argue that doing ‘x’ will ultimately lead to other actions that are extreme, unlikely, and disastrous. You can think of this type of argument as a faulty chain of events or domino effect type of argument.

Example 6 : If you don’t study for your philosophy exam you will not do well on the exam. This will lead to you failing the class. The next thing you know you will have lost your scholarship, dropped out of school, and will be living on the streets without any chance of getting a job.

While you should certainly study for your philosophy exam, if you don’t it is unlikely that this will lead to your full economic demise.

One challenge to evaluating slippery slope arguments is that they are predictions, so we cannot be certain about what will or will not actually happen. But this chain of events type of argument should be assessed in terms of whether the outcome will likely follow if action ‘x” is pursued.

  • Faulty Analogy : We often make arguments based on analogy and these can be good arguments. But we often use faulty reasoning with analogies and this is what we want to learn how to avoid.

When evaluating an argument that is based on an analogy here are a few things to keep in mind: you want to look at the relevant similarities and the relevant differences between the things that are being compared. As a general rule, if there are more differences than similarities the argument is likely weak.

Example 7 : Alcohol is legal. Therefore, we should legalize marijuana too.

So, the first step here is to identify the two things being compared, which are alcohol and marijuana. Next, note relevant similarities and differences. These might include effects on health, community safety, economic factors, criminal justice factors, and the like.

This is probably not the best argument in support for marijuana legalization. It would seem that one could just as easily conclude that since marijuana is illegal, alcohol should be too. In fact, one might find that alcohol is an often abused and highly problematic drug for many people, so it is too risky to legalize marijuana if it is similar to alcohol.

  • Appeal to Emotion : Arguments should be based on reason and evidence, not emotional tactics. When we use an emotional tactic, we are essentially trying to manipulate someone into accepting our position by evoking pity or fear, when our positions should actually be backed by reasonable and justifiable evidence.

Example 8 : Officer please don’t give me a speeding ticket. My girlfriend broke up with me last night, my alarm didn’t go off this morning, and I’m late for class.

While this is a really horrible start to one’s day, being broken up with and an alarm malfunctioning is not a justifiable reason for speeding.

Example 9 : Professor, I’d like you to remember that my mother is a dean here at TCC. I’m sure that she will be very disappointed if I don’t receive an A in your class.

This is a scare tactic and is not a good way to make an argument. Scare tactics can come in the form of psychological or physical threats; both forms are to be avoided.

  • Appeal to Ignorance : This fallacy occurs when our argument relies on lack of evidence when evidence is actually needed to support a position.

Example 10 : No one has proven that sasquatch doesn’t exist; therefore it does exist.

Example 11 : No one has proven God exists; therefore God doesn’t exist.

The key here is that lack of evidence against something cannot be an argument for something. Lack of evidence can only show that we are ignorant of the facts.

  • Straw Man : A straw man argument is a specific type of argument that is intended to weaken an opponent’s position so that it is easier to refute. So, we create a weaker version of the original argument (i.e. a straw man argument), so when we present it everyone will agree with us and denounce the original position.

Example 12 : Women are crazy arguing for equal treatment. No one wants women hanging around men’s locker rooms or saunas.

This is a misrepresentation of arguments for equal treatment. Women (and others arguing for equal treatment) are not trying to obtain equal access to men’s locker rooms or saunas.

The best way to avoid this fallacy is to make sure that you are not oversimplifying or misrepresenting others’ positions. Even if we don’t agree with a position, we want to make the strongest case against it and this can only be accomplished if we can refute the actual argument, not a weakened version of it. So, let’s all bring the strongest arguments we have to the table!

  • Red Herring : A red herring is a distraction or a change in subject matter. Sometimes this is subtle, but if you find yourself feeling lost in the argument, take a close look and make sure there is not an attempt to distract you.

Example 13 : Can you believe that so many people are concerned with global warming? The real threat to our country is terrorism.

It could be the case that both global warming and terrorism are concerns for us. But the red herring fallacy is committed when someone tries to distract you from the argument at hand by bringing up another issue or side-stepping a question. Politicians are masters at this, by the way.

  • Appeal to the Person : This fallacy is also referred to as the ad hominem fallacy. We commit this fallacy when we dismiss someone’s argument or position by attacking them instead of refuting the premises or support for their argument.

Example 14 : I am not going to listen to what Professor ‘X’ has to say about the history of religion. He told one of his previous classes he wasn’t religious.

The problem here is that the student is dismissing course material based on the professor’s religious views and not evaluating the course content on its own ground.

To avoid this fallacy, make sure that you target the argument or their claims and not the person making the argument in your rebuttal.

  • Hasty Generalization : We make and use generalizations on a regular basis and in all types of decisions. We rely on generalizations when trying to decide which schools to apply to, which phone is the best for us, which neighborhood we want to live in, what type of job we want, and so on. Generalizations can be strong and reliable, but they can also be fallacious. There are three main ways in which a generalization can commit a fallacy: your sample size is too small, your sample size is not representative of the group you are making a generalization about, or your data could be outdated.

Example 15 : I had horrible customer service at the last Starbucks I was at. It is clear that Starbucks employees do not care about their customers. I will never visit another Starbucks again.

The problem with this generalization is that the claim made about all Starbucks is based on one experience. While it is tempting to not spend your money where people are rude to their customers, this is only one employee and presumably doesn’t reflect all employees or the company as a whole. So, to make this a stronger generalization we would want to have a larger sample size (multiple horrible experiences) to support the claim. Let’s look at a second hasty generalization:

Example 16 : I had horrible customer service at the Starbucks on 81st street. It is clear that Starbucks employees do not care about their customers. I will never visit another Starbucks again.

The problem with this generalization mirrors the previous problem in that the claim is based on only one experience. But there’s an additional issue here as well, which is that the claim is based off of an experience at one location. To make a claim about the whole company, our sample group needs to be larger than one and it needs to come from a variety of locations.

  • Begging the Question : An argument begs the question when the argument’s premises assume the conclusion, instead of providing support for the conclusion. One common form of begging the question is referred to as circular reasoning.

Example 17 : Of course, everyone wants to see the new Marvel movie is because it is the most popular movie right now!

The conclusion here is that everyone wants to see the new Marvel movie, but the premise simply assumes that is the case by claiming it is the most popular movie. Remember the premise should give reasons for the conclusion, not merely assume it to be true.

  • Equivocation : In the English language there are many words that have different meanings (e.g. bank, good, right, steal, etc.). When we use the same word but shift the meaning without explaining this move to your audience, we equivocate the word and this is a fallacy. So, if you must use the same word more than once and with more than one meaning you need to explain that you’re shifting the meaning you intend. Although, most of the time it is just easier to use a different word.

Example 18 : Yes, philosophy helps people argue better, but should we really encourage people to argue? There is enough hostility in the world.

Here, argue is used in two different senses. The meaning of the first refers to the philosophical meaning of argument (i.e. premises and a conclusion), whereas the second sense is in line with the common use of argument (i.e. yelling between two or more people, etc.).

  • Henry Imler, ed., Phronesis An Ethics Primer with Readings, (2018). 7-8. ↵
  • Arendt, Hannah, “Thinking and Moral Considerations,” Social Research, 38:3 (1971: Autumn): 431. ↵
  • Theodor W. Adorno, “Education After Auschwitz,” in Can One Live After Auschwitz, ed. by Rolf Tiedemann, trans. by Rodney Livingstone (Stanford: Stanford University Press, 2003): 23. ↵
  • Allen W. Wood, “Hegel on Education,” in Philosophers on Education: New Historical Perspectives, ed. Amelie O. Rorty (London: Routledge 1998): 302. ↵

LOGOS: Critical Thinking, Arguments, and Fallacies Copyright © 2020 by Heather Wilburn, Ph.D is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Library Home

Arguing Using Critical Thinking

(2 reviews)

argumentation reasoning and critical thinking

Jim Marteney, Los Angeles Valley College

Copyright Year: 2020

Publisher: Academic Senate for California Community Colleges

Language: English

Formats Available

Conditions of use.

Attribution-NonCommercial-ShareAlike

Learn more about reviews.

Reviewed by Steve Gimbel, Professor, Gettysburg College on 9/29/22

There are separate sections on how to formulate an argument, how to evaluate an argument, the burdens adopted by those engaging in critical discourse, rhetorical strategies for effectively convincing an interlocutor, and errors in reasoning. In... read more

Comprehensiveness rating: 4 see less

There are separate sections on how to formulate an argument, how to evaluate an argument, the burdens adopted by those engaging in critical discourse, rhetorical strategies for effectively convincing an interlocutor, and errors in reasoning. In terms of the breadth of topics one generally wants covered in a critical thinking class, the book does a fine job at hitting them all.

Content Accuracy rating: 2

It is an admirable attempt to develop a post-modern, post-truth approach to critical discourse. "Truth is a word best avoided entirely in argumentation," the book tells students, "except when placed in quotes or with careful qualification." Invoking Wittgenstein and Sapir-Whorf in the introductory sections, the book seeks to develop a relational, psychological, rhetorical approach instead of one focused on informal logic. In doing so, it entirely removes the point of argumentation -- rational belief. Some things are true -- smoking DOES cause cancer, human activity is causing global warming, the Founders of the U.S. did want a separation between Church and State. These are true. There is a series of TED talks cited for inspirational rhetorical value, but in a world in which conspiracy theories are endangering democracy, we need to understand that replacing truth with the truthiness that emerges from this sort of post-modernism is playing directly into those who are undermining our discourse. It exacerbates the problem, it does not solve it.

Relevance/Longevity rating: 3

Since the book hinges less on logic and more on social science, there are elements that will be altered over time. Sapir-Whorf, as mentioned above, has not taken seriously by linguists for decades, yet is used as a foundation. The book seeks to speak to students using, in places, contemporary references that will become dated over time, but these are easily updated.

Clarity rating: 1

There are some very good sections in the book. The distinction it draws between matters of fact, value, and policy is very well done. As is the catalogue it gives of different sorts of evidence. The clarity with which it sets out the difference in burdens between the pro and anti sides of a debate is wonderful.

In terms of accessibility, the book is written engagingly in a way that first year students should not be lost. It intentionally uses a new set of technical terms modeled on standard usage -- claim, evidence, issues, contentions, cases,... and does well to define them in accessible (at times loosey-goosey) ways.

However, there are problems for those trying to teach critical thinking as informal logic. You will not find the words "conclusion" or "premise" anywhere in the book. This is clearly intentional as it seeks to eliminate the idea of arguments as providing good reason to believe something is true. Again, truth is not to be discussed. Instead, it sort of tries to use a sort of sliding scale, but it is never at all clear what the scale is actually measuring. The book uses the term validity (much more on that below), but that term is used in a stunningly ambiguous way.

Consistency rating: 2

The central notion in the book is validity. This is not unexpected as that is a standard term in logic. As logicians use the word, an argument is valid if and only, assuming the truth of the premises for the sake of argument, the conclusion is at least likely true, that is, the truth of the conclusion is imp;lied by the truth of the premises. Validity is a matter relating to the internal structure of an argument, connecting the posited truth of the premises to the consequential necessary or probable truth of the conclusion. Yet the book says something quite different, "Critical thinkers need to remember that there is no necessary or inherent connection between Truth and validity." Ummmmm? Validity is DEFINED in terms of a relation between premises and conclusion and how that relation determines or does not determine truth. There could not be a MORE inherent connection between truth and validity.

It is clear that by "capital T Truth," the book is looking to encourage students not to be absolutists, to be able to question deeply held convictions and this is, indeed, a necessary function of any critical thinking class, but with its post-truth orientation, the book uses the term "validity" as a replacement for it in several completely different and inconsistent ways. At times, it is uses validity as a replacement for the truth concept. In this way, sentences are more or less valid, that is, truer or less true. This is the "sliding bead" model that is repeatedly alluded to throughout the text.

At other times, however, the usual meaning of validity is used, where it is not sentences, but arguments that can be valid or invalid according to whether or not the conclusion (claim) is properly connected to the premises (evidence). There is a loose, hand-waving section on what this sense of validity means. In most texts, this is the HEART of critical thinking. How to tell valid from invalid arguments.

At yet other times, there is a third use of the term validity. A viewpoint is more or less valid based upon the support it receives from arguments in favor of it. Unlike the traditional sense of validity, this is not a particular argument that is evaluated as successful in terms of its inner-structure, and it is not the likely truth or falsity of the conclusion of a particular argument, but a more general sense of the degree to which a perspective has arguments to bolster it.

This sort of slipperiness in the central notion of the entire course is problematic. The point of good reasoning is clarity and rigor. But that is exactly what this book tries to eliminate.

Modularity rating: 3

There are parts of this text that are fantastic and which I could absolutely see wanting to use in my critical thinking class. However, because of the intentional avoidance of standard logical terminology and the unusual reinterpretations of the standard terms it does use, it would be difficult to use sections of this book in conjunctions with sections of other critical thinking texts.

Organization/Structure/Flow rating: 5

If one were to use this text as the centerpiece of a course on critical thinking, there is a clear and logical flow to the way the pieces build on themselves. There is motivation up front, tools in the middle, applications and concerns about misusing the tools in the end. The structural is well-thought out and well-executed. The one complaint in terms of organization is that it is two-thirds the way through the text before certain central notions are defined.

Interface rating: 5

It is a clean and effective design with images that brighten up the text without distracting. Easy to read and aesthetically well-laid out. There are a couple of line breaks that add a couple of blank lines where they don't need to be here and there, but that is nitpicky stuff. Overall, it looks great.

Grammatical Errors rating: 5

It is a clean and effective design with images that brighten up the text without distracting. Easy to read and aesthetically well-laid out. There are a couple of line breaks that add a couple of blank lines where they don't need to be here and there, but that is nitpicky stuff. Overall, it reads and looks great.

Cultural Relevance rating: 2

The text is not culturally insensitive, indeed, the problem with it is exactly the opposite. It is clear that part of the goal of this text is to change how we think about critical thinking, moving from a logical model in which we strive for truth, to a rhetorical model in which we engage in open dialogue across varied perspectives. This is a noble goal. However, in trying to create discourse communities where voices that are often underrepresented or silenced have a place, the book does away with the point of that discourse. We want multiple perspectives because they provide insights that lead to truths we may have otherwise missed. They are correctives that undermine problematic presuppositions we did not even realize we were making that leads us away from truth. They allow us to see other ways of valuing things that we would not have values under our initial set of meanings. Eliminating the centrality of truth as a goal in discourse does not create room for other voices, it eliminates the point of needing those other voices. Indeed, the unintentional consequence of this approach to critical thinking is the devaluing of rationality, of truth, of scientific findings. We need to take action to reverse climate change. This can only be done if we have a robust notion of truth and its importance.

Logic is an activity you learn by doing. The lack of exercises or active engagement projects in the text is something that would place a load on the instructor to develop if this were to be an effective book in use.

Reviewed by Marion Hernandez, Adjunct Instructor English Department/DCE, Bunker Hill Community College on 12/27/20, updated 1/6/21

The book does name, identify and define key terms of argument and the basis for effective argument. read more

The book does name, identify and define key terms of argument and the basis for effective argument.

Content Accuracy rating: 4

This text has no grammatical errors and is unbiased in the definitions and the various contexts in which arguments occur.

Relevance and longevity do not really apply to the subject and context of this text. The book is very general and the time and place do not play a role.

Clarity rating: 2

The definitions and graphs/charts (only 2 or 3 have been added) are very basic, almost to the point of being counter productive. The Inductive and deductive chart has no value in the design or in the side notes accompanying the graph. No enough detail or design features were added to this one graph.

Consistency is not a feature to discuss because every chapter has a different main idea from types of arguments to resolving arguments to types of behavior commonly seen during arguments. There is no sequencing of material from beginning to end in term of moving from basic through intermediate and advanced level of thinking.

The book clearly defines the title of each section, but again, all taken together, no advancement in theory is developed throughout.

Organization/Structure/Flow rating: 2

The chapters do not appear in any type of order. The book moves from arguing to argument and behaviors commonly found during arguments. The last chapters talk about reasoning skills such as inductive and deductive thinking.

Interface rating: 1

The graphic and pictures do nothing to promote thinking or understanding and are therefore superfluous.

Grammatical Errors rating: 2

This critique here is not so much grammar but but point of view. The book really reads like a self help book or guide for a very basic reader. But the point of view shifts from 'you" as is what "you" should do to the the third person "they". This is very poor writing and leads to the next point which is its lack of value as a high school or college text. It is difficult to understand what student and in what circumstances would benefit or be inspired to read it.

Cultural Relevance rating: 5

There is no politically incorrect content.

As briefly mentioned, the causal, offhand, self help nature of this book is not designed in any way to be used as a text. Because each chapter is separate with no sequencing, it would be impossible to develop any in depth assignments, No exercises are added so nothing would materialize in the way of theory, practice, analysis or discussion.

Table of Contents

  • 1: Standing Up For Your Point Of View
  • 2: Communicating An Argument
  • 5: Building Your Case With Issues, Analysis And Contentions
  • 6: Evidence
  • 7: Reasoning
  • 8: Validity Or Truth
  • 9: Changing Beliefs, Attitudes and Behavior
  • 10: Decision Making - Judging an Argument
  • 11: Discovering, Examining and Improving Our Reality
  • 12: The Foundations of Critical Thinking

Ancillary Material

About the book.

There is a quote that has been passed down many years and is most recently accounted to P.T. Barnum, “There is a sucker born every minute.” Are you that sucker? If you were, would you like to be “reborn?” The goal of this book is to help you through that “birthing” process. Critical thinking and standing up for your ideas and making decisions are important in both your personal and professional life. How good are we at making the decision to marry? According to the Centers for Disease Control, there is one divorce in America every 36 seconds. That is nearly 2,400 every day. And professionally, the Wall Street Journal predicts the average person will have 7 careers in their lifetime. Critical thinking skills are crucial.

Critical thinking is a series learned skills. In each chapter of this book you will find a variety of skills that will help you improve your thinking and argumentative ability. As you improve, you will grow into a more confident person being more in charge of your world and the decisions you make.

About the Contributors

Jim Marteney , Professor Emeritus (Communication Studies) at Los Angeles Valley College

Contribute to this Page

Cognition and Instruction/Argumentation and Critical Thinking

Critical Thinking (CT) and Argumentation are closely linked skills and concepts. To be effective in either skill, the other is necessary. CT provides the processes needed for argument formulation, while Argumentation allows one to utilize and apply CT skills through logical reasoning. The concept of CT incorporates thinking processes that work in conjunction with the thinker's disposition , that is their attitude, to produce CT. The thinker's attitude towards thinking predisposes them to having the motivation to go through CT processes. On the other hand, argumentation is highly structured in it's form of reasoning. The usage of CT is applied in order to generate the different components of an argument. The formulation of an argument is based on the ideas and reasoning created from CT processes that delve into the significance, associations and relationships between concepts.

argumentation reasoning and critical thinking

Since these two concepts are often intertwined in instruction, their relationship is mutually beneficial; having one increases the ability of the other. Having CT skills enhances argumentation ability and having argument analysis skills improves CT. In an instructional setting, there is a distinction to be made between CT and Argumentation as tools for Instruction and the instruction of CT and Argumentation. The former takes on a more cognitive and philosophical approach while the latter focuses mostly on application and practice. Specific stand-alone Skills Programs , such as the CoRT Thinking Materials program, have been shown to improve creative writing elements that are transferable to the development of CT [1] . From a domain specific approach, research on the instruction of science also aids in developing CT and argumentation skills [2] [3] [4] . The instructional application of this chapter will focus on the practical implementation of tools and programs that facilitate the development of CT and Argumentation.

  • 1.1 Critical Thinking Dispositions
  • 1.2.1 Classroom Structure
  • 1.3 Self-Regulation and Critical Thinking
  • 2.1.1 Argumentation Stages
  • 2.2 The Impact of Argumentation on Learning
  • 3.1.1 Production, Analysis, and Evaluation
  • 3.2 How Argumentation Improves Critical Thinking
  • 4.1 Teaching Tactics
  • 4.2.1 The CoRT Thinking Materials
  • 4.2.2 The Feuerstein Instrumental Enrichment Program (FIE)
  • 4.2.3 The Productive Thinking Program
  • 4.2.4 The IDEAL Problem Solver
  • 4.3.1 Dialogue and Argumentation
  • 4.3.2 Science and Argumentation
  • 4.4 Instructing through Academic Controversy
  • 6 Suggested Readings
  • 7 References

Critical Thinking [ edit | edit source ]

Critical thinking, which includes cognitive processes such as weighing and evaluating information, leads to more thorough understanding of an issue or problem. As a type of reflection, critical thinking also promotes an awareness of one's own perceptions, intentions, feelings and actions. [5]

Critical Thinking Dispositions [ edit | edit source ]

These are characteristics of one's attitude or personality that facilitate the process of developing CT skills:

  • Inquisitive
  • Truthseeking
  • Open-minded
  • Confidence in reasoning

Factors that Influence one's CT Disposition [ edit | edit source ]

There are many factors that can influence one's disposition towards CT, the first of these is culture [6] . There are many aspects of culture that can impact the ability for people to think critically. For instance, religion can negatively impact the development of CT [7] . Many religions are founded upon faith which often requires wholehearted belief without evidence or support, the nature of organized religion counters the very premise of CT which is to evaluate the validity and credibility of any claim. Growing up in an environment such as this can be detrimental to the development of CT skills. This kind of environment can dampen dispositions that question religious views or examine the validity of religion. Another cultural factor that can be detrimental to a CT disposition is that of authority [8] . When a child is raised under the conditions of an authoritarian parenting style it can be detrimental to many aspects of their lives, but especially to their CT skills as they are taught not to question the credibility of authority and often receive punishment if they do. This is also applicable in the classroom [9] where teachers who don’t foster an atmosphere of openness or allow students to question what they are taught can impact CT development as well. Classrooms where questions are rejected or home environments where there is a high level of parental power and control can all cripple the ability of students to think critically. As well, students will have been conditioned to not think this way their entire lives [10] . However, despite these cultural limitations, there are ways in which a disposition for CT can be fostered in both the home and in the classroom.

Classroom Structure [ edit | edit source ]

Classroom structure is a primary way in which CT dispositions can be highlighted. Fostering a classroom structure where students are a part of the decision making process of what they are studying can be very helpful in creating CT dispositions [11] . Such structures help students become invested in what they are learning as well as promote a classroom atmosphere in which students may feel free to question the teacher as well as other students' opinions and beliefs about different subjects. Allowing the freedom to scrutinize and evaluate information that has been given to students is an effective way of creating a classroom environment that can encourage students to develop CT dispositions. This freedom allows for the students to remain individuals within the larger classroom context and gives them the power to evaluate and make decisions on their own. Allowing the students to share power in the classroom can be extremely beneficial in helping the students stay motivated and analytical of classroom teachings [12] . Teachers can also employ a variety of techniques that can help students become autonomous in the classroom as well. Giving students the opportunity to take on different roles can be effective in creating CT dispositions such as making predictions and contemplating problems [13] . Allowing students to engage with problems that are presented instead of just teaching them what the teacher or textbook believes to be true is essential for students to develop their own opinions and individual though. In addition to this, gathering data and information on the subject is an important part of developing CT dispositions, doing so allows for students to go out and find resources that they themselves can analyze and come to conclusions on their own [14] . Using these aspects of CT students can most effectively relate to the predictions that were first made and critique the validity of the findings [15] .

Self-Regulation and Critical Thinking [ edit | edit source ]

In conjunction with instructing CT, teachers need to keep in mind the self-regulation of their students as well. Students need to be able to maintain motivation and have a proactive attitude towards their own learning when learning a new skill. In an article by Phan (2010), he argues that self-regulated students that have better goal setting, have more personal responsibility for their learning and can maintain their motivation are more cognitively flexible and hence more inclined to utilize CT. Since CT skills are highly reflective, they help in self-regulated learning (SRL), and in turn, self-regulatory strategies aid in developing CT skills. These two cognitive practices are assets to students’ growth and development [16] .

Self-regulation provides students with the basic metacognitive awareness required for proactive learning. This proactivity allows students to engage in the cognitive processes of CT, such as evaluation, reflection and inference. Through one’s metacognitive ability to asses one’s own thoughts, one develops the capability to become autonomous in one’s learning [17] . Instead of having a supervisor overlooking every task, the learner can progress at their own pace while monitoring their performance thereby engaging in SRL. Part of this process would include periodic reflection upon the strategies that one uses when completing a task. This reflection can facilitate the student’s learning by using CT to evaluate which strategies best suit their own learning based on their cognitive needs.

The complex nature of CT suggests that it requires a long developmental process requiring guidance, practice and reinforcement. To facilitate this process, self-monitoring as a first step to self-regulation can jumpstart reflective thought through assessing one’s own educational performance. This assessment promotes self-efficacy through generating motivational beliefs about one’s academic capabilities [18] . From there, through practice, students can extend their CT skills beyond themselves and into their educational contexts. With practice, students use their metacognitive strategies as a basis for developing CT in the long run.

Argumentation [ edit | edit source ]

Argumentation is the process of assembling and communicating reasons for or against an idea, that is, the act of making and presenting arguments. CT in addition to clear communication makes a good argument. It is the process through which one rationally solves problems, issues and disputes as well as resolving questions [19] .

The practice of argumentation consists of two dimensions: dialogue and structure [20] . The dialogue in argumentative discussions focus on specific speech acts – actions done through language (i.e. accept, reject, refute, etc.) – that help advance the speaker’s position. The structure of an argument helps distinguish the different perspectives in discussion and highlight positions for which speakers are arguing [21] .

The Process of Argumentation [ edit | edit source ]

Argumentation stages [ edit | edit source ].

The psychological process of argumentation that allows one the produce, analyze and evaluate arguments [22] . These stages will be discussed in more detail later in this chapter.

The Impact of Argumentation on Learning [ edit | edit source ]

Argumentation does not only impact the development of CT and vice versa, it affects many other aspects of learning as well. For instance, a study done on a junior high school science class showed that when students engaged in argumentation, they drew heavily on their prior knowledge and experiences [23] . Not only did argumentation work to make the students use their prior knowledge, it also helped them consolidate knowledge as well as elaborate on their understanding of the subject at a higher level [24] . These are just a few of the ways in which argumentation can be seen to impact aspects of learning other than the development of CT.

The Relationship between Critical Thinking and Argumentation [ edit | edit source ]

Argumentation and CT would appear to have a close relationship in instruction and also in influencing one another in an education setting. Many studies have shown the impact that both of these elements can have on one another. Data suggests that when CT is infused into instruction it impacts the ability of students to argue [25] , tasks that involve both critical thinking and creative thinking must be of an argumentative nature [26] , and that argument analysis and storytelling can improve CT [27] . In other words it would appear that both argumentation impact the development of the other in students and that both impact other aspects of learning and cognition.

How Critical Thinking Improves Argumentation [ edit | edit source ]

CT facilitates the evaluation of the information necessary to make an argument. It aids in the judgement of the validity of each position. It is used to assess the credibility of sources and helps in approaching the issue from multiple points of view. The elements of CT and argumentation have many common features. For example, examining evidence and counter-evidence of a statement and the information that backs up these claims are both facets of creating a sound argument and thinking critically. The impact of how CT explicitly impacts one’s ability to argue and reason with reference to the aforementioned four CT components will be examined in this section. First, there needs to be an examination of the aspects of CT and how they can be impacted by argumentation. The first component, Knowledge, as stated by Bruning et. al (2011), actively shapes the way in which one resolves problems [28] . It is therefore essential that students have a solid foundation of knowledge of whatever it is that they are arguing or are arguing about in their own heads. The ability to use well founded information in order to effectively analyze the credibility of new information is imperative for students who wish to increase their argumentative abilities. The second component of CT that is important for argumentation is Inference. As Chesñevar and Simari (2007) discuss in their examination of how we develop arguments, inference and deduction are essential aspects of reaching new conclusions from knowledge that is already known or proven [29] . In other words, the ability to reach conclusions from known information is pivotal in developing and elaborating an argument. As well, the use of induction , a part of the CT process, is important to argumentation. As Bruning et al. suggest, the ability to make a general conclusion from known information is an essential part of the CT process [30] . Ontañón and Plaza (2015) make the argument that induction can be used in argumentation through communication with one another. Moreover, making inductions of general conclusions using the complete information that every member of the group can provide shows how interaction can be helpful through the use of induction in argumentation [31] . Therefore, it can be seen how induction, an important part of CT, can have a significant impact on argumentation and collaboration. The final component of CT, that may be the most important in its relationship to argumentation, is Evaluation. The components of Evaluation indicated by Bruning et al. are analyzing, judging and weighing. These are three essential aspects of creating a successful argument [32] . Hornikx and Hahn (2012) provide a framework for three key elements of argumentation that are heavily attached in these Bruning et al.'s three aspects of CT [33] .

Production, Analysis, and Evaluation [ edit | edit source ]

The three aspects of argumentation that Hornikx and Hahn focus on in their research is the production , analysis and evaluation of arguments [34] . Producing an argument uses the key aspects of CT; there must be evaluation, analysis, judgement and weighing of the argument that one wishes to make a stand on. Analysis of arguments and analysis in CT go hand in hand, there must be a critical analysis of information and viewpoints in order to create a successful and fully backed argument. As well, evaluation is used similarly in argumentation as it is derived from CT. Assessing the credibility of sources and information is an essential part in finding articles and papers that can assist someone in making an informed decision. The final aspect of evaluation in critical thinking is metacognition, thinking about thinking or monitoring one's own thoughts [35] . Monitoring one's own thoughts and taking time to understand the rationality of the decisions that one makes is also a significant part of argumentation. According to Pinto et al.’s research, there is a strong correlation between one's argumentation ability and metacognition. [36] In other words, the ability to think about one’s own thoughts and the validity of those thoughts correlates positively with the ability to formulate sound arguments. The transfer of thoughts into speech/argumentation shows that CT influences argumentation dramatically, however some research suggests that the two interact in different ways as well. It can clearly be seen through the research presented that argumentation is heavily influenced by CT skills, such as knowledge, inference, evaluation and metacognition. However there are also strong implications that instruction of CT in a curriculum can bolster argumentation. A study conducted by Bensley et. al (2010) suggests that when CT skills are directly infused into a course compared to groups that received no CT instruction, those who received CT instruction showed significant gains in their ability of argument analysis [37] . There can be many arguments made for the implication of specific CT skills to impact argumentation, but this research shows that explicit teaching of CT in general can increase the ability of students to more effectively analyze arguments as well. This should be taken into account that Skills Programs mentioned later in this chapter should be instituted if teachers wish to foster argumentation as well as CT in the classroom.

How Argumentation Improves Critical Thinking [ edit | edit source ]

Argumentation is a part of the CT process, it clarifies reasoning and the increases one's ability to assess viable information. It is a part of metacognition in the sense that one needs to evaluate their own ideas. CT skills such as induction and/or deduction are used to create a structured and clear argument. Research by Glassner and Schwarz (2007) shows that argumentation lies at the intersection of critical and creative thinking. They argue that reasoning, which is both critical and creative, is done through argumentation in adolescents. They suggest that reasoning is constantly being influenced by other perspectives and information. The ability to think creatively as well as critically about new information is managed by argumentation [38] . The back and forth process of accommodating, evaluating, and being open minded to new information can be argued as critical and creative thinking working together. However, the way in which one reaches conclusions from information is created from the ability to weigh this information, and then to successfully draw a conclusion regarding the validity of the solution that students come to. There is also a clear correlation of how argumentation helps students to nurture CT skills as well.

It is clear that CT can directly impact argumentation, but this relationship can also be seen as bidirectional, with argumentation instruction developing the CT skills. A study by Gold et al. shows that CT skills can be fostered through the use of argument analysis and storytelling in instruction [39] . This research suggests that argumentation and argument analysis are not only be beneficial to students, but also to older adults. This study was conducted using mature adult managers as participants. The article outlines four skills of CT that can be impacted by the use of argument analysis and storytelling: critique of rhetoric, tradition, authority, and knowledge. These four skills of CT are somewhat deeper than many instructed in high schools and extremely important to develop. The ability of argumentation to impact CT in a way that enables a person to gain a better perspective on their view about these things is essential to developing personal values as well as being able to use argumentation and CT to critique those values when presented with new information. The ability of argumentation to influence the ability of individuals to analyze their own traditions and knowledge is important for all students as it can give them better insight into what they value.

Argumentation is beneficial to CT skills as well as creative thinking skills in high school students. Research done by Demir and İsleyen (2015) shows that argumentation based a science learning approach in 9th graders improves both of types of thinking [40] . The ability of students to use argumentation to foster CT as well as creative thinking can be seen as being very beneficial, as mentioned earlier creative and CT skills use argumentation as a means of reasoning to draw conclusions, it is therefore not surprising that argumentation in instruction also fosters both of these abilities. In summation, it can clearly be seen that there is a link between both argumentation and CT along with many skills in the subset of CT skills. Explicit instruction of both of these concepts seems to foster the growth of the other and can be seen as complementary. In the next sections of this chapter how these aspects can be beneficial if taught within the curriculum and how they go hand in hand in fostering sound reasoning as well as skills that will help students throughout their lives will be examined.

Instructional Application of Argumentation and Critical Thinking [ edit | edit source ]

argumentation reasoning and critical thinking

Teaching Tactics [ edit | edit source ]

An effective method for structuring the instruction of CT is to organize the thinking skills into a clear and sequential steps. The order in which these steps aid in guiding the student towards internalizing those steps in order to apply them in their daily lives. By taking a deductive approach, starting from broader skills and narrowing them down to task-specific skills helps the student begin from what they know and generate something that they hadn't known before through CT. In the spirit of CT, a student's awareness of their own skills also plays an important role in their learning. In the classroom, they should be encouraged to reflect upon the process through which they completed a goal rather than just the result. Through the encouragement of reflection, students can become more aware of the necessary thinking skills necessary for tasks, such as Argumentation.

Instructing CT and Argumentation predisposes the instruction to using CT skills first. In designing a plan to teach CT, one must be able to critically evaluate and assess different methods and make an informed decision on which would work best for one's class. There are a variety of approaches towards instructing CT. Descriptive models consist of explanations of how "good" thinking occurs. Specifically, it focuses on thinking strategies such as heuristics to assess information and how to make decisions. Prescriptive models consist of explanations of what good thinking should be. In a sense, these models give a prototype, a "prescription", of what good thinking is. This approach is comparatively less applicable and sets a high standard of what is expected of higher order thinking. In addition to evaluating which approach would work best for them, prior to teaching CT, instructors need to carefully select the specific types of CT skills that they want students to learn. This process involves assessing factors such as age range, performance level as well as cognitive ability of one's class in order to create a program that can benefit most of, if not all, the students. A final aspect of instruction to consider as an educator is whether direct or indirect instruction will be used to teach CT. Direct instruction refers to the explicit teaching of CT skills that emphasizes rules and steps for thinking. This is most effective when solutions to problems are limited or when the cognitive task is easy. In contrast, indirect instruction refers to a learner-oriented type of teaching that focuses on the student building their own understanding of thinking. This is most effective when problems are ambiguous, unclear or open to interpretation such as moral or ethical decisions [41] .

One example of indirect CT instruction is through the process of writing literature reviews. According to Chandler and Dedman, having the skills to collect, assess and write literature reviews as well as summarize results of studies requires CT. In a teaching note, they evaluated a BSW (Baccalaureate of Social Work) program that strived to improve CT in undergraduate students. Specifically, they assert that practical writing assignments, such as creating literature reviews, help students combine revision and reflection while expanding their thinking to evaluate multiple perspectives on a topic. They found that upon reframing the assignment as a tool to facilitate students in becoming critical reviewers, students viewed the literature review as a summation of course material in addition to an opportunity to improve critical reading and writing skills. Through questioning during discussions, students were guided to analyze the authority and credibility of their articles. The students actively sought for more evidence to support articles on their topics. They found that students successfully created well synthesized literature reviews at the end of the BSW program [42] . This program used implicit instruction of CT skills through dialogue between instructor and students as well as peer engagement. Instead of explicitly stating specific skills or steps to learn CT, the instructors lead the students to practice CT through an assignment. As students worked on the assignment, they needed to use reasoning, analysis and inferential skills in order to synthesize and draw conclusions around the evidence they found on their topics. Practical application of CT skills through an assignment helped students develop CT through indirect instruction.

Skills Programs for CT [ edit | edit source ]

These programs aid in the formulation of critical thinking skills through alternative methods of instruction such as problem-solving. They are usually targeted towards special populations such as students with learning disabilities or cognitive deficits.

The CoRT Thinking Materials [ edit | edit source ]

The CoRT (Cognitive Research Trust) program is based on de Bono’s idea that thinking skills should be taught in school as a subject [43] . The Thinking Materials are geared towards the improvement of thinking skills. This skills program takes on a Gestalt approach and emphasizes the perceptual factor of problem solving. It usually spans over the course of 2 years and is suitable for a wide age range of children. The lessons strive to develop creative thinking, problem-solving as well as interpersonal skills. The materials are split into 6 units and cover topics such as planning, analyzing, comparing, selecting, evaluating and generating alternatives. A typical unit has leaflets covering a single topic, followed by examples using practice items. The leaflets are usually effective in group settings. The focus of these units are to practice thinking skills, therefore much of the instructional time is spent on practicing the topics brought up in the leaflets [44] .

Much of the empirical research on this stand-alone program revolves around the development of creative thinking, however, it is relatively more extensive in comparison to the other programs mentioned in this chapter. The CoRT program has been shown to improve creativity in gifted students. Al-Faoury and Khwaileh (2014) assessed the effectiveness of the CoRT on gifted students’ creative writing abilities. The students were given a pretest that evaluated the fluency, flexibility and originality in writing creative short stories [45] . Students in the experimental group were taught 20 CoRT lessons in total with 10 from CoRT 1 “Breadth” and 10 from CoRT 4 “Creativity” over the course of three months while the control group received traditional lessons on creative writing. The posttest followed the same parameters as the pretest and the results were analyzed by comparing pre and posttest scores. The researchers found a statistically significant effect of CoRT on the experimental group’s fluency, flexibility and originality scores. The mean scores of the experimental groups in all three elements were higher than the control group [46] . These findings suggest that the CoRT program aids gifted students in creative writing skills as indicated through the use of rhetorical devices (metaphor, analogy, etc.), developing characters through dialogue and the control of complex structures [47] . The flexibility and fluency of writing is also applicable to the practice of argumentation and CT. In developing the ability to articulate and modify ideas, students can transfer these skills from creative writing towards higher-order cognitive processes such as CT and argumentation.

The Feuerstein Instrumental Enrichment Program (FIE) [ edit | edit source ]

The FIE is a specialized program focused on mediated learning experiences that strives to develop critical thinking and problem solving skills. Mediation is learning through interaction between the student and the mediator. Similar to Vygotsky's scaffolding, mediation is student-oriented and hinges upon 4 parameters: Intentionality, Reciprocity, Transcendence and Meaning. [48] Intentionality emphasizes the differences between mediation and interaction where the student and mediator have a common goal in mind. Reciprocity involves the student-oriented mentality of mediation, the response of the student hold most importance over academic results. Transcendence focuses on the connectivity of the mediation, it encourages the formation of associations and applications that stretch beyond the scope of the immediate material. Lastly, Meaning in mediation is where the student and mediator explicitly identify "why" and "what for" which promotes dialogue between the two during mediation. [49] [50]

The "instruments" used to facilitate instruction are a series of paper and pencil exercises geared towards practicing internalizing higher order thinking strategies. The instruments cover domains such as analytic perception, spatial organization, categorization, comparison and many more. The implementation of this program varies across countries and is also dependent on the targeted population. A typical program contains 14 units with 3-4 sessions for a few hours every week administered by trained IE staff and teachers. [51]

The Productive Thinking Program [ edit | edit source ]

The Productive Thinking Program consists of the development of planning skills, generating and checking hypotheses as well as creating new ideas. This program is designed as a set of 15 lessons aimed at being completed over one semester. The target population of the program is upper-level elementary school students. The lessons are administered through the use of narrative booklets, often taking a detective-like approach to problem solving where the student is the detective solving a mystery. A structured sequence of steps guides the student to attain an objective specific to the lesson at hand. [52] Following the booklet or story, supplementary problems are given in order for students to apply and practice learned skills. [53]

The IDEAL Problem Solver [ edit | edit source ]

The IDEAL Problem Solver structures problem-solving as 5 steps using the acronym IDEAL. First, (I)dentify the problem, the solver needs to find out what the problem is. Second, (D)efine the problem involves having a clear picture of the entire problem before trying to solve it. Third, (E)xplore the alternatives, meaning that the solver needs to assess the potential solutions available. Fourth, (A)cting on a plan, that is, applying the solution and doing the act of solving. Lastly, (L)ooking at the effects which encompasses the evaluation of the consequences of the chosen solution. IDEAL is flexible in that it can be adapted to suit a wide age range and different levels of ability in its application. It can also be applied to different domains such as composition or physics. [54]

Instructing Argumentation [ edit | edit source ]

Research on argumentation is a comparatively new field of study for education, but has been noted to be of significant importance to almost all educational settings. Grade schools, high schools, and colleges now emphasize the use of argumentation in the classroom as it is seen as the best way for communication and debate in a both vocational and educational settings around the world in the near future. [55] A longitudinal study done by Crowell and Kuhn showed that an effective way to help students gain argumentative skills was through consistent and dense application of argumentation in the classroom and as homework. [56] During this longitudinal study students were exposed to a variety of different methods from which they gained argumentative abilities. The activities employed such as peer collaboration, using computers, reflection activities, individual essays, and small group work all have implications for being valuable in teaching argumentation although it is not clear which ones are the most effective. [57] Data also showed that students all rose to a similar level of argumentative ability, no matter what they scored on argumentative tests before the study began. This shows that even students with seemingly no argumentative skills can be instructed to become as skilled or more skilled than their peers who tested higher than them at the beginning of the study. [58] The implications for this research on instructing argumentation are not the only solution to helping students become well-versed arguers. Furthermore, it has shown promise for the educators that wish to help their students gain argumentative abilities.

Dialogue and Argumentation [ edit | edit source ]

Research by Crowell and Kuhn (2011) highlights collaborative dialogical activities as practical interventions in the development of argumentative skills. The researchers implemented a longitudinal argumentative intervention that used topic cycles to structure a middle school philosophy class [59] . The students had class twice a week for 50 minutes each class over the span of three years. The intervention is as follows: first, students were split into small groups on the same side of the argument to generate ideas around the topic (“for” and “against” teams). Then individuals from either side argue with an opponent through an electronic medium. Finally, the students engage in a whole class debate. These three stages were termed Pregame, Game and Endgame, respectively. After the intervention, students were required to write individual essays regarding the topic through which their argumentative skills would be assessed [60] . The results showed an increased in the generation of dual perspective arguments in the intervention group. Such arguments require the arguer to assume the opposing stance to one’s own and reason its implications. This type of argument reflects a higher-order reasoning that requires critical assessment of multiple perspectives. These results did not begin to appear until year two and was only found statistically significant in year three suggesting that argumentative skills have a longer development trajectory than other lower-level cognitive skills [61] . Through this stand-alone intervention, the collaborative aspect of dialogical activities facilitates the development of intellectual dispositions necessary for good argumentation [62] .

Further research suggests that teaching through the use of collaborative discussions and argumentative dialogue is an effective teaching strategy [63] . Through argumentation, students can acquire knowledge of concepts as well as the foundational ideas behind these concepts. In formulating arguments, students need to generate premises that provide structure to an argument through accepted definitions or claims. Argumentation helps students reveal and clarify misconceptions as well as elaborate on background knowledge. The two aforementioned dimensions of argumentation – dialogue and structure – are often used in assessing and measuring argumentative performance [64] . Specifically, through student-expert dialogue, the students can be guided to give certain arguments and counterarguments depending on the expert’s dialectical decisions [65] . This scaffolding helps the student engage in more critical evaluations that delve deeper into the topic in discussion.

In a study using content and functional coding schemes of argumentative behavior during peer-peer and peer-expert dialogue pairings, Macagno, Mayweg-Paus and Kuhn (2014) found that through student-expert dialogues, students were able to later formulate arguments that dealt with abstract concepts at the root of the issue at hand (i.e. ethical principles, conflict of values) in comparison to peer-peer dialogues [66] . The expert used more specific and sophisticated ways of attacking the student’s argument, such as suggesting an alternative solution to the problem at hand, which in turn enhanced the performance of the student in later meta-dialogues [67] . The results suggest that the practical application of argumentation through collaborate activities facilitates the development of argumentation skills. Similar to CT skills development, rather than teaching, implicit instruction through the practice of argumentation in interactive settings helps its development.

Science and Argumentation [ edit | edit source ]

Much of the literature surrounding the application of argumentation in the classroom revolves around the scientific domain. Argumentation is often used as a tool in scientific learning to enhance CT skills, improve class engagement and activate prior knowledge and beliefs around the subject [68] . In order to articulate and refine scientific theories and knowledge, scientists themselves utilize argumentation [69] . Jonassen and Kim (2010) assert that science educators often emphasize the role of argumentation more than other disciplines [70] . Argumentation supports the learning of how to solve well-structures problems as well as ill-structured ones in science, and from there by extension, in daily life. Specifically, the ill-structured ones reflect more practical everyday problems where goals and limitations are unclear and there are multiple solution pathways as well as multiple factors for evaluating possible solutions [71] .

Through argumentation, students learn to use sound reasoning and CT in order to assess and justify their solution to a problem. For example, a well-structured problem would be one posed in a physics class where concrete laws and formulas dictate the solution pathway to a problem or review questions found at the end textbook chapters which require the application of a finite set of concepts and theories. An ill-structured problem would be finding the cause of heart disease in an individual. Multiple developmental and lifestyle factors contribute to this one problem in addition to the various different forms of heart disease that need to be evaluated. This sort of problem requires the application of knowledge from other domains such as nutrition, emotional well-being and genetics. Since ill-structured problems do not have a definite answer, students are provided with an opportunity to formulate arguments that justify their solutions [72] . Through the practice of resolving problems in science, such as these, students can use CT to develop their argumentative ability.

One’s willingness to argue as well as one's ability to argue also play a significant role in learning science [73] . For one science is at its core, extremely argumentative. If students have to ability to engage in argumentation at an early age then there knowledge of specific content such as science can grow immensely. The main reason for this is argumentative discourse, being able to disagree with others is extremely important because for adolescents they are at an age which is fundamentally social (ie junior to senior high) using this social ability is pivotal as students at this point may have the confidence to disagree with one another. When a student disagrees with another in argument in a classroom setting it gives them an opportunity to explain the way in which they think about the material. This verbalization of one’s own thoughts and ideas on a subject can help with learning the subject immensely [74] . It also allows for the student to reflect upon and expand their ideas as they have to present them to the class which helps with learning. This also provides the opportunity for the student to identify any misconceptions they have about the subject at hand as more than likely they will receive rebuttal arguments from others in their class [75] . All these factors are aspects of CT and contribute to the learning of the concept and conceptual change in the student which is what learning is all about. The nature of adolescent social behaviour could provide a window through which argumentation could benefit their learning in dramatic ways in learning science [76] .

Instructing through Academic Controversy [ edit | edit source ]

Using the technique of academic controversy could be an effective way of teaching both argumentation and CT skills to students. Academic controversy involves dividing a cooperative group of four in two pairs of students and assigning them opposing positions of an argument or issue, after which the two pairs each argue for their position. The groups then switch their positions and argue again, finally the group of four is asked to come up with an all-around solution to the problem [77] . This activity can be effective in instructing both aspects of argumentation and CT, though it may be a bit dated. The activity is argumentative by nature, making students come up with reasons and claims for two sets of arguments. This equilibrium is important to the argumentative process because provides the students with an opportunity to evaluate the key points of their argument and the opposition's which could be beneficial in any debate. As well, this activity is geared to engage students in a few aspects of CT such as evaluation, since the students must assess each side of the argument. It also engages metacognitive processes as the students must come up with a synthesized conclusion with their peers of their own arguments, a process which requires them to be both analytical and open minded. This activity is a good way of increasing both CT skills and argumentation as it requires students to be open-minded, but also engage in analytical debate.

Glossary [ edit | edit source ]

Academic Controversy : a two-round debate process through which a cooperative group of 4 are divided into opposing pairs that engage in a debate. Each pair argues for their own position and switch to the opposing position in the next round.

Analysis : The identification and selection of relevant information to allow for further inference and interpretation

Argumentation : The process of using reasoning to support or refute a claim or idea

Critical Thinking : A type a reflective thinking consisting of weighing, evaluating and understanding information

Deduction : A type of reasoning where specific conclusions are made from general, given information

Descriptive Model : An instructional approach that explains how good thinking occurs

Direct Instruction : The explicit and teacher-oriented instruction of material with emphasis on specific rules and aspects of thinking

Disposition : A person's attitude and beliefs towards something

Evaluation : An umbrella term for the sub skills of analyzing, judging, and weighing

Indirect Instruction : The learner-oriented instruction of material with emphasis on how the learner interprets the taught material

Induction : A type of reasoning where general conclusions are made from specific information

Inference : A type of connection or association between two units of knowledge

Knowledge : Information that one has, this can include connections and associations between known information

Metacognition : Thinking about thinking

Prescriptive Model : An instructional approach that explains the criteria and characteristics of good thinking

Production : The generation of arguments

Self-Regulation : The process of being metacognitively, behaviourally, and motivationally active in one's own learning

Skills Programs : instructional curriculums designed to facilitate the development of CT skills through alternative teaching methods such as problem-solving

Suggested Readings [ edit | edit source ]

  • Abrami, P.C., Bernard, R.M., Borokhovski, E., Wade, A., Surkes, M.A., Tamim, R., & Zhang, D. (2008). Instructional Interventions Affecting Critical Thinking Skills and Dispositions: A Stage 1 Meta-Analysis. Review of Educational Research, 78(4). 1102-1134. DOI: 10.3102/0034654308326084.
  • Phan, H.P. (2010). Critical thinking as a self-regulatory process component in teaching and learning. Psicothema, 22(2). 284-292.
  • Kozulin, A. & Presseisen, B.Z. (1995). Mediated Learning Experience and Psychological Tools: Vygotsky’s and Feuerstein’s Perspective in a Study of Student Learning. Educational Psychologist, 30(2), 67-75.
  • Crowell, A., & Kuhn, D. (2011). Dialogic Argumentation as a Vehicle for Developing Young Adolescents’ Thinking. Psychological Science, 22(4), 545-552. DOI: 10.1177/0956797611402512.

References [ edit | edit source ]

  • ↑ Al-Faoury, O.H., & Khwaileh, F. (2014). The Effect of Teaching CoRT Program No. (4) Entitles “Creativity” on the Gifted Learners’ Writing in Ein El-Basha Center for Gifted Students. Theory and Practice in Language Studies, 4(11), 2249-2257. doi:10.4304/tpls.4.11.2249-2257.
  • ↑ Macagno, F., Mayweg-Paus, W., & Kuhn, D. (2014). Argumentation theory in Education Studies: Coding and Improving Students’ Argumentative Strategies. Topoi, 34, 523-537.
  • ↑ Jonassen, D.H., & Kim, B. (2010). Arguing to learn ad learning to argue: design justifications and guidelines. Education Technology & Research Development, 58(4), 439-457. DOI 10.1007/s11423-009-9143-8.
  • ↑ Bathgate, M., Crowell, A., Schunn, C., Cannady, M., & Dorph, R. (2015). The learning benefits of being willing and able to engage in scientific argumentation. International Journal of Science Education, 37(10), 1590. doi:10.1080/09500693.2015.1045958
  • ↑ Phan, H.P. (2010). Critical thinking as a self-regulatory process component in teaching and learning. Psicothema, 22(2). 284-292.
  • ↑ Mathews, S. R., & Lowe, K. (2011). Classroom environments that foster a disposition for critical thinking. Learning Environments Research, 14(1), 59-73. doi:10.1007/s10984-011-9082-2
  • ↑ Hornikx, J., & Hahn, U. (2012). Reasoning and argumentation: Towards an integrated psychology of argumentation. Thinking & Reasoning, 18(3), 225-243. DOI: 10.1080/13546783.2012.674715.
  • ↑ Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101-131. doi:10.1002/tea.20213
  • ↑ Bensley, A., Crowe, D., Bernhardt, P., Buckner, C., & Allman, A. (2010). Teaching and assessing CT skills for argument analysis in psychology. Teaching of Psychology, 37(2), 91-96. doi:10.1080/00986281003626656
  • ↑ Glassner, A., & Schwarz, B. B. (2007). What stands and develops between creative and critical thinking? argumentation?. Thinking Skills and Creativity, 2(1), 10-18. doi:10.1016/j.tsc.2006.10.001
  • ↑ Gold J., Holman D., & Thorpe R. (2002). The role of argument analysis and story telling in facilitating critical thinking. Management Learning, 33(3), 371-388. doi:10.1177/1350507602333005
  • ↑ Bruning, R. H., Schraw, G. J., & Norby, M. M. (2011). Cognitive psychology and instruction (5th ed.) Pearson.
  • ↑ Chesñevar, I., & Simari, G. (2007). Modelling inference in argumentation through labelled deduction: Formalization and logical properties. Logica Universalis, 2007, Volume 1, Number 1, Page 93, 1(1), 93-124. doi:10.1007/s11787-006-0005-4
  • ↑ Ontañón, S., & Plaza, E. (2015). Coordinated inductive learning using argumentation-based communication. Autonomous Agents and Multi-Agent Systems, 29(2), 266-304. doi:10.1007/s10458-014-9256-2
  • ↑ Hornikx, J. & Hahn, U. (2012). Reasoning and argumentation: Towards an integrated psychology of argumentation. Thinking & Reasoning, 18(3), 225-243. DOI: 10.1080/13546783.2012.674715.
  • ↑ Pinto, M., Iliceto, P., & Melagno, S. (2012). Argumentative abilities in metacognition and in metalinguistics: A study on university students. European Journal of Psychology of Education, 27(1), 35-58. doi:10.1007/s10212-011-0064-7
  • ↑ Bensley, A., Crowe, D., Bernhardt, P., Buckner, C., & Allman, A. (2010). Teaching and assessing critical thinking skills for argument analysis in psychology. Teaching of Psychology, 37(2), 91-96. doi:10.1080/00986281003626656
  • ↑ Demir, B., & İsleyen, T. (2015). The effects of argumentation based science learning approach on creative thinking skills of students. Educational Research Quarterly, 39(1), 49-82.
  • ↑ Chandler, S. & Dedman, D.E. (2012). Writing a Literature Review: An Essential Component of Critical Thinking. The Journal of Baccalaureate Social Work, 17. 160-165.
  • ↑ Kozulin, A. & Presseisen, B.Z. (1995). Mediated Learning Experience and Psychological Tools: Vygotsky’s and Feuerstein’s Perspective in a Study of Student Learning. Educational Psychologist, 30(2), 67-75.
  • ↑ Presseisen, B.Z. & Kozulin, A. (1992). Mediated Learning – The Contributions of Vygotsky and Feuerstein in Theory and Practice.
  • ↑ Schuler, G. (1974). The Effectiveness of the Productive Thinking Program. Paper presented at the Annual Meeting of the American Educational Research Association. Retrieved from: http://www.eric.ed.gov/contentdelivery/servlet/ERICServlet?accno=ED103479 .
  • ↑ Crowell, A., & Kuhn, D. (2014). Developing dialogic argumentation skills: A 3-year intervention study. Journal of Cognition and Development, 15(2), 363-381. doi:10.1080/15248372.2012.725187
  • ↑ Crowell, A., & Kuhn, D. (2011). Dialogic Argumentation as a Vehicle for Developing Young Adolescents’ Thinking. Psychological Science, 22(4), 545-552. DOI: 10.1177/0956797611402512.
  • ↑ Bathgate, M., Crowell, A., Schunn, C., Cannady, M., & Dorph, R. (2015). The learning benefits of being willing and able to engage in scientific argumentation. International Journal of Science Education, 37(10), 1590-1612. doi:10.1080/09500693.2015.1045958
  • ↑ Johnson, D. W., & Johnson, R. T. (1993). Creative and critical thinking through academic controversy. The American Behavioral Scientist, 37(1), 40-53. Retrieved from https://www.proquest.com/docview/1306753602

argumentation reasoning and critical thinking

  • Book:Cognition and Instruction

Navigation menu

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8 Arguments and Critical Thinking

J. anthony blair, introduction [1].

This chapter discusses two different conceptions of argument, and then discusses the role of arguments in critical thinking. It is followed by a chapter in which David Hitchcock carefully analyses one common concept of an argument.

1. Two meanings of ‘argument’

The word ‘argument’ is used in a great many ways. Any thorough understanding of arguments requires understanding ‘argument’ in each of its senses or uses. These may be divided into two large groupings: arguments had or engaged in , and arguments made or used . I begin with the former.

1.1 A n ‘a rgument’ as something two parties have with each othe r, something they get into, the kind of ‘argument’ one has in mind in de scribing two people as “arguing all the time ”

For many people outside academia or the practice of law, an argument is a quarrel . It is usually a verbal quarrel, but it doesn’t have to use words. If dishes are flying or people are glaring at each other in angry silence, it can still be an argument. What makes a quarrel an argument is that it involves a communication between two or more parties (however dysfunctional the communication may be) in which the parties disagree and in which that disagreement and reasons, actual or alleged, motivating it are expressed—usually in words or other communicative gestures.

Quarrels are emotional. The participants experience and express emotions, although that feature is not exclusive to arguments that are quarrels. People can and do argue emotionally, and (or) when inspired by strong emotions, when they are not quarrelling. Heated arguments are not necessarily quarrels; but quarrels tend to be heated.

What makes quarrels emotional in some cases is that at least one party experiences the disagreement as representing some sort of personal attack, and so experiences his or her ego or sense of self-worth as being threatened. Fear is a reaction to a perceived threat, and anger is a way of coping with fear and also with embarrassment and shame. In other cases, the argument about the ostensible disagreement is a reminder of or a pretext for airing another, deeper grievance. Jealousy and resentment fuel quarrels. Traces of ego-involvement often surface even in what are supposed to be more civilized argumentative exchanges, such as scholarly disputes. Quarrels tend not to be efficient ways of resolving the disagreements that gives rise to them because the subject of a disagreement changes as the emotional attacks escalate or because the quarrel was often not really about that ostensible disagreement in the first place.

In teaching that ‘argument’ has different senses, it is misleading to leave the impression (as many textbooks do) that quarrels are the only species of argument of this genus. In fact they are just one instance of a large class of arguments in this sense of extended, expressed, disagreements between or among two or more parties.

A dispute is an argument in this sense that need not be a quarrel. It is a disagreement between usually two parties about the legality, or morality, or the propriety on some other basis, of a particular act or policy. It can be engaged in a civil way by the disputants or their proxies (e.g., their spokespersons or their lawyers). Sometimes only the disputing parties settle their difference; sometimes a third party such as a mediator, arbitrator or judge is called in to impose a settlement.

A debate is another argument of this general kind. Debates are more or less formalized or regimented verbal exchanges between parties who might disagree, but in any case who take up opposing sides on an issue. Procedural rules that govern turn-taking, time available for each turn, and topics that may be addressed are agreed to when political opponents debate one another. Strict and precise rules of order govern who may speak, who must be addressed, sometimes time limits for interventions, in parliamentary or congressional debates in political decision-making bodies, or in formal intercollegiate competitive debates. Usually the “opponent” directly addressed in the debate is not the party that each speaker is trying to influence, so although the expressed goal is to “win” the debate, winning does not entail getting the opponent to concede. Instead, it calls for convincing an on-looking party or audience—the judge of the debate or the jury in a courtroom or the television audience or the press or the electorate as a whole—of the superior merits of one’s case for the opinion being argued for in the debate.

To be distinguished from a debate and a dispute by such factors as scale is a controversy . Think of such issues as the abortion controversy, the climate change controversy, the same-sex marriage controversy, the LGBT rights controversy, the animal rights controversy. The participants are many—often millions. The issues are complex and there are many disputes about details involved, including sometimes even formal debates between representatives of different sides. Typically there is a range of positions, and there might be several different sides each with positions that vary one from another. A controversy typically occurs over an extended period of time, often years and sometime decades long. But an entire controversy can be called an argument, as in, “the argument over climate change.” Controversies tend to be unregulated, unlike debates but like quarrels, although they need not be particularly angry even when they are emotional. Like quarrels, and unlike debates, the conditions under which controversies occur, including any constraints on them, are shaped by the participants.

Somewhere among quarrels, debates and controversies lie the theoretical arguments that theorists in academic disciplines engage in, in academic journals and scholarly monographs. In such arguments theorists take positions, sometimes siding with others and sometimes standing alone, and they argue back and forth about which theoretical position is the correct one. In a related type of argument, just two people argue back and forth about what is the correct position on some issue (including meta-level arguments about what is the correct way to frame the issue in the first place).

The stakes don’t have to be theories and the participants don’t have to be academics. Friends argue about which team will win the championship, where the best fishing spot is located, or what titles to select for the book club. Family members argue about how to spend their income, what school to send the children to, or whether a child is old enough to go on a date without a chaperone. Co-workers argue about the best way to do a job, whether to change service providers, whether to introduce a new product line, and so on. These arguments are usually amicable, whether or not they settle the question in dispute.

All of these kinds of “argument” in this sense of the term—quarrels, friendly disputes, arguments at work, professional arguments about theoretical positions, formal or informal debates, and various kinds of controversy—share several features.

  • They involve communications between or among two or more people. Something initiates the communication, and either something ends it or there are ways for participants to join and to exit the conversation. They entail turn-taking (less or more regimented), each side addressing the other side and in turn construing and assessing what the other has to say in reply and formulating and communicating a response to the replies of the other side. And, obviously, they involve the expression, usually verbal, of theses and of reasons for them or against alternatives and criticisms.
  • They have a telos or aim, although there seems to be no single end in mind for all of them or even for each of them. In a quarrel the goal might be to have one’s point of view prevail, to get one’s way, but it might instead (or in addition) be to humiliate the other person or to save one’s own self-respect. Some quarrels—think of the ongoing bickering between some long-married spouses—seem to be a way for two people to communicate, merely to acknowledge one another. In a debate, each side seeks to “win,” which can mean different things in different contexts ( cf. a collegiate debate vs. a debate between candidates in an election vs. a parliamentary debate). Some arguments seemed designed to convince the other to give up his position or accept the interlocutor’s position, or to get the other to act in some way or to adopt some policy. Some have the more modest goal of getting a new issue recognized for future deliberation and debate. Still others are clearly aimed not at changing anyone’s mind but at reinforcing or entrenching a point of view already held (as is usually the case with religious sermons or with political speeches to the party faithful). Some are intended to establish or to demonstrate the truth or reasonableness of some position or recommendation and (perhaps) also to get others to “see” that the truth has been established. Some seem designed to maintain disagreement, as when representatives of competing political parties argue with one another.
  • All these various kinds of argument are more or less extended, both in the sense that they occur over time, sometimes long stretches of time, and also in the sense that they typically involved many steps: extensive and complex support for a point of view and critique of its alternatives.
  • In nearly every case, the participants give reasons for the claims they make and they expect the other participants in the argument to give reasons for their claims. This is even a feature of quarrels, at least at the outset, although such arguments can deteriorate into name-calling and worse. (Notice that even the “yes you did; no I didn’t;…; did; didn’t” sequence of the Monty Python “Having an argument” skit breaks down and a reason is sought.)

The kinds of argument listed so far are all versions of having an argument (see Daniel J. O’Keefe, 1977, 1982). Some might think that this is not the sense of ‘argument’ that is pertinent to critical thinking instruction, but such arguments are the habitat of the kinds of argument that critical thinkers need to be able to identify, analyze and evaluate.

1.2 An argument a s something a person makes (or constructs, invents, borrows) consisting of purported reasons alleged to suggest, or support or prove a point and that is used for some purpose such as to persuade someone of some claim, to justify someone in maintaining the position claimed, or to test a claim .

When people have arguments—when they engage in one or another of the activities of arguing described above—one of the things they routinely do is present or allege or offer reasons in support of the claims that they advance, defend, challenge, dispute, question, or consider. That is, in having “arguments,” we typically make and use “arguments.” The latter obviously have to be arguments in different sense from the former. They are often called “reason-claim” complexes. If arguments that someone has had constitute a type of communication or communicative activity, arguments that someone has made or used are actual or potential contributions to such activities. Reason-claim complexes are typically made and used when engaged in an argument in the first sense, trying to convince someone of your point of view during a disagreement or dispute with them. Here is a list of some of the many definitions found in textbooks of ‘argument’ in this second sense.

“… here [the word ‘argument’] … is used in the … logical sense of giving reasons for or against some claim.” Understanding Arguments, Robert Fogelin and Walter Sinnott-Armstrong, 6th ed., p. 1. “Thus an argument is a discourse that contains at least two statements, one of which is asserted to be a reason for the other.” Monroe Beardsley, Practical Logic, p. 9. “An argument is a set of claims a person puts forward in an attempt to show that some further claim is rationally acceptable.” Trudy Govier. A Practical Study of Arguments, 5th ed., p. 3. An argument is “a set of clams some of which are presented as reasons for accepting some further claim.” Alec Fisher, Critical Thinking, An Introduction, p. 235. Argument: “A conclusion about an issue that is supported by reasons.” Sherry Diestler, Becoming a Critical Thinker, 4th ed., p. 403. “ Argument: An attempt to support a conclusion by giving reasons for it.” Robert Ennis, Critical Thinking, p. 396. “Argument – A form of thinking in which certain statements (reasons) are offered in support of another statement (conclusion).” John Chaffee, Thinking Critically, p. 415 “When we use the word argument in this book we mean a message which attempts to establish a statement as true or worthy of belief on the basis of other statements.” James B. Freeman, Thinking Logically, p. 20 “Argument. A sequence of propositions intended to establish the truth of one of the propositions.” Richard Feldman, Reason and Argument, p. 447. “Arguments consist of conclusions and reasons for them, called ‘premises’.” Wayne Grennan, Argument Evaluation, p. 5. Argument: “A set of claims, one of which, the conclusion is supported by [i.e., is supposed to provide a reason for] one or more of the other claims. Reason in the Balance, Sharon Bailin & Mark Battersby, p. 41.

These are not all compatible, and most of them define ‘argument’ using other terms—‘reasons’, ‘claims’, ‘propositions’, ‘statements’, ‘premises’ and ‘conclusions’—that are in no less need of definition than it is. In the next chapter, David Hitchcock offers a careful analysis of this concept of an argument.

Some define argument in this second sense as a kind of communication; others conceive it as a kind of set of propositions that can serve communicative functions, but others as well (such as inquiry). Either way, the communicative character, or function, of arguments has been the subject of much of the research in the past several decades. Most recently what some have called “multi-modal” argument has attracted attention, focusing on the various ways arguments can be communicated, especially visually or in a mix of verbal and visual modes of communication. Some have contended that smells and sounds can play roles in argument communication as well. This area of research interest would seem to have relevance for the analysis of arguments on the web.

1.3 Argumentation

‘Argumentation’ is another slippery term. It is used in several different senses.

Sometimes it is used to mean the communicative activity in which arguments are exchanged: “During their argumentation they took turns advancing their own arguments and criticizing one another’s arguments.” Sometimes ‘argumentation’ denotes the body of arguments used in an argumentative exchange: “The evening’s argumentation was of high quality.” And occasionally you will find it used to refer to the reasons or premises supporting a conclusion, as in: “The argumentation provided weak support for the thesis.” ‘Argumentation theory’ is the term often used to denote theory about the nature of arguments and their uses, including their uses in communications involving exchanges of arguments.

2 The relation between critical thinking and argument

2 .1 arguments are both tools of critical thinking and objects of critical thinking.

In … [one] sense, thought denotes belief resting upon some basis, that is, real or supposed knowledge going beyond what is directly present. … Some beliefs are accepted when their grounds have not themselves been considered …. … such thoughts may mean a supposition accepted without reference to its real grounds. These may be adequate, they may not; but their value with reference to the support they afford the belief has not been considered. Such thoughts grow up unconsciously and without reference to the attainment of correct belief. They are picked up—we know not how. From obscure sources and by unnoticed channels they insinuate themselves into acceptance and become unconsciously a part of our mental furniture. Tradition, instruction, imitation—all of which depend upon authority in some form, or appeal to our advantage, or fall in with strong passions—are responsible for them. Such thoughts are prejudices, that is, prejudgments, not judgments proper that rest upon a survey of evidence. (John Dewey, How We Think , pp. 4-5, emphasis added.)

People—all of us—routinely adopt beliefs and attitudes that are prejudices in Dewey’s sense of being prejudgments, “not judgments proper that rest upon a survey of evidence.” One goal of critical thinking education is to provide our students with the means to be able, when it really matters, to “properly survey” the grounds for beliefs and attitudes.

Arguments supply one such means. The grounds for beliefs and attitudes are often expressed, or expressible, as arguments for them. And the “proper survey” of these arguments is to test them by subjecting them to the critical scrutiny of counter-arguments.

Arguments also come into play when the issue is not what to believe about a contentious issue, but in order just to understand the competing positions. Not only are we not entitled to reject a claim to our belief if we cannot counter the arguments that support it; we are not in possession of an understanding of that claim if we cannot formulate the arguments that support it to the satisfaction of its proponents.

Furthermore, arguments can be used to investigate a candidate for belief by those trying “to make up their own minds” about it. The investigator tries to find and express the most compelling arguments for and against the candidate. Which arguments count as “most compelling” are the ones that survive vigorous attempts, using arguments, to refute or undermine them. These survivors are then compared against one another, the pros weighed against the cons. More arguments come into play in assessing the attributed weights.

In these ways, a facility with arguments serves a critical thinker well. Such a facility includes skill in recognizing, interpreting and evaluating arguments, as well as in formulating them. That includes skill in laying out complex arguments, in recognizing argument strengths and weaknesses, and in making a case for one’s critique. It includes the ability to distinguish the more relevant evidence from the less, and to discriminate between minor, fixable flaws and major, serious problems, in arguments. Thus the critical thinker is at once adept at using arguments in various ways and at the same time sensitive in judging arguments’ merits, applying the appropriate criteria.

Moreover, arguments in the sense of “reasons-claim” complexes surround us in our daily lives. Our “familiars”, as Gilbert (2014) has dubbed them—our family members, the friends we see regularly, shopkeepers and others whose services we patronize daily, our co-workers—engage us constantly in argumentative discussions in which they invoke arguments to try to get us to do things, to agree, to judge, to believe. The public sphere—the worlds of politics, commerce, entertainment, leisure activities, social media (see Jackson’s chapter)—is another domain in which arguments can be found, although (arguably) mere assertion predominates there. In the various roles we play as we go through life—child, parent, spouse or partner, student, worker, patient, subordinate or supervisor, citizen (voter, jurist, community member), observer or participant, etc.—we are invited with arguments to agree or disagree, approve or disapprove, seek or avoid. We see others arguing with one another and are invited to judge the merits of the cases they make. Some of these arguments are cogent and their conclusions merit our assent, but others are not and we should not be influenced by them. Yet others are suggestive and deserve further thought.

We can simply ignore many of these arguments, but others confront us and force us to decide whether or not to accept them. Often it is unclear whether someone has argued or done something else: just vented, perhaps, or explained rather than argued, or merely expressed an opinion without arguing for it, or was confused. So we initially might have to decide whether there is an argument that we need to deal with. When it is an argument, often in order to make up our minds about it we need first to get clear about exactly what the argument consists of. So even before we evaluate this argument we have to identify and analyze it. (These operations are discussed in Chapter 12.)

In the end we have to decide for ourselves whether the argument makes its case or falls short. Does the conclusion really follow from the premises? Is there enough evidence to justify the conclusion? Is it the right kind of evidence? Are there well-known objections or arguments against the conclusion that haven’t been acknowledged and need to be answered satisfactorily? Can they be answered? And are the premises themselves believable or otherwise acceptable? Are there other arguments, as good or better, that support the claim?

Critical thinking can (and should!) come into all of these decisions we need to make in the identification, the analysis and the assessment of arguments.

2 .2  Critical thinking about things other than arguments

Many critical thinking textbooks focus exclusively on the analysis and evaluation of arguments. While the centrality of arguments to the art of critical thinking is unquestionable, a strong case can be made that critical thinking has other objectives in addition to appreciating arguments. In their analysis of the concept of critical thinking, Fisher and Scriven suggest the following definition:

Critical thinking is skilled and active interpretation and evaluation of o b servations and communications , information and argumentation. (1997, p. 21, emphasis added)

We agree with the gist of this claim, but notice what Fisher and Scriven propose as the objects to which critical thinking applies. Not just argumentation, but as well observations, communications and information. About observations, they note that:

What one sees (hears, etc.) are usually things and happenings, and one often has to interpret what one sees, sometimes calling on critical thinking skills to do so, most obviously in cases where the context involves weak lighting, strong emotions, possible drug effects, or putatively magical or parapsychological phenomena. Only after the application of critical thinking—and sometimes not even then—does one know what one “really saw”. … When the filter of critical thinking has been applied to the observations, and only then, one can start reasoning towards further conclusions using these observations as premises. ( Ibid ., p, 37)

An example is the recent large number of convictions in the U.S.A. that originally relied on eyewitness testimony but that have been overturned on the basis of DNA evidence. [2] ,  [3]

The DNA evidence proved that the accused was not the culprit, so the moral certainty of the eyewitness had to have been mistaken. The observation of the eyewitness was flawed. He or she did not think critically about whether the conditions need ed to make a reliable o b servation were present (e.g., were strong emotions like fear involved? was the lighting good? has he or she ordinarily a good memory for faces? was there time to observe carefully? were there distractions present?). Neither, probably, did the lawyers on either side, or else they immorally suppressed what should have been their doubts. As a consequence, innocent people languished in jail for years and guilty parties went free.

Communications are another object for critical thought. When in reply to Harry’s question, “How are you doing?” Morgan says, in a clipped and dull voice and a strained expression on her face, “I’m fine”, Harry needs to be aware that “How are you doing?” often functions as equivalent to a simple greeting, like “Hi” and so the response “Fine” could similarly be functioning as a polite return of the greeting, like “Hi back to you”, and not as an accurate report of the speaker’s condition. Harry needs to notice and interpret other aspects of Morgan’s communication—her lethargic tone of voice and her anxious facial expression—and to recognize the incompatibility between those signals and the interpretation of her response as an accurate depiction of Morgan’s state of well-being. He needs to employ critical interpretive skills to realize that Morgan has communicated that she is not fine at all, but for some reason isn’t offering to talk about it.

If President Trump did in fact say to his then F.B.I. director James Comey, about the F.B.I. investigation of former National Security Advisor Michaell Flynn “I hope you can let this go”, was it legitimate for Comey to interpret the President’s comment as a directive? And was Comey’s response, which was simply to ignore President Trump’s alleged comment, an appropriate response? What was going on? It takes critical thinking to try to sort out these issues. Taking the President’s alleged comment literally, it just expresses his attitude towards the FBI investigation of Flynn. But communications from the President in a tête-à-tête in the White House with the Director of the FBI are not occasions for just sharing attitudes. This was not an occasion on which they could step out of their political roles and chat person-to-person. The President can legitimately be presumed to be communicating his wishes as to what his FBI Director should do, and such expressions of wishes are, in this context, to be normally understood as directives. On the other hand, for the President to direct that an ongoing investigation by the FBI be stopped, or that it come up with a pre-determined finding, is illegal: it’s obstruction of justice. So Comey seemed faced with at least two possible interpretations of what he took the President to be saying: either an out-of-place expression of his attitude towards the outcome of the Flynn investigation or an illegal directive. Which was the President’s intention? However, there are other possibilities.

Was President Trump a political tyro whose lack of political experience might have left him ignorant of the fact that the FBI Director has to keep investigations free of political interference? Or might Trump have thought that the Presidency conveys the authority to influence the outcome of criminal investigations? Or might President Trump have been testing Mr. Comey to see if he could be manipulated? And Mr. Comey could have responded differently. He could have said, “I wish we could let this go too, Mr. President, but there are questions about General Flynn’s conduct that have to be investigated, and as you know, we cannot interfere with an ongoing FBI investigation”. Such a response would have forced the President to take back what he allegedly said, withdrawing any suggestion that his comment was a directive, or else to make it plain that he was indeed directing Comey to obstruct justice. In the event, apparently Mr. Comey did not take this way out, which would at once have displayed loyalty to the President (by protecting him from explicitly obstructing justice) and also have affirmed the independence of the FBI from interference from the White House. Perhaps he thought that the President clearly had directed him to obstruct justice, and judged that giving him an opportunity explicitly to withdraw that directive amounted to overlooking that illegal act, which would be a violation of his responsibilities as Director of the FBI. If so, however, simply not responding to the President’s comment, the path Comey apparently chose, also amounted to turning a blind eye to what he judged to be President Trump’s illegal directive.

As these two examples illustrate, the interpretation of communications, and the appropriate response to them can require critical thinking: recognizing different functions of communication, and being sensitive to the implications of different contexts of communication; being sensitive to the roles communicators occupy and to the rights, obligations, and limits attached to such roles.

As Fisher and Scriven acknowledge, “defining information is itself a difficult task.” They make a useful start by distinguishing information from raw data (“the numbers or bare descriptions obtained from measurements or observations”, op . cit., p. 41). No critical thinking is required for the latter; just the pains necessary to record raw data accurately, In many cases, though, the interpretation of raw data, the meaning or significance that they are said to have, can require critical thinking.

One might go beyond Fisher and Scriven’s list of other things besides arguments to which critical thinking can be applied. A thoughtful appreciation of novels or movies, plays or poetry, paintings or sculptures requires skilled interpretation, imagining alternatives, thoughtful selection of appropriate criteria of evaluation and then the selection and application of appropriate standards, and more. A good interior designer must consider the effects and interactions of space and light and color and fabrics and furniture design, and coordinate these with clients’ lifestyles, habits and preferences. Advanced practical skills in various sciences come into play. A coach of a sports team must think about each individual team member’s skills and deficiencies, personality and life situation; about plays and strategies, opponents’ skills sets; approaches to games; and much more. Conventional approaches need to be reviewed as to their applicability to the current situation. Alternative possibilities need to be creatively imagined and critically assessed. And all of this is time-sensitive, sometimes calling for split-second decisions. The thinking involved in carrying out the tasks of composing a review of some work of literature or art or of coaching a sports team can be routine and conventional, or it can be imaginative, invoking different perspectives and challenging standard criteria.

The list could go on. The present point is that, while argument is central to critical thinking, critical thinking about and using arguments is not all there is to critical thinking. [4]

Bailin, Sharon & Battersby, Mark. (2010). Reason in the Balance , An I n quiry Approach to Critical Thinking , 1 st ed. Toronto: McGraw-Hill Ryerson.

Beardsley, Monroe C. (1950). Practical L ogic . Englewood Cliffs, NJ: Prentice-Hall.

Chaffee, John. 1985. Thinking Critically . Boston: Houghton Mifflin.

Dewey, John. (1910, 1991). How We Think . Lexington, MAD.C. Heath; Buffalo, NY: Prometheus Books.

Diestler, Sherry. (2005). Becoming a Critical Thinker , 4 th ed. Upper Saddle River, NJ: Pearson Education.

Ennis, Robert H. (1996). Critical Thinking . Upper Saddle River, NJ: Prentice-Hall.

Feldman, Richard. (1993). Reason and Argument , 2 nd ed. Upper Saddle River, NJ: Prentice-Hall.

Fisher, Alex.(2001). Critical Thinking, An Introduction . Cambridge: Cambridge University Press.

Fisher, Alec & Scriven, Michael. (1997). Critical Thinking, Its Definition and Assessment . Point

Reyes, CA: EdgePress; Norwich, UK: Center for Research in Critical Thinking.

Fogelin, Robert & Sinnott-Armstrong, Walter. (2001). Understanding A r guments , An Introduction to Informal Logic , 6 th ed. Belmont, CA: Wadsworth.

Freeman, James B. (1988.) Thinking Logically , Basic Concepts of Reaso n ing . Englewood Cliffs, NJ: Prentice-Hall.

Grennan, Wayne . (1984). Argument Evaluation . Lanham, MD: University Press of America.

Govier, Trudy. (2001). A Practical Study of Argument , 5 th ed. Belmont, CA: Wadsworth.

O’Keefe, Daniel J. (1977). Two concepts of argument. Journal of the Amer i can Forensic Association , 13 , 121-128.

O‘Keefe, Daniel J. (1982). The concepts of argument and arguing. In J. R. Cox & C. A. Willard (Eds.), Advances in Argumentation Theory and R e search , pp. 3-23. Carbondale, IL: Southern Illinois University Press.

  • © J. Anthony Blair ↵
  • According to the Innocence Project, “Eyewitness misidentification is the greatest contributing factor to wrongful convictions proven by DNA testing, playing a role in more than 70% of convictions [in the U.S.A.] overturned through DNA testing nationwide.” (https://www.innocenceproject.org/causes/eyewitness-misidentification/, viewed August 2017). ↵
  • I owe the general organization and many of the specific ideas of this chapter to a series of lectures by Jean Goodwin at the Summer Institute on Argumentation sponsored by the Centre for Research in Reasoning, Argumentation and Rhetoric at the University of Windsor. ↵

Studies in Critical Thinking Copyright © by J. Anthony Blair is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

ARGUMENTATION AND CRITICAL THINKING

Profile image of Samson Esudu

2020, Logics and Arguments

The Logic of an argumentation implies a formalised description of how humans reason and argue about propositions. Implying that Logic in other sense is the study of arguments where it is used for analysing an argument or a piece of reasoning and work out whether it is correct or not. Logical arguments are constructed according to certain rules to minimize errors that might be involved. On a daily basis, people utilise logic when constructing statements, arguing individual points of view and in myriad other ways. By understanding how logic is used helps communicate more efficiently and effectively in any discussions and debates.

Related Papers

John Corcoran

Corcoran, J. 1989. Argumentations and Logic. Argumentation 3: 17-43 Argumentations are at the heart of the deductive and the hypothetico-deductive methods, which are involved in attempts to reduce currently open problems to problems already solved. These two methods span the entire spectrum of problem-oriented reasoning from the simplest and most practical to the most complex and most theoretical, thereby uniting all objective thought whether ancient or contemporary, whether humanistic or scientific, whether normative or descriptive, whether concrete or abstract. Analysis, synthesis, evaluation, and function of argumentations are described. Perennial philosophic problems, epistemic and ontic, related to argumentations are put in perspective. So much of what has been regarded as logic is seen to be involved in the study of argumentations that logic may be usefully defined as the systematic study of argumentations, which is virtually identical to the quest of objective understanding of objectivity. KEY WORDS: hypothesis, theorem, argumentation, proof, deduction, premise-conclusion argument, valid, inference, implication, epistemic, ontic, cogent, fallacious, paradox, formal, validation. “Argumentations and Logic” has been used in courses at University of Barcelona, Bryn Mawr College, University of Buffalo, Buffalo State College, State University of Campinas, Canisius College, Federal University of Goiás, Fredonia University, Grand Valley State University, University of Lausanne, Niagara University, University of Santiago de Compostela, SUNY Potsdam, and elsewhere. It has been translated into Spanish, Portuguese, and Persian. Insha’Allah, in the fullness of time there will be translations into Chinese and Czech.

argumentation reasoning and critical thinking

Ricardo Arieira

Logic and Logical Philosophy

Mariusz Urbański

Christa Asterhan

Sandra Dwyer

Argumentation in Artificial Intelligence 133 152

Anthony Hunter , Philippe Besnard

Argumentation is an important cognitive process for dealing with conflicting information by generating and/or comparing arguments. Often it is based on constructing and comparing deductive arguments. These are arguments that involve some premises (which we refer to as the support of the argument) and a conclusion (which we refer to as the claim of the argument) such that the support deductively entails the claim.

Journal of Philosophy, Vol. 87, 1990. pp. 399-419.

Douglas Walton

This paper answers some questions central argumentation. Are reasoning and argument essentially the same thing? Or is one a proper subpart of the other? Or can you have reasoning that is not in argument? Or could you have argument without reasoning?

Rupkatha Journal on Interdisciplinary Studies in Humanities

Galina Jasečková

A characteristic feature of modern society is the ever-expanding information space. Hidden information attacks harm the lives of individuals and society in general. In this regard, studies of critical thinking seem particularly important to us. Therefore, critical thinking is interpreted in the academic discourse mainly in connection with the effort to cope with the growing amount of misinformation and hate speech. While teachers and policymakers consider critical thinking an important educational goal, many are unclear about developing this competency in a school setting. For many key competencies, the question is whether and how they can be acquired through planned educational courses/programs. Although there are specific training programs for critical thinking as a core competency, their design and effectiveness are scientifically controversial. Instruction in critical thinking becomes extremely important because it allows individuals to gain a more comprehensive understanding of...

Mudasir Tantray

EDULEARN proceedings

RELATED PAPERS

Nucleic acids symposium series

Bekim Selimi

Rev Assoc Med …

Eliana Sheila da Silva

Digestive and Liver Disease

R. Francavilla

Physical Review B

eka nurhayati

Jentashapir Journal of Health Research

mehdi khorrami

Les deux réformes chrétiennes: Propagation et diffusion

Alain Tallon

BMC Psychiatry

Nina Schooler

Anais do Museu Paulista: História e Cultura Material

Sandra Corrêa

antonino bruno

Rista Putri

Sarhad Journal of Agriculture

Muhammad Raheel

Demerval Netto

Acta Bioquimica Clinica Latinoamericana

Luis Trombetta

Irshad Hussain

hjhfggf hjgfdf

instname:Universidad Piloto de Colombia

isabella fernanda

tufhfgd hfdfsd

Nilson Guiguer

Saudi Medical Journal

Dr Anas AlSalhani

Journal of Animal and Feed Sciences

Zenon Nogalski

Pacific Island Heritage (Terra Australis 35): Archaeology, Identity &amp; Community

Rosalind Hunter-Anderson

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

argumentation reasoning and critical thinking

  • Kindle Store
  • Kindle eBooks
  • Education & Teaching

Promotions apply when you purchase

These promotions will be applied to this item:

Some promotions may be combined; others are not eligible to be combined with other offers. For details, please see the Terms & Conditions associated with these promotions.

Buy for others

Buying and sending ebooks to others.

  • Select quantity
  • Buy and send eBooks
  • Recipients can read on any device

These ebooks can only be redeemed by recipients in the US. Redemption links and eBooks cannot be resold.

argumentation reasoning and critical thinking

Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required .

Read instantly on your browser with Kindle for Web.

Using your mobile phone camera - scan the code below and download the Kindle app.

QR code to download the Kindle App

Image Unavailable

A Practical Guide to Critical Thinking: Essential Steps for Developing Sound Reasoning and Arguments while Overcoming Hindrances to Rational Thinking

  • To view this video download Flash Player

Follow the author

Greg R. Haskins

A Practical Guide to Critical Thinking: Essential Steps for Developing Sound Reasoning and Arguments while Overcoming Hindrances to Rational Thinking Kindle Edition

  • Print length 42 pages
  • Language English
  • Sticky notes On Kindle Scribe
  • Publication date April 8, 2016
  • File size 785 KB
  • Page Flip Enabled
  • Word Wise Enabled
  • Enhanced typesetting Enabled
  • See all details

Customers who bought this item also bought

Ten Steps to Overcome Media Disinformation & Manipulation: How to Apply Critical Thinking to Avoid Psychological Manipulation

Product details

  • ASIN ‏ : ‎ B01E1O1Q1C
  • Publisher ‏ : ‎ Greg R. Haskins; 2nd edition (April 8, 2016)
  • Publication date ‏ : ‎ April 8, 2016
  • Language ‏ : ‎ English
  • File size ‏ : ‎ 785 KB
  • Simultaneous device usage ‏ : ‎ Unlimited
  • Text-to-Speech ‏ : ‎ Enabled
  • Screen Reader ‏ : ‎ Supported
  • Enhanced typesetting ‏ : ‎ Enabled
  • X-Ray ‏ : ‎ Not Enabled
  • Word Wise ‏ : ‎ Enabled
  • Sticky notes ‏ : ‎ On Kindle Scribe
  • Print length ‏ : ‎ 42 pages
  • #67 in One-Hour Science & Math Short Reads
  • #184 in Education Problem Solving
  • #304 in One-Hour Education & Reference Short Reads

About the author

Greg r. haskins.

Greg R. Haskins is an author of books on critical thinking and science, including A Practical Guide to Critical Thinking, which for many years was among the most widely read and downloaded reference sources on Skepdic.com. It became internationally adopted or referenced by educational institutions, medical institutions, militaries, government agencies, blogs, and newsletters as a handy guidebook on critical thinking.

Greg is a former multidisciplinary environmental scientist and project manager for Bechtel Corporation and a former project manager, technical writer and business process analyst for the County of Marin, California. While at Bechtel, he worked closely with environmental scientists and engineers representing multiple specialties on projects ranging from small hazardous waste cleanup jobs to large state-of-the-art industrial projects. The latter included nuclear power plants and nuclear waste repositories.

Greg has maintained a strong philosophical and psychological interest in how and why people believe things to be true, with a focus on science, religion and politics.

Customer reviews

Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.

To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.

  • Sort reviews by Top reviews Most recent Top reviews

Top reviews from the United States

There was a problem filtering reviews right now. please try again later..

argumentation reasoning and critical thinking

Top reviews from other countries

argumentation reasoning and critical thinking

  • Amazon Newsletter
  • About Amazon
  • Accessibility
  • Sustainability
  • Press Center
  • Investor Relations
  • Amazon Devices
  • Amazon Science
  • Sell on Amazon
  • Sell apps on Amazon
  • Supply to Amazon
  • Protect & Build Your Brand
  • Become an Affiliate
  • Become a Delivery Driver
  • Start a Package Delivery Business
  • Advertise Your Products
  • Self-Publish with Us
  • Become an Amazon Hub Partner
  • › See More Ways to Make Money
  • Amazon Visa
  • Amazon Store Card
  • Amazon Secured Card
  • Amazon Business Card
  • Shop with Points
  • Credit Card Marketplace
  • Reload Your Balance
  • Amazon Currency Converter
  • Your Account
  • Your Orders
  • Shipping Rates & Policies
  • Amazon Prime
  • Returns & Replacements
  • Manage Your Content and Devices
  • Recalls and Product Safety Alerts
  • Conditions of Use
  • Privacy Notice
  • Consumer Health Data Privacy Disclosure
  • Your Ads Privacy Choices

The Power of Critical Thinking in the Life of the High Schooler | Interview w/ Kathy Gibbens How to Homeschool in High School

Our world (especially as teens) is full of so much information! We are confronted daily with bad thinking, propaganda, and emotional reasoning - it can be hard to manage! Today we have the privilege of hearing from Kathy Gibbens, homeschool mom and host of the "Filter it Through a Brain Cell Podcast" (a podcast focused on teaching critical thinking skills to every listener)! We cover everything from defining critical thinking and the most common fallacies we face as teens today to discovering how we can stay rooted in truth amidst this ever-changing culture! Resources mentioned: Fallacy Detective Master Books  - Introduction to Logic Memoria Press  - Traditional Logic Connect with Mrs. Gibbens: Filter it Through a Brain Cell: Podcast Filter it Through a Brain Cell: Instagram Follow How to Homeschool in High School on Instagram and Facebook Email questions to [email protected] Music by FASSounds from Pixabay

  • More Episodes
  • © 2024 How to Homeschool in High School

Book cover

  • © 2017

On Reasoning and Argument

Essays in Informal Logic and on Critical Thinking

  • David Hitchcock 0

Department of Philosophy, McMaster University Department of Philosophy, Hamilton, Canada

You can also search for this author in PubMed   Google Scholar

  • Brings together four decades of work by this well-respected author in argumentation studies
  • Includes many papers that are not readily available or have not been widely published
  • A "must read" for students of argumentation in Communication or Philosophy graduate programmes
  • Facilitates the assessment of Hitchcock’s body of work as a whole
  • Includes supplementary material: sn.pub/extras

Part of the book series: Argumentation Library (ARGA, volume 30)

48k Accesses

54 Citations

13 Altmetric

  • Table of contents

About this book

Authors and affiliations, about the author, bibliographic information.

  • Publish with us

Buying options

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (33 chapters)

Front matter, deduction, induction and conduction.

David Hitchcock

The Linked-Convergent Distinction

Material consequence, enthymematic arguments, does the traditional treatment of enthymemes rest on a mistake, toulmin’s warrants, non-logical consequence, inference claims, material consequence and counterfactuals, patterns of reasoning, validity in conductive arguments, reasoning by analogy: a general theory, pollock on practical reasoning, the generation of argument schemes, instrumental rationality, appeals to considerations.

  • Reasoning and Argument
  • J. Anthony Blair
  • Deduction, induction and conduction
  • Types of validity
  • linked-convergent distinction
  • Material consequence
  • Enthymematic arguments
  • Toulmin's warrants
  • Counter-factuals
  • Patterns of reasoning
  • Reasoning by analogy
  • Argumentation schemes

David Hitchcock, professor emeritus of philosophy at McMaster University, is the founding president of the Association for Informal Logic and Critical Thinking, author of Critical Thinking (Methuen, 1983), co-author of Evidence-Based Practice: Logic and Critical Thinking in Medicine (AMA Press, 2005), and co-editor of Arguing on the Toulmin Model (Springer, 2006).

Book Title : On Reasoning and Argument

Book Subtitle : Essays in Informal Logic and on Critical Thinking

Authors : David Hitchcock

Series Title : Argumentation Library

DOI : https://doi.org/10.1007/978-3-319-53562-3

Publisher : Springer Cham

eBook Packages : Religion and Philosophy , Philosophy and Religion (R0)

Copyright Information : Springer International Publishing AG 2017

Hardcover ISBN : 978-3-319-53561-6 Published: 19 April 2017

Softcover ISBN : 978-3-319-85184-6 Published: 25 July 2018

eBook ISBN : 978-3-319-53562-3 Published: 06 April 2017

Series ISSN : 1566-7650

Series E-ISSN : 2215-1907

Edition Number : 1

Number of Pages : XXVII, 553

Number of Illustrations : 1 b/w illustrations, 6 illustrations in colour

Topics : Philosophy of Language , Classical Studies , Philology , Literacy , Logic

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. 25 Critical Thinking Examples (2024)

    argumentation reasoning and critical thinking

  2. Critical thinking theory, teaching, and practice

    argumentation reasoning and critical thinking

  3. Printable Argumentative Writing Classroom Poster

    argumentation reasoning and critical thinking

  4. Innovation Spotlight: Micro Pathway on Critical Thinking & Argumentation

    argumentation reasoning and critical thinking

  5. Critical Thinking: Argument and Argumentation 2nd edition

    argumentation reasoning and critical thinking

  6. Argument Mapping

    argumentation reasoning and critical thinking

VIDEO

  1. Adam Explains 20 Logical Fallacies in 4 Minutes

  2. Critical Thinking 12: Arguments, analogies

  3. 9.1 Making Reasonable Inferences

  4. Overview of Critical Thinking

  5. Argumentation

  6. Logical reasoning, Critical thinking, types of logical reasoning

COMMENTS

  1. 1.3: Truth and Its Role in Argumentation

    Critical Reasoning and Writing (Levin et al.) 1: Introduction to Critical Thinking, Reasoning, and Logic 1.3: Truth and Its Role in Argumentation - Certainty, Probability, and Monty Hall Expand/collapse global location

  2. Developing Students' Critical Thinking Skills and Argumentation

    Critical thinking skills that include the ability to evaluate arguments and counterarguments in a variety of contexts are very important, and effective argumentation is the focal point of criticism and the informed decision (Nussbaum, 2008).Argumentation is defined as the process of making claims about a scientific subject, supporting them with data, using warrants, and criticizing, refuting ...

  3. PDF FUNDAMENTALS OF CRITICAL ARGUMENTATION

    CRITICAL REASONING AND ARGUMENTATION General Editors Douglas Walton, University of Winnipeg Hans V. Hansen, University of Windsor, Ontario This series is aimed at introductory students in the field of argumentation, informal logic, and critical thinking. Informed by research in linguistics, communication, artificial intelligence, and ...

  4. CHAPTER 1

    E very day we are bombarded with arguments, arguments that are often based on fallacious reasoning with the aim of manipulating our thinking and behaviour. We encounter these arguments in our reading, on the radio, on television, via the internet and, of course, in advertisements. However, the ever-increasing complexity of information technology, the perplexity of human interactions, the ...

  5. Argumentation, Evidence Evaluation and Critical Thinking

    Using this frame, the chapter examines the contributions of argumentation in science education to the components of critical thinking, and also discusses the evaluation of evidence and the different factors influencing or even hampering it. The chapter concludes with consideration of the development of critical thinking in the science classroom.

  6. Introduction: Reasoning, Argumentation, and Critical Thinking

    In "The Pros and Cons of Identifying Critical Thinking with System 2 Processing," Jean - François Bonnefon addresses the currently particularly popular two systems-distinction in view of CT, and points out that system 2 reasoning—being generally considered deliberate, slower, and more effortful than system 1 reasoning—plausibly ...

  7. Introduction to Logic and Critical Thinking Specialization

    This specialization introduces general standards of good reasoning and offers tools to improve your critical thinking skills. These skills will help you determine when an argument is being given, what its crucial parts are, and what it assumes implicitly. You will also learn how to apply deductive and inductive standards for assessing arguments ...

  8. Fostering Critical Thinking, Reasoning, and Argumentation Skills ...

    Introduction. While the practice of argumentation is a cornerstone of the scientific process, students at the secondary level have few opportunities to engage in it .Recent research suggests that collaborative discourse and critical dialogue focused on student claims and justifications can increase student reasoning abilities and conceptual understanding, and that strategies are needed to ...

  9. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  10. 1: Introduction to Critical Thinking, Reasoning, and Logic

    1.7: Creating a Philosophical Outline. This page titled 1: Introduction to Critical Thinking, Reasoning, and Logic is shared under a license and was authored, remixed, and/or curated by () . What is thinking? It may seem strange to begin a logic textbook with this question. 'Thinking' is perhaps the most intimate and personal thing that ...

  11. How to analyse arguments (CHAPTER 4)

    When we analyse an argument we want to lay bare the components of the argument. Differently put, we want to reveal the argument's structure. In order to do this, we should know how to identify premises and conclusions in arguments. This is often made easier by underlining the signal words in an argument. Signal words in an argument indicate ...

  12. Chapter 2 Arguments

    Chapter 2 Arguments. Chapter 2. Arguments. The fundamental tool of the critical thinker is the argument. For a good example of what we are not talking about, consider a bit from a famous sketch by Monty Python's Flying Circus: 3. Man: (Knock) Mr. Vibrating: Come in.

  13. LOGOS: Critical Thinking, Arguments, and Fallacies

    Critical thinking can be contrasted with Authoritarian thinking. This type of thinking seeks to preserve the original conclusion. ... because people shouldn't accept your conclusion if you are using scare tactics or distracting and manipulating reasoning. Arguments that have this issue are called fallacies. There are a lot of fallacies, so ...

  14. Arguing Using Critical Thinking

    Reviewed by Steve Gimbel, Professor, Gettysburg College on 9/29/22 Comprehensiveness rating: 4 see less. There are separate sections on how to formulate an argument, how to evaluate an argument, the burdens adopted by those engaging in critical discourse, rhetorical strategies for effectively convincing an interlocutor, and errors in reasoning.

  15. Cognition and Instruction/Argumentation and Critical Thinking

    Critical Thinking (CT) and Argumentation are closely linked skills and concepts. To be effective in either skill, the other is necessary. CT provides the processes needed for argument formulation, while Argumentation allows one to utilize and apply CT skills through logical reasoning. ... Reasoning and argumentation: Towards an integrated ...

  16. (PDF) Introduction: Reasoning, Argumentation, and Critical Thinking

    Approach to Critical Thinking'' Deanna Kuhn counters the Yara Yasser Hilal addresses concerns regarding the current trend of viewing reasoning as a broadly social extent to which the aims and objectives of academic pro- affair, and presents empirical evidence documenting a role grams align with pedagogies for CT in ''Do Programmes for ...

  17. PDF Introduction: Reasoning, Argumentation, and Critical Thinking Instruction

    In ''The Pros and Cons of Identifying Critical Thinking with System 2 Processing,'' Jean-Franc ̧ois Bonnefon addresses the currently particularly popular two systems-distinction in view of CT, and points out that system 2 reasoning—being generally considered deliberate, slower, and more effortful than system 1 reasoning—plausibly ...

  18. Arguments and Critical Thinking

    Sherry Diestler, Becoming a Critical Thinker, 4th ed., p. 403. " Argument: An attempt to support a conclusion by giving reasons for it.". Robert Ennis, Critical Thinking, p. 396. "Argument - A form of thinking in which certain statements (reasons) are offered in support of another statement (conclusion).".

  19. Critical Thinking and Reasoning: Logic and the Role of Arguments

    Critical thinkers have faith in the power of logic and sound reasoning. Critical thinkers understand that it is in everyone's best interest to encourage and develop sound logic. More importantly, critical thinkers value the power of letting others draw their own conclusions. Recall that critical thinking is an active mode of thinking.

  20. (PDF) ARGUMENTATION AND CRITICAL THINKING

    Activating critical thinking on the message, engagement of a variety of skills that include; listening, analysis, evaluation, inference and interpretation or explanation where self-regulation will be applied. All happen within a short period where listening to understanding skills always determines the right response.

  21. A Practical Guide to Critical Thinking: Essential Steps for Developing

    Key elements include: • What critical thinking is (and is not), its uses and its limitations • How critical thinking relates to the human understanding process • The five steps to becoming a critical thinker • An argument checklist • Five appendices of critical thinking hindrances (biases) The original version was hosted on Skepdic ...

  22. Enhance Peer Support with Logical Reasoning

    In the realm of peer support, critical thinking is an invaluable skill that can be honed through logical reasoning. This process involves analyzing information objectively, evaluating arguments ...

  23. 3 Critical Thinking Skills You Need In 2024

    To develop critical thinking for your career success, consider building the following skills: 1. Curiosity. Innovation comes through being curious enough to keep probing and digging for ...

  24. David Hitchcock (2017): On Reasoning and Argument: Essays in ...

    On Reasoning and Argument fits easily into the company of other recent selections from major argumentation scholars (Blair 2012; ... perhaps because he has never been convinced that they should have a place in the teaching of reasoning skills or critical thinking. Professor Hitchcock's 2007 paper "Informal Logic and the Concept of Argument ...

  25. Boost Translation Accuracy with Logical Reasoning Skills

    Enhancing critical thinking skills is a vital aspect of the translation profession. Logical reasoning, a component of critical thinking, involves analyzing arguments, identifying fallacies, and ...

  26. The Power of Critical Thinking in the Life of the High Schooler

    We are confronted daily with bad thinking, propaganda, and emotional reasoning - it can be hard to manage! Today we have the privilege of hearing from Kathy Gibbens, homeschool mom and host of the "Filter it Through a Brain Cell Podcast" (a podcast focused on teaching critical thinking skills to every listener)!

  27. DOCX SUNY Critical Thinking and Reasoning

    SUNY Critical Thinking and Reasoning. Students will… clearly articulate an issue or problem; identify, analyze, and evaluate ideas, data, and arguments as they occur in their own or others' work; acknowledge limitations such as perspective and bias; and. develop well-reasoned (logical) arguments to form judgments and/or draw conclusions. 1.

  28. On Reasoning and Argument: Essays in Informal Logic and on Critical

    About this book. This book brings together in one place David Hitchcock's most significant published articles on reasoning and argument. In seven new chapters he updates his thinking in the light of subsequent scholarship. Collectively, the papers articulate a distinctive position in the philosophy of argumentation. Among other things, the ...

  29. Boost Logical Reasoning in Corporate Real Estate

    Logical reasoning, a cornerstone of critical thinking, involves evaluating information and arguments in a structured and systematic way. By enhancing your logical reasoning abilities, you can make ...