• Privacy Policy

Research Method

Home » Data Collection – Methods Types and Examples

Data Collection – Methods Types and Examples

Table of Contents

Data collection

Data Collection

Definition:

Data collection is the process of gathering and collecting information from various sources to analyze and make informed decisions based on the data collected. This can involve various methods, such as surveys, interviews, experiments, and observation.

In order for data collection to be effective, it is important to have a clear understanding of what data is needed and what the purpose of the data collection is. This can involve identifying the population or sample being studied, determining the variables to be measured, and selecting appropriate methods for collecting and recording data.

Types of Data Collection

Types of Data Collection are as follows:

Primary Data Collection

Primary data collection is the process of gathering original and firsthand information directly from the source or target population. This type of data collection involves collecting data that has not been previously gathered, recorded, or published. Primary data can be collected through various methods such as surveys, interviews, observations, experiments, and focus groups. The data collected is usually specific to the research question or objective and can provide valuable insights that cannot be obtained from secondary data sources. Primary data collection is often used in market research, social research, and scientific research.

Secondary Data Collection

Secondary data collection is the process of gathering information from existing sources that have already been collected and analyzed by someone else, rather than conducting new research to collect primary data. Secondary data can be collected from various sources, such as published reports, books, journals, newspapers, websites, government publications, and other documents.

Qualitative Data Collection

Qualitative data collection is used to gather non-numerical data such as opinions, experiences, perceptions, and feelings, through techniques such as interviews, focus groups, observations, and document analysis. It seeks to understand the deeper meaning and context of a phenomenon or situation and is often used in social sciences, psychology, and humanities. Qualitative data collection methods allow for a more in-depth and holistic exploration of research questions and can provide rich and nuanced insights into human behavior and experiences.

Quantitative Data Collection

Quantitative data collection is a used to gather numerical data that can be analyzed using statistical methods. This data is typically collected through surveys, experiments, and other structured data collection methods. Quantitative data collection seeks to quantify and measure variables, such as behaviors, attitudes, and opinions, in a systematic and objective way. This data is often used to test hypotheses, identify patterns, and establish correlations between variables. Quantitative data collection methods allow for precise measurement and generalization of findings to a larger population. It is commonly used in fields such as economics, psychology, and natural sciences.

Data Collection Methods

Data Collection Methods are as follows:

Surveys involve asking questions to a sample of individuals or organizations to collect data. Surveys can be conducted in person, over the phone, or online.

Interviews involve a one-on-one conversation between the interviewer and the respondent. Interviews can be structured or unstructured and can be conducted in person or over the phone.

Focus Groups

Focus groups are group discussions that are moderated by a facilitator. Focus groups are used to collect qualitative data on a specific topic.

Observation

Observation involves watching and recording the behavior of people, objects, or events in their natural setting. Observation can be done overtly or covertly, depending on the research question.

Experiments

Experiments involve manipulating one or more variables and observing the effect on another variable. Experiments are commonly used in scientific research.

Case Studies

Case studies involve in-depth analysis of a single individual, organization, or event. Case studies are used to gain detailed information about a specific phenomenon.

Secondary Data Analysis

Secondary data analysis involves using existing data that was collected for another purpose. Secondary data can come from various sources, such as government agencies, academic institutions, or private companies.

How to Collect Data

The following are some steps to consider when collecting data:

  • Define the objective : Before you start collecting data, you need to define the objective of the study. This will help you determine what data you need to collect and how to collect it.
  • Identify the data sources : Identify the sources of data that will help you achieve your objective. These sources can be primary sources, such as surveys, interviews, and observations, or secondary sources, such as books, articles, and databases.
  • Determine the data collection method : Once you have identified the data sources, you need to determine the data collection method. This could be through online surveys, phone interviews, or face-to-face meetings.
  • Develop a data collection plan : Develop a plan that outlines the steps you will take to collect the data. This plan should include the timeline, the tools and equipment needed, and the personnel involved.
  • Test the data collection process: Before you start collecting data, test the data collection process to ensure that it is effective and efficient.
  • Collect the data: Collect the data according to the plan you developed in step 4. Make sure you record the data accurately and consistently.
  • Analyze the data: Once you have collected the data, analyze it to draw conclusions and make recommendations.
  • Report the findings: Report the findings of your data analysis to the relevant stakeholders. This could be in the form of a report, a presentation, or a publication.
  • Monitor and evaluate the data collection process: After the data collection process is complete, monitor and evaluate the process to identify areas for improvement in future data collection efforts.
  • Ensure data quality: Ensure that the collected data is of high quality and free from errors. This can be achieved by validating the data for accuracy, completeness, and consistency.
  • Maintain data security: Ensure that the collected data is secure and protected from unauthorized access or disclosure. This can be achieved by implementing data security protocols and using secure storage and transmission methods.
  • Follow ethical considerations: Follow ethical considerations when collecting data, such as obtaining informed consent from participants, protecting their privacy and confidentiality, and ensuring that the research does not cause harm to participants.
  • Use appropriate data analysis methods : Use appropriate data analysis methods based on the type of data collected and the research objectives. This could include statistical analysis, qualitative analysis, or a combination of both.
  • Record and store data properly: Record and store the collected data properly, in a structured and organized format. This will make it easier to retrieve and use the data in future research or analysis.
  • Collaborate with other stakeholders : Collaborate with other stakeholders, such as colleagues, experts, or community members, to ensure that the data collected is relevant and useful for the intended purpose.

Applications of Data Collection

Data collection methods are widely used in different fields, including social sciences, healthcare, business, education, and more. Here are some examples of how data collection methods are used in different fields:

  • Social sciences : Social scientists often use surveys, questionnaires, and interviews to collect data from individuals or groups. They may also use observation to collect data on social behaviors and interactions. This data is often used to study topics such as human behavior, attitudes, and beliefs.
  • Healthcare : Data collection methods are used in healthcare to monitor patient health and track treatment outcomes. Electronic health records and medical charts are commonly used to collect data on patients’ medical history, diagnoses, and treatments. Researchers may also use clinical trials and surveys to collect data on the effectiveness of different treatments.
  • Business : Businesses use data collection methods to gather information on consumer behavior, market trends, and competitor activity. They may collect data through customer surveys, sales reports, and market research studies. This data is used to inform business decisions, develop marketing strategies, and improve products and services.
  • Education : In education, data collection methods are used to assess student performance and measure the effectiveness of teaching methods. Standardized tests, quizzes, and exams are commonly used to collect data on student learning outcomes. Teachers may also use classroom observation and student feedback to gather data on teaching effectiveness.
  • Agriculture : Farmers use data collection methods to monitor crop growth and health. Sensors and remote sensing technology can be used to collect data on soil moisture, temperature, and nutrient levels. This data is used to optimize crop yields and minimize waste.
  • Environmental sciences : Environmental scientists use data collection methods to monitor air and water quality, track climate patterns, and measure the impact of human activity on the environment. They may use sensors, satellite imagery, and laboratory analysis to collect data on environmental factors.
  • Transportation : Transportation companies use data collection methods to track vehicle performance, optimize routes, and improve safety. GPS systems, on-board sensors, and other tracking technologies are used to collect data on vehicle speed, fuel consumption, and driver behavior.

Examples of Data Collection

Examples of Data Collection are as follows:

  • Traffic Monitoring: Cities collect real-time data on traffic patterns and congestion through sensors on roads and cameras at intersections. This information can be used to optimize traffic flow and improve safety.
  • Social Media Monitoring : Companies can collect real-time data on social media platforms such as Twitter and Facebook to monitor their brand reputation, track customer sentiment, and respond to customer inquiries and complaints in real-time.
  • Weather Monitoring: Weather agencies collect real-time data on temperature, humidity, air pressure, and precipitation through weather stations and satellites. This information is used to provide accurate weather forecasts and warnings.
  • Stock Market Monitoring : Financial institutions collect real-time data on stock prices, trading volumes, and other market indicators to make informed investment decisions and respond to market fluctuations in real-time.
  • Health Monitoring : Medical devices such as wearable fitness trackers and smartwatches can collect real-time data on a person’s heart rate, blood pressure, and other vital signs. This information can be used to monitor health conditions and detect early warning signs of health issues.

Purpose of Data Collection

The purpose of data collection can vary depending on the context and goals of the study, but generally, it serves to:

  • Provide information: Data collection provides information about a particular phenomenon or behavior that can be used to better understand it.
  • Measure progress : Data collection can be used to measure the effectiveness of interventions or programs designed to address a particular issue or problem.
  • Support decision-making : Data collection provides decision-makers with evidence-based information that can be used to inform policies, strategies, and actions.
  • Identify trends : Data collection can help identify trends and patterns over time that may indicate changes in behaviors or outcomes.
  • Monitor and evaluate : Data collection can be used to monitor and evaluate the implementation and impact of policies, programs, and initiatives.

When to use Data Collection

Data collection is used when there is a need to gather information or data on a specific topic or phenomenon. It is typically used in research, evaluation, and monitoring and is important for making informed decisions and improving outcomes.

Data collection is particularly useful in the following scenarios:

  • Research : When conducting research, data collection is used to gather information on variables of interest to answer research questions and test hypotheses.
  • Evaluation : Data collection is used in program evaluation to assess the effectiveness of programs or interventions, and to identify areas for improvement.
  • Monitoring : Data collection is used in monitoring to track progress towards achieving goals or targets, and to identify any areas that require attention.
  • Decision-making: Data collection is used to provide decision-makers with information that can be used to inform policies, strategies, and actions.
  • Quality improvement : Data collection is used in quality improvement efforts to identify areas where improvements can be made and to measure progress towards achieving goals.

Characteristics of Data Collection

Data collection can be characterized by several important characteristics that help to ensure the quality and accuracy of the data gathered. These characteristics include:

  • Validity : Validity refers to the accuracy and relevance of the data collected in relation to the research question or objective.
  • Reliability : Reliability refers to the consistency and stability of the data collection process, ensuring that the results obtained are consistent over time and across different contexts.
  • Objectivity : Objectivity refers to the impartiality of the data collection process, ensuring that the data collected is not influenced by the biases or personal opinions of the data collector.
  • Precision : Precision refers to the degree of accuracy and detail in the data collected, ensuring that the data is specific and accurate enough to answer the research question or objective.
  • Timeliness : Timeliness refers to the efficiency and speed with which the data is collected, ensuring that the data is collected in a timely manner to meet the needs of the research or evaluation.
  • Ethical considerations : Ethical considerations refer to the ethical principles that must be followed when collecting data, such as ensuring confidentiality and obtaining informed consent from participants.

Advantages of Data Collection

There are several advantages of data collection that make it an important process in research, evaluation, and monitoring. These advantages include:

  • Better decision-making : Data collection provides decision-makers with evidence-based information that can be used to inform policies, strategies, and actions, leading to better decision-making.
  • Improved understanding: Data collection helps to improve our understanding of a particular phenomenon or behavior by providing empirical evidence that can be analyzed and interpreted.
  • Evaluation of interventions: Data collection is essential in evaluating the effectiveness of interventions or programs designed to address a particular issue or problem.
  • Identifying trends and patterns: Data collection can help identify trends and patterns over time that may indicate changes in behaviors or outcomes.
  • Increased accountability: Data collection increases accountability by providing evidence that can be used to monitor and evaluate the implementation and impact of policies, programs, and initiatives.
  • Validation of theories: Data collection can be used to test hypotheses and validate theories, leading to a better understanding of the phenomenon being studied.
  • Improved quality: Data collection is used in quality improvement efforts to identify areas where improvements can be made and to measure progress towards achieving goals.

Limitations of Data Collection

While data collection has several advantages, it also has some limitations that must be considered. These limitations include:

  • Bias : Data collection can be influenced by the biases and personal opinions of the data collector, which can lead to inaccurate or misleading results.
  • Sampling bias : Data collection may not be representative of the entire population, resulting in sampling bias and inaccurate results.
  • Cost : Data collection can be expensive and time-consuming, particularly for large-scale studies.
  • Limited scope: Data collection is limited to the variables being measured, which may not capture the entire picture or context of the phenomenon being studied.
  • Ethical considerations : Data collection must follow ethical principles to protect the rights and confidentiality of the participants, which can limit the type of data that can be collected.
  • Data quality issues: Data collection may result in data quality issues such as missing or incomplete data, measurement errors, and inconsistencies.
  • Limited generalizability : Data collection may not be generalizable to other contexts or populations, limiting the generalizability of the findings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Background of The Study

Background of The Study – Examples and Writing...

APA Table of Contents

APA Table of Contents – Format and Example

References in Research

References in Research – Types, Examples and...

Significance of the Study

Significance of the Study – Examples and Writing...

Problem statement

Problem Statement – Writing Guide, Examples and...

Thesis

Thesis – Structure, Example and Writing Guide

Data collection in research: Your complete guide

Last updated

31 January 2023

Reviewed by

Cathy Heath

Short on time? Get an AI generated summary of this article instead

In the late 16th century, Francis Bacon coined the phrase "knowledge is power," which implies that knowledge is a powerful force, like physical strength. In the 21st century, knowledge in the form of data is unquestionably powerful.

But data isn't something you just have - you need to collect it. This means utilizing a data collection process and turning the collected data into knowledge that you can leverage into a successful strategy for your business or organization.

Believe it or not, there's more to data collection than just conducting a Google search. In this complete guide, we shine a spotlight on data collection, outlining what it is, types of data collection methods, common challenges in data collection, data collection techniques, and the steps involved in data collection.

Analyze all your data in one place

Uncover hidden nuggets in all types of qualitative data when you analyze it in Dovetail

  • What is data collection?

There are two specific data collection techniques: primary and secondary data collection. Primary data collection is the process of gathering data directly from sources. It's often considered the most reliable data collection method, as researchers can collect information directly from respondents.

Secondary data collection is data that has already been collected by someone else and is readily available. This data is usually less expensive and quicker to obtain than primary data.

  • What are the different methods of data collection?

There are several data collection methods, which can be either manual or automated. Manual data collection involves collecting data manually, typically with pen and paper, while computerized data collection involves using software to collect data from online sources, such as social media, website data, transaction data, etc. 

Here are the five most popular methods of data collection:

Surveys are a very popular method of data collection that organizations can use to gather information from many people. Researchers can conduct multi-mode surveys that reach respondents in different ways, including in person, by mail, over the phone, or online.

As a method of data collection, surveys have several advantages. For instance, they are relatively quick and easy to administer, you can be flexible in what you ask, and they can be tailored to collect data on various topics or from certain demographics.

However, surveys also have several disadvantages. For instance, they can be expensive to administer, and the results may not represent the population as a whole. Additionally, survey data can be challenging to interpret. It may also be subject to bias if the questions are not well-designed or if the sample of people surveyed is not representative of the population of interest.

Interviews are a common method of collecting data in social science research. You can conduct interviews in person, over the phone, or even via email or online chat.

Interviews are a great way to collect qualitative and quantitative data . Qualitative interviews are likely your best option if you need to collect detailed information about your subjects' experiences or opinions. If you need to collect more generalized data about your subjects' demographics or attitudes, then quantitative interviews may be a better option.

Interviews are relatively quick and very flexible, allowing you to ask follow-up questions and explore topics in more depth. The downside is that interviews can be time-consuming and expensive due to the amount of information to be analyzed. They are also prone to bias, as both the interviewer and the respondent may have certain expectations or preconceptions that may influence the data.

Direct observation

Observation is a direct way of collecting data. It can be structured (with a specific protocol to follow) or unstructured (simply observing without a particular plan).

Organizations and businesses use observation as a data collection method to gather information about their target market, customers, or competition. Businesses can learn about consumer behavior, preferences, and trends by observing people using their products or service.

There are two types of observation: participatory and non-participatory. In participatory observation, the researcher is actively involved in the observed activities. This type of observation is used in ethnographic research , where the researcher wants to understand a group's culture and social norms. Non-participatory observation is when researchers observe from a distance and do not interact with the people or environment they are studying.

There are several advantages to using observation as a data collection method. It can provide insights that may not be apparent through other methods, such as surveys or interviews. Researchers can also observe behavior in a natural setting, which can provide a more accurate picture of what people do and how and why they behave in a certain context.

There are some disadvantages to using observation as a method of data collection. It can be time-consuming, intrusive, and expensive to observe people for extended periods. Observations can also be tainted if the researcher is not careful to avoid personal biases or preconceptions.

Automated data collection

Business applications and websites are increasingly collecting data electronically to improve the user experience or for marketing purposes.

There are a few different ways that organizations can collect data automatically. One way is through cookies, which are small pieces of data stored on a user's computer. They track a user's browsing history and activity on a site, measuring levels of engagement with a business’s products or services, for example.

Another way organizations can collect data automatically is through web beacons. Web beacons are small images embedded on a web page to track a user's activity.

Finally, organizations can also collect data through mobile apps, which can track user location, device information, and app usage. This data can be used to improve the user experience and for marketing purposes.

Automated data collection is a valuable tool for businesses, helping improve the user experience or target marketing efforts. Businesses should aim to be transparent about how they collect and use this data.

Sourcing data through information service providers

Organizations need to be able to collect data from a variety of sources, including social media, weblogs, and sensors. The process to do this and then use the data for action needs to be efficient, targeted, and meaningful.

In the era of big data, organizations are increasingly turning to information service providers (ISPs) and other external data sources to help them collect data to make crucial decisions. 

Information service providers help organizations collect data by offering personalized services that suit the specific needs of the organizations. These services can include data collection, analysis, management, and reporting. By partnering with an ISP, organizations can gain access to the newest technology and tools to help them to gather and manage data more effectively.

There are also several tools and techniques that organizations can use to collect data from external sources, such as web scraping, which collects data from websites, and data mining, which involves using algorithms to extract data from large data sets. 

Organizations can also use APIs (application programming interface) to collect data from external sources. APIs allow organizations to access data stored in another system and share and integrate it into their own systems.

Finally, organizations can also use manual methods to collect data from external sources. This can involve contacting companies or individuals directly to request data, by using the right tools and methods to get the insights they need.

  • What are common challenges in data collection?

There are many challenges that researchers face when collecting data. Here are five common examples:

Big data environments

Data collection can be a challenge in big data environments for several reasons. It can be located in different places, such as archives, libraries, or online. The sheer volume of data can also make it difficult to identify the most relevant data sets.

Second, the complexity of data sets can make it challenging to extract the desired information. Third, the distributed nature of big data environments can make it difficult to collect data promptly and efficiently.

Therefore it is important to have a well-designed data collection strategy to consider the specific needs of the organization and what data sets are the most relevant. Alongside this, consideration should be made regarding the tools and resources available to support data collection and protect it from unintended use.

Data bias is a common challenge in data collection. It occurs when data is collected from a sample that is not representative of the population of interest. 

There are different types of data bias, but some common ones include selection bias, self-selection bias, and response bias. Selection bias can occur when the collected data does not represent the population being studied. For example, if a study only includes data from people who volunteer to participate, that data may not represent the general population.

Self-selection bias can also occur when people self-select into a study, such as by taking part only if they think they will benefit from it. Response bias happens when people respond in a way that is not honest or accurate, such as by only answering questions that make them look good. 

These types of data bias present a challenge because they can lead to inaccurate results and conclusions about behaviors, perceptions, and trends. Data bias can be avoided by identifying potential sources or themes of bias and setting guidelines for eliminating them.

Lack of quality assurance processes

One of the biggest challenges in data collection is the lack of quality assurance processes. This can lead to several problems, including incorrect data, missing data, and inconsistencies between data sets.

Quality assurance is important because there are many data sources, and each source may have different levels of quality or corruption. There are also different ways of collecting data, and data quality may vary depending on the method used. 

There are several ways to improve quality assurance in data collection. These include developing clear and consistent goals and guidelines for data collection, implementing quality control measures, using standardized procedures, and employing data validation techniques. By taking these steps, you can ensure that your data is of adequate quality to inform decision-making.

Limited access to data

Another challenge in data collection is limited access to data. This can be due to several reasons, including privacy concerns, the sensitive nature of the data, security concerns, or simply the fact that data is not readily available.

Legal and compliance regulations

Most countries have regulations governing how data can be collected, used, and stored. In some cases, data collected in one country may not be used in another. This means gaining a global perspective can be a challenge. 

For example, if a company is required to comply with the EU General Data Protection Regulation (GDPR), it may not be able to collect data from individuals in the EU without their explicit consent. This can make it difficult to collect data from a target audience.

Legal and compliance regulations can be complex, and it's important to ensure that all data collected is done so in a way that complies with the relevant regulations.

  • What are the key steps in the data collection process?

There are five steps involved in the data collection process. They are:

1. Decide what data you want to gather

Have a clear understanding of the questions you are asking, and then consider where the answers might lie and how you might obtain them. This saves time and resources by avoiding the collection of irrelevant data, and helps maintain the quality of your datasets. 

2. Establish a deadline for data collection

Establishing a deadline for data collection helps you avoid collecting too much data, which can be costly and time-consuming to analyze. It also allows you to plan for data analysis and prompt interpretation. Finally, it helps you meet your research goals and objectives and allows you to move forward.

3. Select a data collection approach

The data collection approach you choose will depend on different factors, including the type of data you need, available resources, and the project timeline. For instance, if you need qualitative data, you might choose a focus group or interview methodology. If you need quantitative data , then a survey or observational study may be the most appropriate form of collection.

4. Gather information

When collecting data for your business, identify your business goals first. Once you know what you want to achieve, you can start collecting data to reach those goals. The most important thing is to ensure that the data you collect is reliable and valid. Otherwise, any decisions you make using the data could result in a negative outcome for your business.

5. Examine the information and apply your findings

As a researcher, it's important to examine the data you're collecting and analyzing before you apply your findings. This is because data can be misleading, leading to inaccurate conclusions. Ask yourself whether it is what you are expecting? Is it similar to other datasets you have looked at? 

There are many scientific ways to examine data, but some common methods include:

looking at the distribution of data points

examining the relationships between variables

looking for outliers

By taking the time to examine your data and noticing any patterns, strange or otherwise, you can avoid making mistakes that could invalidate your research.

  • How qualitative analysis software streamlines the data collection process

Knowledge derived from data does indeed carry power. However, if you don't convert the knowledge into action, it will remain a resource of unexploited energy and wasted potential.

Luckily, data collection tools enable organizations to streamline their data collection and analysis processes and leverage the derived knowledge to grow their businesses. For instance, qualitative analysis software can be highly advantageous in data collection by streamlining the process, making it more efficient and less time-consuming.

Secondly, qualitative analysis software provides a structure for data collection and analysis, ensuring that data is of high quality. It can also help to uncover patterns and relationships that would otherwise be difficult to discern. Moreover, you can use it to replace more expensive data collection methods, such as focus groups or surveys.

Overall, qualitative analysis software can be valuable for any researcher looking to collect and analyze data. By increasing efficiency, improving data quality, and providing greater insights, qualitative software can help to make the research process much more efficient and effective.

what is the data collection in research

Learn more about qualitative research data analysis software

Should you be using a customer insights hub.

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 6 February 2023

Last updated: 6 October 2023

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 9 March 2023

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

what is the data collection in research

Users report unexpectedly high data usage, especially during streaming sessions.

what is the data collection in research

Users find it hard to navigate from the home page to relevant playlists in the app.

what is the data collection in research

It would be great to have a sleep timer feature, especially for bedtime listening.

what is the data collection in research

I need better filters to find the songs or artists I’m looking for.

Log in or sign up

Get started for free

Table of Contents

What is data collection, why do we need data collection, what are the different data collection methods, data collection tools, the importance of ensuring accurate and appropriate data collection, issues related to maintaining the integrity of data collection, what are common challenges in data collection, what are the key steps in the data collection process, data collection considerations and best practices, choose the right data science program, are you interested in a career in data science, what is data collection: methods, types, tools.

What is Data Collection? Definition, Types, Tools, and Techniques

The process of gathering and analyzing accurate data from various sources to find answers to research problems, trends and probabilities, etc., to evaluate possible outcomes is Known as Data Collection. Knowledge is power, information is knowledge, and data is information in digitized form, at least as defined in IT. Hence, data is power. But before you can leverage that data into a successful strategy for your organization or business, you need to gather it. That’s your first step.

So, to help you get the process started, we shine a spotlight on data collection. What exactly is it? Believe it or not, it’s more than just doing a Google search! Furthermore, what are the different types of data collection? And what kinds of data collection tools and data collection techniques exist?

If you want to get up to speed about what is data collection process, you’ve come to the right place. 

Transform raw data into captivating visuals with Simplilearn's hands-on Data Visualization Courses and captivate your audience. Also, master the art of data management with Simplilearn's comprehensive data management courses  - unlock new career opportunities today!

Data collection is the process of collecting and evaluating information or data from multiple sources to find answers to research problems, answer questions, evaluate outcomes, and forecast trends and probabilities. It is an essential phase in all types of research, analysis, and decision-making, including that done in the social sciences, business, and healthcare.

Accurate data collection is necessary to make informed business decisions, ensure quality assurance, and keep research integrity.

During data collection, the researchers must identify the data types, the sources of data, and what methods are being used. We will soon see that there are many different data collection methods . There is heavy reliance on data collection in research, commercial, and government fields.

Before an analyst begins collecting data, they must answer three questions first:

  • What’s the goal or purpose of this research?
  • What kinds of data are they planning on gathering?
  • What methods and procedures will be used to collect, store, and process the information?

Additionally, we can break up data into qualitative and quantitative types. Qualitative data covers descriptions such as color, size, quality, and appearance. Quantitative data, unsurprisingly, deals with numbers, such as statistics, poll numbers, percentages, etc.

Before a judge makes a ruling in a court case or a general creates a plan of attack, they must have as many relevant facts as possible. The best courses of action come from informed decisions, and information and data are synonymous.

The concept of data collection isn’t a new one, as we’ll see later, but the world has changed. There is far more data available today, and it exists in forms that were unheard of a century ago. The data collection process has had to change and grow with the times, keeping pace with technology.

Whether you’re in the world of academia, trying to conduct research, or part of the commercial sector, thinking of how to promote a new product, you need data collection to help you make better choices.

Now that you know what is data collection and why we need it, let's take a look at the different methods of data collection. While the phrase “data collection” may sound all high-tech and digital, it doesn’t necessarily entail things like computers, big data , and the internet. Data collection could mean a telephone survey, a mail-in comment card, or even some guy with a clipboard asking passersby some questions. But let’s see if we can sort the different data collection methods into a semblance of organized categories.

Primary and secondary methods of data collection are two approaches used to gather information for research or analysis purposes. Let's explore each data collection method in detail:

1. Primary Data Collection:

Primary data collection involves the collection of original data directly from the source or through direct interaction with the respondents. This method allows researchers to obtain firsthand information specifically tailored to their research objectives. There are various techniques for primary data collection, including:

a. Surveys and Questionnaires: Researchers design structured questionnaires or surveys to collect data from individuals or groups. These can be conducted through face-to-face interviews, telephone calls, mail, or online platforms.

b. Interviews: Interviews involve direct interaction between the researcher and the respondent. They can be conducted in person, over the phone, or through video conferencing. Interviews can be structured (with predefined questions), semi-structured (allowing flexibility), or unstructured (more conversational).

c. Observations: Researchers observe and record behaviors, actions, or events in their natural setting. This method is useful for gathering data on human behavior, interactions, or phenomena without direct intervention.

d. Experiments: Experimental studies involve the manipulation of variables to observe their impact on the outcome. Researchers control the conditions and collect data to draw conclusions about cause-and-effect relationships.

e. Focus Groups: Focus groups bring together a small group of individuals who discuss specific topics in a moderated setting. This method helps in understanding opinions, perceptions, and experiences shared by the participants.

2. Secondary Data Collection:

Secondary data collection involves using existing data collected by someone else for a purpose different from the original intent. Researchers analyze and interpret this data to extract relevant information. Secondary data can be obtained from various sources, including:

a. Published Sources: Researchers refer to books, academic journals, magazines, newspapers, government reports, and other published materials that contain relevant data.

b. Online Databases: Numerous online databases provide access to a wide range of secondary data, such as research articles, statistical information, economic data, and social surveys.

c. Government and Institutional Records: Government agencies, research institutions, and organizations often maintain databases or records that can be used for research purposes.

d. Publicly Available Data: Data shared by individuals, organizations, or communities on public platforms, websites, or social media can be accessed and utilized for research.

e. Past Research Studies: Previous research studies and their findings can serve as valuable secondary data sources. Researchers can review and analyze the data to gain insights or build upon existing knowledge.

Now that we’ve explained the various techniques, let’s narrow our focus even further by looking at some specific tools. For example, we mentioned interviews as a technique, but we can further break that down into different interview types (or “tools”).

Word Association

The researcher gives the respondent a set of words and asks them what comes to mind when they hear each word.

Sentence Completion

Researchers use sentence completion to understand what kind of ideas the respondent has. This tool involves giving an incomplete sentence and seeing how the interviewee finishes it.

Role-Playing

Respondents are presented with an imaginary situation and asked how they would act or react if it was real.

In-Person Surveys

The researcher asks questions in person.

Online/Web Surveys

These surveys are easy to accomplish, but some users may be unwilling to answer truthfully, if at all.

Mobile Surveys

These surveys take advantage of the increasing proliferation of mobile technology. Mobile collection surveys rely on mobile devices like tablets or smartphones to conduct surveys via SMS or mobile apps.

Phone Surveys

No researcher can call thousands of people at once, so they need a third party to handle the chore. However, many people have call screening and won’t answer.

Observation

Sometimes, the simplest method is the best. Researchers who make direct observations collect data quickly and easily, with little intrusion or third-party bias. Naturally, it’s only effective in small-scale situations.

Accurate data collecting is crucial to preserving the integrity of research, regardless of the subject of study or preferred method for defining data (quantitative, qualitative). Errors are less likely to occur when the right data gathering tools are used (whether they are brand-new ones, updated versions of them, or already available).

Among the effects of data collection done incorrectly, include the following -

  • Erroneous conclusions that squander resources
  • Decisions that compromise public policy
  • Incapacity to correctly respond to research inquiries
  • Bringing harm to participants who are humans or animals
  • Deceiving other researchers into pursuing futile research avenues
  • The study's inability to be replicated and validated

When these study findings are used to support recommendations for public policy, there is the potential to result in disproportionate harm, even if the degree of influence from flawed data collecting may vary by discipline and the type of investigation.

Let us now look at the various issues that we might face while maintaining the integrity of data collection.

In order to assist the errors detection process in the data gathering process, whether they were done purposefully (deliberate falsifications) or not, maintaining data integrity is the main justification (systematic or random errors).

Quality assurance and quality control are two strategies that help protect data integrity and guarantee the scientific validity of study results.

Each strategy is used at various stages of the research timeline:

  • Quality control - tasks that are performed both after and during data collecting
  • Quality assurance - events that happen before data gathering starts

Let us explore each of them in more detail now.

Quality Assurance

As data collecting comes before quality assurance, its primary goal is "prevention" (i.e., forestalling problems with data collection). The best way to protect the accuracy of data collection is through prevention. The uniformity of protocol created in the thorough and exhaustive procedures manual for data collecting serves as the best example of this proactive step. 

The likelihood of failing to spot issues and mistakes early in the research attempt increases when guides are written poorly. There are several ways to show these shortcomings:

  • Failure to determine the precise subjects and methods for retraining or training staff employees in data collecting
  • List of goods to be collected, in part
  • There isn't a system in place to track modifications to processes that may occur as the investigation continues.
  • Instead of detailed, step-by-step instructions on how to deliver tests, there is a vague description of the data gathering tools that will be employed.
  • Uncertainty regarding the date, procedure, and identity of the person or people in charge of examining the data
  • Incomprehensible guidelines for using, adjusting, and calibrating the data collection equipment.

Now, let us look at how to ensure Quality Control.

Become a Data Scientist With Real-World Experience

Become a Data Scientist With Real-World Experience

Quality Control

Despite the fact that quality control actions (detection/monitoring and intervention) take place both after and during data collection, the specifics should be meticulously detailed in the procedures manual. Establishing monitoring systems requires a specific communication structure, which is a prerequisite. Following the discovery of data collection problems, there should be no ambiguity regarding the information flow between the primary investigators and staff personnel. A poorly designed communication system promotes slack oversight and reduces opportunities for error detection.

Direct staff observation conference calls, during site visits, or frequent or routine assessments of data reports to spot discrepancies, excessive numbers, or invalid codes can all be used as forms of detection or monitoring. Site visits might not be appropriate for all disciplines. Still, without routine auditing of records, whether qualitative or quantitative, it will be challenging for investigators to confirm that data gathering is taking place in accordance with the manual's defined methods. Additionally, quality control determines the appropriate solutions, or "actions," to fix flawed data gathering procedures and reduce recurrences.

Problems with data collection, for instance, that call for immediate action include:

  • Fraud or misbehavior
  • Systematic mistakes, procedure violations 
  • Individual data items with errors
  • Issues with certain staff members or a site's performance 

Researchers are trained to include one or more secondary measures that can be used to verify the quality of information being obtained from the human subject in the social and behavioral sciences where primary data collection entails using human subjects. 

For instance, a researcher conducting a survey would be interested in learning more about the prevalence of risky behaviors among young adults as well as the social factors that influence these risky behaviors' propensity for and frequency. Let us now explore the common challenges with regard to data collection.

There are some prevalent challenges faced while collecting data, let us explore a few of them to understand them better and avoid them.

Data Quality Issues

The main threat to the broad and successful application of machine learning is poor data quality. Data quality must be your top priority if you want to make technologies like machine learning work for you. Let's talk about some of the most prevalent data quality problems in this blog article and how to fix them.

Inconsistent Data

When working with various data sources, it's conceivable that the same information will have discrepancies between sources. The differences could be in formats, units, or occasionally spellings. The introduction of inconsistent data might also occur during firm mergers or relocations. Inconsistencies in data have a tendency to accumulate and reduce the value of data if they are not continually resolved. Organizations that have heavily focused on data consistency do so because they only want reliable data to support their analytics.

Data Downtime

Data is the driving force behind the decisions and operations of data-driven businesses. However, there may be brief periods when their data is unreliable or not prepared. Customer complaints and subpar analytical outcomes are only two ways that this data unavailability can have a significant impact on businesses. A data engineer spends about 80% of their time updating, maintaining, and guaranteeing the integrity of the data pipeline. In order to ask the next business question, there is a high marginal cost due to the lengthy operational lead time from data capture to insight.

Schema modifications and migration problems are just two examples of the causes of data downtime. Data pipelines can be difficult due to their size and complexity. Data downtime must be continuously monitored, and it must be reduced through automation.

Ambiguous Data

Even with thorough oversight, some errors can still occur in massive databases or data lakes. For data streaming at a fast speed, the issue becomes more overwhelming. Spelling mistakes can go unnoticed, formatting difficulties can occur, and column heads might be deceptive. This unclear data might cause a number of problems for reporting and analytics.

Become a Data Science Expert & Get Your Dream Job

Become a Data Science Expert & Get Your Dream Job

Duplicate Data

Streaming data, local databases, and cloud data lakes are just a few of the sources of data that modern enterprises must contend with. They might also have application and system silos. These sources are likely to duplicate and overlap each other quite a bit. For instance, duplicate contact information has a substantial impact on customer experience. If certain prospects are ignored while others are engaged repeatedly, marketing campaigns suffer. The likelihood of biased analytical outcomes increases when duplicate data are present. It can also result in ML models with biased training data.

Too Much Data

While we emphasize data-driven analytics and its advantages, a data quality problem with excessive data exists. There is a risk of getting lost in an abundance of data when searching for information pertinent to your analytical efforts. Data scientists, data analysts, and business users devote 80% of their work to finding and organizing the appropriate data. With an increase in data volume, other problems with data quality become more serious, particularly when dealing with streaming data and big files or databases.

Inaccurate Data

For highly regulated businesses like healthcare, data accuracy is crucial. Given the current experience, it is more important than ever to increase the data quality for COVID-19 and later pandemics. Inaccurate information does not provide you with a true picture of the situation and cannot be used to plan the best course of action. Personalized customer experiences and marketing strategies underperform if your customer data is inaccurate.

Data inaccuracies can be attributed to a number of things, including data degradation, human mistake, and data drift. Worldwide data decay occurs at a rate of about 3% per month, which is quite concerning. Data integrity can be compromised while being transferred between different systems, and data quality might deteriorate with time.

Hidden Data

The majority of businesses only utilize a portion of their data, with the remainder sometimes being lost in data silos or discarded in data graveyards. For instance, the customer service team might not receive client data from sales, missing an opportunity to build more precise and comprehensive customer profiles. Missing out on possibilities to develop novel products, enhance services, and streamline procedures is caused by hidden data.

Finding Relevant Data

Finding relevant data is not so easy. There are several factors that we need to consider while trying to find relevant data, which include -

  • Relevant Domain
  • Relevant demographics
  • Relevant Time period and so many more factors that we need to consider while trying to find relevant data.

Data that is not relevant to our study in any of the factors render it obsolete and we cannot effectively proceed with its analysis. This could lead to incomplete research or analysis, re-collecting data again and again, or shutting down the study.

Deciding the Data to Collect

Determining what data to collect is one of the most important factors while collecting data and should be one of the first factors while collecting data. We must choose the subjects the data will cover, the sources we will be used to gather it, and the quantity of information we will require. Our responses to these queries will depend on our aims, or what we expect to achieve utilizing your data. As an illustration, we may choose to gather information on the categories of articles that website visitors between the ages of 20 and 50 most frequently access. We can also decide to compile data on the typical age of all the clients who made a purchase from your business over the previous month.

Not addressing this could lead to double work and collection of irrelevant data or ruining your study as a whole.

Dealing With Big Data

Big data refers to exceedingly massive data sets with more intricate and diversified structures. These traits typically result in increased challenges while storing, analyzing, and using additional methods of extracting results. Big data refers especially to data sets that are quite enormous or intricate that conventional data processing tools are insufficient. The overwhelming amount of data, both unstructured and structured, that a business faces on a daily basis. 

The amount of data produced by healthcare applications, the internet, social networking sites social, sensor networks, and many other businesses are rapidly growing as a result of recent technological advancements. Big data refers to the vast volume of data created from numerous sources in a variety of formats at extremely fast rates. Dealing with this kind of data is one of the many challenges of Data Collection and is a crucial step toward collecting effective data. 

Low Response and Other Research Issues

Poor design and low response rates were shown to be two issues with data collecting, particularly in health surveys that used questionnaires. This might lead to an insufficient or inadequate supply of data for the study. Creating an incentivized data collection program might be beneficial in this case to get more responses.

Now, let us look at the key steps in the data collection process.

In the Data Collection Process, there are 5 key steps. They are explained briefly below -

1. Decide What Data You Want to Gather

The first thing that we need to do is decide what information we want to gather. We must choose the subjects the data will cover, the sources we will use to gather it, and the quantity of information that we would require. For instance, we may choose to gather information on the categories of products that an average e-commerce website visitor between the ages of 30 and 45 most frequently searches for. 

2. Establish a Deadline for Data Collection

The process of creating a strategy for data collection can now begin. We should set a deadline for our data collection at the outset of our planning phase. Some forms of data we might want to continuously collect. We might want to build up a technique for tracking transactional data and website visitor statistics over the long term, for instance. However, we will track the data throughout a certain time frame if we are tracking it for a particular campaign. In these situations, we will have a schedule for when we will begin and finish gathering data. 

3. Select a Data Collection Approach

We will select the data collection technique that will serve as the foundation of our data gathering plan at this stage. We must take into account the type of information that we wish to gather, the time period during which we will receive it, and the other factors we decide on to choose the best gathering strategy.

4. Gather Information

Once our plan is complete, we can put our data collection plan into action and begin gathering data. In our DMP, we can store and arrange our data. We need to be careful to follow our plan and keep an eye on how it's doing. Especially if we are collecting data regularly, setting up a timetable for when we will be checking in on how our data gathering is going may be helpful. As circumstances alter and we learn new details, we might need to amend our plan.

5. Examine the Information and Apply Your Findings

It's time to examine our data and arrange our findings after we have gathered all of our information. The analysis stage is essential because it transforms unprocessed data into insightful knowledge that can be applied to better our marketing plans, goods, and business judgments. The analytics tools included in our DMP can be used to assist with this phase. We can put the discoveries to use to enhance our business once we have discovered the patterns and insights in our data.

Let us now look at some data collection considerations and best practices that one might follow.

We must carefully plan before spending time and money traveling to the field to gather data. While saving time and resources, effective data collection strategies can help us collect richer, more accurate, and richer data.

Below, we will be discussing some of the best practices that we can follow for the best results -

1. Take Into Account the Price of Each Extra Data Point

Once we have decided on the data we want to gather, we need to make sure to take the expense of doing so into account. Our surveyors and respondents will incur additional costs for each additional data point or survey question.

2. Plan How to Gather Each Data Piece

There is a dearth of freely accessible data. Sometimes the data is there, but we may not have access to it. For instance, unless we have a compelling cause, we cannot openly view another person's medical information. It could be challenging to measure several types of information.

Consider how time-consuming and difficult it will be to gather each piece of information while deciding what data to acquire.

3. Think About Your Choices for Data Collecting Using Mobile Devices

Mobile-based data collecting can be divided into three categories -

  • IVRS (interactive voice response technology) -  Will call the respondents and ask them questions that have already been recorded. 
  • SMS data collection - Will send a text message to the respondent, who can then respond to questions by text on their phone. 
  • Field surveyors - Can directly enter data into an interactive questionnaire while speaking to each respondent, thanks to smartphone apps.

We need to make sure to select the appropriate tool for our survey and responders because each one has its own disadvantages and advantages.

4. Carefully Consider the Data You Need to Gather

It's all too easy to get information about anything and everything, but it's crucial to only gather the information that we require. 

It is helpful to consider these 3 questions:

  • What details will be helpful?
  • What details are available?
  • What specific details do you require?

5. Remember to Consider Identifiers

Identifiers, or details describing the context and source of a survey response, are just as crucial as the information about the subject or program that we are actually researching.

In general, adding more identifiers will enable us to pinpoint our program's successes and failures with greater accuracy, but moderation is the key.

6. Data Collecting Through Mobile Devices is the Way to Go

Although collecting data on paper is still common, modern technology relies heavily on mobile devices. They enable us to gather many various types of data at relatively lower prices and are accurate as well as quick. There aren't many reasons not to pick mobile-based data collecting with the boom of low-cost Android devices that are available nowadays.

The Ultimate Ticket to Top Data Science Job Roles

The Ultimate Ticket to Top Data Science Job Roles

1. What is data collection with example?

Data collection is the process of collecting and analyzing information on relevant variables in a predetermined, methodical way so that one can respond to specific research questions, test hypotheses, and assess results. Data collection can be either qualitative or quantitative. Example: A company collects customer feedback through online surveys and social media monitoring to improve their products and services.

2. What are the primary data collection methods?

As is well known, gathering primary data is costly and time intensive. The main techniques for gathering data are observation, interviews, questionnaires, schedules, and surveys.

3. What are data collection tools?

The term "data collecting tools" refers to the tools/devices used to gather data, such as a paper questionnaire or a system for computer-assisted interviews. Tools used to gather data include case studies, checklists, interviews, occasionally observation, surveys, and questionnaires.

4. What’s the difference between quantitative and qualitative methods?

While qualitative research focuses on words and meanings, quantitative research deals with figures and statistics. You can systematically measure variables and test hypotheses using quantitative methods. You can delve deeper into ideas and experiences using qualitative methodologies.

5. What are quantitative data collection methods?

While there are numerous other ways to get quantitative information, the methods indicated above—probability sampling, interviews, questionnaire observation, and document review—are the most typical and frequently employed, whether collecting information offline or online.

6. What is mixed methods research?

User research that includes both qualitative and quantitative techniques is known as mixed methods research. For deeper user insights, mixed methods research combines insightful user data with useful statistics.

7. What are the benefits of collecting data?

Collecting data offers several benefits, including:

  • Knowledge and Insight
  • Evidence-Based Decision Making
  • Problem Identification and Solution
  • Validation and Evaluation
  • Identifying Trends and Predictions
  • Support for Research and Development
  • Policy Development
  • Quality Improvement
  • Personalization and Targeting
  • Knowledge Sharing and Collaboration

8. What’s the difference between reliability and validity?

Reliability is about consistency and stability, while validity is about accuracy and appropriateness. Reliability focuses on the consistency of results, while validity focuses on whether the results are actually measuring what they are intended to measure. Both reliability and validity are crucial considerations in research to ensure the trustworthiness and meaningfulness of the collected data and measurements.

Are you thinking about pursuing a career in the field of data science? Simplilearn's Data Science courses are designed to provide you with the necessary skills and expertise to excel in this rapidly changing field. Here's a detailed comparison for your reference:

Program Name Data Scientist Master's Program Post Graduate Program In Data Science Post Graduate Program In Data Science Geo All Geos All Geos Not Applicable in US University Simplilearn Purdue Caltech Course Duration 11 Months 11 Months 11 Months Coding Experience Required Basic Basic No Skills You Will Learn 10+ skills including data structure, data manipulation, NumPy, Scikit-Learn, Tableau and more 8+ skills including Exploratory Data Analysis, Descriptive Statistics, Inferential Statistics, and more 8+ skills including Supervised & Unsupervised Learning Deep Learning Data Visualization, and more Additional Benefits Applied Learning via Capstone and 25+ Data Science Projects Purdue Alumni Association Membership Free IIMJobs Pro-Membership of 6 months Resume Building Assistance Upto 14 CEU Credits Caltech CTME Circle Membership Cost $$ $$$$ $$$$ Explore Program Explore Program Explore Program

We live in the Data Age, and if you want a career that fully takes advantage of this, you should consider a career in data science. Simplilearn offers a Caltech Post Graduate Program in Data Science  that will train you in everything you need to know to secure the perfect position. This Data Science PG program is ideal for all working professionals, covering job-critical topics like R, Python programming , machine learning algorithms , NLP concepts , and data visualization with Tableau in great detail. This is all provided via our interactive learning model with live sessions by global practitioners, practical labs, and industry projects.

Data Science & Business Analytics Courses Duration and Fees

Data Science & Business Analytics programs typically range from a few weeks to several months, with fees varying based on program and institution.

Program NameDurationFees

Cohort Starts:

11 months€ 2,290

Cohort Starts:

11 Months€ 2,790

Cohort Starts:

11 Months€ 3,790

Cohort Starts:

8 Months€ 1,790

Cohort Starts:

3 Months€ 1,999

Cohort Starts:

8 Months€ 2,790
11 Months€ 1,299
11 Months€ 1,299

Recommended Reads

Data Science Career Guide: A Comprehensive Playbook To Becoming A Data Scientist

Difference Between Collection and Collections in Java

An Ultimate One-Stop Solution Guide to Collections in C# Programming With Examples

Managing Data

Capped Collection in MongoDB

What Are Java Collections and How to Implement Them?

Get Affiliated Certifications with Live Class programs

Data scientist.

  • Industry-recognized Data Scientist Master’s certificate from Simplilearn
  • Dedicated live sessions by faculty of industry experts

Caltech Data Sciences-Bootcamp

  • Exclusive visit to Caltech’s Robotics Lab

Caltech Post Graduate Program in Data Science

  • Earn a program completion certificate from Caltech CTME
  • Curriculum delivered in live online sessions by industry experts
  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

what is the data collection in research

Home Market Research

Data Collection: What It Is, Methods & Tools + Examples

what is the data collection in research

Let’s face it, no one wants to make decisions based on guesswork or gut feelings. The most important objective of data collection is to ensure that the data gathered is reliable and packed to the brim with juicy insights that can be analyzed and turned into data-driven decisions. There’s nothing better than good statistical analysis .

LEARN ABOUT: Level of Analysis

Collecting high-quality data is essential for conducting market research, analyzing user behavior, or just trying to get a handle on business operations. With the right approach and a few handy tools, gathering reliable and informative data.

So, let’s get ready to collect some data because when it comes to data collection, it’s all about the details.

Content Index

What is Data Collection?

Data collection methods, data collection examples, reasons to conduct online research and data collection, conducting customer surveys for data collection to multiply sales, steps to effectively conduct an online survey for data collection, survey design for data collection.

Data collection is the procedure of collecting, measuring, and analyzing accurate insights for research using standard validated techniques.

Put simply, data collection is the process of gathering information for a specific purpose. It can be used to answer research questions, make informed business decisions, or improve products and services.

To collect data, we must first identify what information we need and how we will collect it. We can also evaluate a hypothesis based on collected data. In most cases, data collection is the primary and most important step for research. The approach to data collection is different for different fields of study, depending on the required information.

LEARN ABOUT: Action Research

There are many ways to collect information when doing research. The data collection methods that the researcher chooses will depend on the research question posed. Some data collection methods include surveys, interviews, tests, physiological evaluations, observations, reviews of existing records, and biological samples. Let’s explore them.

LEARN ABOUT: Best Data Collection Tools

Data Collection Methods

Phone vs. Online vs. In-Person Interviews

Essentially there are four choices for data collection – in-person interviews, mail, phone, and online. There are pros and cons to each of these modes.

  • Pros: In-depth and a high degree of confidence in the data
  • Cons: Time-consuming, expensive, and can be dismissed as anecdotal
  • Pros: Can reach anyone and everyone – no barrier
  • Cons: Expensive, data collection errors, lag time
  • Pros: High degree of confidence in the data collected, reach almost anyone
  • Cons: Expensive, cannot self-administer, need to hire an agency
  • Pros: Cheap, can self-administer, very low probability of data errors
  • Cons: Not all your customers might have an email address/be on the internet, customers may be wary of divulging information online.

In-person interviews always are better, but the big drawback is the trap you might fall into if you don’t do them regularly. It is expensive to regularly conduct interviews and not conducting enough interviews might give you false positives. Validating your research is almost as important as designing and conducting it.

We’ve seen many instances where after the research is conducted – if the results do not match up with the “gut-feel” of upper management, it has been dismissed off as anecdotal and a “one-time” phenomenon. To avoid such traps, we strongly recommend that data-collection be done on an “ongoing and regular” basis.

LEARN ABOUT: Research Process Steps

This will help you compare and analyze the change in perceptions according to marketing for your products/services. The other issue here is sample size. To be confident with your research, you must interview enough people to weed out the fringe elements.

A couple of years ago there was a lot of discussion about online surveys and their statistical analysis plan . The fact that not every customer had internet connectivity was one of the main concerns.

LEARN ABOUT:   Statistical Analysis Methods

Although some of the discussions are still valid, the reach of the internet as a means of communication has become vital in the majority of customer interactions. According to the US Census Bureau, the number of households with computers has doubled between 1997 and 2001.

Learn more: Quantitative Market Research

In 2001 nearly 50% of households had a computer. Nearly 55% of all households with an income of more than 35,000 have internet access, which jumps to 70% for households with an annual income of 50,000. This data is from the US Census Bureau for 2001.

There are primarily three modes of data collection that can be employed to gather feedback – Mail, Phone, and Online. The method actually used for data collection is really a cost-benefit analysis. There is no slam-dunk solution but you can use the table below to understand the risks and advantages associated with each of the mediums:

Paper $20 – $30 Medium100%
Phone$20 – $35High 95%
Online / Email$1 – $5 Medium 50-70%

Keep in mind, the reach here is defined as “All U.S. Households.” In most cases, you need to look at how many of your customers are online and determine. If all your customers have email addresses, you have a 100% reach of your customers.

Another important thing to keep in mind is the ever-increasing dominance of cellular phones over landline phones. United States FCC rules prevent automated dialing and calling cellular phone numbers and there is a noticeable trend towards people having cellular phones as the only voice communication device.

This introduces the inability to reach cellular phone customers who are dropping home phone lines in favor of going entirely wireless. Even if automated dialing is not used, another FCC rule prohibits from phoning anyone who would have to pay for the call.

Learn more: Qualitative Market Research

Multi-Mode Surveys

Surveys, where the data is collected via different modes (online, paper, phone etc.), is also another way of going. It is fairly straightforward and easy to have an online survey and have data-entry operators to enter in data (from the phone as well as paper surveys) into the system. The same system can also be used to collect data directly from the respondents.

Learn more: Survey Research

Data collection is an important aspect of research. Let’s consider an example of a mobile manufacturer, company X, which is launching a new product variant. To conduct research about features, price range, target market, competitor analysis, etc. data has to be collected from appropriate sources.

The marketing team can conduct various data collection activities such as online surveys or focus groups .

The survey should have all the right questions about features and pricing, such as “What are the top 3 features expected from an upcoming product?” or “How much are your likely to spend on this product?” or “Which competitors provide similar products?” etc.

For conducting a focus group, the marketing team should decide the participants and the mediator. The topic of discussion and objective behind conducting a focus group should be clarified beforehand to conduct a conclusive discussion.

Data collection methods are chosen depending on the available resources. For example, conducting questionnaires and surveys would require the least resources, while focus groups require moderately high resources.

Feedback is a vital part of any organization’s growth. Whether you conduct regular focus groups to elicit information from key players or, your account manager calls up all your marquee  accounts to find out how things are going – essentially they are all processes to find out from your customers’ eyes – How are we doing? What can we do better?

Online surveys are just another medium to collect feedback from your customers , employees and anyone your business interacts with. With the advent of Do-It-Yourself tools for online surveys, data collection on the internet has become really easy, cheap and effective.

Learn more:  Online Research

It is a well-established marketing fact that acquiring a new customer is 10 times more difficult and expensive than retaining an existing one. This is one of the fundamental driving forces behind the extensive adoption and interest in CRM and related customer retention tactics.

In a research study conducted by Rice University Professor Dr. Paul Dholakia and Dr. Vicki Morwitz, published in Harvard Business Review, the experiment inferred that the simple fact of asking customers how an organization was performing by itself to deliver results proved to be an effective customer retention strategy.

In the research study, conducted over the course of a year, one set of customers were sent out a satisfaction and opinion survey and the other set was not surveyed. In the next one year, the group that took the survey saw twice the number of people continuing and renewing their loyalty towards the organization data .

Learn more: Research Design

The research study provided a couple of interesting reasons on the basis of consumer psychology, behind this phenomenon:

  • Satisfaction surveys boost the customers’ desire to be coddled and induce positive feelings. This crops from a section of the human psychology that intends to “appreciate” a product or service they already like or prefer. The survey feedback collection method is solely a medium to convey this. The survey is a vehicle to “interact” with the company and reinforces the customer’s commitment to the company.
  • Surveys may increase awareness of auxiliary products and services. Surveys can be considered modes of both inbound as well as outbound communication. Surveys are generally considered to be a data collection and analysis source. Most people are unaware of the fact that consumer surveys can also serve as a medium for distributing data. It is important to note a few caveats here.
  • In most countries, including the US, “selling under the guise of research” is illegal. b. However, we all know that information is distributed while collecting information. c. Other disclaimers may be included in the survey to ensure users are aware of this fact. For example: “We will collect your opinion and inform you about products and services that have come online in the last year…”
  • Induced Judgments:  The entire procedure of asking people for their feedback can prompt them to build an opinion on something they otherwise would not have thought about. This is a very underlying yet powerful argument that can be compared to the “Product Placement” strategy currently used for marketing products in mass media like movies and television shows. One example is the extensive and exclusive use of the “mini-Cooper” in the blockbuster movie “Italian Job.” This strategy is questionable and should be used with great caution.

Surveys should be considered as a critical tool in the customer journey dialog. The best thing about surveys is its ability to carry “bi-directional” information. The research conducted by Paul Dholakia and Vicki Morwitz shows that surveys not only get you the information that is critical for your business, but also enhances and builds upon the established relationship you have with your customers.

Recent technological advances have made it incredibly easy to conduct real-time surveys and  opinion polls . Online tools make it easy to frame questions and answers and create surveys on the Web. Distributing surveys via email, website links or even integration with online CRM tools like Salesforce.com have made online surveying a quick-win solution.

So, you’ve decided to conduct an online survey. There are a few questions in your mind that you would like answered, and you are looking for a fast and inexpensive way to find out more about your customers, clients, etc.

First and foremost thing you need to decide what the smart objectives of the study are. Ensure that you can phrase these objectives as questions or measurements. If you can’t, you are better off looking at other data sources like focus groups and other qualitative methods . The data collected via online surveys is dominantly quantitative in nature.

Review the basic objectives of the study. What are you trying to discover? What actions do you  want to take as a result of the survey? –  Answers to these questions help in validating collected data. Online surveys are just one way of collecting and quantifying data .

Learn more: Qualitative Data & Qualitative Data Collection Methods

  • Visualize all of the relevant information items you would like to have. What will the output survey research report look like? What charts and graphs will be prepared? What information do you need to be assured that action is warranted?
  • Assign ranks to each topic (1 and 2) according to their priority, including the most important topics first. Revisit these items again to ensure that the objectives, topics, and information you need are appropriate. Remember, you can’t solve the research problem if you ask the wrong questions.
  • How easy or difficult is it for the respondent to provide information on each topic? If it is difficult, is there an alternative medium to gain insights by asking a different question? This is probably the most important step. Online surveys have to be Precise, Clear and Concise. Due to the nature of the internet and the fluctuations involved, if your questions are too difficult to understand, the survey dropout rate will be high.
  • Create a sequence for the topics that are unbiased. Make sure that the questions asked first do not bias the results of the next questions. Sometimes providing too much information, or disclosing purpose of the study can create bias. Once you have a series of decided topics, you can have a basic structure of a survey. It is always advisable to add an “Introductory” paragraph before the survey to explain the project objective and what is expected of the respondent. It is also sensible to have a “Thank You” text as well as information about where to find the results of the survey when they are published.
  • Page Breaks – The attention span of respondents can be very low when it comes to a long scrolling survey. Add page breaks as wherever possible. Having said that, a single question per page can also hamper response rates as it increases the time to complete the survey as well as increases the chances for dropouts.
  • Branching – Create smart and effective surveys with the implementation of branching wherever required. Eliminate the use of text such as, “If you answered No to Q1 then Answer Q4” – this leads to annoyance amongst respondents which result in increase survey dropout rates. Design online surveys using the branching logic so that appropriate questions are automatically routed based on previous responses.
  • Write the questions . Initially, write a significant number of survey questions out of which you can use the one which is best suited for the survey. Divide the survey into sections so that respondents do not get confused seeing a long list of questions.
  • Sequence the questions so that they are unbiased.
  • Repeat all of the steps above to find any major holes. Are the questions really answered? Have someone review it for you.
  • Time the length of the survey. A survey should take less than five minutes. At three to four research questions per minute, you are limited to about 15 questions. One open end text question counts for three multiple choice questions. Most online software tools will record the time taken for the respondents to answer questions.
  • Include a few open-ended survey questions that support your survey object. This will be a type of feedback survey.
  • Send an email to the project survey to your test group and then email the feedback survey afterward.
  • This way, you can have your test group provide their opinion about the functionality as well as usability of your project survey by using the feedback survey.
  • Make changes to your questionnaire based on the received feedback.
  • Send the survey out to all your respondents!

Online surveys have, over the course of time, evolved into an effective alternative to expensive mail or telephone surveys. However, you must be aware of a few conditions that need to be met for online surveys. If you are trying to survey a sample representing the target population, please remember that not everyone is online.

Moreover, not everyone is receptive to an online survey also. Generally, the demographic segmentation of younger individuals is inclined toward responding to an online survey.

Learn More: Examples of Qualitarive Data in Education

Good survey design is crucial for accurate data collection. From question-wording to response options, let’s explore how to create effective surveys that yield valuable insights with our tips to survey design.

  • Writing Great Questions for data collection

Writing great questions can be considered an art. Art always requires a significant amount of hard work, practice, and help from others.

The questions in a survey need to be clear, concise, and unbiased. A poorly worded question or a question with leading language can result in inaccurate or irrelevant responses, ultimately impacting the data’s validity.

Moreover, the questions should be relevant and specific to the research objectives. Questions that are irrelevant or do not capture the necessary information can lead to incomplete or inconsistent responses too.

  • Avoid loaded or leading words or questions

A small change in content can produce effective results. Words such as could , should and might are all used for almost the same purpose, but may produce a 20% difference in agreement to a question. For example, “The management could.. should.. might.. have shut the factory”.

Intense words such as – prohibit or action, representing control or action, produce similar results. For example,  “Do you believe Donald Trump should prohibit insurance companies from raising rates?”.

Sometimes the content is just biased. For instance, “You wouldn’t want to go to Rudolpho’s Restaurant for the organization’s annual party, would you?”

  • Misplaced questions

Questions should always reference the intended context, and questions placed out of order or without its requirement should be avoided. Generally, a funnel approach should be implemented – generic questions should be included in the initial section of the questionnaire as a warm-up and specific ones should follow. Toward the end, demographic or geographic questions should be included.

  • Mutually non-overlapping response categories

Multiple-choice answers should be mutually unique to provide distinct choices. Overlapping answer options frustrate the respondent and make interpretation difficult at best. Also, the questions should always be precise.

For example: “Do you like water juice?”

This question is vague. In which terms is the liking for orange juice is to be rated? – Sweetness, texture, price, nutrition etc.

  • Avoid the use of confusing/unfamiliar words

Asking about industry-related terms such as caloric content, bits, bytes, MBS , as well as other terms and acronyms can confuse respondents . Ensure that the audience understands your language level, terminology, and, above all, the question you ask.

  • Non-directed questions give respondents excessive leeway

In survey design for data collection, non-directed questions can give respondents excessive leeway, which can lead to vague and unreliable data. These types of questions are also known as open-ended questions, and they do not provide any structure for the respondent to follow.

For instance, a non-directed question like “ What suggestions do you have for improving our shoes?” can elicit a wide range of answers, some of which may not be relevant to the research objectives. Some respondents may give short answers, while others may provide lengthy and detailed responses, making comparing and analyzing the data challenging.

To avoid these issues, it’s essential to ask direct questions that are specific and have a clear structure. Closed-ended questions, for example, offer structured response options and can be easier to analyze as they provide a quantitative measure of respondents’ opinions.

  • Never force questions

There will always be certain questions that cross certain privacy rules. Since privacy is an important issue for most people, these questions should either be eliminated from the survey or not be kept as mandatory. Survey questions about income, family income, status, religious and political beliefs, etc., should always be avoided as they are considered to be intruding, and respondents can choose not to answer them.

  • Unbalanced answer options in scales

Unbalanced answer options in scales such as Likert Scale and Semantic Scale may be appropriate for some situations and biased in others. When analyzing a pattern in eating habits, a study used a quantity scale that made obese people appear in the middle of the scale with the polar ends reflecting a state where people starve and an irrational amount to consume. There are cases where we usually do not expect poor service, such as hospitals.

  • Questions that cover two points

In survey design for data collection, questions that cover two points can be problematic for several reasons. These types of questions are often called “double-barreled” questions and can cause confusion for respondents, leading to inaccurate or irrelevant data.

For instance, a question like “Do you like the food and the service at the restaurant?” covers two points, the food and the service, and it assumes that the respondent has the same opinion about both. If the respondent only liked the food, their opinion of the service could affect their answer.

It’s important to ask one question at a time to avoid confusion and ensure that the respondent’s answer is focused and accurate. This also applies to questions with multiple concepts or ideas. In these cases, it’s best to break down the question into multiple questions that address each concept or idea separately.

  • Dichotomous questions

Dichotomous questions are used in case you want a distinct answer, such as: Yes/No or Male/Female . For example, the question “Do you think this candidate will win the election?” can be Yes or No.

  • Avoid the use of long questions

The use of long questions will definitely increase the time taken for completion, which will generally lead to an increase in the survey dropout rate. Multiple-choice questions are the longest and most complex, and open-ended questions are the shortest and easiest to answer.

Data collection is an essential part of the research process, whether you’re conducting scientific experiments, market research, or surveys. The methods and tools used for data collection will vary depending on the research type, the sample size required, and the resources available.

Several data collection methods include surveys, observations, interviews, and focus groups. We learn each method has advantages and disadvantages, and choosing the one that best suits the research goals is important.

With the rise of technology, many tools are now available to facilitate data collection, including online survey software and data visualization tools. These tools can help researchers collect, store, and analyze data more efficiently, providing greater results and accuracy.

By understanding the various methods and tools available for data collection, we can develop a solid foundation for conducting research. With these research skills , we can make informed decisions, solve problems, and contribute to advancing our understanding of the world around us.

Analyze your survey data to gauge in-depth market drivers, including competitive intelligence, purchasing behavior, and price sensitivity, with QuestionPro.

You will obtain accurate insights with various techniques, including conjoint analysis, MaxDiff analysis, sentiment analysis, TURF analysis, heatmap analysis, etc. Export quality data to external in-depth analysis tools such as SPSS and R Software, and integrate your research with external business applications. Everything you need for your data collection. Start today for free!

LEARN MORE         FREE TRIAL

MORE LIKE THIS

Qualtrics vs Google Forms Comparison

Qualtrics vs Google Forms: Which is the Best Platform?

Jul 24, 2024

SurveyMonkey vs. Typeform

TypeForm vs. SurveyMonkey: Which is Better in 2024?

Surveymonkey-vs-google-forms

SurveyMonkey vs Google Forms: A Detailed Comparison

Jul 23, 2024

Typeform vs Jotform

Jotform vs Typeform: Which is the Best Option? Comparison (2024)

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

caltech

  • Data Science

Caltech Bootcamp / Blog / /

Data Collection Methods: A Comprehensive View

  • Written by John Terra
  • Updated on February 21, 2024

What Is Data Processing

Companies that want to be competitive in today’s digital economy enjoy the benefit of countless reams of data available for market research. In fact, thanks to the advent of big data, there’s a veritable tidal wave of information ready to be put to good use, helping businesses make intelligent decisions and thrive.

But before that data can be used, it must be processed. But before it can be processed, it must be collected, and that’s what we’re here for. This article explores the subject of data collection. We will learn about the types of data collection methods and why they are essential.

We will detail primary and secondary data collection methods and discuss data collection procedures. We’ll also share how you can learn practical skills through online data science training.

But first, let’s get the definition out of the way. What is data collection?

What is Data Collection?

Data collection is the act of collecting, measuring and analyzing different kinds of information using a set of validated standard procedures and techniques. The primary objective of data collection procedures is to gather reliable, information-rich data and analyze it to make critical business decisions. Once the desired data is collected, it undergoes a process of data cleaning and processing to make the information actionable and valuable for businesses.

Your choice of data collection method (or alternately called a data gathering procedure) depends on the research questions you’re working on, the type of data required, and the available time and resources and time. You can categorize data-gathering procedures into two main methods:

  • Primary data collection . Primary data is collected via first-hand experiences and does not reference or use the past. The data obtained by primary data collection methods is exceptionally accurate and geared to the research’s motive. They are divided into two categories: quantitative and qualitative. We’ll explore the specifics later.
  • Secondary data collection. Secondary data is the information that’s been used in the past. The researcher can obtain data from internal and external sources, including organizational data.

Let’s take a closer look at specific examples of both data collection methods.

Also Read: Why Use Python for Data Science?

The Specific Types of Data Collection Methods

As mentioned, primary data collection methods are split into quantitative and qualitative. We will examine each method’s data collection tools separately. Then, we will discuss secondary data collection methods.

Quantitative Methods

Quantitative techniques for demand forecasting and market research typically use statistical tools. When using these techniques, historical data is used to forecast demand. These primary data-gathering procedures are most often used to make long-term forecasts. Statistical analysis methods are highly reliable because they carry minimal subjectivity.

  • Barometric Method. Also called the leading indicators approach, data analysts and researchers employ this method to speculate on future trends based on current developments. When past events are used to predict future events, they are considered leading indicators.
  • Smoothing Techniques. Smoothing techniques can be used in cases where the time series lacks significant trends. These techniques eliminate random variation from historical demand and help identify demand levels and patterns to estimate future demand. The most popular methods used in these techniques are the simple moving average and the weighted moving average methods.
  • Time Series Analysis. The term “time series” refers to the sequential order of values in a variable, also known as a trend, at equal time intervals. Using patterns, organizations can predict customer demand for their products and services during the projected time.

Qualitative Methods

Qualitative data collection methods are instrumental when no historical information is available, or numbers and mathematical calculations aren’t required. Qualitative research is closely linked to words, emotions, sounds, feelings, colors, and other non-quantifiable elements. These techniques rely on experience, conjecture, intuition, judgment, emotion, etc. Quantitative methods do not provide motives behind the participants’ responses. Additionally, they often don’t reach underrepresented populations and usually involve long data collection periods. Therefore, you get the best results using quantitative and qualitative methods together.

  • Questionnaires . Questionnaires are a printed set of either open-ended or closed-ended questions. Respondents must answer based on their experience and knowledge of the issue. A questionnaire is a part of a survey, while the questionnaire’s end goal doesn’t necessarily have to be a survey.
  • Surveys. Surveys collect data from target audiences, gathering insights into their opinions, preferences, choices, and feedback on the organization’s goods and services. Most survey software has a wide range of question types, or you can also use a ready-made survey template that saves time and effort. Surveys can be distributed via different channels such as e-mail, offline apps, websites, social media, QR codes, etc.

Once researchers collect the data, survey software generates reports and runs analytics algorithms to uncover hidden insights. Survey dashboards give you statistics relating to completion rates, response rates, filters based on demographics, export and sharing options, etc. Practical business intelligence depends on the synergy between analytics and reporting. Analytics uncovers valuable insights while reporting communicates these findings to the stakeholders.

  • Polls. Polls consist of one or more multiple-choice questions. Marketers can turn to polls when they want to take a quick snapshot of the audience’s sentiments. Since polls tend to be short, getting people to respond is more manageable. Like surveys, online polls can be embedded into various media and platforms. Once the respondents answer the question(s), they can be shown how they stand concerning other people’s responses.
  • Delphi Technique. The name is a callback to the Oracle of Delphi, a priestess at Apollo’s temple in ancient Greece, renowned for her prophecies. In this method, marketing experts are given the forecast estimates and assumptions made by other industry experts. The first batch of experts may then use the information provided by the other experts to revise and reconsider their estimates and assumptions. The total expert consensus on the demand forecasts creates the final demand forecast.
  • Interviews. In this method, interviewers talk to the respondents either face-to-face or by telephone. In the first case, the interviewer asks the interviewee a series of questions in person and notes the responses. The interviewer can opt for a telephone interview if the parties cannot meet in person. This data collection form is practical for use with only a few respondents; repeating the same process with a considerably larger group takes longer.
  • Focus Groups. Focus groups are one of the primary examples of qualitative data in education. In focus groups, small groups of people, usually around 8-10 members, discuss the research problem’s common aspects. Each person provides their insights on the issue, and a moderator regulates the discussion. When the discussion ends, the group reaches a consensus.

Also Read: A Beginner’s Guide to the Data Science Process

Secondary Data Collection Methods

Secondary data is the information that’s been used in past situations. Secondary data collection methods can include quantitative and qualitative techniques. In addition, secondary data is easily available, so it’s less time-consuming and expensive than using primary data. However, the authenticity of data gathered with secondary data collection tools cannot be verified.

Internal secondary data sources:

  • CRM Software
  • Executive summaries
  • Financial Statements
  • Mission and vision statements
  • Organization’s health and safety records
  • Sales Reports

External secondary data sources:

  • Business journals
  • Government reports
  • Press releases

The Importance of Data Collection Methods

Data collection methods play a critical part in the research process as they determine the accuracy and quality and accuracy of the collected data. Here’s a sample of some reasons why data collection procedures are so important:

  • They determine the quality and accuracy of collected data
  • They ensure the data and the research findings are valid, relevant and reliable
  • They help reduce bias and increase the sample’s representation
  • They are crucial for making informed decisions and arriving at accurate conclusions
  • They provide accurate data, which facilitates the achievement of research objectives

Also Read: What Is Data Processing? Definition, Examples, Trends

So, What’s the Difference Between Data Collecting and Data Processing?

Data collection is the first step in the data processing process. Data collection involves gathering information (raw data) from various sources such as interviews, surveys, questionnaires, etc. Data processing describes the steps taken to organize, manipulate and transform the collected data into a useful and meaningful resource. This process may include tasks such as cleaning and validating data, analyzing and summarizing data, and creating visualizations or reports.

So, data collection is just one step in the overall data processing chain of events.

Do You Want to Become a Data Scientist?

If this discussion about data collection and the professionals who conduct it has sparked your enthusiasm for a new career, why not check out this online data science program ?

The Glassdoor.com jobs website shows that data scientists in the United States typically make an average yearly salary of $129,127 plus additional bonuses and cash incentives. So, if you’re interested in a new career or are already in the field but want to upskill or refresh your current skill set, sign up for this bootcamp and prepare to tackle the challenges of today’s big data.

You might also like to read:

Navigating Data Scientist Roles and Responsibilities in Today’s Market

Differences Between Data Scientist and Data Analyst: Complete Explanation

What Is Data Collection? A Guide for Aspiring Data Scientists

A Data Scientist Job Description: The Roles and Responsibilities in 2024

Top Data Science Projects With Source Code to Try

Data Science Bootcamp

  • Learning Format:

Online Bootcamp

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Recommended Articles

Data Science in Finance

Technology at Work: Data Science in Finance

In today’s data-driven world, industries leverage advanced data analytics and AI-powered tools to improve services and their bottom line. The financial services industry is at the forefront of this innovation. This blog discusses data science in finance, including how companies use it, the skills required to leverage it, and more.

Data Science Interview Questions

The Top Data Science Interview Questions for 2024

This article covers popular basic and advanced data science interview questions and the difference between data analytics and data science.

Big Data and Analytics

Big Data and Analytics: Unlocking the Future

Unlock the potential and benefits of big data and analytics in your career. Explore essential roles and discover the advantages of data-driven decision-making.

what is the data collection in research

Five Outstanding Data Visualization Examples for Marketing

This article gives excellent data visualization examples in marketing, including defining data visualization and its advantages.

Data Science Bootcamps vs Traditional Degrees

Data Science Bootcamps vs. Traditional Degrees: Which Learning Path to Choose?

Need help deciding whether to choose a data science bootcamp or a traditional degree? Our blog breaks down the pros and cons of each to help you make an informed decision.

Data Scientist vs Machine Learning Engineer

Career Roundup: Data Scientist vs. Machine Learning Engineer

This article compares data scientists and machine learning engineers, contrasting their roles, responsibilities, functions, needed skills, and salaries.

Learning Format

Program Benefits

  • 12+ tools covered, 25+ hands-on projects
  • Masterclasses by distinguished Caltech CTME instructors
  • Caltech CTME Circle Membership
  • Industry-specific training from global experts
  • Call us on : 1800-212-7688

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Grad Med Educ
  • v.8(2); 2016 May

Design: Selection of Data Collection Methods

Associated data.

Editor's Note: The online version of this article contains resources for further reading and a table of strengths and limitations of qualitative data collection methods.

The Challenge

Imagine that residents in your program have been less than complimentary about interprofessional rounds (IPRs). The program director asks you to determine what residents are learning about in collaboration with other health professionals during IPRs. If you construct a survey asking Likert-type questions such as “How much are you learning?” you likely will not gather the information you need to answer this question. You understand that qualitative data deal with words rather than numbers and could provide the needed answers. How do you collect “good” words? Should you use open-ended questions in a survey format? Should you conduct interviews, focus groups, or conduct direct observation? What should you consider when making these decisions?

Introduction

Qualitative research is often employed when there is a problem and no clear solutions exist, as in the case above that elicits the following questions: Why are residents complaining about rounds? How could we make rounds better? In this context, collecting “good” information or words (qualitative data) is intended to produce information that helps you to answer your research questions, capture the phenomenon of interest, and account for context and the rich texture of the human experience. You may also aim to challenge previous thinking and invite further inquiry.

Coherence or alignment between all aspects of the research project is essential. In this Rip Out we focus on data collection, but in qualitative research, the entire project must be considered. 1 , 2 Careful design of the data collection phase requires the following: deciding who will do what, where, when, and how at the different stages of the research process; acknowledging the role of the researcher as an instrument of data collection; and carefully considering the context studied and the participants and informants involved in the research.

Types of Data Collection Methods

Data collection methods are important, because how the information collected is used and what explanations it can generate are determined by the methodology and analytical approach applied by the researcher. 1 , 2 Five key data collection methods are presented here, with their strengths and limitations described in the online supplemental material.

  • 1 Questions added to surveys to obtain qualitative data typically are open-ended with a free-text format. Surveys are ideal for documenting perceptions, attitudes, beliefs, or knowledge within a clear, predetermined sample of individuals. “Good” open-ended questions should be specific enough to yield coherent responses across respondents, yet broad enough to invite a spectrum of answers. Examples for this scenario include: What is the function of IPRs? What is the educational value of IPRs, according to residents? Qualitative survey data can be analyzed using a range of techniques.
  • 2 Interviews are used to gather information from individuals 1-on-1, using a series of predetermined questions or a set of interest areas. Interviews are often recorded and transcribed. They can be structured or unstructured; they can either follow a tightly written script that mimics a survey or be inspired by a loose set of questions that invite interviewees to express themselves more freely. Interviewers need to actively listen and question, probe, and prompt further to collect richer data. Interviews are ideal when used to document participants' accounts, perceptions of, or stories about attitudes toward and responses to certain situations or phenomena. Interview data are often used to generate themes , theories , and models . Many research questions that can be answered with surveys can also be answered through interviews, but interviews will generally yield richer, more in-depth data than surveys. Interviews do, however, require more time and resources to conduct and analyze. Importantly, because interviewers are the instruments of data collection, interviewers should be trained to collect comparable data. The number of interviews required depends on the research question and the overarching methodology used. Examples of these questions include: How do residents experience IPRs? What do residents' stories about IPRs tell us about interprofessional care hierarchies?
  • 3 Focus groups are used to gather information in a group setting, either through predetermined interview questions that the moderator asks of participants in turn or through a script to stimulate group conversations. Ideally, they are used when the sum of a group of people's experiences may offer more than a single individual's experiences in understanding social phenomena. Focus groups also allow researchers to capture participants' reactions to the comments and perspectives shared by other participants, and are thus a way to capture similarities and differences in viewpoints. The number of focus groups required will vary based on the questions asked and the number of different stakeholders involved, such as residents, nurses, social workers, pharmacists, and patients. The optimal number of participants per focus group, to generate rich discussion while enabling all members to speak, is 8 to 10 people. 3 Examples of questions include: How would residents, nurses, and pharmacists redesign or improve IPRs to maximize engagement, participation, and use of time? How do suggestions compare across professional groups?
  • 4 Observations are used to gather information in situ using the senses: vision, hearing, touch, and smell. Observations allow us to investigate and document what people do —their everyday behavior—and to try to understand why they do it, rather than focus on their own perceptions or recollections. Observations are ideal when used to document, explore, and understand, as they occur, activities, actions, relationships, culture, or taken-for-granted ways of doing things. As with the previous methods, the number of observations required will depend on the research question and overarching research approach used. Examples of research questions include: How do residents use their time during IPRs? How do they relate to other health care providers? What kind of language and body language are used to describe patients and their families during IPRs?
  • 5 Textual or content analysis is ideal when used to investigate changes in official, institutional, or organizational views on a specific topic or area to document the context of certain practices or to investigate the experiences and perspectives of a group of individuals who have, for example, engaged in written reflection. Textual analysis can be used as the main method in a research project or to contextualize findings from another method. The choice and number of documents has to be guided by the research question, but can include newspaper or research articles, governmental reports, organization policies and protocols, letters, records, films, photographs, art, meeting notes, or checklists. The development of a coding grid or scheme for analysis will be guided by the research question and will be iteratively applied to selected documents. Examples of research questions include: How do our local policies and protocols for IPRs reflect or contrast with the broader discourses of interprofessional collaboration? What are the perceived successful features of IPRs in the literature? What are the key features of residents' reflections on their interprofessional experiences during IPRs?

How You Can Start TODAY

  • • Review medical education journals to find qualitative research in your area of interest and focus on the methods used as well as the findings.
  • • When you have chosen a method, read several different sources on it.
  • • From your readings, identify potential colleagues with expertise in your choice of qualitative method as well as others in your discipline who would like to learn more and organize potential working groups to discuss challenges that arise in your work.

What You Can Do LONG TERM

  • • Either locally or nationally, build a community of like-minded scholars to expand your qualitative expertise.
  • • Use a range of methods to develop a broad program of qualitative research.

Supplementary Material

Research-Methodology

Data Collection Methods

Data collection is a process of collecting information from all the relevant sources to find answers to the research problem, test the hypothesis (if you are following deductive approach ) and evaluate the outcomes. Data collection methods can be divided into two categories: secondary methods of data collection and primary methods of data collection.

Secondary Data Collection Methods

Secondary data is a type of data that has already been published in books, newspapers, magazines, journals, online portals etc.  There is an abundance of data available in these sources about your research area in business studies, almost regardless of the nature of the research area. Therefore, application of appropriate set of criteria to select secondary data to be used in the study plays an important role in terms of increasing the levels of research validity and reliability.

These criteria include, but not limited to date of publication, credential of the author, reliability of the source, quality of discussions, depth of analyses, the extent of contribution of the text to the development of the research area etc. Secondary data collection is discussed in greater depth in Literature Review chapter.

Secondary data collection methods offer a range of advantages such as saving time, effort and expenses. However they have a major disadvantage. Specifically, secondary research does not make contribution to the expansion of the literature by producing fresh (new) data.

Primary Data Collection Methods

Primary data is the type of data that has not been around before. Primary data is unique findings of your research. Primary data collection and analysis typically requires more time and effort to conduct compared to the secondary data research. Primary data collection methods can be divided into two groups: quantitative and qualitative.

Quantitative data collection methods are based on mathematical calculations in various formats. Methods of quantitative data collection and analysis include questionnaires with closed-ended questions, methods of correlation and regression, mean, mode and median and others.

Quantitative methods are cheaper to apply and they can be applied within shorter duration of time compared to qualitative methods. Moreover, due to a high level of standardisation of quantitative methods, it is easy to make comparisons of findings.

Qualitative research methods , on the contrary, do not involve numbers or mathematical calculations. Qualitative research is closely associated with words, sounds, feeling, emotions, colours and other elements that are non-quantifiable.

Qualitative studies aim to ensure greater level of depth of understanding and qualitative data collection methods include interviews, questionnaires with open-ended questions, focus groups, observation, game or role-playing, case studies etc.

Your choice between quantitative or qualitative methods of data collection depends on the area of your research and the nature of research aims and objectives.

My e-book, The Ultimate Guide to Writing a Dissertation in Business Studies: a step by step assistance offers practical assistance to complete a dissertation with minimum or no stress. The e-book covers all stages of writing a dissertation starting from the selection to the research area to submitting the completed version of the work within the deadline.

John Dudovskiy

Data Collection Methods

SurveyCTO

A Guide to Data Collection: Methods, Process, and Tools

A hand holds a smartphone in a green field.

Whether your field is development economics, international development, the nonprofit sector, or myriad other industries, effective data collection is essential. It informs decision-making and increases your organization’s impact. However, the process of data collection can be complex and challenging. If you’re in the beginning stages of creating a data collection process, this guide is for you. It outlines tested methods, efficient procedures, and effective tools to help you improve your data collection activities and outcomes. At SurveyCTO, we’ve used our years of experience and expertise to build a robust, secure, and scalable mobile data collection platform. It’s trusted by respected institutions like The World Bank, J-PAL, Oxfam, and the Gates Foundation, and it’s changed the way many organizations collect and use data. With this guide, we want to share what we know and help you get ready to take the first step in your data collection journey.

Main takeaways from this guide

  • Before starting the data collection process, define your goals and identify data sources, which can be primary (first-hand research) or secondary (existing resources).
  • Your data collection method should align with your goals, resources, and the nature of the data needed. Surveys, interviews, observations, focus groups, and forms are common data collection methods. 
  • Sampling involves selecting a representative group from a larger population. Choosing the right sampling method to gather representative and relevant data is crucial.
  • Crafting effective data collection instruments like surveys and questionnaires is key. Instruments should undergo rigorous testing for reliability and accuracy.
  • Data collection is an ongoing, iterative process that demands real-time monitoring and adjustments to ensure high-quality, reliable results.
  • After data collection, data should be cleaned to eliminate errors and organized for efficient analysis. The data collection journey further extends into data analysis, where patterns and useful information that can inform decision-making are discovered.
  • Common challenges in data collection include data quality and consistency issues, data security concerns, and limitations with offline surveys . Employing robust data validation processes, implementing strong security protocols, and using offline-enabled data collection tools can help overcome these challenges.
  • Data collection, entry, and management tools and data analysis, visualization, reporting, and workflow tools can streamline the data collection process, improve data quality, and facilitate data analysis.

What is data collection?

SurveyCTO Collect app on a tablet and mobile device

The traditional definition of data collection might lead us to think of gathering information through surveys, observations, or interviews. However, the modern-age definition of data collection extends beyond conducting surveys and observations. It encompasses the systematic gathering and recording of any kind of information through digital or manual methods. Data collection can be as routine as a doctor logging a patient’s information into an electronic medical record system during each clinic visit, or as specific as keeping a record of mosquito nets delivered to a rural household.

Getting started with data collection

what is the data collection in research

Before starting your data collection process, you must clearly understand what you aim to achieve and how you’ll get there. Below are some actionable steps to help you get started.

1. Define your goals

Defining your goals is a crucial first step. Engage relevant stakeholders and team members in an iterative and collaborative process to establish clear goals. It’s important that projects start with the identification of key questions and desired outcomes to ensure you focus your efforts on gathering the right information. 

Start by understanding the purpose of your project– what problem are you trying to solve, or what change do you want to bring about? Think about your project’s potential outcomes and obstacles and try to anticipate what kind of data would be useful in these scenarios. Consider who will be using the data you collect and what data would be the most valuable to them. Think about the long-term effects of your project and how you will measure these over time. Lastly, leverage any historical data from previous projects to help you refine key questions that may have been overlooked previously. 

Once questions and outcomes are established, your data collection goals may still vary based on the context of your work. To demonstrate, let’s use the example of an international organization working on a healthcare project in a remote area.

  • If you’re a researcher , your goal will revolve around collecting primary data to answer specific questions. This could involve designing a survey or conducting interviews to collect first-hand data on patient improvement, disease or illness prevalence, and behavior changes (such as an increase in patients seeking healthcare).
  • If you’re part of the monitoring and evaluation ( M&E) team , your goal will revolve around measuring the success of your healthcare project. This could involve collecting primary data through surveys or observations and developing a dashboard to display real-time metrics like the number of patients treated, percentage of reduction in incidences of disease,, and average patient wait times. Your focus would be using this data to implement any needed program changes and ensure your project meets its objectives.
  • If you’re part of a field team , your goal will center around the efficient and accurate execution of project plans. You might be responsible for using data collection tools to capture pertinent information in different settings, such as in interviews takendirectly from the sample community or over the phone. The data you collect and manage will directly influence the operational efficiency of the project and assist in achieving the project’s overarching objectives.

2. Identify your data sources

The crucial next step in your research process is determining your data source. Essentially, there are two main data types to choose from: primary and secondary.

  • Primary data is the information you collect directly from first-hand engagements. It’s gathered specifically for your research and tailored to your research question. Primary data collection methods can range from surveys and interviews to focus groups and observations. Because you design the data collection process, primary data can offer precise, context-specific information directly related to your research objectives. For example, suppose you are investigating the impact of a new education policy. In that case, primary data might be collected through surveys distributed to teachers or interviews with school administrators dealing directly with the policy’s implementation.
  • Secondary data, on the other hand, is derived from resources that already exist. This can include information gathered for other research projects, administrative records, historical documents, statistical databases, and more. While not originally collected for your specific study, secondary data can offer valuable insights and background information that complement your primary data. For instance, continuing with the education policy example, secondary data might involve academic articles about similar policies, government reports on education or previous survey data about teachers’ opinions on educational reforms.

While both types of data have their strengths, this guide will predominantly focus on primary data and the methods to collect it. Primary data is often emphasized in research because it provides fresh, first-hand insights that directly address your research questions. Primary data also allows for more control over the data collection process, ensuring data is relevant, accurate, and up-to-date.

However, secondary data can offer critical context, allow for longitudinal analysis, save time and resources, and provide a comparative framework for interpreting your primary data. It can be a crucial backdrop against which your primary data can be understood and analyzed. While we focus on primary data collection methods in this guide, we encourage you not to overlook the value of incorporating secondary data into your research design where appropriate.

3. Choose your data collection method

When choosing your data collection method, there are many options at your disposal. Data collection is not limited to methods like surveys and interviews. In fact, many of the processes in our daily lives serve the goal of collecting data, from intake forms to automated endpoints, such as payment terminals and mass transit card readers. Let us dive into some common types of data collection methods: 

Surveys and Questionnaires

Surveys and questionnaires are tools for gathering information about a group of individuals, typically by asking them predefined questions. They can be used to collect quantitative and qualitative data and be administered in various ways, including online, over the phone, in person (offline), or by mail.

  • Advantages : They allow researchers to reach many participants quickly and cost-effectively, making them ideal for large-scale studies. The structured format of questions makes analysis easier.
  • Disadvantages : They may not capture complex or nuanced information as participants are limited to predefined response choices. Also, there can be issues with response bias, where participants might provide socially desirable answers rather than honest ones.

Interviews involve a one-on-one conversation between the researcher and the participant. The interviewer asks open-ended questions to gain detailed information about the participant’s thoughts, feelings, experiences, and behaviors.

  • Advantages : They allow for an in-depth understanding of the topic at hand. The researcher can adapt the questioning in real time based on the participant’s responses, allowing for more flexibility.
  • Disadvantages : They can be time-consuming and resource-intensive, as they require trained interviewers and a significant amount of time for both conducting and analyzing responses. They may also introduce interviewer bias if not conducted carefully, due to how an interviewer presents questions and perceives the respondent, and how the respondent perceives the interviewer. 

Observations

Observations involve directly observing and recording behavior or other phenomena as they occur in their natural settings.

  • Advantages : Observations can provide valuable contextual information, as researchers can study behavior in the environment where it naturally occurs, reducing the risk of artificiality associated with laboratory settings or self-reported measures.
  • Disadvantages : Observational studies may suffer from observer bias, where the observer’s expectations or biases could influence their interpretation of the data. Also, some behaviors might be altered if subjects are aware they are being observed.

Focus Groups

Focus groups are guided discussions among selected individuals to gain information about their views and experiences.

  • Advantages : Focus groups allow for interaction among participants, which can generate a diverse range of opinions and ideas. They are good for exploring new topics where there is little pre-existing knowledge.
  • Disadvantages : Dominant voices in the group can sway the discussion, potentially silencing less assertive participants. They also require skilled facilitators to moderate the discussion effectively.

Forms are standardized documents with blank fields for collecting data in a systematic manner. They are often used in fields like Customer Relationship Management (CRM) or Electronic Medical Records (EMR) data entry. Surveys may also be referred to as forms.

  • Advantages : Forms are versatile, easy to use, and efficient for data collection. They can streamline workflows by standardizing the data entry process.
  • Disadvantages : They may not provide in-depth insights as the responses are typically structured and limited. There is also potential for errors in data entry, especially when done manually.

Selecting the right data collection method should be an intentional process, taking into consideration the unique requirements of your project. The method selected should align with your goals, available resources, and the nature of the data you need to collect.

If you aim to collect quantitative data, surveys, questionnaires, and forms can be excellent tools, particularly for large-scale studies. These methods are suited to providing structured responses that can be analyzed statistically, delivering solid numerical data.

However, if you’re looking to uncover a deeper understanding of a subject, qualitative data might be more suitable. In such cases, interviews, observations, and focus groups can provide richer, more nuanced insights. These methods allow you to explore experiences, opinions, and behaviors deeply. Some surveys can also include open-ended questions that provide qualitative data.

The cost of data collection is also an important consideration. If you have budget constraints, in-depth, in-person conversations with every member of your target population may not be practical. In such cases, distributing questionnaires or forms can be a cost-saving approach.

Additional considerations include language barriers and connectivity issues. If your respondents speak different languages, consider translation services or multilingual data collection tools . If your target population resides in areas with limited connectivity and your method will be to collect data using mobile devices, ensure your tool provides offline data collection , which will allow you to carry out your data collection plan without internet connectivity.

4. Determine your sampling method

Now that you’ve established your data collection goals and how you’ll collect your data, the next step is deciding whom to collect your data from. Sampling involves carefully selecting a representative group from a larger population. Choosing the right sampling method is crucial for gathering representative and relevant data that aligns with your data collection goal.

Consider the following guidelines to choose the appropriate sampling method for your research goal and data collection method:

  • Understand Your Target Population: Start by conducting thorough research of your target population. Understand who they are, their characteristics, and subgroups within the population.
  • Anticipate and Minimize Biases: Anticipate and address potential biases within the target population to help minimize their impact on the data. For example, will your sampling method accurately reflect all ages, gender, cultures, etc., of your target population? Are there barriers to participation for any subgroups? Your sampling method should allow you to capture the most accurate representation of your target population.
  • Maintain Cost-Effective Practices: Consider the cost implications of your chosen sampling methods. Some sampling methods will require more resources, time, and effort. Your chosen sampling method should balance the cost factors with the ability to collect your data effectively and accurately. 
  • Consider Your Project’s Objectives: Tailor the sampling method to meet your specific objectives and constraints, such as M&E teams requiring real-time impact data and researchers needing representative samples for statistical analysis.

By adhering to these guidelines, you can make informed choices when selecting a sampling method, maximizing the quality and relevance of your data collection efforts.

5. Identify and train collectors

Not every data collection use case requires data collectors, but training individuals responsible for data collection becomes crucial in scenarios involving field presence.

The SurveyCTO platform supports both self-response survey modes and surveys that require a human field worker to do in-person interviews. Whether you’re hiring and training data collectors, utilizing an existing team, or training existing field staff, we offer comprehensive guidance and the right tools to ensure effective data collection practices.  

Here are some common training approaches for data collectors:

  • In-Class Training: Comprehensive sessions covering protocols, survey instruments, and best practices empower data collectors with skills and knowledge.
  • Tests and Assessments: Assessments evaluate collectors’ understanding and competence, highlighting areas where additional support is needed.
  • Mock Interviews: Simulated interviews refine collectors’ techniques and communication skills.
  • Pre-Recorded Training Sessions: Accessible reinforcement and self-paced learning to refresh and stay updated.

Training data collectors is vital for successful data collection techniques. Your training should focus on proper instrument usage and effective interaction with respondents, including communication skills, cultural literacy, and ethical considerations.

Remember, training is an ongoing process. Knowledge gaps and issues may arise in the field, necessitating further training.

Moving Ahead: Iterative Steps in Data Collection

A woman in a blazer sits at a desk reviewing paperwork in front of her laptop.

Once you’ve established the preliminary elements of your data collection process, you’re ready to start your data collection journey. In this section, we’ll delve into the specifics of designing and testing your instruments, collecting data, and organizing data while embracing the iterative nature of the data collection process, which requires diligent monitoring and making adjustments when needed.

6. Design and test your instruments

Designing effective data collection instruments like surveys and questionnaires is key. It’s crucial to prioritize respondent consent and privacy to ensure the integrity of your research. Thoughtful design and careful testing of survey questions are essential for optimizing research insights. Other critical considerations are: 

  • Clear and Unbiased Question Wording: Craft unambiguous, neutral questions free from bias to gather accurate and meaningful data. For example, instead of asking, “Shouldn’t we invest more into renewable energy that will combat the effects of climate change?” ask your question in a neutral way that allows the respondent to voice their thoughts. For example: “What are your thoughts on investing more in renewable energy?”
  • Logical Ordering and Appropriate Response Format: Arrange questions logically and choose response formats (such as multiple-choice, Likert scale, or open-ended) that suit the nature of the data you aim to collect.
  • Coverage of Relevant Topics: Ensure that your instrument covers all topics pertinent to your data collection goals while respecting cultural and social sensitivities. Make sure your instrument avoids assumptions, stereotypes, and languages or topics that could be considered offensive or taboo in certain contexts. The goal is to avoid marginalizing or offending respondents based on their social or cultural background.
  • Collect Only Necessary Data: Design survey instruments that focus solely on gathering the data required for your research objectives, avoiding unnecessary information.
  • Language(s) of the Respondent Population: Tailor your instruments to accommodate the languages your target respondents speak, offering translated versions if needed. Similarly, take into account accessibility for respondents who can’t read by offering alternative formats like images in place of text.
  • Desired Length of Time for Completion: Respect respondents’ time by designing instruments that can be completed within a reasonable timeframe, balancing thoroughness with engagement. Having a general timeframe for the amount of time needed to complete a response will also help you weed out bad responses. For example, a response that was rushed and completed outside of your response timeframe could indicate a response that needs to be excluded.
  • Collecting and Documenting Respondents’ Consent and Privacy: Ensure a robust consent process, transparent data usage communication, and privacy protection throughout data collection.

Perform Cognitive Interviewing

Cognitive interviewing is a method used to refine survey instruments and improve the accuracy of survey responses by evaluating how respondents understand, process, and respond to the instrument’s questions. In practice, cognitive interviewing involves an interview with the respondent, asking them to verbalize their thoughts as they interact with the instrument. By actively probing and observing their responses, you can identify and address ambiguities, ensuring accurate data collection.  

Thoughtful question wording, well-organized response options, and logical sequencing enhance comprehension, minimize biases, and ensure accurate data collection. Iterative testing and refinement based on respondent feedback improve the validity, reliability, and actionability of insights obtained.

Put Your Instrument to the Test

Through rigorous testing, you can uncover flaws, ensure reliability, maximize accuracy, and validate your instrument’s performance. This can be achieved by:

  • Conducting pilot testing to enhance the reliability and effectiveness of data collection. Administer the instrument, identify difficulties, gather feedback, and assess performance in real-world conditions.
  • Making revisions based on pilot testing to enhance clarity, accuracy, usability, and participant satisfaction. Refine questions, instructions, and format for effective data collection.
  • Continuously iterating and refining your instrument based on feedback and real-world testing. This ensures reliable, accurate, and audience-aligned methods of data collection. Additionally, this ensures your instrument adapts to changes, incorporates insights, and maintains ongoing effectiveness.

7. Collect your data

Now that you have your well-designed survey, interview questions, observation plan, or form, it’s time to implement it and gather the needed data. Data collection is not a one-and-done deal; it’s an ongoing process that demands attention to detail. Imagine spending weeks collecting data, only to discover later that a significant portion is unusable due to incomplete responses, improper collection methods, or falsified responses. To avoid such setbacks, adopt an iterative approach.

Leverage data collection tools with real-time monitoring to proactively identify outliers and issues. Take immediate action by fine-tuning your instruments, optimizing the data collection process, addressing concerns like additional training, or reevaluating personnel responsible for inaccurate data (for example, a field worker who sits in a coffee shop entering fake responses rather than doing the work of knocking on doors).

SurveyCTO’s Data Explorer was specifically designed to fulfill this requirement, empowering you to monitor incoming data, gain valuable insights, and know where changes may be needed. Embracing this iterative approach ensures ongoing improvement in data collection, resulting in more reliable and precise results.

8. Clean and organize your data

After data collection, the next step is to clean and organize the data to ensure its integrity and usability.

  • Data Cleaning: This stage involves sifting through your data to identify and rectify any errors, inconsistencies, or missing values. It’s essential to maintain the accuracy of your data and ensure that it’s reliable for further analysis. Data cleaning can uncover duplicates, outliers, and gaps that could skew your results if left unchecked. With real-time data monitoring , this continuous cleaning process keeps your data precise and current throughout the data collection period. Similarly, review and corrections workflows allow you to monitor the quality of your incoming data.
  • Organizing Your Data: Post-cleaning, it’s time to organize your data for efficient analysis and interpretation. Labeling your data using appropriate codes or categorizations can simplify navigation and streamline the extraction of insights. When you use a survey or form, labeling your data is often not necessary because you can design the instrument to collect in the right categories or return the right codes. An organized dataset is easier to manage, analyze, and interpret, ensuring that your collection efforts are not wasted but lead to valuable, actionable insights.

Remember, each stage of the data collection process, from design to cleaning, is iterative and interconnected. By diligently cleaning and organizing your data, you are setting the stage for robust, meaningful analysis that can inform your data-driven decisions and actions.

What happens after data collection?

A person sits at a laptop while using a large tablet to aggregate data into a graph.

The data collection journey takes us next into data analysis, where you’ll uncover patterns, empowering informed decision-making for researchers, evaluation teams, and field personnel.

Process and Analyze Your Data

Explore data through statistical and qualitative techniques to discover patterns, correlations, and insights during this pivotal stage. It’s about extracting the essence of your data and translating numbers into knowledge. Whether applying descriptive statistics, conducting regression analysis, or using thematic coding for qualitative data, this process drives decision-making and charts the path toward actionable outcomes.

Interpret and Report Your Results

Interpreting and reporting your data brings meaning and context to the numbers. Translating raw data into digestible insights for informed decision-making and effective stakeholder communication is critical.

The approach to interpretation and reporting varies depending on the perspective and role:

  • Researchers often lean heavily on statistical methods to identify trends, extract meaningful conclusions, and share their findings in academic circles, contributing to their knowledge pool.
  • M&E teams typically produce comprehensive reports, shedding light on the effectiveness and impact of programs. These reports guide internal and sometimes external stakeholders, supporting informed decisions and driving program improvements.

Field teams provide a first-hand perspective. Since they are often the first to see the results of the practical implementation of data, field teams are instrumental in providing immediate feedback loops on project initiatives. Field teams do the work that provides context to help research and M&E teams understand external factors like the local environment, cultural nuances, and logistical challenges that impact data results.

Safely store and handle data

Throughout the data collection process, and after it has been collected, it is vital to follow best practices for storing and handling data to ensure the integrity of your research. While the specifics of how to best store and handle data will depend on your project, here are some important guidelines to keep in mind:

  • Use cloud storage to hold your data if possible, since this is safer than storing data on hard drives and keeps it more accessible,
  • Periodically back up and purge old data from your system, since it’s safer to not retain data longer than necessary,
  • If you use mobile devices to collect and store data, use options for private, internal apps-specific storage if and when possible,
  • Restrict access to stored data to only those who need to work with that data.

Further considerations for data safety are discussed below in the section on data security .

Remember to uphold ethical standards in interpreting and reporting your data, regardless of your role. Clear communication, respectful handling of sensitive information, and adhering to confidentiality and privacy rights are all essential to fostering trust, promoting transparency, and bolstering your work’s credibility.

Common Data Collection Challenges

what is the data collection in research

Data collection is vital to data-driven initiatives, but it comes with challenges. Addressing common challenges such as poor data quality, privacy concerns, inadequate sample sizes, and bias is essential to ensure the collected data is reliable, trustworthy, and secure. 

In this section, we’ll explore three major challenges: data quality and consistency issues, data security concerns, and limitations with offline data collection , along with strategies to overcome them.

Data Quality and Consistency

Data quality and consistency refer to data accuracy and reliability throughout the collection and analysis process. 

Challenges such as incomplete or missing data, data entry errors, measurement errors, and data coding/categorization errors can impact the integrity and usefulness of the data. 

To navigate these complexities and maintain high standards, consistency, and integrity in the dataset:

  • Implement robust data validation processes, 
  • Ensure proper training for data entry personnel, 
  • Employ automated data validation techniques, and 
  • Conduct regular data quality audits.

Data security

Data security encompasses safeguarding data through ensuring data privacy and confidentiality, securing storage and backup, and controlling data sharing and access.

Challenges include the risk of potential breaches, unauthorized access, and the need to comply with data protection regulations.

To address these setbacks and maintain privacy, trust, and confidence during the data collection process: 

  • Use encryption and authentication methods, 
  • Implement robust security protocols, 
  • Update security measures regularly, 
  • Provide employee training on data security, and 
  • Adopt secure cloud storage solutions.

Offline Data Collection

Offline data collection refers to the process of gathering data using modes like mobile device-based computer-assisted personal interviewing (CAPI) when t here is an inconsistent or unreliable internet connection, and the data collection tool being used for CAPI has the functionality to work offline. 

Challenges associated with offline data collection include synchronization issues, difficulty transferring data, and compatibility problems between devices, and data collection tools. 

To overcome these challenges and enable efficient and reliable offline data collection processes, employ the following strategies: 

  • Leverage offline-enabled data collection apps or tools  that enable you to survey respondents even when there’s no internet connection, and upload data to a central repository at a later time. 
  • Your data collection plan should include times for periodic data synchronization when connectivity is available, 
  • Use offline, device-based storage for seamless data transfer and compatibility, and 
  • Provide clear instructions to field personnel on handling offline data collection scenarios.

Utilizing Technology in Data Collection

A group of people stand in a circle holding brightly colored smartphones.

Embracing technology throughout your data collection process can help you overcome many challenges described in the previous section. Data collection tools can streamline your data collection, improve the quality and security of your data, and facilitate the analysis of your data. Let’s look at two broad categories of tools that are essential for data collection:

Data Collection, Entry, & Management Tools

These tools help with data collection, input, and organization. They can range from digital survey platforms to comprehensive database systems, allowing you to gather, enter, and manage your data effectively. They can significantly simplify the data collection process, minimize human error, and offer practical ways to organize and manage large volumes of data. Some of these tools are:

  • Microsoft Office
  • Google Docs
  • SurveyMonkey
  • Google Forms

Data Analysis, Visualization, Reporting, & Workflow Tools

These tools assist in processing and interpreting the collected data. They provide a way to visualize data in a user-friendly format, making it easier to identify trends and patterns. These tools can also generate comprehensive reports to share your findings with stakeholders and help manage your workflow efficiently. By automating complex tasks, they can help ensure accuracy and save time. Tools for these purposes include:

  • Google sheets

Data collection tools like SurveyCTO often have integrations to help users seamlessly transition from data collection to data analysis, visualization, reporting, and managing workflows.

Master Your Data Collection Process With SurveyCTO

As we bring this guide to a close, you now possess a wealth of knowledge to develop your data collection process. From understanding the significance of setting clear goals to the crucial process of selecting your data collection methods and addressing common challenges, you are equipped to handle the intricate details of this dynamic process.

Remember, you’re not venturing into this complex process alone. At SurveyCTO, we offer not just a tool but an entire support system committed to your success. Beyond troubleshooting support, our success team serves as research advisors and expert partners, ready to provide guidance at every stage of your data collection journey.

With SurveyCTO , you can design flexible surveys in Microsoft Excel or Google Sheets, collect data online and offline with above-industry-standard security, monitor your data in real time, and effortlessly export it for further analysis in any tool of your choice. You also get access to our Data Explorer, which allows you to visualize incoming data at both individual survey and aggregate levels instantly.

In the iterative data collection process, our users tell us that SurveyCTO stands out with its capacity to establish review and correction workflows. It enables you to monitor incoming data and configure automated quality checks to flag error-prone submissions.

Finally, data security is of paramount importance to us. We ensure best-in-class security measures like SOC 2 compliance, end-to-end encryption, single sign-on (SSO), GDPR-compliant setups, customizable user roles, and self-hosting options to keep your data safe.

As you embark on your data collection journey, you can count on SurveyCTO’s experience and expertise to be by your side every step of the way. Our team would be excited and honored to be a part of your research project, offering you the tools and processes to gain informative insights and make effective decisions. Partner with us today and revolutionize the way you collect data.

Better data, better decision making, better world.

what is the data collection in research

INTEGRATIONS

Case Western Reserve University

  • Research Data Lifecycle Guide

Data Collection

Data collection is the process of gathering and measuring information used for research. Collecting data is one of the most important steps in the research process, and is part of all disciplines including physical and social sciences, humanities, business, etc. Data comes in many forms with different ways to store and record data, either written in a lab notebook and or recorded digitally on a computer system. 

While methods may differ across disciplines,  good data management processes begin with accurately and clearly describing the information recorded, the process used to collect the data, practices that ensure the quality of the data, and sharing data to enable reproducibility. This section breaks down different topics that need to be addressed while collecting and managing data for research.

Learn more about what’s required for data collection as a researcher at Case Western Reserve University. 

Ensuring Accurate and Appropriate Data Collection

Accurate data collection is vital to ensure the integrity of research . It is important when planning and executing a research project to consider methods collection and the storage of data to ensure that results can be used for publications and reporting.   The consequences from improper data collection include:

  • inability to answer research questions accurately
  • inability to repeat and validate the study
  • distorted findings resulting in wasted resources
  • misleading other researchers to pursue fruitless avenues of investigation
  • compromising decisions for public policy
  • causing harm to human participants and animal subjects

While the degree of impact from inaccurate data may vary by discipline, there is a potential to cause disproportionate harm when data is misrepresented and misused. This includes fraud or scientific misconduct.

Any data collected in the course of your research should follow RDM best practices to ensure accurate and appropriate data collection. This includes as appropriate, developing data collection protocols and processes to ensure inconsistencies and other errors are caught and corrected in a timely manner.

Examples of Research Data

Research data is any information that has been collected, observed, generated or created in association with research processes and findings.

Much research data is digital in format, but research data can also be extended to include non-digital formats such as laboratory notebook, diaries, or written responses to surveys. Examples may include (but are not limited to):

  • Excel spreadsheets that contains instrument data
  • Documents (text, Word), containing study results
  • Laboratory notebooks, field notebooks, diaries
  • Questionnaires, transcripts, codebooks
  • Audiotapes, videotapes
  • Photographs, films
  • Protein or genetic sequences
  • Test responses
  • Slides, artifacts, specimens, samples
  • Collection of digital objects acquired and generated during the process of research
  • Database contents (video, audio, text, images)
  • Models, algorithms, scripts
  • Contents of an application (input, output, logfiles for analysis software, simulation software, schemas)
  • Source code used in application development

To ensure reproducibility of experiments and results, be sure to include and document information such as: 

  • Methodologies and workflows
  • Standard operating procedures and protocols

Data Use Agreements 

When working with data it is important to understand any restrictions that need to be addressed due to the sensitivity of the data. This includes how you download and share with other collaborators, and how it needs to be properly secured. 

Datasets can include potentially sensitive data that needs to be protected, and not openly shared. In this case, the dataset cannot be shared and or downloaded without permission from CWRU Research Administration and may require an agreement between collaborators and their institutions. All parties will need to abide by the agreement terms including the destruction of data once the collaboration is complete.

Storage Options 

UTech provides cloud and on-premise storage to support the university research mission. This includes Google Drive , Box , Microsoft 365 , and various on-premise solutions for high speed access and mass storage. A listing of supported options can be found on UTech’s website .

In addition to UTech-supported storage solutions, CWRU also maintains an institutional subscription to OSF (Open Science Framework) . OSF is a cloud-based data storage, sharing, and project collaboration platform that connects to many other cloud services like Drive, Box, and Github to amplify your research and data visibility and discoverability. OSF storage is functionally unlimited.

When selecting a storage platform it is important to understand how you plan to analyze and store your data. Cloud storage provides the ability to store and share data effortlessly and provides capabilities such as revisioning and other means to protect your data. On-premise storage is useful when you have large storage demands and require a high speed connection to instruments that generate data and systems that process data. Both types of storage have their advantages and disadvantages that you should consider when planning your research project.

Data Security

Data security is a set of processes and ongoing practices designed to protect information and the systems used to store and process data. This includes computer systems, files, databases, applications, user accounts, networks, and services on institutional premises, in the cloud, and remotely at the location of individual researchers. 

Effective data security takes into account the confidentiality, integrity, and availability of the information and its use. This is especially important when data contains personally identifiable information, intellectual property, trade secrets, and or technical data supporting technology transfer agreements (before public disclosure decisions have been made).

Data Categorization 

CWRU uses a 3-tier system to categorize research data based on information types and sensitivity . Determination is based upon risk to the University in the areas of confidentiality, integrity, and availability of data in support of the University's research mission. In this context, confidentiality measures to what extent information can be disclosed to others, integrity is the assurance that the information is trustworthy and accurate, and availability is a guarantee of reliable access to the information by authorized users.

Information (or data) owners are responsible for determining the impact levels of their information, i.e. what happens if the data is improperly accessed or lost accidentally, implementing the necessary security controls, and managing the risk of negative events including data loss and unauthorized access.

Classification

Examples

Loss, corruption, or inappropriate access to information can interfere with CWRU's mission, interrupt business and damage reputations or finances. 

Securing Data

The classification of data requires certain safeguards or countermeasures, known as controls, to be applied to systems that store data. This can include restricting access to the data, detecting unauthorized access, preventative measures to avoid loss of data, encrypting the transfer and storage of data, keeping the system and data in a secure location, and receiving training on best practices for handling data. Controls are classified according to their characteristics, for example:

  • Physical controls e.g. doors, locks, climate control, and fire extinguishers;
  • Procedural or administrative controls e.g. policies, incident response processes, management oversight, security awareness and training;
  • Technical or logical controls e.g. user authentication (login) and logical access controls, antivirus software, firewalls;
  • Legal and regulatory or compliance controls e.g. privacy laws, policies and clauses.

Principal Investigator (PI) Responsibilities

The CWRU Faculty Handbook provides guidelines for PIs regarding the custody of research data. This includes, where applicable, appropriate measures to protect confidential information. It is everyone’s responsibility to ensure that our research data is kept securely and available for reproducibility and future research opportunities.

University Technology provides many services and resources related to data security including assistance with planning and securing data. This includes processing and storing restricted information used in research. 

Data Collected as Part of Human Subject Research 

To ensure the privacy and safety of the individual participating in a human subject research study, additional rules and processes are in place that describe how one can use and disclose data collected,  The Office of Research Administration provides information relevant to conducting this type of research. This includes:

  • Guidance on data use agreements and processes for agreements that involve human-related data or human-derived samples coming in or going out of CWRU.
  • Compliance with human subject research rules and regulations.

According to 45 CFR 46 , a human subject is "a living individual about whom an investigator (whether professional or student) conducting research:

  • Obtains information or biospecimens through intervention or interaction with the individual, and uses, studies, or analyzes the information or biospecimens; or
  • Obtains, uses, studies, analyzes, or generates identifiable private information or identifiable biospecimens."

The CWRU Institutional Review Board reviews social science/behavioral studies, and low-risk biomedical research not conducted in a hospital setting for all faculty, staff, and students of the University. This includes data collected and used for human subjects research. 

Research conducted in a hospital setting including University Hospitals requires IRB protocol approval.

Questions regarding the management of human subject research data should be addressed to the CWRU Institutional Review Board .

Getting Help With Data Collection

If you are looking for datasets and other resources for your research you can contact your subject area librarian for assistance.

  • Kelvin Smith Library

If you need assistance with administrative items such as data use agreements or finding the appropriate storage solution please contact the following offices.

  • Research Administration
  • UTech Research Computing
  • Information Security Office

Guidance and Resources

  • Information Security Policy
  • Research Data Protection
  • CWRU Faculty Handbook
  • CWRU IRB Guidance

what is the data collection in research

The Ultimate Guide to Qualitative Research - Part 1: The Basics

what is the data collection in research

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews
  • Research question
  • Conceptual framework
  • Conceptual vs. theoretical framework
  • Introduction

Data in research

Data collection methods, challenges in data collection, using technology in data collection, data organization.

  • Qualitative research methods
  • Focus groups
  • Observational research
  • Case studies
  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Data collection - What is it and why is it important?

The data collected for your study informs the analysis of your research. Gathering data in a transparent and thorough manner informs the rest of your research and makes it persuasive to your audience.

what is the data collection in research

We will look at the data collection process, the methods of data collection that exist in quantitative and qualitative research , and the various issues around data in qualitative research.

When it comes to defining data, data can be any sort of information that people use to better understand the world around them. Having this information allows us to robustly draw and verify conclusions, as opposed to relying on blind guesses or thought exercises.

Necessity of data collection skills

Collecting data is critical to the fundamental objective of research as a vehicle to organize knowledge. While this may seem intuitive, it's important to acknowledge that researchers must be as skilled in data collection as they are in data analysis .

Collecting the right data

Rather than just collecting as much data as possible, it's important to collect data that is relevant for answering your research question . Imagine a simple research question: what factors do people consider when buying a car? It would not be possible to ask every living person about their car purchases. Even if it was possible, not everyone drives a car, so asking non-drivers seems unproductive. As a result, the researcher conducting a study to devise data reports and marketing strategies has to take a sample of the relevant data to ensure reliable analysis and findings.

Data collection examples

In the broadest terms, any sort of data gathering contributes to the research process. In any work of science, researchers cannot make empirical conclusions without relying on some body of data to make rational judgments.

Various examples of data collection in the social sciences include:

  • responses to a survey about product satisfaction
  • interviews with students about their career goals
  • reactions to an experimental vitamin supplement regimen
  • observations of workplace interactions and practices
  • focus group data about customer behavior

Data science and scholarly research have almost limitless possibilities to collect data, and the primary requirement is that the dataset should be relevant to the research question and clearly defined. Researchers thus need to rule out any irrelevant data so that they can develop new theory or key findings.

Types of data

Researchers can collect data themselves (primary data) or use third-party data (secondary data). The data collection considerations regarding which type of data to work with have a direct relationship to your research question and objectives.

Primary data

Original research relies on first-party data, or primary data that the researcher collects themselves for their own analysis. When you are collecting information in a primary study yourself, you are more likely to gain the high quality you require.

Because the researcher is most aware of the inquiry they want to conduct and has tailored the research process to their inquiry, first-party data collection has the greatest potential for congruence between the data collected and the potential to generate relevant insights.

Ethnographic research , for example, relies on first-party data collection since a description of a culture or a group of people is contextualized through a comprehensive understanding of the researcher and their relative positioning to that culture.

Secondary data

Researchers can also use publicly available secondary data that other researchers have generated to analyze following a different approach and thus produce new insights. Online databases and literature reviews are good examples where researchers can find existing data to conduct research on a previously unexplored inquiry. However, it is important to consider data accuracy or relevance when using third-party data, given that the researcher can only conduct limited quality control of data that has already been collected.

what is the data collection in research

A relatively new consideration in data collection and data analysis has been the advent of big data, where data scientists employ automated processes to collect data in large amounts.

what is the data collection in research

The advantage of collecting data at scale is that a thorough analysis of a greater scope of data can potentially generate more generalizable findings. Nonetheless, this is a daunting task because it is time-consuming and arduous. Moreover, it requires skilled data scientists to sift through large data sets to filter out irrelevant data and generate useful insights. On the other hand, it is important for qualitative researchers to carefully consider their needs for data breadth versus depth: Qualitative studies typically rely on a relatively small number of participants but very detailed data is collected for each participant, because understanding the specific context and individual interpretations or experiences is often of central importance. When using big data, this depth of data is usually replaced with a greater breadth of data that includes a much greater number of participants. Researchers need to consider their need for depth or breadth to decide which data collection method is best suited to answer their research question.

Data science made easy with ATLAS.ti

ATLAS.ti handles all research projects big and small. See how with a free trial.

Different data collection procedures for gathering data exist depending on the research inquiry you want to conduct. Let's explore the common data collection methods in quantitative and qualitative research.

Quantitative data collection methods

Quantitative methods are used to collect numerical or quantifiable data. These can then be processed statistically to test hypotheses and gain insights. Quantitative data gathering is typically aimed at measuring a particular phenomenon (e.g., the amount of awareness a brand has in the market, the efficacy of a particular diet, etc.) in order to test hypotheses (e.g., social media marketing campaigns increase brand awareness, eating more fruits and vegetables leads to better physical performance, etc.).

what is the data collection in research

Some qualitative methods of research can contribute to quantitative data collection and analysis. Online surveys and questionnaires with multiple-choice questions can produce structured data ready to be analyzed. A survey platform like Qualtrics, for example, aggregates survey responses in a spreadsheet to allow for numerical or frequency analysis.

Qualitative data collection methods

Analyzing qualitative data is important for describing a phenomenon (e.g., the requirements for good teaching practices), which may lead to the creation of propositions or the development of a theory. Behavioral data, transactional data, and data from social media monitoring are examples of different forms of data that can be collected qualitatively.

Consideration of tools or equipment for collecting data is also important. Primary data collection methods in observational research , for example, employ tools such as audio and video recorders , notebooks for writing field notes , and cameras for taking photographs. As long as the products of such tools can be analyzed, those products can be incorporated into a study's data collection.

Employing multiple data collection methods

Moreover, qualitative researchers seldom rely on one data collection method alone. Ethnographic researchers , in particular, can incorporate direct observation , interviews , focus group sessions , and document collection in their data collection process to produce the most contextualized data for their research. Mixed methods research employs multiple data collection methods, including qualitative and quantitative data, along with multiple tools to study a phenomenon from as many different angles as possible.

what is the data collection in research

New forms of data collection

External data sources such as social media data and big data have also gained contemporary focus as social trends change and new research questions emerge. This has prompted the creation of novel data collection methods in research.

Ultimately, there are countless data collection instruments used for qualitative methods, but the key objective is to be able to produce relevant data that can be systematically analyzed. As a result, researchers can analyze audio, video, images, and other formats beyond text. As our world is continuously changing, for example, with the growing prominence of generative artificial intelligence and social media, researchers will undoubtedly bring forth new inquiries that require continuous innovation and adaptation with data collection methods.

what is the data collection in research

Collecting data for qualitative research is a complex process that often comes with unique challenges. This section discusses some of the common obstacles that researchers may encounter during data collection and offers strategies to navigate these issues.

Access to participants

Obtaining access to research participants can be a significant challenge. This might be due to geographical distance, time constraints, or reluctance from potential participants. To address this, researchers need to clearly communicate the purpose of their study, ensure confidentiality, and be flexible with their scheduling.

Cultural and language barriers

Researchers may face cultural and language barriers, particularly in cross-cultural research. These barriers can affect communication and understanding between the researcher and the participant. Employing translators, cultural mediators, or learning the local language can be beneficial in overcoming these barriers.

what is the data collection in research

Non-responsive or uncooperative participants

At times, researchers might encounter participants who are unwilling or unable to provide the required information. In these situations, rapport-building is crucial. The researcher should aim to build trust, create a comfortable environment for the participant, and reassure them about the confidentiality of their responses.

Time constraints

Qualitative research can be time-consuming, particularly when involving interviews or focus groups that require coordination of multiple schedules, transcription , and in-depth analysis . Adequate planning and organization can help mitigate this challenge.

Bias in data collection

Bias in data collection can occur when the researcher's preconceptions or the participant's desire to present themselves favorably affect the data. Strategies for mitigating bias include reflexivity , triangulation, and member checking .

Handling sensitive topics

Research involving sensitive topics can be challenging for both the researcher and the participant. Ensuring a safe and supportive environment , practicing empathetic listening, and providing resources for emotional support can help navigate these sensitive issues.

what is the data collection in research

Collecting data in qualitative research can be a very rewarding but challenging experience. However, with careful planning, ethical conduct, and a flexible approach, researchers can effectively navigate these obstacles and collect robust, meaningful data.

Considerations when collecting data

Research relies on empiricism and credibility at all stages of a research inquiry. As a result, there are various data collection problems and issues that researchers need to keep in mind.

Data quality issues

Your analysis may depend on capturing the fine-grained details that some data collection tools may miss. In that case, you should carefully consider data quality issues regarding the precision of your data collection. For example, think about a picture taken with a smartphone camera and a picture taken with a professional camera. If you need high-resolution photos, it would make sense to rely on a professional camera that can provide adequate data quality.

Quantitative data collection often relies on precise data collection tools to evaluate outcomes, but researchers collecting qualitative data should also be concerned with quality assurance. For example, suppose a study involving direct observation requires multiple observers in different contexts. In that case, researchers should take care to ensure that all observers can gather data in a similar fashion to ensure that all data can be analyzed in the same way.

what is the data collection in research

Data quality is a crucial consideration when gathering information. Even if the researcher has chosen an appropriate method for data collection, is the data that they collect useful and detailed enough to provide the necessary analysis to answer the given research inquiry?

One example where data quality is consequential in qualitative data collection includes interviews and focus groups. Recordings may lose some of the finer details of social interaction, such as pauses, thinking words, or utterances that aren't loud enough for the microphone to pick up.

Suppose you are conducting an interview for a study where such details are relevant to your analysis. In that case, you should consider employing tools that collect sufficiently rich data to record these aspects of interaction.

Data integrity

The possibility of inaccurate data has the potential to confound the data analysis process, as drawing conclusions or making decisions becomes difficult, if not impossible, with low-quality data. Failure to establish the integrity of data collection can cast doubt on the findings of a given study. Accurate data collection is just one aspect researchers should consider to protect data integrity. After that, it is a matter of preserving the data after data collection. How is the data stored? Who has access to the collected data? To what extent can the data be changed between data collection and research dissemination ?

Data integrity is an issue of research ethics as well as research credibility . The researcher needs to establish that the data presented for research dissemination is an accurate representation of the phenomenon under study.

Imagine if a photograph of wildlife becomes so aged that the color becomes distorted over time. Suppose the findings depend on describing the colors of a particular animal or plant. In that case, then not preserving the integrity of the data presents a serious threat to the credibility of the research and the researcher. In addition, when transcribing an interview or focus group, it is important to take care that participants’ words are accurately transcribed to avoid unintentionally changing the data.

Transparency

As explored earlier, researchers rely on both intuition and data to make interpretations about the world. As a result, researchers have an obligation to explain how they collected data and describe their data so that audiences can also understand it. Establishing research transparency also allows other researchers to examine a study and determine if they find it credible and how they can continue to build off it.

To address this need, research papers typically have a methodology section, which includes descriptions of the tools employed for data collection and the breadth and depth of the data that is collected for the study. It is important to transparently convey every aspect of the data collection and analysis , which might involve providing a sample of the questions participants were asked, demographic information about participants, or proof of compliance with ethical standards, to name a few examples.

Subjectivity

How to gather data is also a key concern, especially in social sciences where people's perspectives represent the collected data, and these perspectives can vastly differ.

what is the data collection in research

In interviews and focus groups, how questions are framed may change the nature of the answers that participants provide. In market research, researchers have to carefully design questions to not inadvertently lead customers to provide a certain response or to facilitate useful feedback. Even in the natural sciences, researchers have to regularly check whether the data collection equipment they use for gathering data is producing accurate data sets for analysis.

Finally, the different methods of data collection raise questions about whether the data says what we think it says. Consider how people might establish monitoring systems to track behavioral data online. When a user spends a certain amount of time on a mobile app, are they deeply engaged in using the app, or are they leaving it on while they work on other tasks?

Data collection is only as useful as the extent to which the resulting data can be systematically analyzed and is relevant to the research inquiry being pursued. While it is tempting to collect as much data as possible, it is the researcher’s analyses and inferences, not just the quantity of data, that ultimately determine the impact of the research.

Validity and reliability in qualitative data

Ensuring validity and reliability in qualitative data collection is paramount to producing meaningful, rigorous, and trustworthy research findings. This section will outline the core principles of validity and reliability, which stem from quantitative research, and then we will consider relevant quality criteria for qualitative research.

Understanding validity

In general terms, validity is about ensuring that the research accurately reflects the phenomena it purports to represent. It is tied to how well the methods and techniques used in a study align with the intended research question and how accurately the findings represent the participants' experiences or perceptions. In qualitative research, however, the co-existence of multiple realities is often recognized, rather than believing there is only one “true” reality out there that can be measured. Thus, qualitative researchers can instead convey credibility by transparently communicating their research question, operationalization of key concepts, and how this translated into their data collection instruments and analysis. Moreover, qualitative researchers should pay attention to whether their own preconceptions or goals might be inadvertently shaping their findings. In addition, potential reactivity effects can be considered, to assess how the research may have influenced their participants or research setting while collecting data.

Understanding reliability

Reliability broadly refers to the consistency of the research approach across different contexts and with different researchers. A quantitative study is considered reliable if its findings can be replicated in a similar context or if the same results can be obtained by a different researcher following the same research procedure.

In qualitative research, however, researchers acknowledge and embrace the specific context of their data and analysis. All knowledge that is generated is context-specific, so rather than claiming that a study’s findings can be reliably reproduced in a wholly different context, qualitative researchers aim to demonstrate the trustworthiness or dependability of their data and findings. Transparent descriptions and clear communication can convey to audiences that the research was conducted with rigor and coherence between the research question , methods, and findings, all of which can bolster the credibility of the qualitative study.

what is the data collection in research

Enhancing data quality

Various strategies can be used to enhance data quality in qualitative research. Among them are:

1. Triangulation: This involves using multiple data sources, methods, or researchers to gather data about the same phenomenon. This can help to ensure the findings are robust and not dependent on a single source. 2. Member checking: This method involves returning the findings to the participants to check if the interpretations accurately reflect their experiences or perceptions. This can help to ensure the validity of the research findings. 3. Thick description: Providing detailed accounts of the context, interactions, and interpretations in the research report can allow others to understand the research process better, which is important to foster the communicability of one’s research. 4. Audit trail: Keeping a detailed record of the research process, decisions, and reflections can increase the transparency and coherence of the study.

what is the data collection in research

A wide variety of technologies can be used to work with qualitative data. Technology not only aids in data collection but also in the organization , analysis , and presentation of data .

This section explores some of the key ways that technology can be integrated into qualitative data collection.

Digital tools for data collection

Digital tools can vastly improve the efficiency and effectiveness of data collection. For example, audio and video recording devices can capture interviews , focus groups , and observational data with great detail.

what is the data collection in research

Online surveys and questionnaires can reach a wider audience, often at a lower cost and with quicker turnaround times compared with traditional methods. Mobile applications can also be used to capture real-time experiences, emotions, and activities through diary studies or experience sampling.

Online platforms for qualitative research

Online platforms like social media , blogs, and discussion forums provide a rich source of qualitative data. Researchers can analyze these platforms for insights into people's behaviors, attitudes, and experiences.

In addition, virtual communities and digital ethnography are becoming increasingly common as researchers explore these online spaces.

Ethical considerations with technology

With the increased use of technology, researchers must be mindful of ethical considerations , including privacy and consent . It's important to secure informed consent when collecting data from online platforms or using digital tools, and all researchers should obtain the necessary approvals for collecting data and adhering to any applicable codes of conduct (such as GDPR). It's also crucial to ensure data security and confidentiality when storing data on digital platforms.

Advantages and limitations of technology

While technology offers numerous advantages in terms of efficiency, accessibility, and breadth of data, it also presents limitations. For example, digital tools may not capture the full nuance and richness of face-to-face interactions.

Furthermore, technological glitches and data loss are potential risks. Therefore, it's important for researchers to understand these trade-offs when incorporating technology into their data collection process.

As technology continues to evolve, so too will its applications in qualitative research. Embracing these technological advancements can help researchers to enhance their data collection practices, offering new opportunities for capturing, analyzing , and presenting qualitative data .

Data analysis after collecting data is only possible if the data is sufficiently organized into a form that can be easily sorted and understood. Imagine collecting social media data , which could be millions of posts from millions of social media users every day. You can dump every single post into a file, but how can you make sense of it?

Data organization is especially important when dealing with unstructured data. The researcher needs to structure the data in some way that facilitates the analytical process.

Transcription

Collecting data in focus groups, interviews, or other similar interactions produces raw video and audio recordings . This data can often be analyzed for contextual cues such as non-verbal interaction, facial expressions, and accents. However, most traditional analyses of interview and focus group data benefit from converting participants’ words into text.

Recordings are typically transcribed so that the text can be systematically analyzed and incorporated into research papers or presentations . Transcription can be a tedious task, especially if a researcher has to deal with hours of audio data. These days, researchers can often choose between manually transcribing their raw data or using automated transcription services to greatly speed up this process.

Survey data

In online survey platforms, participant responses to closed-ended questions can be easily aggregated in a spreadsheet. Responses to any open-ended questions can also be included in a spreadsheet or saved as separate files for subsequent analysis of the text participants wrote. Since survey data is relatively structured, it tends to be quicker and easier to organize than other forms of qualitative data that are more unstructured, such as interviews or observations.

Field notes and artifacts

In ethnographic research or research involving direct observation , gathering data often means writing notes or taking photographs during field work. While field notes can be typed into a document for data analysis, the researcher can also scan their notes into an image or a PDF for later organization.

This degree of flexibility allows researchers to code all forms of data that aren't textual in nature but can still provide useful data points for analysis and theoretical development.

Coding is among the most fundamental skills in qualitative research, because coding is how researchers can effectively reduce large datasets into a series of compact codes for later analysis. If you are dealing with dozens or hundreds of pages of qualitative data, then applying codes to your data is a key method for condensing, synthesizing, and understanding the data.

what is the data collection in research

Organize your data with ATLAS.ti.

All your research data in one organized place. Give ATLAS.ti a try with a free trial.

  • 7 Data Collection Methods & Tools For Research

busayo.longe

  • Data Collection

The underlying need for Data collection is to capture quality evidence that seeks to answer all the questions that have been posed. Through data collection businesses or management can deduce quality information that is a prerequisite for making informed decisions.

To improve the quality of information, it is expedient that data is collected so that you can draw inferences and make informed decisions on what is considered factual.

At the end of this article, you would understand why picking the best data collection method is necessary for achieving your set objective. 

Sign up on Formplus Builder to create your preferred online surveys or questionnaire for data collection. You don’t need to be tech-savvy! Start creating quality questionnaires with Formplus.

What is Data Collection?

Data collection is a methodical process of gathering and analyzing specific information to proffer solutions to relevant questions and evaluate the results. It focuses on finding out all there is to a particular subject matter. Data is collected to be further subjected to hypothesis testing which seeks to explain a phenomenon.

Hypothesis testing eliminates assumptions while making a proposition from the basis of reason.

what is the data collection in research

For collectors of data, there is a range of outcomes for which the data is collected. But the key purpose for which data is collected is to put a researcher in a vantage position to make predictions about future probabilities and trends.

The core forms in which data can be collected are primary and secondary data. While the former is collected by a researcher through first-hand sources, the latter is collected by an individual other than the user. 

Types of Data Collection 

Before broaching the subject of the various types of data collection. It is pertinent to note that data collection in itself falls under two broad categories; Primary data collection and secondary data collection.

Primary Data Collection

Primary data collection by definition is the gathering of raw data collected at the source. It is a process of collecting the original data collected by a researcher for a specific research purpose. It could be further analyzed into two segments; qualitative research and quantitative data collection methods. 

  • Qualitative Research Method 

The qualitative research methods of data collection do not involve the collection of data that involves numbers or a need to be deduced through a mathematical calculation, rather it is based on the non-quantifiable elements like the feeling or emotion of the researcher. An example of such a method is an open-ended questionnaire.

what is the data collection in research

  • Quantitative Method

Quantitative methods are presented in numbers and require a mathematical calculation to deduce. An example would be the use of a questionnaire with close-ended questions to arrive at figures to be calculated Mathematically. Also, methods of correlation and regression, mean, mode and median.

what is the data collection in research

Read Also: 15 Reasons to Choose Quantitative over Qualitative Research

Secondary Data Collection

Secondary data collection, on the other hand, is referred to as the gathering of second-hand data collected by an individual who is not the original user. It is the process of collecting data that is already existing, be it already published books, journals, and/or online portals. In terms of ease, it is much less expensive and easier to collect.

Your choice between Primary data collection and secondary data collection depends on the nature, scope, and area of your research as well as its aims and objectives. 

Importance of Data Collection

There are a bunch of underlying reasons for collecting data, especially for a researcher. Walking you through them, here are a few reasons; 

  • Integrity of the Research

A key reason for collecting data, be it through quantitative or qualitative methods is to ensure that the integrity of the research question is indeed maintained.

  • Reduce the likelihood of errors

The correct use of appropriate data collection of methods reduces the likelihood of errors consistent with the results. 

  • Decision Making

To minimize the risk of errors in decision-making, it is important that accurate data is collected so that the researcher doesn’t make uninformed decisions. 

  • Save Cost and Time

Data collection saves the researcher time and funds that would otherwise be misspent without a deeper understanding of the topic or subject matter.

  • To support a need for a new idea, change, and/or innovation

To prove the need for a change in the norm or the introduction of new information that will be widely accepted, it is important to collect data as evidence to support these claims.

What is a Data Collection Tool?

Data collection tools refer to the devices/instruments used to collect data, such as a paper questionnaire or computer-assisted interviewing system. Case Studies, Checklists, Interviews, Observation sometimes, and Surveys or Questionnaires are all tools used to collect data.

It is important to decide on the tools for data collection because research is carried out in different ways and for different purposes. The objective behind data collection is to capture quality evidence that allows analysis to lead to the formulation of convincing and credible answers to the posed questions.

The objective behind data collection is to capture quality evidence that allows analysis to lead to the formulation of convincing and credible answers to the questions that have been posed – Click to Tweet

The Formplus online data collection tool is perfect for gathering primary data, i.e. raw data collected from the source. You can easily get data with at least three data collection methods with our online and offline data-gathering tool. I.e Online Questionnaires , Focus Groups, and Reporting. 

In our previous articles, we’ve explained why quantitative research methods are more effective than qualitative methods . However, with the Formplus data collection tool, you can gather all types of primary data for academic, opinion or product research.

Top Data Collection Methods and Tools for Academic, Opinion, or Product Research

The following are the top 7 data collection methods for Academic, Opinion-based, or product research. Also discussed in detail are the nature, pros, and cons of each one. At the end of this segment, you will be best informed about which method best suits your research. 

An interview is a face-to-face conversation between two individuals with the sole purpose of collecting relevant information to satisfy a research purpose. Interviews are of different types namely; Structured, Semi-structured , and unstructured with each having a slight variation from the other.

Use this interview consent form template to let an interviewee give you consent to use data gotten from your interviews for investigative research purposes.

  • Structured Interviews – Simply put, it is a verbally administered questionnaire. In terms of depth, it is surface level and is usually completed within a short period. For speed and efficiency, it is highly recommendable, but it lacks depth.
  • Semi-structured Interviews – In this method, there subsist several key questions which cover the scope of the areas to be explored. It allows a little more leeway for the researcher to explore the subject matter.
  • Unstructured Interviews – It is an in-depth interview that allows the researcher to collect a wide range of information with a purpose. An advantage of this method is the freedom it gives a researcher to combine structure with flexibility even though it is more time-consuming.
  • In-depth information
  • Freedom of flexibility
  • Accurate data.
  • Time-consuming
  • Expensive to collect.

What are The Best Data Collection Tools for Interviews? 

For collecting data through interviews, here are a few tools you can use to easily collect data.

  • Audio Recorder

An audio recorder is used for recording sound on disc, tape, or film. Audio information can meet the needs of a wide range of people, as well as provide alternatives to print data collection tools.

  • Digital Camera

An advantage of a digital camera is that it can be used for transmitting those images to a monitor screen when the need arises.

A camcorder is used for collecting data through interviews. It provides a combination of both an audio recorder and a video camera. The data provided is qualitative in nature and allows the respondents to answer questions asked exhaustively. If you need to collect sensitive information during an interview, a camcorder might not work for you as you would need to maintain your subject’s privacy.

Want to conduct an interview for qualitative data research or a special report? Use this online interview consent form template to allow the interviewee to give their consent before you use the interview data for research or report. With premium features like e-signature, upload fields, form security, etc., Formplus Builder is the perfect tool to create your preferred online consent forms without coding experience. 

  • QUESTIONNAIRES

This is the process of collecting data through an instrument consisting of a series of questions and prompts to receive a response from the individuals it is administered to. Questionnaires are designed to collect data from a group. 

For clarity, it is important to note that a questionnaire isn’t a survey, rather it forms a part of it. A survey is a process of data gathering involving a variety of data collection methods, including a questionnaire.

On a questionnaire, there are three kinds of questions used. They are; fixed-alternative, scale, and open-ended. With each of the questions tailored to the nature and scope of the research.

  • Can be administered in large numbers and is cost-effective.
  • It can be used to compare and contrast previous research to measure change.
  • Easy to visualize and analyze.
  • Questionnaires offer actionable data.
  • Respondent identity is protected.
  • Questionnaires can cover all areas of a topic.
  • Relatively inexpensive.
  • Answers may be dishonest or the respondents lose interest midway.
  • Questionnaires can’t produce qualitative data.
  • Questions might be left unanswered.
  • Respondents may have a hidden agenda.
  • Not all questions can be analyzed easily.

What are the Best Data Collection Tools for Questionnaires? 

  • Formplus Online Questionnaire

Formplus lets you create powerful forms to help you collect the information you need. Formplus helps you create the online forms that you like. The Formplus online questionnaire form template to get actionable trends and measurable responses. Conduct research, optimize knowledge of your brand or just get to know an audience with this form template. The form template is fast, free and fully customizable.

  • Paper Questionnaire

A paper questionnaire is a data collection tool consisting of a series of questions and/or prompts for the purpose of gathering information from respondents. Mostly designed for statistical analysis of the responses, they can also be used as a form of data collection.

By definition, data reporting is the process of gathering and submitting data to be further subjected to analysis. The key aspect of data reporting is reporting accurate data because inaccurate data reporting leads to uninformed decision-making.

  • Informed decision-making.
  • Easily accessible.
  • Self-reported answers may be exaggerated.
  • The results may be affected by bias.
  • Respondents may be too shy to give out all the details.
  • Inaccurate reports will lead to uninformed decisions.

What are the Best Data Collection Tools for Reporting?

Reporting tools enable you to extract and present data in charts, tables, and other visualizations so users can find useful information. You could source data for reporting from Non-Governmental Organizations (NGO) reports, newspapers, website articles, and hospital records.

  • NGO Reports

Contained in NGO report is an in-depth and comprehensive report on the activities carried out by the NGO, covering areas such as business and human rights. The information contained in these reports is research-specific and forms an acceptable academic base for collecting data. NGOs often focus on development projects which are organized to promote particular causes.

Newspaper data are relatively easy to collect and are sometimes the only continuously available source of event data. Even though there is a problem of bias in newspaper data, it is still a valid tool in collecting data for Reporting.

  • Website Articles

Gathering and using data contained in website articles is also another tool for data collection. Collecting data from web articles is a quicker and less expensive data collection Two major disadvantages of using this data reporting method are biases inherent in the data collection process and possible security/confidentiality concerns.

  • Hospital Care records

Health care involves a diverse set of public and private data collection systems, including health surveys, administrative enrollment and billing records, and medical records, used by various entities, including hospitals, CHCs, physicians, and health plans. The data provided is clear, unbiased and accurate, but must be obtained under legal means as medical data is kept with the strictest regulations.

  • EXISTING DATA

This is the introduction of new investigative questions in addition to/other than the ones originally used when the data was initially gathered. It involves adding measurement to a study or research. An example would be sourcing data from an archive.

  • Accuracy is very high.
  • Easily accessible information.
  • Problems with evaluation.
  • Difficulty in understanding.

What are the Best Data Collection Tools for Existing Data?

The concept of Existing data means that data is collected from existing sources to investigate research questions other than those for which the data were originally gathered. Tools to collect existing data include: 

  • Research Journals – Unlike newspapers and magazines, research journals are intended for an academic or technical audience, not general readers. A journal is a scholarly publication containing articles written by researchers, professors, and other experts.
  • Surveys – A survey is a data collection tool for gathering information from a sample population, with the intention of generalizing the results to a larger population. Surveys have a variety of purposes and can be carried out in many ways depending on the objectives to be achieved.
  • OBSERVATION

This is a data collection method by which information on a phenomenon is gathered through observation. The nature of the observation could be accomplished either as a complete observer, an observer as a participant, a participant as an observer, or as a complete participant. This method is a key base for formulating a hypothesis.

  • Easy to administer.
  • There subsists a greater accuracy with results.
  • It is a universally accepted practice.
  • It diffuses the situation of the unwillingness of respondents to administer a report.
  • It is appropriate for certain situations.
  • Some phenomena aren’t open to observation.
  • It cannot be relied upon.
  • Bias may arise.
  • It is expensive to administer.
  • Its validity cannot be predicted accurately.

What are the Best Data Collection Tools for Observation?

Observation involves the active acquisition of information from a primary source. Observation can also involve the perception and recording of data via the use of scientific instruments. The best tools for Observation are:

  • Checklists – state-specific criteria, that allow users to gather information and make judgments about what they should know in relation to the outcomes. They offer systematic ways of collecting data about specific behaviors, knowledge, and skills.
  • Direct observation – This is an observational study method of collecting evaluative information. The evaluator watches the subject in his or her usual environment without altering that environment.

FOCUS GROUPS

The opposite of quantitative research which involves numerical-based data, this data collection method focuses more on qualitative research. It falls under the primary category of data based on the feelings and opinions of the respondents. This research involves asking open-ended questions to a group of individuals usually ranging from 6-10 people, to provide feedback.

  • Information obtained is usually very detailed.
  • Cost-effective when compared to one-on-one interviews.
  • It reflects speed and efficiency in the supply of results.
  • Lacking depth in covering the nitty-gritty of a subject matter.
  • Bias might still be evident.
  • Requires interviewer training
  • The researcher has very little control over the outcome.
  • A few vocal voices can drown out the rest.
  • Difficulty in assembling an all-inclusive group.

What are the Best Data Collection Tools for Focus Groups?

A focus group is a data collection method that is tightly facilitated and structured around a set of questions. The purpose of the meeting is to extract from the participants’ detailed responses to these questions. The best tools for tackling Focus groups are: 

  • Two-Way – One group watches another group answer the questions posed by the moderator. After listening to what the other group has to offer, the group that listens is able to facilitate more discussion and could potentially draw different conclusions .
  • Dueling-Moderator – There are two moderators who play the devil’s advocate. The main positive of the dueling-moderator focus group is to facilitate new ideas by introducing new ways of thinking and varying viewpoints.
  • COMBINATION RESEARCH

This method of data collection encompasses the use of innovative methods to enhance participation in both individuals and groups. Also under the primary category, it is a combination of Interviews and Focus Groups while collecting qualitative data . This method is key when addressing sensitive subjects. 

  • Encourage participants to give responses.
  • It stimulates a deeper connection between participants.
  • The relative anonymity of respondents increases participation.
  • It improves the richness of the data collected.
  • It costs the most out of all the top 7.
  • It’s the most time-consuming.

What are the Best Data Collection Tools for Combination Research? 

The Combination Research method involves two or more data collection methods, for instance, interviews as well as questionnaires or a combination of semi-structured telephone interviews and focus groups. The best tools for combination research are: 

  • Online Survey –  The two tools combined here are online interviews and the use of questionnaires. This is a questionnaire that the target audience can complete over the Internet. It is timely, effective, and efficient. Especially since the data to be collected is quantitative in nature.
  • Dual-Moderator – The two tools combined here are focus groups and structured questionnaires. The structured questionnaires give a direction as to where the research is headed while two moderators take charge of the proceedings. Whilst one ensures the focus group session progresses smoothly, the other makes sure that the topics in question are all covered. Dual-moderator focus groups typically result in a more productive session and essentially lead to an optimum collection of data.

Why Formplus is the Best Data Collection Tool

  • Vast Options for Form Customization 

With Formplus, you can create your unique survey form. With options to change themes, font color, font, font type, layout, width, and more, you can create an attractive survey form. The builder also gives you as many features as possible to choose from and you do not need to be a graphic designer to create a form.

  • Extensive Analytics

Form Analytics, a feature in formplus helps you view the number of respondents, unique visits, total visits, abandonment rate, and average time spent before submission. This tool eliminates the need for a manual calculation of the received data and/or responses as well as the conversion rate for your poll.

  • Embed Survey Form on Your Website

Copy the link to your form and embed it as an iframe which will automatically load as your website loads, or as a popup that opens once the respondent clicks on the link. Embed the link on your Twitter page to give instant access to your followers.

what is the data collection in research

  • Geolocation Support

The geolocation feature on Formplus lets you ascertain where individual responses are coming. It utilises Google Maps to pinpoint the longitude and latitude of the respondent, to the nearest accuracy, along with the responses.

  • Multi-Select feature

This feature helps to conserve horizontal space as it allows you to put multiple options in one field. This translates to including more information on the survey form. 

Read Also: 10 Reasons to Use Formplus for Online Data Collection

How to Use Formplus to collect online data in 7 simple steps. 

  • Register or sign up on Formplus builder : Start creating your preferred questionnaire or survey by signing up with either your Google, Facebook, or Email account.

what is the data collection in research

Formplus gives you a free plan with basic features you can use to collect online data. Pricing plans with vast features starts at $20 monthly, with reasonable discounts for Education and Non-Profit Organizations. 

2. Input your survey title and use the form builder choice options to start creating your surveys. 

Use the choice option fields like single select, multiple select, checkbox, radio, and image choices to create your preferred multi-choice surveys online.

what is the data collection in research

3. Do you want customers to rate any of your products or services delivery? 

Use the rating to allow survey respondents rate your products or services. This is an ideal quantitative research method of collecting data. 

what is the data collection in research

4. Beautify your online questionnaire with Formplus Customisation features.

what is the data collection in research

  • Change the theme color
  • Add your brand’s logo and image to the forms
  • Change the form width and layout
  • Edit the submission button if you want
  • Change text font color and sizes
  • Do you have already made custom CSS to beautify your questionnaire? If yes, just copy and paste it to the CSS option.

5. Edit your survey questionnaire settings for your specific needs

Choose where you choose to store your files and responses. Select a submission deadline, choose a timezone, limit respondents’ responses, enable Captcha to prevent spam, and collect location data of customers.

what is the data collection in research

Set an introductory message to respondents before they begin the survey, toggle the “start button” post final submission message or redirect respondents to another page when they submit their questionnaires. 

Change the Email Notifications inventory and initiate an autoresponder message to all your survey questionnaire respondents. You can also transfer your forms to other users who can become form administrators.

6. Share links to your survey questionnaire page with customers.

There’s an option to copy and share the link as “Popup” or “Embed code” The data collection tool automatically creates a QR Code for Survey Questionnaire which you can download and share as appropriate. 

what is the data collection in research

Congratulations if you’ve made it to this stage. You can start sharing the link to your survey questionnaire with your customers.

7. View your Responses to the Survey Questionnaire

Toggle with the presentation of your summary from the options. Whether as a single, table or cards.

what is the data collection in research

8. Allow Formplus Analytics to interpret your Survey Questionnaire Data

what is the data collection in research

  With online form builder analytics, a business can determine;

  • The number of times the survey questionnaire was filled
  • The number of customers reached
  • Abandonment Rate: The rate at which customers exit the form without submitting it.
  • Conversion Rate: The percentage of customers who completed the online form
  • Average time spent per visit
  • Location of customers/respondents.
  • The type of device used by the customer to complete the survey questionnaire.

7 Tips to Create The Best Surveys For Data Collections

  •  Define the goal of your survey – Once the goal of your survey is outlined, it will aid in deciding which questions are the top priority. A clear attainable goal would, for example, mirror a clear reason as to why something is happening. e.g. “The goal of this survey is to understand why Employees are leaving an establishment.”
  • Use close-ended clearly defined questions – Avoid open-ended questions and ensure you’re not suggesting your preferred answer to the respondent. If possible offer a range of answers with choice options and ratings.
  • Survey outlook should be attractive and Inviting – An attractive-looking survey encourages a higher number of recipients to respond to the survey. Check out Formplus Builder for colorful options to integrate into your survey design. You could use images and videos to keep participants glued to their screens.
  •   Assure Respondents about the safety of their data – You want your respondents to be assured whilst disclosing details of their personal information to you. It’s your duty to inform the respondents that the data they provide is confidential and only collected for the purpose of research.
  • Ensure your survey can be completed in record time – Ideally, in a typical survey, users should be able to respond in 100 seconds. It is pertinent to note that they, the respondents, are doing you a favor. Don’t stress them. Be brief and get straight to the point.
  • Do a trial survey – Preview your survey before sending out your surveys to the intended respondents. Make a trial version which you’ll send to a few individuals. Based on their responses, you can draw inferences and decide whether or not your survey is ready for the big time.
  • Attach a reward upon completion for users – Give your respondents something to look forward to at the end of the survey. Think of it as a penny for their troubles. It could well be the encouragement they need to not abandon the survey midway.

Try out Formplus today . You can start making your own surveys with the Formplus online survey builder. By applying these tips, you will definitely get the most out of your online surveys.

Top Survey Templates For Data Collection 

  • Customer Satisfaction Survey Template 

On the template, you can collect data to measure customer satisfaction over key areas like the commodity purchase and the level of service they received. It also gives insight as to which products the customer enjoyed, how often they buy such a product, and whether or not the customer is likely to recommend the product to a friend or acquaintance. 

  • Demographic Survey Template

With this template, you would be able to measure, with accuracy, the ratio of male to female, age range, and the number of unemployed persons in a particular country as well as obtain their personal details such as names and addresses.

Respondents are also able to state their religious and political views about the country under review.

  • Feedback Form Template

Contained in the template for the online feedback form is the details of a product and/or service used. Identifying this product or service and documenting how long the customer has used them.

The overall satisfaction is measured as well as the delivery of the services. The likelihood that the customer also recommends said product is also measured.

  • Online Questionnaire Template

The online questionnaire template houses the respondent’s data as well as educational qualifications to collect information to be used for academic research.

Respondents can also provide their gender, race, and field of study as well as present living conditions as prerequisite data for the research study.

  • Student Data Sheet Form Template 

The template is a data sheet containing all the relevant information of a student. The student’s name, home address, guardian’s name, record of attendance as well as performance in school is well represented on this template. This is a perfect data collection method to deploy for a school or an education organization.

Also included is a record for interaction with others as well as a space for a short comment on the overall performance and attitude of the student. 

  • Interview Consent Form Template

This online interview consent form template allows the interviewee to sign off their consent to use the interview data for research or report to journalists. With premium features like short text fields, upload, e-signature, etc., Formplus Builder is the perfect tool to create your preferred online consent forms without coding experience.

What is the Best Data Collection Method for Qualitative Data?

Answer: Combination Research

The best data collection method for a researcher for gathering qualitative data which generally is data relying on the feelings, opinions, and beliefs of the respondents would be Combination Research.

The reason why combination research is the best fit is that it encompasses the attributes of Interviews and Focus Groups. It is also useful when gathering data that is sensitive in nature. It can be described as an all-purpose quantitative data collection method.

Above all, combination research improves the richness of data collected when compared with other data collection methods for qualitative data.

what is the data collection in research

What is the Best Data Collection Method for Quantitative Research Data?

Ans: Questionnaire

The best data collection method a researcher can employ in gathering quantitative data which takes into consideration data that can be represented in numbers and figures that can be deduced mathematically is the Questionnaire.

These can be administered to a large number of respondents while saving costs. For quantitative data that may be bulky or voluminous in nature, the use of a Questionnaire makes such data easy to visualize and analyze.

Another key advantage of the Questionnaire is that it can be used to compare and contrast previous research work done to measure changes.

Technology-Enabled Data Collection Methods

There are so many diverse methods available now in the world because technology has revolutionized the way data is being collected. It has provided efficient and innovative methods that anyone, especially researchers and organizations. Below are some technology-enabled data collection methods:

  • Online Surveys: Online surveys have gained popularity due to their ease of use and wide reach. You can distribute them through email, social media, or embed them on websites. Online surveys allow you to quickly complete data collection, automated data capture, and real-time analysis. Online surveys also offer features like skip logic, validation checks, and multimedia integration.
  • Mobile Surveys: With the widespread use of smartphones, mobile surveys’ popularity is also on the rise. Mobile surveys leverage the capabilities of mobile devices, and this allows respondents to participate at their convenience. This includes multimedia elements, location-based information, and real-time feedback. Mobile surveys are the best for capturing in-the-moment experiences or opinions.
  • Social Media Listening: Social media platforms are a good source of unstructured data that you can analyze to gain insights into customer sentiment and trends. Social media listening involves monitoring and analyzing social media conversations, mentions, and hashtags to understand public opinion, identify emerging topics, and assess brand reputation.
  • Wearable Devices and Sensors: You can embed wearable devices, such as fitness trackers or smartwatches, and sensors in everyday objects to capture continuous data on various physiological and environmental variables. This data can provide you with insights into health behaviors, activity patterns, sleep quality, and environmental conditions, among others.
  • Big Data Analytics: Big data analytics leverages large volumes of structured and unstructured data from various sources, such as transaction records, social media, and internet browsing. Advanced analytics techniques, like machine learning and natural language processing, can extract meaningful insights and patterns from this data, enabling organizations to make data-driven decisions.
Read Also: How Technology is Revolutionizing Data Collection

Faulty Data Collection Practices – Common Mistakes & Sources of Error

While technology-enabled data collection methods offer numerous advantages, there are some pitfalls and sources of error that you should be aware of. Here are some common mistakes and sources of error in data collection:

  • Population Specification Error: Population specification error occurs when the target population is not clearly defined or misidentified. This error leads to a mismatch between the research objectives and the actual population being studied, resulting in biased or inaccurate findings.
  • Sample Frame Error: Sample frame error occurs when the sampling frame, the list or source from which the sample is drawn, does not adequately represent the target population. This error can introduce selection bias and affect the generalizability of the findings.
  • Selection Error: Selection error occurs when the process of selecting participants or units for the study introduces bias. It can happen due to nonrandom sampling methods, inadequate sampling techniques, or self-selection bias. Selection error compromises the representativeness of the sample and affects the validity of the results.
  • Nonresponse Error: Nonresponse error occurs when selected participants choose not to participate or fail to respond to the data collection effort. Nonresponse bias can result in an unrepresentative sample if those who choose not to respond differ systematically from those who do respond. Efforts should be made to mitigate nonresponse and encourage participation to minimize this error.
  • Measurement Error: Measurement error arises from inaccuracies or inconsistencies in the measurement process. It can happen due to poorly designed survey instruments, ambiguous questions, respondent bias, or errors in data entry or coding. Measurement errors can lead to distorted or unreliable data, affecting the validity and reliability of the findings.

In order to mitigate these errors and ensure high-quality data collection, you should carefully plan your data collection procedures, and validate measurement tools. You should also use appropriate sampling techniques, employ randomization where possible, and minimize nonresponse through effective communication and incentives. Ensure you conduct regular checks and implement validation processes, and data cleaning procedures to identify and rectify errors during data analysis.

Best Practices for Data Collection

  • Clearly Define Objectives: Clearly define the research objectives and questions to guide the data collection process. This helps ensure that the collected data aligns with the research goals and provides relevant insights.
  • Plan Ahead: Develop a detailed data collection plan that includes the timeline, resources needed, and specific procedures to follow. This helps maintain consistency and efficiency throughout the data collection process.
  • Choose the Right Method: Select data collection methods that are appropriate for the research objectives and target population. Consider factors such as feasibility, cost-effectiveness, and the ability to capture the required data accurately.
  • Pilot Test : Before full-scale data collection, conduct a pilot test to identify any issues with the data collection instruments or procedures. This allows for refinement and improvement before data collection with the actual sample.
  • Train Data Collectors: If data collection involves human interaction, ensure that data collectors are properly trained on the data collection protocols, instruments, and ethical considerations. Consistent training helps minimize errors and maintain data quality.
  • Maintain Consistency: Follow standardized procedures throughout the data collection process to ensure consistency across data collectors and time. This includes using consistent measurement scales, instructions, and data recording methods.
  • Minimize Bias: Be aware of potential sources of bias in data collection and take steps to minimize their impact. Use randomization techniques, employ diverse data collectors, and implement strategies to mitigate response biases.
  • Ensure Data Quality: Implement quality control measures to ensure the accuracy, completeness, and reliability of the collected data. Conduct regular checks for data entry errors, inconsistencies, and missing values.
  • Maintain Data Confidentiality: Protect the privacy and confidentiality of participants’ data by implementing appropriate security measures. Ensure compliance with data protection regulations and obtain informed consent from participants.
  • Document the Process: Keep detailed documentation of the data collection process, including any deviations from the original plan, challenges encountered, and decisions made. This documentation facilitates transparency, replicability, and future analysis.

FAQs about Data Collection

  • What are secondary sources of data collection? Secondary sources of data collection are defined as the data that has been previously gathered and is available for your use as a researcher. These sources can include published research papers, government reports, statistical databases, and other existing datasets.
  • What are the primary sources of data collection? Primary sources of data collection involve collecting data directly from the original source also known as the firsthand sources. You can do this through surveys, interviews, observations, experiments, or other direct interactions with individuals or subjects of study.
  • How many types of data are there? There are two main types of data: qualitative and quantitative. Qualitative data is non-numeric and it includes information in the form of words, images, or descriptions. Quantitative data, on the other hand, is numeric and you can measure and analyze it statistically.
Sign up on Formplus Builder to create your preferred online surveys or questionnaire for data collection. You don’t need to be tech-savvy!

Logo

Connect to Formplus, Get Started Now - It's Free!

  • academic research
  • Data collection method
  • data collection techniques
  • data collection tool
  • data collection tools
  • field data collection
  • online data collection tool
  • product research
  • qualitative research data
  • quantitative research data
  • scientific research
  • busayo.longe

Formplus

You may also like:

How Technology is Revolutionizing Data Collection

As global industrialization continues to transform, it is becoming evident that there is a ubiquity of large datasets driven by the need...

what is the data collection in research

How To Create A Property Valuation Survey

Property valuation surveys are documents that give an estimate of a property’s worth. They enable buyers and sellers to determine the...

DDI Standard & Specification For Surveys: A Complete Guide

Data documentation allows you to understand, manage, and use data effectively. It also helps to ensure that the data is reproducible and...

Data Collection Plan: Definition + Steps to Do It

Introduction A data collection plan is a way to get specific information on your audience. You can use it to better understand what they...

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

Frequently asked questions

What is data collection.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

Frequently asked questions: Methodology

Attrition refers to participants leaving a study. It always happens to some extent—for example, in randomized controlled trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Action research is conducted in order to solve a particular issue immediately, while case studies are often conducted over a longer period of time and focus more on observing and analyzing a particular ongoing phenomenon.

Action research is focused on solving a problem or informing individual and community-based knowledge in a way that impacts teaching, learning, and other related processes. It is less focused on contributing theoretical input, instead producing actionable input.

Action research is particularly popular with educators as a form of systematic inquiry because it prioritizes reflection and bridges the gap between theory and practice. Educators are able to simultaneously investigate an issue as they solve it, and the method is very iterative and flexible.

A cycle of inquiry is another name for action research . It is usually visualized in a spiral shape following a series of steps, such as “planning → acting → observing → reflecting.”

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analyzing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalizations —often the goal of quantitative research . As such, a snowball sample is not representative of the target population and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones.

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extramarital affairs)

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • Reproducing research entails reanalyzing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 
  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Purposive and convenience sampling are both sampling methods that are typically used in qualitative data collection.

A convenience sample is drawn from a source that is conveniently accessible to the researcher. Convenience sampling does not distinguish characteristics among the participants. On the other hand, purposive sampling focuses on selecting participants possessing characteristics associated with the research study.

The findings of studies based on either convenience or purposive sampling can only be generalized to the (sub)population from which the sample is drawn, and not to the entire population.

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection, using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

An observational study is a great choice for you if your research question is based purely on observations. If there are ethical, logistical, or practical concerns that prevent you from conducting a traditional experiment , an observational study may be a good choice. In an observational study, there is no interference or manipulation of the research subjects, as well as no control or treatment groups .

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity , and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity : The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviors of your research subjects in real world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as “people watching” with a purpose.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups. Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with “yes” or “no” (questions that start with “why” or “how” are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when: 

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyze your data quickly and efficiently.
  • Your research question depends on strong parity between participants, with environmental conditions held constant.

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias is the tendency for interview participants to give responses that will be viewed favorably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias can also occur in observations if the participants know they’re being observed. They might alter their behavior accordingly.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions.
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualize your initial thoughts and hypotheses.
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts.

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order. 
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalization : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalization: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Triangulation can help:

  • Reduce research bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labor-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analyzing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure. 

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field. It acts as a first defense, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

In general, the peer review process follows the following steps: 

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or 
  • Send it onward to the selected peer reviewer(s) 
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made. 
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research aims to explore the main aspects of an under-researched problem, while explanatory research aims to explain the causes and consequences of a well-defined problem.

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardization and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Every dataset requires different techniques to clean dirty data , but you need to address these issues in a systematic way. You focus on finding and resolving data points that don’t agree or fit with the rest of your dataset.

These data might be missing values, outliers, duplicate values, incorrectly formatted, or irrelevant. You’ll start with screening and diagnosing your data. Then, you’ll often standardize and accept or remove data to make your dataset consistent and valid.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimize or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyze, detect, modify, or remove “dirty” data to make your dataset “clean.” Data cleaning is also called data cleansing or data scrubbing.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information—for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

In multistage sampling , you can use probability or non-probability sampling methods .

For a probability sample, you have to conduct probability sampling at every stage.

You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analyzed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analyzed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualize your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analyzed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from state to city to neighborhood) to create a sample that’s less expensive and time-consuming to collect data from.

No, the steepness or slope of the line isn’t related to the correlation coefficient value. The correlation coefficient only tells you how closely your data fit on a line, so two datasets with the same correlation coefficient can have very different slopes.

To find the slope of the line, you’ll need to perform a regression analysis .

Correlation coefficients always range between -1 and 1.

The sign of the coefficient tells you the direction of the relationship: a positive value means the variables change together in the same direction, while a negative value means they change together in opposite directions.

The absolute value of a number is equal to the number without its sign. The absolute value of a correlation coefficient tells you the magnitude of the correlation: the greater the absolute value, the stronger the correlation.

These are the assumptions your data must meet if you want to use Pearson’s r :

  • Both variables are on an interval or ratio level of measurement
  • Data from both variables follow normal distributions
  • Your data have no outliers
  • Your data is from a random or representative sample
  • You expect a linear relationship between the two variables

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or through mail. All questions are standardized so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in-person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

You can organize the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomization can minimize the bias from order effects.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analyzing data from people using questionnaires.

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

Correlation describes an association between variables : when one variable changes, so does the other. A correlation is a statistical indicator of the relationship between variables.

Causation means that changes in one variable brings about changes in the other (i.e., there is a cause-and-effect relationship between variables). The two variables are correlated with each other, and there’s also a causal link between them.

While causation and correlation can exist simultaneously, correlation does not imply causation. In other words, correlation is simply a relationship where A relates to B—but A doesn’t necessarily cause B to happen (or vice versa). Mistaking correlation for causation is a common error and can lead to false cause fallacy .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

Random error  is almost always present in scientific studies, even in highly controlled settings. While you can’t eradicate it completely, you can reduce random error by taking repeated measurements, using a large sample, and controlling extraneous variables .

You can avoid systematic error through careful design of your sampling , data collection , and analysis procedures. For example, use triangulation to measure your variables using multiple methods; regularly calibrate instruments or procedures; use random sampling and random assignment ; and apply masking (blinding) where possible.

Systematic error is generally a bigger problem in research.

With random error, multiple measurements will tend to cluster around the true value. When you’re collecting data from a large sample , the errors in different directions will cancel each other out.

Systematic errors are much more problematic because they can skew your data away from the true value. This can lead you to false conclusions ( Type I and II errors ) about the relationship between the variables you’re studying.

Random and systematic error are two types of measurement error.

Random error is a chance difference between the observed and true values of something (e.g., a researcher misreading a weighing scale records an incorrect measurement).

Systematic error is a consistent or proportional difference between the observed and true values of something (e.g., a miscalibrated scale consistently records weights as higher than they actually are).

On graphs, the explanatory variable is conventionally placed on the x-axis, while the response variable is placed on the y-axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

The term “ explanatory variable ” is sometimes preferred over “ independent variable ” because, in real world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so “explanatory variables” is a more appropriate term.

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment.
  • Random assignment of participants to ensure the groups are equivalent.

Depending on your study topic, there are various other methods of controlling variables .

There are 4 main types of extraneous variables :

  • Demand characteristics : environmental cues that encourage participants to conform to researchers’ expectations.
  • Experimenter effects : unintentional actions by researchers that influence study outcomes.
  • Situational variables : environmental variables that alter participants’ behaviors.
  • Participant variables : any characteristic or aspect of a participant’s background that could affect study results.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

Advantages:

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes

Disadvantages:

  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.
  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a dice to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalizability of your results, while random assignment improves the internal validity of your study.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

“Controlling for a variable” means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

If something is a mediating variable :

  • It’s caused by the independent variable .
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 x 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

Blinding is important to reduce research bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behavior in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analyzing the data.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyze your data.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviors. It is made up of 4 or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with 5 or 7 possible responses, to capture their degree of agreement.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalization .

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control and randomization.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomization , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling, and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Using careful research design and sampling procedures can help you avoid sampling bias . Oversampling can be used to correct undercoverage bias .

Some common types of sampling bias include self-selection bias , nonresponse bias , undercoverage bias , survivorship bias , pre-screening or advertising bias, and healthy user bias.

Sampling bias is a threat to external validity – it limits the generalizability of your findings to a broader group of people.

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment and situation effect.

The two types of external validity are population validity (whether you can generalize to other groups of people) and ecological validity (whether you can generalize to other situations and settings).

The external validity of a study is the extent to which you can generalize your findings to different groups of people, situations, and measures.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyze behavior over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data is available for analysis; other times your research question may only require a cross-sectional study to answer it.

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal study Cross-sectional study
observations Observations at a in time
Observes the multiple times Observes (a “cross-section”) in the population
Follows in participants over time Provides of society at a given point

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction and attrition .

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

I nternal validity is the degree of confidence that the causal relationship you are testing is not influenced by other factors or variables .

External validity is the extent to which your results can be generalized to other contexts.

The validity of your experiment depends on your experimental design .

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Data Collection Methods | Step-by-Step Guide & Examples

Data Collection Methods | Step-by-Step Guide & Examples

Published on 4 May 2022 by Pritha Bhandari .

Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental, or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem .

While methods and aims may differ between fields, the overall process of data collection remains largely the same. Before you begin collecting data, you need to consider:

  • The  aim of the research
  • The type of data that you will collect
  • The methods and procedures you will use to collect, store, and process the data

To collect high-quality data that is relevant to your purposes, follow these four steps.

Table of contents

Step 1: define the aim of your research, step 2: choose your data collection method, step 3: plan your data collection procedures, step 4: collect the data, frequently asked questions about data collection.

Before you start the process of data collection, you need to identify exactly what you want to achieve. You can start by writing a problem statement : what is the practical or scientific issue that you want to address, and why does it matter?

Next, formulate one or more research questions that precisely define what you want to find out. Depending on your research questions, you might need to collect quantitative or qualitative data :

  • Quantitative data is expressed in numbers and graphs and is analysed through statistical methods .
  • Qualitative data is expressed in words and analysed through interpretations and categorisations.

If your aim is to test a hypothesis , measure something precisely, or gain large-scale statistical insights, collect quantitative data. If your aim is to explore ideas, understand experiences, or gain detailed insights into a specific context, collect qualitative data.

If you have several aims, you can use a mixed methods approach that collects both types of data.

  • Your first aim is to assess whether there are significant differences in perceptions of managers across different departments and office locations.
  • Your second aim is to gather meaningful feedback from employees to explore new ideas for how managers can improve.

Prevent plagiarism, run a free check.

Based on the data you want to collect, decide which method is best suited for your research.

  • Experimental research is primarily a quantitative method.
  • Interviews , focus groups , and ethnographies are qualitative methods.
  • Surveys , observations, archival research, and secondary data collection can be quantitative or qualitative methods.

Carefully consider what method you will use to gather data that helps you directly answer your research questions.

Data collection methods
Method When to use How to collect data
Experiment To test a causal relationship. Manipulate variables and measure their effects on others.
Survey To understand the general characteristics or opinions of a group of people. Distribute a list of questions to a sample online, in person, or over the phone.
Interview/focus group To gain an in-depth understanding of perceptions or opinions on a topic. Verbally ask participants open-ended questions in individual interviews or focus group discussions.
Observation To understand something in its natural setting. Measure or survey a sample without trying to affect them.
Ethnography To study the culture of a community or organisation first-hand. Join and participate in a community and record your observations and reflections.
Archival research To understand current or historical events, conditions, or practices. Access manuscripts, documents, or records from libraries, depositories, or the internet.
Secondary data collection To analyse data from populations that you can’t access first-hand. Find existing datasets that have already been collected, from sources such as government agencies or research organisations.

When you know which method(s) you are using, you need to plan exactly how you will implement them. What procedures will you follow to make accurate observations or measurements of the variables you are interested in?

For instance, if you’re conducting surveys or interviews, decide what form the questions will take; if you’re conducting an experiment, make decisions about your experimental design .

Operationalisation

Sometimes your variables can be measured directly: for example, you can collect data on the average age of employees simply by asking for dates of birth. However, often you’ll be interested in collecting data on more abstract concepts or variables that can’t be directly observed.

Operationalisation means turning abstract conceptual ideas into measurable observations. When planning how you will collect data, you need to translate the conceptual definition of what you want to study into the operational definition of what you will actually measure.

  • You ask managers to rate their own leadership skills on 5-point scales assessing the ability to delegate, decisiveness, and dependability.
  • You ask their direct employees to provide anonymous feedback on the managers regarding the same topics.

You may need to develop a sampling plan to obtain data systematically. This involves defining a population , the group you want to draw conclusions about, and a sample, the group you will actually collect data from.

Your sampling method will determine how you recruit participants or obtain measurements for your study. To decide on a sampling method you will need to consider factors like the required sample size, accessibility of the sample, and time frame of the data collection.

Standardising procedures

If multiple researchers are involved, write a detailed manual to standardise data collection procedures in your study.

This means laying out specific step-by-step instructions so that everyone in your research team collects data in a consistent way – for example, by conducting experiments under the same conditions and using objective criteria to record and categorise observations.

This helps ensure the reliability of your data, and you can also use it to replicate the study in the future.

Creating a data management plan

Before beginning data collection, you should also decide how you will organise and store your data.

  • If you are collecting data from people, you will likely need to anonymise and safeguard the data to prevent leaks of sensitive information (e.g. names or identity numbers).
  • If you are collecting data via interviews or pencil-and-paper formats, you will need to perform transcriptions or data entry in systematic ways to minimise distortion.
  • You can prevent loss of data by having an organisation system that is routinely backed up.

Finally, you can implement your chosen methods to measure or observe the variables you are interested in.

The closed-ended questions ask participants to rate their manager’s leadership skills on scales from 1 to 5. The data produced is numerical and can be statistically analysed for averages and patterns.

To ensure that high-quality data is recorded in a systematic way, here are some best practices:

  • Record all relevant information as and when you obtain data. For example, note down whether or how lab equipment is recalibrated during an experimental study.
  • Double-check manual data entry for errors.
  • If you collect quantitative data, you can assess the reliability and validity to get an indication of your data quality.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g., understanding the needs of your consumers or user testing your website).
  • You can control and standardise the process for high reliability and validity (e.g., choosing appropriate measurements and sampling methods ).

However, there are also some drawbacks: data collection can be time-consuming, labour-intensive, and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research , you also have to consider the internal and external validity of your experiment.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, May 04). Data Collection Methods | Step-by-Step Guide & Examples. Scribbr. Retrieved 29 July 2024, from https://www.scribbr.co.uk/research-methods/data-collection-guide/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, qualitative vs quantitative research | examples & methods, triangulation in research | guide, types, examples, what is a conceptual framework | tips & examples.

quantilope logo

5 Methods of Data Collection for Quantitative Research

In this blog, read up on five different ways to approach data collection for quantitative studies - online surveys, offline surveys, interviews, etc.

mrx glossary quantitative data collection

quantilope is the Consumer Intelligence Platform for all end-to-end research needs

In this blog, read up on five different data collection techniques for quantitative research studies. 

Quantitative research forms the basis for many business decisions. But what is quantitative data collection, why is it important, and which data collection methods are used in quantitative research? 

Table of Contents: 

  • What is quantitative data collection?
  • The importance of quantitative data collection
  • Methods used for quantitative data collection
  • Example of a survey showing quantitative data
  • Strengths and weaknesses of quantitative data

What is quantitative data collection? 

Quantitative data collection is the gathering of numeric data that puts consumer insights into a quantifiable context. It typically involves a large number of respondents - large enough to extract statistically reliable findings that can be extrapolated to a larger population.

The actual data collection process for quantitative findings is typically done using a quantitative online questionnaire that asks respondents yes/no questions, ranking scales, rating matrices, and other quantitative question types. With these results, researchers can generate data charts to summarize the quantitative findings and generate easily digestible key takeaways. 

Back to Table of Contents

The importance of quantitative data collection 

Quantitative data collection can confirm or deny a brand's hypothesis, guide product development, tailor marketing materials, and much more. It provides brands with reliable information to make decisions off of (i.e. 86% like lemon-lime flavor or just 12% are interested in a cinnamon-scented hand soap). 

Compared to qualitative data collection, quantitative data allows for comparison between insights given higher base sizes which leads to the ability to have statistical significance. Brands can cut and analyze their dataset in a variety of ways, looking at their findings among different demographic groups, behavioral groups, and other ways of interest. It's also generally easier and quicker to collect quantitative data than it is to gather qualitative feedback, making it an important data collection tool for brands that need quick, reliable, concrete insights. 

In order to make justified business decisions from quantitative data, brands need to recruit a high-quality sample that's reflective of their true target market (one that's comprised of all ages/genders rather than an isolated group). For example, a study into usage and attitudes around orange juice might include consumers who buy and/or drink orange juice at a certain frequency or who buy a variety of orange juice brands from different outlets. 

Methods used for quantitative data collection 

So knowing what quantitative data collection is and why it's important , how does one go about researching a large, high-quality, representative sample ?

Below are five examples of how to conduct your study through various data collection methods : 

Online quantitative surveys 

Online surveys are a common and effective way of collecting data from a large number of people. They tend to be made up of closed-ended questions so that responses across the sample are comparable; however, a small number of open-ended questions can be included as well (i.e. questions that require a written response rather than a selection of answers in a close-ended list). Open-ended questions are helpful to gather actual language used by respondents on a certain issue or to collect feedback on a view that might not be shown in a set list of responses).

Online surveys are quick and easy to send out, typically done so through survey panels. They can also appear in pop-ups on websites or via a link embedded in social media. From the participant’s point of view, online surveys are convenient to complete and submit, using whichever device they prefer (mobile phone, tablet, or computer). Anonymity is also viewed as a positive: online survey software ensures respondents’ identities are kept completely confidential.

To gather respondents for online surveys, researchers have several options. Probability sampling is one route, where respondents are selected using a random selection method. As such, everyone within the population has an equal chance of getting selected to participate. 

There are four common types of probability sampling . 

  • Simple random sampling is the most straightforward approach, which involves randomly selecting individuals from the population without any specific criteria or grouping. 
  • Stratified random sampling  divides the population into subgroups (strata) and selects a random sample from each stratum. This is useful when a population includes subgroups that you want to be sure you cover in your research. 
  • Cluster sampling   divides the population into clusters and then randomly selects some of the clusters to sample in their entirety. This is useful when a population is geographically dispersed and it would be impossible to include everyone.
  • Systematic sampling  begins with a random starting point and then selects every nth member of the population after that point (i.e. every 15th respondent). 

Learn how to leverage AI to help generate your online quantitative survey inputs:

AI webinar

While online surveys are by far the most common way to collect quantitative data in today’s modern age, there are still some harder-to-reach respondents where other mediums can be beneficial; for example, those who aren’t tech-savvy or who don’t have a stable internet connection. For these audiences, offline surveys   may be needed.

Offline quantitative surveys

Offline surveys (though much rarer to come across these days) are a way of gathering respondent feedback without digital means. This could be something like postal questionnaires that are sent out to a sample population and asked to return the questionnaire by mail (like the Census) or telephone surveys where questions are asked of respondents over the phone. 

Offline surveys certainly take longer to collect data than online surveys and they can become expensive if the population is difficult to reach (requiring a higher incentive). As with online surveys, anonymity is protected, assuming the mail is not intercepted or lost.

Despite the major difference in data collection to an online survey approach, offline survey data is still reported on in an aggregated, numeric fashion. 

In-person interviews are another popular way of researching or polling a population. They can be thought of as a survey but in a verbal, in-person, or virtual face-to-face format. The online format of interviews is becoming more popular nowadays, as it is cheaper and logistically easier to organize than in-person face-to-face interviews, yet still allows the interviewer to see and hear from the respondent in their own words. 

Though many interviews are collected for qualitative research, interviews can also be leveraged quantitatively; like a phone survey, an interviewer runs through a survey with the respondent, asking mainly closed-ended questions (yes/no, multiple choice questions, or questions with rating scales that ask how strongly the respondent agrees with statements). The advantage of structured interviews is that the interviewer can pace the survey, making sure the respondent gives enough consideration to each question. It also adds a human touch, which can be more engaging for some respondents. On the other hand, for more sensitive issues, respondents may feel more inclined to complete a survey online for a greater sense of anonymity - so it all depends on your research questions, the survey topic, and the audience you're researching.

Observations

Observation studies in quantitative research are similar in nature to a qualitative ethnographic study (in which a researcher also observes consumers in their natural habitats), yet observation studies for quant research remain focused on the numbers - how many people do an action, how much of a product consumer pick up, etc.

For quantitative observations, researchers will record the number and types of people who do a certain action - such as choosing a specific product from a grocery shelf, speaking to a company representative at an event, or how many people pass through a certain area within a given timeframe. Observation studies are generally structured, with the observer asked to note behavior using set parameters. Structured observation means that the observer has to hone in on very specific behaviors, which can be quite nuanced. This requires the observer to use his/her own judgment about what type of behavior is being exhibited (e.g. reading labels on products before selecting them; considering different items before making the final choice; making a selection based on price).

Document reviews and secondary data sources

A fifth method of data collection for quantitative research is known as secondary research : reviewing existing research to see how it can contribute to understanding a new issue in question. This is in contrast to the primary research methods above, which is research that is specially commissioned and carried out for a research project. 

There are numerous secondary data sources that researchers can analyze such as  public records, government research, company databases, existing reports, paid-for research publications, magazines, journals, case studies, websites, books, and more.

Aside from using secondary research alone, secondary research documents can also be used in anticipation of primary research, to understand which knowledge gaps need to be filled and to nail down the issues that might be important to explore further in a primary research study. Back to Table of Contents

Example of a survey showing quantitative data 

The below study shows what quantitative data might look like in a final study dashboard, taken from quantilope's Sneaker category insights study . 

The study includes a variety of usage and attitude metrics around sneaker wear, sneaker purchases, seasonality of sneakers, and more. Check out some of the data charts below showing these quantitative data findings - the first of which even cuts the quantitative data findings by demographics. 

sneaker study data chart

Beyond these basic usage and attitude (or, descriptive) data metrics, quantitative data also includes advanced methods - such as implicit association testing. See what these quantitative data charts look like from the same sneaker study below:

sneaker implicit chart

These are just a few examples of how a researcher or insights team might show their quantitative data findings. However, there are many ways to visualize quantitative data in an insights study, from bar charts, column charts, pie charts, donut charts, spider charts, and more, depending on what best suits the story your data is telling. Back to Table of Contents

Strengths and weaknesses of quantitative data collection

quantitative data is a great way to capture informative insights about your brand, product, category, or competitors. It's relatively quick, depending on your sample audience, and more affordable than other data collection methods such as qualitative focus groups. With quantitative panels, it's easy to access nearly any audience you might need - from something as general as the US population to something as specific as cannabis users . There are many ways to visualize quantitative findings, making it a customizable form of insights - whether you want to show the data in a bar chart, pie chart, etc. 

For those looking for quick, affordable, actionable insights, quantitative studies are the way to go.  

quantitative data collection, despite the many benefits outlined above, might also not be the right fit for your exact needs. For example, you often don't get as detailed and in-depth answers quantitatively as you would with an in-person interview, focus group, or ethnographic observation (all forms of qualitative research). When running a quantitative survey, it’s best practice to review your data for quality measures to ensure all respondents are ones you want to keep in your data set. Fortunately, there are a lot of precautions research providers can take to navigate these obstacles - such as automated data cleaners and data flags. Of course, the first step to ensuring high-quality results is to use a trusted panel provider.  Back to Table of Contents

Quantitative research typically needs to undergo statistical analysis for it to be useful and actionable to any business. It is therefore crucial that the method of data collection, sample size, and sample criteria are considered in light of the research questions asked.

quantilope’s online platform is ideal for quantitative research studies. The online format means a large sample can be reached easily and quickly through connected respondent panels that effectively reach the desired target audience. Response rates are high, as respondents can take their survey from anywhere, using any device with internet access.

Surveys are easy to build with quantilope’s online survey builder. Simply choose questions to include from pre-designed survey templates or build your own questions using the platform’s drag & drop functionality (of which both options are fully customizable). Once the survey is live, findings update in real-time so that brands can get an idea of consumer attitudes long before the survey is complete. In addition to basic usage and attitude questions, quantilope’s suite of advanced research methodologies provides an AI-driven approach to many types of research questions. These range from exploring the features of products that drive purchase through a Key Driver Analysis , compiling the ideal portfolio of products using a TURF , or identifying the optimal price point for a product or service using a Price Sensitivity Meter (PSM) .

Depending on the type of data sought it might be worth considering a mixed-method approach, including both qual and quant in a single research study. Alongside quantitative online surveys, quantilope’s video research solution - inColor , offers qualitative research in the form of videoed responses to survey questions. inColor’s qualitative data analysis includes an AI-drive read on respondent sentiment, keyword trends, and facial expressions.

To find out more about how quantilope can help with any aspect of your research design and to start conducting high-quality, quantitative research, get in touch below:

Get in touch to learn more about quantitative research studies!

Latest articles.

Your Complete Guide to Analyzing Brand Strength

Your Complete Guide to Analyzing Brand Strength

Learn how to analyze the strength of your band with brand analysis research.

brand-strength-analysis

July 22, 2024

Leveraging Consumer Panels For Actionable Customer Insights

Leveraging Consumer Panels For Actionable Customer Insights

Discover what consumer panels are and how they can help brands to unlock valuable consumer insights.

consumer-panels

July 19, 2024

Comparing Kano and MaxDiff: Choosing the Right Advanced Research Method

Comparing Kano and MaxDiff: Choosing the Right Advanced Research Method

Explore the differences between Kano and MaxDiff methods to determine the best approach for analyzing customer preferences and enhancing yo...

kano-vs-maxdiff

What are the Data Collection Tools and How to Use Them?

Ever wondered how researchers are able to collect enormous amounts of data and use it effectively while ensuring accuracy and reliability? With the explosion of AI research over the past decade, data collection has become even more critical. Data collection tools are vital components in both qualitative and quantitative research , as they help in collecting and analyzing data effectively.

So, in this article, we’ll discuss some of the commonly used data collection tools, how they work, and their application in qualitative and quantitative research. By the end of the article, you’ll be confident about which data collection method is the one for you. Let’s get going!

What are the Data Collection Methods and How to Use Them? (Tools for Qualitative and Quantitative Research)

Data collection – qualitative vs. quantitative.

When researchers conduct studies or experiments, they need to collect data to answer their research questions, which is where data collection tools come in. Data collection tools are methods or instruments that researchers use to gather and analyze data .

Data collection tools can be used in both qualitative and quantitative research , which are two different research methodologies. Qualitative research is focused on understanding people’s experiences and perspectives, while quantitative research is focused on gathering numerical data to test hypotheses .

Importance of Data Collection Tools

Data collection tools are essential for conducting reliable and accurate research. They provide a structured way of gathering information, which helps ensure that data is collected in a consistent and organized manner. This is important because it helps reduce errors and bias in the data, which can impact the validity and reliability of research findings. Moreover, using data collection tools can also help you analyze and interpret data more accurately and confidently.

For example, if you’re conducting a survey, using a standardized questionnaire will make it easier to compare responses and identify trends, leading to more meaningful insights and better-informed decisions. Hence, data collection tools are a vital part of the research process, and help ensure that your research is credible and trustworthy.

5 Types of Data Collection Tools

Let’s explore these methods in detail below, along with their real-life examples.

Interviews are amongst the most primary data collection tools in qualitative research. They involve a one-on-one conversation between the researcher and the participant and can be either structured or unstructured , depending on the nature of the research. Structured interviews have a predetermined set of questions, while unstructured interviews are more open-ended and allow the researcher to explore the participant’s perspective in-depth.

Example : A researcher conducting a study on the experiences of cancer patients can use interviews to collect data about the patients’ experiences with their disease, including their emotional responses, coping strategies, and interactions with healthcare providers.

Surveys are a popular data collection tool in quantitative research. They involve asking a series of questions to a group of participants and can be conducted in a lot of different mediums, such as in person, via phone or email, or online. Surveys are helpful in collecting large amounts of data quickly and efficiently, and they can be used to measure attitudes, beliefs, and behaviors.

Observations involve watching and recording the behavior of individuals or groups in a natural or controlled setting. They are commonly used in qualitative research and are useful in collecting data about social interactions and behaviors. Observations can be structured or unstructured and can be conducted overtly or covertly, whatever the need of the research is.

Example : A researcher studying the behavior of children in a playground can use observations to collect data about how children interact with one another, what games they play, and how they resolve conflicts.

Example : A researcher studying the attitudes of consumers towards a new product can use focus groups to collect data about how consumers perceive the product, what they like and dislike about it, and how they would use it in their daily lives.

Case studies involve an in-depth analysis of a specific individual, group, or situation and are useful in collecting detailed data about a specific phenomenon. Case studies can involve interviews, observations, and document analysis and can provide a rich understanding of the topic being studied.

The Importance of Data Analysis in Research

The 5 methods of collecting data explained, data analytics vs. business analytics – top 5 differences, how to use data collection tools.

The first step in using data collection tools effectively is to plan the research carefully. This involves defining the research question or hypothesis, selecting the appropriate methodology, and identifying the target population. A clear research plan helps select the most appropriate data collection tool that aligns with the research objectives, hence building a solid base for rest of the steps.

Once the research plan is completed, the next step is to choose the right data collection tool. It’s essential to select a tool/method that aligns with the research question, methodology, and target population. You should also pay strong attention to the associated strengths and limitations of each method and choose the one that is most appropriate for their research.

Preparing for data collection involves creating a protocol, training data collectors, and testing the tool. At this point, you need to ensure that the data collection process is standardized and all data collectors are familiar with the tool and the research objectives.

Creating a protocol that outlines the steps involved in data collection and data recording is important to ensure consistency in the process. Additionally, training data collectors and testing the tool can help in identifying and addressing any potential issues.

Finally, the last step left after collection is to analyze the data. This involves organizing the data, cleaning it, and conducting statistical or qualitative analysis. The choice of analysis method will depend on the research question and methodology.

For example, if the research objective is to compare the means of two groups, a t-test may be used for statistical analysis. On the other hand, if the research objective is to explore a phenomenon, the qualitative analysis may be more appropriate.

Data collection tools are critical in both qualitative and quantitative research, and they help in collecting accurate and reliable data to build a solid foundation for every research. Selecting the appropriate tool depends on several factors, including the research question, methodology, and target population. Therefore, careful planning, proper preparation, systematic data collection, and accurate data analysis are essential for successful research outcomes.

Lastly, let’s discuss some of the most frequently asked questions along with their answers so you can jump straight to them if you want to.

Qualitative data collection tools are used to collect non-numerical data, such as attitudes, beliefs, and experiences, while quantitative data collection tools are used to collect numerical data, such as measurements and statistics.

Examples of quantitative data collection tools include surveys, experiments, and statistical analysis.

Choosing the right data collection tool is crucial as it can have a significant impact on the accuracy and validity of the data collected. Using an inappropriate tool can lead to biased or incomplete data, making it difficult to draw valid conclusions or make informed decisions.

As an IT Engineer, who is passionate about learning and sharing. I have worked and learned quite a bit from Data Engineers, Data Analysts, Business Analysts, and Key Decision Makers almost for the past 5 years. Interested in learning more about Data Science and How to leverage it for better decision-making in my business and hopefully help you do the same in yours.

Recent Posts

In today’s fast-paced business landscape, it is crucial to make informed decisions to stay in the competition which makes it important to understand the concept of the different characteristics and...

  • Open access
  • Published: 26 July 2024

Improving Clerkship to Enhance Patients’ Quality of care (ICEPACQ): a baseline study

  • Kennedy Pangholi 1 ,
  • Enid Kawala Kagoya 2 ,
  • Allan G Nsubuga 3 ,
  • Irene Atuhairwe 3 ,
  • Prossy Nakattudde 3 ,
  • Brian Agaba 3 ,
  • Bonaventure Ahaisibwe 3 ,
  • Esther Ijangolet 3 ,
  • Eric Otim 3 ,
  • Paul Waako 4 ,
  • Julius Wandabwa 5 ,
  • Milton Musaba 5 ,
  • Antonina Webombesa 6 ,
  • Kenneth Mugabe 6 ,
  • Ashley Nakawuki 7 ,
  • Richard Mugahi 8 ,
  • Faith Nyangoma 1 ,
  • Jesca Atugonza 1 ,
  • Elizabeth Ajalo 1 ,
  • Alice Kalenda 1 ,
  • Ambrose Okibure 1 ,
  • Andrew Kagwa 1 ,
  • Ronald Kibuuka 1 ,
  • Betty Nakawuka 1 ,
  • Francis Okello 2 &
  • Proscovia Auma 2  

BMC Health Services Research volume  24 , Article number:  852 ( 2024 ) Cite this article

103 Accesses

3 Altmetric

Metrics details

Proper and complete clerkships for patients have long been shown to contribute to correct diagnosis and improved patient care. All sections for clerkship must be carefully and fully completed to guide the diagnosis and the plan of management; moreover, one section guides the next. Failure to perform a complete clerkship has been shown to lead to misdiagnosis due to its unpleasant outcomes, such as delayed recovery, prolonged inpatient stay, high cost of care and, at worst, death.

The objectives of the study were to determine the gap in clerkship, the impact of incomplete clerkship on the length of hospital stay, to explore the causes of the gap in clerkship of the patients and the strategies which can be used to improve clerkship of the patients admitted to, treated and discharged from the gynecological ward in Mbale RRH.

Methodology

This was a mixed methods study involving the collection of secondary data via the review of patients’ files and the collection of qualitative data via key informant interviews. The files of patients who were admitted from August 2022 to December 2022, treated and discharged were reviewed using a data extraction tool. The descriptive statistics of the data were analyzed using STATA version 15, while the qualitative data were analyzed via deductive thematic analysis using Atlas ti version 9.

Data were collected from 612 patient files. For qualitative data, a total of 8 key informant interviews were conducted. Social history had the most participants with no information provided at all (83.5% not recorded), with biodata and vital sign examination (20% not recorded) having the least number. For the patients’ biodata, at least one parameter was recorded in all the patients, with the greatest gap noted in terms of recording the nearest health facility of the patient (91% not recorded). In the history, the greatest gap was noted in the history of current pregnancy (37.5% not provided at all); however, there was also a large gap in the past gynecological history (71% not recorded at all), past medical history (71% not recorded at all), past surgical history (73% not recorded at all) and family history (80% not recorded at all). The physical examination revealed the greatest gap in the abdominal examination (43%), with substantial gaps in the general examination (38.5% not recorded at all) and vaginal examination (40.5% not recorded at all), and the vital sign examination revealed the least gap. There was no patient who received a complete clerkship. There was a significant association between clerkships and the length of hospital stay. The causes of the gap in clerkships were multifactorial and included those related to the hospital, those related to the health worker, those related to the health care system and those related to the patient. The strategies to improve the clerkship of patients also included measures taken by health care workers, measures taken by hospitals and measures taken by the government.

Conclusion and recommendation

There is a gap in the clerkships of patients at the gynecological ward that is recognized by the stakeholders at the ward, with some components of the clerkship being better recorded than others, and no patients who received a complete clerkship. There was a significant association between clerkships and the length of hospital stay.

The following is the recommended provision of clerkship tools, such as the standardized clerkship guide and equipment for patient examination, continuous education of health workers on clerkships and training them on how to use the available tools, the development of SOPs for patient clerkships, the promotion of clerkship culture and the supervision of health workers.

Peer Review reports

Introduction

A complete clerkship is the core upon which a medical diagnosis is made, and this depends on the patient’s medical history, the signs noticed on physical examination, and the results of laboratory investigations [ 1 ]. These sections of the clerkship should be completed carefully and appropriately to obtain a correct diagnosis; moreover, one part guides the next. A complete gynecological clerkship comprises the patient’s biodata, presenting complaint, history of presenting complaint, review of systems, past gynecological history, past obstetric history, past medical history, past surgical history, family history, social history, physical examination, laboratory investigation, diagnosis and management plan [ 2 , 3 ].

History taking, also known as medical interviews, is a brief personal inquiry and interrogation about bodily complaints by the doctor to the patient in addition to personal and social information about the patient [ 4 ]. It is estimated that 70-90% of a medical diagnosis can be determined by history alone [ 5 , 6 ]. Physical examination, in addition to the patient’s history, is equally important because it helps to discover more objective aspects of the disease [ 7 ]. The investigation of the patient should be guided by the findings that have been obtained on history taking and the physical examination [ 1 ].

Failure to establish a good complete and appropriate clerkship for patients leads to diagnostic uncertainties, which are associated with unfavorable outcomes. Some of the effects of poor clerkship include delayed diagnosis and inappropriate investigations, which lead to unnecessary expenditures on irrelevant tests and drugs and other effects, such as delayed recovery, prolonged inpatient stays, high costs of care and, at worst, death [ 8 , 9 ]. Despite health care workers receiving training in medical school about the relevance of physical examination, this has been poorly practiced and replaced with advanced imaging techniques such as ultrasounds, CT scans, and MRIs, which continue to make health care services unaffordable for most populations in developing countries [ 6 ]. In a study conducted to determine the prevalence and classification of misdiagnosis among hospitalized patients in five general hospitals in central Uganda, 9.2% of inpatients were misdiagnosed, and these were linked to inadequate medical history and examination, as the most common conditions were the most commonly misdiagnosed [ 9 ].

At Mbale RRH, there has been a progressive increase in the number of patients included in the gynecology department, which is expected to have compromised the quality of the clerkships that patients receive at the hospital [ 10 ]. However, there is limited information about the quality and completeness of clerkships for patients admitted to and treated at Mbale RRH. The current study therefore aimed to determine the gap in patient clerkships and the possible causes of these gaps and to suggest strategies for improving clerkships.

Methods and materials

Study design.

This was a baseline study, which was part of a quality improvement project aimed at improving the clerkships of patients admitted and treated at Mbale RRH. This mixed cross-sectional survey employing both quantitative and qualitative techniques was carried out from August 2022 to December 2022. Both techniques were employed to triangulate the results and address the gap in clerkship using quantitative techniques. Then, qualitative methods were used to explain the reasons for the observed discrepancy, and strategies to improve clerkship were suggested.

Study setting

The study was carried out in Mbale RRH, at the gynecologic ward. The hospital is in Mbale Municipal Council, 214 km to the east of the capital city of Kampala. It is the main regional referral hospital in the Elgon zone in eastern Uganda, a geographic area that borders the western part of Kenya. The Mbale RRH serves a catchment population of approximately 5 million people from 16 administrative districts. It is the referral hospital for the districts of Busia, Budaka, Kibuku, Kapchorwa, Bukwo, Butaleja, Manafwa, Mbale, Pallisa, Sironko and Tororo. The hospital is situated at an altitude of 1140 m within a range of 980–1800 m above sea level. Over 70% of inhabitants in this area are of Bantu ethnicity, and the great majority are part of rural agrarian communities. The Mbale RRH is a government-run, not-for-profit and charge-free 470-bed capacity that includes four major medical specialties: Obstetrics and Gynecology, Surgery, Internal Medicine, and Pediatrics and Child Health.

Study population, sample size and sampling strategy

We collected the files of patients who were admitted to the gynecology ward at Mbale RRH from August 2022 to December 2022. All the files were selected for review. We also interviewed health workers involved in patient clerkships at the gynecological ward. For qualitative data, participants were recruited until data saturation was reached.

Data collection

We collected both secondary and primary data. Secondary data were collected by reviewing the patients’ files. We identified research assistants who were trained in the data entry process. The data collection tool on Google Forms was distributed to the gadgets that were given to the assistants to enter the data. The qualitative data collection was performed via key informant interviews of the health workers involved in the clerkship of the patients, and the interviews were performed by the investigators. The selection of the participants was purposive, as we opted for those who clerk patients. After providing informed consent, the interview proceeded, with a voice recorder used to capture the data collected during the interview process and brief key notes made by the interviewer.

Data collection tool

A data abstraction tool was developed and fed into Google Forms, which were used to collect information about patients’ clerkships from patients’ files. The tool was developed by the investigators based on the requirements of a full clerkship, and it acted as a checklist for the parameters of clerkships that were provided or not provided. The validity of this tool was first determined by using it to collect information from ten patients’ files, which were not included in the study, and the tool was adjusted accordingly. The tool for collecting the qualitative information was an interview guide that was developed by the interviewer and was piloted with two health workers. Then, the guide was adjusted before it was used for data collection.

Variable handling

The dependent variable in the current study was the length of hospital stay. This was calculated from the date of admission and the date of discharge. There were two outcomes: “prolonged hospital stay” and “not prolonged”. A prolonged hospital stay was defined as a hospital stay of more than the 75 th percentile, according to a study conducted in Ethiopia [ 9 ]. This duration was more than 5 (five) days in the current study. The independent variables were the components of the clerkship.

Data analysis

Data analysis was performed using STATA version 15. Univariate, bivariate and multivariate analyses were performed. Continuous variables were summarized using measures of central tendency and measures of dispersion, while categorical variables were summarized using frequencies and proportions. Bivariate analysis was performed using chi-square or Fischer’s exact tests, one-way ANOVA and independent t tests, with the level of significance determined by a p value of <= 0.2. Multivariate analysis was performed using logistic regression, and the level of significance was determined by a p value of <=0.05.

Qualitative data were analyzed using Atlas Ti version 9 via deductive thematic analysis. The audio recordings were transcribed, and the transcripts were then imported into Atlas Ti.

Qualitative

The files of a total of 612 patients were reviewed.

The gap in the clerkships of patients

Patient biodata.

As shown in Fig. 1 below, at least one parameter under patient biodata was recorded for all the patients. The largest gap was identified in the recording of the nearest health facility of the patient, where 91% of the patients did not have this recorded, and the smallest gap was in the recording of the name and age, where less than 1% had this not recorded.

figure 1

The gap in patients’ biodata

Compliance, HPC and ROS

As shown in Fig. 2 below, the largest gap here was in recording the history of presenting complaint, which was not recorded in 32% of the participants. The least gap was in the review of systems, where it was not recorded in only 10% of the patients.

figure 2

Gap in the presenting of complaints, HPCs and ROS

As shown in Fig. 3 below, the past obstetric history had the greatest gap in recording the gestational age at delivery of each pregnancy (89% not recorded), while the least gap was in recording the number of pregnancies (43% not recorded). In terms of the history of current pregnancy, the greatest gap was in recording whether hematinics were given to the mother (92% not recorded), while the least gap was in recording the date of the first day of the last normal menstrual period (LNMP) (44% not recorded). On other gynecological history, the largest gap was in recording the history of gynecological procedures (88% not recorded), while the least gap was in the history of abortions (73% not recorded). In the past medical history, the largest gap was in terms of history of medication allergies and history of previous admissions (86% not recorded), and the smallest gap was in terms of history of chronic illnesses (72% not recorded). In the past surgical history, the largest gap was in the history of trauma (84% not recorded), while the least gap was in the history of blood transfusion (76% not recorded). In terms of family history, there was a greater gap in the family history of twin pregnancies (86% not recorded) than in the family history of familial illnesses (83% not recorded). In terms of social history, neither alcohol intake nor smoking were recorded for 84% of the patients.

figure 3

Gap in history

Physical examination

As shown in Fig. 4 below, the least recorded vital sign was oxygen saturation (SPO2), with 76% of the patients’ SPO2 not being recorded, while blood pressure was least recorded (21% not recorded). On the general examination, checking for edema had the greatest gap (63% not recorded), while checking for pallor had the least gap (45% not recorded). On abdominal examination, auscultation had the greatest gap (76% not recorded), while inspection of the abdomen had the least gap (56% not recorded). On vaginal examination, the greatest difference was in examining the vaginal OS (57% not recorded), while the least difference was in checking for vaginal bleeding (47% not recorded).

figure 4

Gap in physical examination

Investigations, provisional diagnosis and management plan

As shown in Fig. 5 below, the least common investigation was the malaria test (76% not performed), while the most common investigation was the CBC test (41% not performed). Provisional diagnosis was not performed in 20% of the patients. A management plan was not provided for approximately 4-5 of the patients.

figure 5

Gap in the provisional diagnosis and management plan

Summary of the gap in clerkships

As shown in Fig. 6 below, most participants had a social history with no information provided at all, while biodata and vital sign examinations had the least number of participants with no information provided at all. There was no patient who had a complete clerkship.

figure 6

Summary of the gaps in clerkships

Days of hospitalization

The days of hospitalization were not normally distributed and were positively skewed, with a median of 3 [ 2 , 5 ] days. The mean days of hospitalization was 6.2 (±11.1). As shown in Fig. 7 below, 20% of the patients had prolonged hospitalization.

figure 7

Duration of hospitalization

The effect of the clerkship gap on the number of days of hospital stay

As shown in Tables 1 and 2 below, the clerkship components that had a significant association with the days of hospitalization at the bivariate level included vital examination, abdominal examination, history of presenting complaint and treatment plan.

As shown in Table 3 , the only clerkship component that had a significant association with the days of hospitalization at the multivariate level was abdominal examination. People who had partial abdominal examinations were 1.9 times more likely to have prolonged hospital stays than those who had complete abdominal examinations.

Qualitative results

We conducted a total of 8 key informant interviews with the following characteristics as shown in table 4 below.

The qualitative results are summarized in Table 5 below.

The quality of clerkships on wards

It was reported that both the quality and completeness of clerkships on the ward are poor.

“…most are not clerking fully the patients, just put in like biodata three items name, age address, then they go on the present complaint, diagnosis then treatment; patient clerkship is missing out some important information…” (KIISAMW 2)

It was, however, noted that the quality of a clerkship depends on several factors, such as who is clerking, how sick the patient is, the number of patients to be seen that particular day and the number of hours a person clerks.

“…so, the quality of clerkship is dependent on who is clerking but also how sick the patient is…” (KIIMO 3)

Which people usually clerk patients on the ward?

The following people were identified as those who clerking patients, midwives, medical students, junior house officers, medical officers and specialists.

“…everyone clerks patients here; nurses, midwives, doctors, medical students, specialists, everyone as long as you are a health care provider…” (KIIMO 2)

Causes of the gaps in clerkships

These factors were divided into factors related to health workers, hospital-related factors, health system-related factors and patient-related factors.

Hospital-related factors

The absence of clerkship tools such as a standardized clerkship guide and equipment for the examination of patients, such as blood pressure machines, thermometers, and glucometers, among others, were among the reasons for the poor clerkships of the patients.

…of course, there are other things like BP machines, thermometers; sometimes you want to examine a patient, but you don’t have those examining tools…” (KIIMO 1)

The tools that were available were plain, and they play little role in facilitating clerkships. They reported that they end up using small exercise books with no guidance for easy clerkship and with limited space.

“…most of our tools have these questions that are open ended and not so direct, so the person who is not so knowledgeable in looking out for certain things may miss out on certain data…” (KIIOG 1)

The reluctance of some health workers to clerk patients fully was also reported to be because it is the new normal, and everyone follows a bandwagon to collect only limited information from patients because there is no one to follow up or supervise.

“…you know when you go to a place, what you find people doing is what you also end up doing; I think it is because of what people are doing and no one is being held accountable for poor clerkship…” (KIIMO 3)

The absence of specialized doctors in the OPD department forces most patients, even stable patients, to be managed by the OPD to crowd the ward, making complete clerkships for all patients difficult. Poor triaging of the patients was also noted as one of the causes of poor clerkship, as emergency cases are mixed with stable cases.

“…and this gyn ward is supposed to see emergency gynecological cases, but you find even cases which are supposed to be in the gyn clinic are also here; so, it creates large numbers of people who need services…” (KIIMO 1)

Clerkships being performed by the wrong people were also noted. It was emphasized that it is only a medical doctor who can perform good clerkships for patients, and any other cadres who perform clerkships contribute to poor clerkships on the ward.

Health worker-related factors

A poor attitude of health workers was reported, and it was found that many health workers consider complete clerkship to be a practice that is performed by people who do not know what they look for to make a diagnosis.

A lack of knowledge about clerkships is another factor that has been reported. Some health workers were reported to forget some of the components of clerkship; hence, they end up recording only what they remember at the time of clerkship.

A lack of confidence by some health workers and students that creates fear of committing to making a diagnosis and drawing a management plan was reported to hinder some of them from doing a complete clerkship of the patients.

“…a nurse or a student may clerk, but they don’t know the diagnosis; so, they don’t want to commit themselves to a diagnosis…” (KIIMO 2)

Some health workers reported finding the process of taking notes while clerking tedious; hence, they collected only limited information that they could write within a short period of time.

Health system-related factors

Understaffing of the ward was noted to cause a low health worker-to-patient ratio. This overworked the health workers due to the large numbers of patients to be seen.

“…due to the thin human resource for health, many patients have to be seen by the same health worker, and it becomes difficult for one to clerk adequately; they tend to look out for key things majorly…” (KIIOG 1)

It was noted that in the morning or at the start of a shift, the clerkship can be fair, but as the day progresses, the quality of the clerkship decreases due to exhaustion.

“…you can’t clerk the person you are seeing at 5 pm the same way you clerked the person you saw at 9 am…” (KIIMO 3)

The large numbers of patients were also associated with other factors, such as the inefficient referral system, where patients who can be managed in lower health facilities are also referred to Mbale RRH. It was also stated that some patients do not understand the referral system, causing self-referral to the RRH. Other factors that contributed to the poor referral system were limited trust of the patients, drug stockouts, limited skilled number of health workers, and limited laboratory facilities in the lower health facilities.

“…so, everyone comes in from wherever they can, even unnecessary referrals from those lower health facilities make the numbers very high…” (KIIMO 1)

Patient-related factors

It was reported that the nature of some cases does not allow the health worker to collect all the information from such a patient, for example, the emergency cases. However, some responders stated the emergent nature of the cases to be a contributor to the complete clerkship of such a patient, as the person clerking such a case is more likely to call for help, so they must have enough information on the patient. Additionally, they do not want to fill the gap in the care of this critical patient.

“…usually, a more critical patient gets a more elaborate clerkship compared to a more stable one, where we will get something quick…” (KIIMO 3)

The poor health of some patients makes them unable to afford the files and books where clerkship notes are to be taken.

“…a patient has no money, and they have to buy books where to write, then you start writing on ten pages; does it make sense...” (KIIMO 2)

Strategies to improve patients’ clerkships

These were divided into measures to be taken by the health workers, those to be taken by the hospital leadership and those to be taken by the government.

Measures to be taken by health workers.

Holding each other accountable with respect to clerkship quality and completeness was suggested, including providing feedback from fellow health workers and from the records department.

…like everyone I think should just be held accountable for their clerkship and give each other feedback…” (KIIMO 3)

It was also suggested that medical students be mentored by senior doctors on the ward on the clerkship, and they should clerk the patients and present them to the senior doctors for guidance on the diagnosis and the management plan. This approach was believed to save time for senior doctors who may not have obtained time to collect information from patients and to facilitate the learning of students, most importantly ensuring the complete clerkship of patients.

“…students can give us a very good clerkship if supervised well, then we can discuss issues of diagnosis, the investigations to be done and the management…” (KIIMO 1)

Changes in the attitudes of health workers toward clerkships were suggested. This was also encouraged for those who work in laboratories to be able to perform the required investigations to guide diagnosis and management.

“…our lab has the equipment, but they need to change their attitude toward doing the investigations…” (KIIMO 1)

Measures to be taken by hospital leaders

The provision of tools to be used in clerkships was suggested as one of the measures that can be taken. Among the tools that were suggested include the following: a standardized clerkship guide, equipment for examination of the patients, such as blood pressure machines, and thermometers, among others. It was also suggested that a printer machine be used to print the clerkship guide to ensure the sustainability and availability of the tools. An electronic clerkship provision was suggested so that the amount of tedious paperwork could be reduced, especially for those who are comfortable with it.

“…if the stakeholders, especially those who have funds, can help us to make sure that these tools are always available, it is a starting point…” (KIIOG 1)

Continuous education of the clinicians about clerkships was suggested in the CMEs, and routine morning meetings were always held in the ward. Then, it was suggested that clinicians who clerked patients the best way are rewarded to motivate them.

“…for the staff, we can may be continuously talking about it during our Monday morning meetings about how to clerk well and the importance of clerking…” (KIIOG 1)

They also suggested providing a separate conducive room for the examination of patients to ensure the privacy of the patient, as this will ensure more detailed examination of the patients by the clinicians.

It was also suggested that more close supervision of the clerkship be performed and that a culture of good clerkship be developed to make clerkship a norm.

“…as leaders of the ward and of the department, we should not get tired to talk about the importance of clerkship, not only in this hospital but also in the whole country…” (KIIOG 1)

Proper record-keeping was also suggested, for people clerking to be assured that information will not be discarded shortly.

“…because how good is it to make these notes yet we can’t keep them properly...” (KIIMO 2)

It was also suggested that a records assistant be allocated to take notes for the clinicians to reduce their workload.

Coming up with SOPs, for example, putting different check points that ensure that a patient is fully clerked before the next step

“…we can say, before a patient accesses theater or before a mother enters second stage room, they must be fully clerked, and there is a checklist at that point…” (KIIOG 1)

Measures to be taken by the government

Improving the staffing level is strongly suggested to increase the health worker-to-patient ratio. This, they believed would reduce the workload off the health workers and allow them to give more time to the patients.

“…we also need more staffing for the scan because the person who is there is overwhelmed…” (KIIMO 1)

Staff motivation was encouraged through the enhancement of staff salaries and allowances. It was believed that it would be easy for these health workers to be supervised when they are motivated.

“…employ more health workers, pay them well then you can supervise them well…” (KIIMO 1)

Providing refresher courses to clinicians was also suggested so that they could be updated during the clerkship process.

Streamlining the referral system was also suggested through the use of lower health facilities so that some minor cases can be managed in those facilities to reduce the overcrowding of patients in the RRH.

“…we need to also streamline the referral system, the way people come to the RRH; some of these cases can be handled in the lower health facilities; we need to see only patients who have been referred…” (KIIMO 2)

The qualitative results are further summarized in Fig. 8 below.

figure 8

Scheme of the clerkship of patients, including the causes of the clerkship gap and the strategies to improve the clerkship at Mbale RRH

Discussion of results

This study highlights a gap in the clerkships of patients admitted, treated, and discharged from the gynecological ward, with varying gaps in the different sections. This could be because some sections of the clerkship are considered more important than others. A study performed in Turkey revealed that physicians tended to record more information that aided their diagnostic tasks [ 11 ]. This is also reflected in the qualitative findings where participants expressed that particular information is required to make the diagnosis and not everything must be collected.

Biodata for patients were generally well recorded, and name and age were recorded for almost all the patients. A similar finding was found in the UK, where 100% of the patients had their personal details fully recorded [ 12 ]. Patient information should be carefully and thoroughly recorded because it enables health workers to create good rapport with patients and creates trust [ 13 ]. This information is also required for every interaction with the patient at the ward.

The presenting complaint, history of presenting complaint and the review of systems were fairly recorded, with each of them missing in less than 40% of the patients. The presence of a complaint is crucial in every interaction with the patient to the extent that a diagnosis can rarely be made without knowing the chief complaint [ 14 , 15 ]. This applies to the history of presenting complaint as well [ 16 ]. For the 30% who did not have the presenting complaint recorded, this could mean that even the patient’s primary problem was not given adequate attention.

In the history, the greatest gap was noted in the history of current pregnancy, where many parameters were not recorded in most patients. This is, however, expected since the study was conducted on a gynecological ward, where only a few pregnant women are expected to visit, as they are supposed to go to their antenatal clinics [ 17 ]. However, there was also a large gap in past gynecological history, which is expected to be fully explored in the gynecology ward. A good medical history is key to obtaining a good diagnosis, in addition to a good clinical examination [ 3 , 18 ]. Past obstetric history, past medical history, past surgical history, and family history also had large gaps, yet they are very important in the management of these patients.

The abdominal parameters, especially the pulse rate and blood pressure, were the least frequently recorded during the physical examination, and vital signs were most often recorded. However, there were substantial gaps in the general examination and vaginal examination. The least gap in vital sign examination is close monitoring, which is performed for most patients admitted to the ward due to the nature of the patients, some of whom are emergency patients [ 19 ].

Among the investigations, 29% of patients were not investigated. The least commonly performed investigations were pelvic USS and malaria tests, while complete blood count (CBC) was most commonly performed. Genital infections are among the most common reasons for women’s visits to health care facilities [ 20 ]. Therefore, most women in the gynecological ward are suspected to have genital tract infections, which could account for why CBC is most commonly performed.

The limited number of other investigations, such as pelvic ultrasound scans, underscore the relative contribution of medical history and physical examination to laboratory investigations and imaging studies aimed at making a diagnosis [ 1 ]. However, this would also highlight the system challenges of limited access to quality laboratory services in low- and middle-income countries [ 21 ]. This was also highlighted by one of the key informants who reported that the USS staff is available on some and not all days. This means that on days where the ultrasound department does not work, USS is not performed, even when needed.

We found that 20% of patients experienced prolonged hospitalization. This percentage is lower than the 24% reported in a study conducted in Ethiopia [ 22 ]. However, this study was conducted in a surgical ward. The median length of hospital stay was the same as that in a study conducted in Eastern Sudan among mothers following cesarean delivery [ 23 ]. A prolonged hospital stay has a negative impact not only on patients but also on the hospital [ 24 , 25 ]. Therefore, health systems should aim to reduce the length of hospital stay for patients as much as possible to improve the effectiveness of health services.

At the multivariate level, abdominal examination was significantly associated with length of hospital stay, with patients whose abdominal examination was not complete being more likely to have a prolonged hospital stay. This underscores the importance of good examination in the development of proper management plans that improve the care of patients, hence reducing the number of days of hospital stay [ 5 , 26 ].

There is a gap in the clerkships of patients at the gynecological ward, which is recognized by the stakeholders at the ward. Some components of clerkships were recorded better than others, with the reasoning that clerkships should be targeted. There were no patients who received a complete clerkship. There was a significant association between clerkships and the length of hospital stay. The causes of the gap in clerkships were multifactorial and included those related to the hospital, those related to the health worker, those related to the health care system and those related to the patient. The strategies to improve the clerkship of patients also included measures taken by health care workers, measures taken by hospitals and measures taken by the government.

Recommendations

Clerkship tools, such as the standardized clerkship guide and equipment for patient examination, were provided. The health workers were continuously educated on clerkships and trained on how to use the available tools. The development of SOPs for patient clerkships, the promotion of clerkship culture and the supervision of health workers.

Strengths of the study

A mixed study, therefore, allows for the triangulation of results.

Study limitations

The quantity of quantitative data collected, being secondary, is subject to bias due to documentation errors. We assessed the completeness of clerkship without considering the nature of patient admission. We did not record data on whether it was an emergency or stable case, which could be an important cofounder. However, this study gives a good insight into the status of clerkship in the gynecological ward and can lay foundation for future research into the subject.

Availability of data and materials

The data and materials are available upon request from the corresponding author via the email provided.

Hampton JR, Harrison M, Mitchell JR, Prichard JS, Seymour C. Relative contributions of history-taking, physical examination, and laboratory investigation to diagnosis and management of medical outpatients. Br Med J. 1975;2(5969):486.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Kaufman MS, Holmes JS, Schachel PP, Latha G. Stead. First aid for the obstetrics and gynecology clerkship. 2011.

Leis Potter. Gynecological history taking 2010 [Available from: https://geekymedics.com/gynaecology-history-taking/ .

Stoeckle JD, Billings JA. A history of history-taking: the medical interview. J Gen Intern Med. 1987;2(2):119–27.

Article   CAS   PubMed   Google Scholar  

Muhrer JC. The importance of the history and physical in diagnosis. The Nurse Practitioner. 2014;39(4):30–5.

Article   PubMed   Google Scholar  

Foster DW. Every patient tells a story: medical mysteries and the art of diagnosis. J Clin Investig. 2010;120(1):4.

Article   CAS   PubMed Central   Google Scholar  

Elder AT, McManus IC, Patrick A, Nair K, Vaughan L, Dacre J. The value of the physical examination in clinical practice: an international survey. Clin Med (Lond). 2017;17(6):490–8.

Katongole SP, Anguyo RD, Nanyingi M, Nakiwala SR. Common medical errors and error reporting systems in selected Hospitals of Central Uganda. 2015.

Google Scholar  

Katongole SP, Akweongo P, Anguyo R, Kasozi DE, Adomah-Afari A. Prevalence and Classification of Misdiagnosis Among Hospitalised Patients in Five General Hospitals of Central Uganda. Clin Audit. 2022;14:65–77. https://doi.org/10.2147/CA.S370393 .

Article   Google Scholar  

Kirinya A. Patients Overwhelm Mbale Regional Referral Hospital. 2022.

Yusuff KB, Tayo F. Does a physician’s specialty influence the recording of medication history in patients’ case notes? Br J Clin Pharmacol. 2008;66(2):308–12.

Article   PubMed   PubMed Central   Google Scholar  

Wethers G, Brown J. Does an admission booklet improve patient safety? J Mental Health. 2011;20(5):438–44.

Flugelman MY. History-taking revisited: Simple techniques to foster patient collaboration, improve data attainment, and establish trust with the patient. GMS J Med Educ. 2021;38(6):Doc109.

PubMed   PubMed Central   Google Scholar  

Gehring C, Thronson R. The Chief “Complaint” and History of Present Illness. In: Wong CJ, Jackson SL, editors. The Patient-Centered Approach to Medical Note-Writing. Cham: Springer International Publishing; 2023. p. 83–103.

Chapter   Google Scholar  

Virden TB, Flint M. Presenting Problem, History of Presenting Problem, and Social History. In: Segal DL, editor. Diagnostic Interviewing. New York: Springer US; 2019. p. 55-75.

Shah N. Taking a history: Introduction and the presenting complaint. BMJ. 2005;331(Suppl S3):0509314.

Uganda MOH. Essential Maternal and Newborn Clinical Care Guidelines for Uganda, May 2022. 2022.

Waller KC, Fox J. Importance of Health History in Diagnosis of an Acute Illness. J Nurse Pract. 2020;16(6):e83–4.

Brekke IJ, Puntervoll LH, Pedersen PB, Kellett J, Brabrand M. The value of vital sign trends in predicting and monitoring clinical deterioration: a systematic review. PloS One. 2019;14(1):e0210875.

Mujuzi H, Siya A, Wambi R. Infectious vaginitis among women seeking reproductive health services at a sexual and reproductive health facility in Kampala, Uganda. BMC Womens Health. 2023;23(1):677.

Nkengasong JN, Yao K, Onyebujoh P. Laboratory medicine in low-income and middle-income countries: progress and challenges. Lancet. 2018;391(10133):1873–5.

Fetene D, Tekalegn Y, Abdela J, Aynalem A, Bekele G, Molla E. Prolonged length of hospital stay and associated factors among patients admitted at a surgical ward in selected Public Hospitals Arsi Zone, Oromia, Ethiopia, 2022. 2022.

Book   Google Scholar  

Hassan B, Mandar O, Alhabardi N, Adam I. Length of hospital stay after cesarean delivery and its determinants among women in Eastern Sudan. Int J Womens Health. 2022;14:731–8.

LifePoint Health. The impact prolonged length of stay has on hospital financial performance. 2023. Retrieved from: https://lifepointhealth.net/insights-and-trends/the-impact-prolonged-length-of-stay-has-on-hospital-financialperformance .

Kelly S. Patient discharge delays pose threat to health outcomes, AHA warns. Healthcare Dive. 2022. Retrieved from: https://www.healthcaredive.com/news/discharge-delay-American-Hospital-Association/638164/ .

Eskandari M, Alizadeh Bahmani AH, Mardani-Fard HA, Karimzadeh I, Omidifar N, Peymani P. Evaluation of factors that influenced the length of hospital stay using data mining techniques. BMC Med Inform Decis Mak. 2022;22(1):1–11.

Download references

The study did not receive any funding

Author information

Authors and affiliations.

Faculty of Health Science, Busitema University, P.O. Box 1460, Mbale, Uganda

Kennedy Pangholi, Faith Nyangoma, Jesca Atugonza, Elizabeth Ajalo, Alice Kalenda, Ambrose Okibure, Andrew Kagwa, Ronald Kibuuka & Betty Nakawuka

Institute of Public Health Department of Community Health, Busitema University, faculty if Health Sciences, P.O. Box 1460, Mbale, Uganda

Enid Kawala Kagoya, Francis Okello & Proscovia Auma

Seed Global Health, P.O. Box 124991, Kampala, Uganda

Allan G Nsubuga, Irene Atuhairwe, Prossy Nakattudde, Brian Agaba, Bonaventure Ahaisibwe, Esther Ijangolet & Eric Otim

Department of Pharmacology and Therapeutics, Busitema University, Faculty of Health Science, P.O. Box 1460, Mbale, Uganda

Department of Obstetrics and Gynecology, Busitema University, Faculty of Health Sciences, P.O. Box 1460, Mbale, Uganda

Julius Wandabwa & Milton Musaba

Department of Obstetrics and Gynecology, Mbale Regional Referral Hospital, P.O. Box 921, Mbale, Uganda

Antonina Webombesa & Kenneth Mugabe

Department of Nursing, Busitema University, Faculty of Health Sciences, P.O. Box 1460, Mbale, Uganda

Ashley Nakawuki

Ministry of Health, Plot 6, Lourdel Road, Nakasero, P.O. Box 7272, Kampala, Uganda

Richard Mugahi

You can also search for this author in PubMed   Google Scholar

Contributions

P.K came up with the concept and design of the work and coordinated the team to work K.E.K and A.P helped interpretation of the data O.F and O.A helped in the analysis of data N.A.G, A.I, N.P, W.P, W.J, M.M, A.W, M.K, N.F, A.J, A.E, M.R, K.A, K.A, A.B, A.B, I.E, O.E, N.A, K.R, N.B substantially revised the work.

Corresponding author

Correspondence to Kennedy Pangholi .

Ethics declarations

Ethics approval and consent to participate.

The study was conducted according to the Declaration of Helsinki and in line with the principles of Good Clinical Practice and Human Subject Protection. Prior to collecting the data, ethical approval was obtained from the Research Ethics Committee of Mbale RRH, approval number MRRH-2023-300. The confidentiality of the participant information was ensured throughout the research process. Permission was obtained from the hospital administration before the data were collected from the patients’ files, and informed consent was obtained from the participants before the qualitative data were collected. After entry of the data, the devices were returned to the principal investigator at the end of the day, and they were given to the data entrants the next day.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary material 1. , rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Pangholi, K., Kagoya, E.K., Nsubuga, A.G. et al. Improving Clerkship to Enhance Patients’ Quality of care (ICEPACQ): a baseline study. BMC Health Serv Res 24 , 852 (2024). https://doi.org/10.1186/s12913-024-11337-w

Download citation

Received : 25 September 2023

Accepted : 22 July 2024

Published : 26 July 2024

DOI : https://doi.org/10.1186/s12913-024-11337-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Gynecology ward

BMC Health Services Research

ISSN: 1472-6963

what is the data collection in research

U.S. flag

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Home

  •   Facebook
  •   Twitter
  •   Linkedin
  •   Digg
  •   Reddit
  •   Pinterest
  •   Email

Latest Earthquakes |    Chat Share Social Media  

Data from the Capture and Collection of Non Die-off Seabirds Across Alaska

This data package contains one table with morphometric and diet information for "non-die-off" seabirds captured and collected in southcentral and southwest Alaska. Data pertains to birds captured (live) or collected (lethally) including, bird identification numbers, sampling dates, geographic locations, body measurements, diets (from either stomach contents or regurgitated prey), and sex and age of the bird when discernible. Common Murres (Uria aalge) and Black-legged Kittiwakes (Rissa tridactyla) were captured from their breeding colonies in lower Cook Inlet, Alaska, 2016-2023. Kittiwakes, murres, Glaucous-winged Gulls (Larus glaucescens) and Horned Puffins (Fratercula corniculata) were collected in Prince William Sound, Cook Inlet, and Unalaska.

Citation Information

Publication Year 2024
Title Data from the Capture and Collection of Non Die-off Seabirds Across Alaska
DOI
Authors Sarah K Schoen, Mayumi Arimitsu, Samuel B Stark, Ann M Harding, Caitlin E Marsteller, John F Piatt
Product Type Data Release
Record Source
USGS Organization Alaska Science Center

Related Content

Sarah k schoen, mayumi l arimitsu, ph.d., research ecologist, samuel stark, caitlin marsteller, john piatt, ph.d., research wildlife biologist.

NIMH Logo

Transforming the understanding and treatment of mental illnesses.

Información en español

Celebrating 75 Years! Learn More >>

  • Health Topics
  • Brochures and Fact Sheets
  • Help for Mental Illnesses
  • Clinical Trials

Mental Illness

Mental illnesses are common in the United States. It is estimated that more than one in five U.S. adults live with a mental illness (57.8 million in 2021). Mental illnesses include many different conditions that vary in degree of severity, ranging from mild to moderate to severe. Two broad categories can be used to describe these conditions: Any Mental Illness (AMI) and Serious Mental Illness (SMI). AMI encompasses all recognized mental illnesses. SMI is a smaller and more severe subset of AMI. Additional information on mental illnesses can be found on the NIMH Health Topics Pages .

Definitions

The data presented here are from the 2021 National Survey on Drug Use and Health  (NSDUH) by the Substance Abuse and Mental Health Services Administration  (SAMHSA). For inclusion in NSDUH prevalence estimates, mental illnesses include those that are diagnosable currently or within the past year; of sufficient duration to meet diagnostic criteria specified within the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV); and, exclude developmental and substance use disorders.

Any Mental Illness

  • Any mental illness (AMI) is defined as a mental, behavioral, or emotional disorder. AMI can vary in impact, ranging from no impairment to mild, moderate, and even severe impairment (e.g., individuals with serious mental illness as defined below).

Serious Mental Illness

  • Serious mental illness (SMI) is defined as a mental, behavioral, or emotional disorder resulting in serious functional impairment, which substantially interferes with or limits one or more major life activities. The burden of mental illnesses is particularly concentrated among those who experience disability due to SMI.

Prevalence of Any Mental Illness (AMI)

  • In 2021, there were an estimated 57.8 million adults aged 18 or older in the United States with AMI. This number represented 22.8% of all U.S. adults.
  • The prevalence of AMI was higher among females (27.2%) than males (18.1%).
  • Young adults aged 18-25 years had the highest prevalence of AMI (33.7%) compared to adults aged 26-49 years (28.1%) and aged 50 and older (15.0%).
  • The prevalence of AMI was highest among the adults reporting two or more races (34.9%), followed by American Indian / Alaskan Native (AI/AN) adults (26.6%). The prevalence of AMI was lowest among Asian adults (16.4%).
Past Year Prevalence of Any Mental Illness Among U.S. Adults (2021)
Demographic Percent
Overall 22.8
Sex Female 27.2
Male 18.1
Age 18-25 33.7
26-49 28.1
50+ 15.0
Race/Ethnicity Hispanic or Latino* 20.7
White 23.9
Black 21.4
NH/OPI 18.1
AI/AN 26,6
Asian 16.4
2 or More 34.9

*Persons of Hispanic origin may be of any race; all other racial/ethnic groups are non-Hispanic. NH/OPI = Native Hawaiian / Other Pacific Islander | AI/AN = American Indian / Alaskan Native

Mental Health Services — AMI

  • In 2021, among the 57.8 million adults with AMI, 26.5 million (47.2%) received mental health services in the past year.
  • More females with AMI (51.7%) received mental health services than males with AMI (40.0%).
  • The percentage of young adults aged 18-25 years with AMI who received mental health services (44.6%) was lower than adults with AMI aged 26-49 years (48.1%) and aged 50 and older (47.4%).
Mental Health Services Received in Past Year Among U.S. Adults with Any Mental Illness (2021)
Demographic Percent
Overall 47.2
Sex Female 51.7
Male 40.0
Age 18-25 44.6
26-49 48.1
50+ 47.4
Race/Ethnicity Hispanic or Latino* 36.1
White 52.4
Black or African American 39.4
Two or More Races 52.2
Asian 25.4

*Persons of Hispanic origin may be of any race; all other racial/ethnic groups are non-Hispanic. Note: Estimates for Native Hawaiian / Other Pacific Islander and, American Indian / Alaskan Native groups are not reported in the above figure due to low precision of data collection in 2021.

Prevalence of Serious Mental Illness (SMI)

  • In 2021, there were an estimated 14.1 million adults aged 18 or older in the United States with SMI. This number represented 5.5% of all U.S. adults.
  • The prevalence of SMI was higher among females (7.0%) than males (4.0%).
  • Young adults aged 18-25 years had the highest prevalence of SMI (11.4%) compared to adults aged 26-49 years (7.1%) and aged 50 and older (2.5%).
  • The prevalence of SMI was highest among AI/AN adults (9.3%), followed by adults reporting two or more races (8.2%). The prevalence of SMI was lowest among Asian adults (2.8%).
Past Year Prevalence of Serious Mental Illness Among U.S. Adults (2021)
Demographic Percent
Overall 5.5
Sex Female 7.0
Male 4.0
Age 18-25 11.4
26-49 7.1
50+ 2.5
Race/Ethnicity Hispanic or Latino* 5.1
White 6.1
Black 4.3
Asian 2.8
NH/OPI 6.3
AI/AN 9.3
2 or More 8.2

* Persons of Hispanic origin may be of any race; all other racial/ethnic groups are non-Hispanic. NH/OPI = Native Hawaiian / Other Pacific Islander | AI/AN = American Indian / Alaskan Native.

Mental Health Services — SMI

  • In 2021, among the 14.1 million adults with SMI, 9.1 million (65.4%) received mental health treatment in the past year.
  • More females with SMI (67.6%) received mental health treatment than males with SMI (61.3%).
  • The percentage of young adults aged 18-25 years with SMI who received mental health treatment (57.9%) was lower than adults with SMI aged 26-49 years (67.0%) and aged 50 and older (71.0%).
Mental Health Services Received in Past Year Among U.S. Adults with Serious Mental Illness (2021)
Demographic Percent
Overall 65.4
Sex Female 67.6
Male 61.3
Age 18-25 57.9
26-49 67.0
50+ 71.0
Race/Ethnicity Hispanic or Latino* 58.6
White 68.6
Black or African American 62.3
Two or More Races 68.6

*Persons of Hispanic origin may be of any race; all other racial/ethnic groups are non-Hispanic. Note: Estimates for Asian, Native Hawaiian / Other Pacific Islander, and American Indian / Alaskan Native groups are not reported in the above figure due to low precision.

Prevalence of Any Mental Disorder Among Adolescents

  • An estimated 49.5% of adolescents had any mental disorder.
  • Of adolescents with any mental disorder, an estimated 22.2% had severe impairment and/or distress. DSM-IV based criteria were used to determine severity level.
Lifetime Prevalence of Any Mental Disorder Among Adolescents (2001-2004)
Demographic Percent
Overall 49.5
With Severe Impairment 22.2
Sex Female 51.0
Male 48.1
Age 13-14 45.3
15-16 49.3
17-18 56.7

Data Sources

  • Merikangas KR, He JP, Burstein M, Swanson SA, Avenevoli S, Cui L, Benjet C, Georgiades K, Swendsen J. Lifetime prevalence of mental disorders in U.S. adolescents: results from the National Comorbidity Survey Replication--Adolescent Supplement (NCS-A). J Am Acad Child Adolesc Psychiatry. 2010 Oct;49(10):980-9. PMID: 20855043 
  • Substance Abuse and Mental Health Services Administration. (2022). Key substance use and mental health indicators in the United States: Results from the 2021 National Survey on Drug Use and Health (HHS Publication No. PEP22-07-01-005, NSDUH Series H-57). Rockville, MD: Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration. Retrieved from https://www.samhsa.gov/data/report/2021-nsduh-annual-national-report  .

Statistical Methods and Measurement Caveats

National survey on drug use and health (nsduh).

Diagnostic Assessment:

  • The NSDUH AMI and SMI estimates were generated from a prediction model created from clinical interview data collected on a subset of adult NSDUH respondents who completed an adapted (past 12 month) version of the Structured Clinical Interview for DSM-IV-TR Axis I Disorders (Research Version, Non-patient Edition) (SCID-I/NP; First, Spitzer, Gibbon, & Williams, 2002), and was differentiated by level of functional impairment based on the Global Assessment of Functioning Scale (GAF; Endicott, Spitzer, Fleiss, & Cohen, 1976).
  • The assessment included diagnostic modules assessing the following: mood, anxiety, eating, impulse control, substance use, adjustment disorders, and a psychotic symptoms screen.
  • The assessment did not contain diagnostic modules assessing the following: adult attention deficit hyperactivity disorder (ADHD), autism spectrum disorders, schizophrenia or other psychotic disorders (although the assessment included a psychotic symptom screen).
  • People who only have disorders that are not included in these diagnostic modules may not be adequately detected. However, there are known patterns of high comorbidities among mental disorders; these patterns increase the likelihood that people who meet AMI and/or SMI criteria were detected by the study, as they may also have one or more of the disorders assessed in the SCID-I/NP.

Population:

  • The entirety of NSDUH respondents for the AMI and SMI estimates were the civilian, non-institutionalized population aged 18 years old or older residing within the United States.
  • The survey covered residents of households (persons living in houses/townhouses, apartments, condominiums; civilians living in housing on military bases, etc.) and persons in non-institutional group quarters (e.g., shelters, rooming/boarding houses, college dormitories, migratory workers' camps, and halfway houses).
  • The survey did not cover persons who, for the entire year, had no fixed address (e.g., homeless and/or transient persons not in shelters); were on active military duty; or who resided in institutional group quarters (e.g., correctional facilities, nursing homes, mental institutions, long-term hospitals).
  • Some people in these excluded categories had AMI and/or SMI, but were not accounted for in the NSDUH AMI and/or SMI estimates.
  • Data regarding sex of the respondent was assessed using male and female categories only. Gender identity information was not collected in the survey.

Survey Non-response:

  • In 2021, 53.0% of the selected NSDUH sample of people 18 or older did not complete the interview. This rate of non-response is higher than in previous years. Please see the Background on the 2021 NSDUH and the COVID-19 Pandemic section below for more information. 
  • Reasons for non-response to interviewing include the following: refusal to participate (30.1%); respondent unavailable or never at home (18.8%); and other reasons such as physical/mental incompetence or language barriers (4.2%).
  • People with mental illness may disproportionately fall into these non-response categories. While NSDUH weighting includes non-response adjustments to reduce bias, these adjustments may not fully account for differential non-response by mental illness status.

Data Suppression:

  • For some groups, data are not reported due to low precision. Data may be suppressed in the above charts if the data do not meet acceptable ranges for prevalence estimates, standard error estimates, and sample size.

Background on the 2021 NSDUH and the COVID-19 Pandemic:

  • Data collection methods for the 2021 NSDUH changed in several ways because of the COVID-19 pandemic: the 2021 NSDUH continued the use of multimode data collection procedures (both in-person and virtual data collection) that were first implemented in the fourth quarter of the 2020 NSDUH. Overall, 54.6% of interviews were completed via the web, and 45.4% were completed in person. In 2021, the weighted response rates for household screening and for interviewing were 22.2% and 46.2%, respectively, for an overall response rate of 10.3% for people aged 12 or older.
  • Given the use of multimode data collection procedures throughout the entirety of the collection year and the rate of non-response, comparison of estimates from the 2021 NSDUH with those from prior years must be made with caution.

Please see the 2021 National Survey on Drug Use and Health Methodological Summary and Definitions report   for further information on how these data were collected and calculated.

National Comorbidity Survey Adolescent Supplement (NCS-A)

Diagnostic Assessment and Population:

  • The NCS-A was carried out under a cooperative agreement sponsored by NIMH to meet a request from Congress to provide national data on the prevalence and correlates of mental disorders among U.S. youth. The NCS-A was a nationally representative, face-to-face survey of 10,123 adolescents aged 13 to 18 years in the continental United States. The survey was based on a dual-frame design that included 904 adolescent residents of the households that participated in the adult U.S. National Comorbidity Survey Replication and 9,244 adolescent students selected from a nationally representative sample of 320 schools. The survey was fielded between February 2001 and January 2004. DSM-IV mental disorders were assessed using a modified version of the fully structured World Health Organization Composite International Diagnostic Interview.
  • The overall adolescent non-response rate was 24.4%. This is made up of non-response rates of 14.1% in the household sample, 18.2% in the un-blinded school sample, and 77.7% in the blinded school sample. Non-response was largely due to refusal (21.3%), which in the household and un-blinded school samples came largely from parents rather than adolescents (72.3% and 81.0%, respectively). The refusals in the blinded school sample, in comparison, came almost entirely (98.1%) from parents failing to return the signed consent postcard.

For more information, see  PMID: 19507169   and the NIMH NCS-A study page .

Last Updated: March 2023

what is the data collection in research

Salesforce is closed for new business in your area.

ANA | Driving Growth

Your company may already be a member. View our member list to find out, or create a new account .

Forgot Password?

Content Library

You can search our content library for case studies, research, industry insights, and more.

You can search our website for events, press releases, blog posts, and more.

Precision Media and Data Collection Strategies for a Post-Cookie World

July 19, 2024    

Molson Coors developed a data-driven marketing playbook to sustain its digital advertising successes in a post-cookie world.

This Is an ANA Member Exclusive

Access to this item is reserved for ANA members only.

Already have an account? The industry's best insights and resources await:

No Account?

Use your business email address to create your free account ; if you're a member through your company, we'll know.

Members can access their benefits as soon as they sign up and log in.

Not a Member?

You can still create a free account to access the latest from our online publication, ANA Magazine , receive content and special event offers through our newsletters, get breaking industry updates, and so much more.

The content you're trying to see is available to:

  • ANA Client-Side Marketer Tier Members
  • Platinum Tier Members
  • Gold Tier Members
  • Silver Tier Members
  • Individual Members

Discover everything the ANA can do to help drive growth for your organization. Connect with our membership team.

what is the data collection in research

IMAGES

  1. How to Collect Data

    what is the data collection in research

  2. Data Collection Methods: Definition, Examples and Sources

    what is the data collection in research

  3. Methods of Data Collection-Primary and secondary sources

    what is the data collection in research

  4. 7 Data Collection Methods & Tools For Research

    what is the data collection in research

  5. Types Of Data Collection

    what is the data collection in research

  6. 6 TECHNIQUES OF DATA COLLECTION IN RESEARCH

    what is the data collection in research

VIDEO

  1. Data Collection for Qualitative Studies

  2. interviews as a data collection research method

  3. OBSERVATION

  4. Concept of data its types and methods of data collection Research methodology Bsc 3rd year

  5. What is Research? Urdu / Hindi

  6. Five crucial steps in the Scientific Method: Steps, Examples, Tips, and Exercise

COMMENTS

  1. Data Collection

    Data collection is the process of gathering and collecting information from various sources to analyze and make informed decisions based on the data collected. This can involve various methods, such as surveys, interviews, experiments, and observation. In order for data collection to be effective, it is important to have a clear understanding ...

  2. Data Collection

    Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem. While methods and aims may differ between fields, the overall process of ...

  3. Data Collection in Research: Examples, Steps, and FAQs

    Data collection is the process of gathering information from various sources via different research methods and consolidating it into a single database or repository so researchers can use it for further analysis. Data collection aims to provide information that individuals, businesses, and organizations can use to solve problems, track progress, and make decisions.

  4. (PDF) Data Collection Methods and Tools for Research; A Step-by-Step

    One of the main stages in a research study is data collection that enables the researcher to find answers to research questions. Data collection is the process of collecting data aiming to gain ...

  5. What Is Data Collection: Methods, Types, Tools

    Data collection is the process of collecting and evaluating information or data from multiple sources to find answers to research problems, answer questions, evaluate outcomes, and forecast trends and probabilities. It is an essential phase in all types of research, analysis, and decision-making, including that done in the social sciences ...

  6. Data Collection: What It Is, Methods & Tools + Examples

    Data collection is an essential part of the research process, whether you're conducting scientific experiments, market research, or surveys. The methods and tools used for data collection will vary depending on the research type, the sample size required, and the resources available.

  7. Data collection

    Data collection or data gathering is the process of gathering and measuring information on targeted variables in an established system, which then enables one to answer relevant questions and evaluate outcomes. Data collection is a research component in all study fields, including physical and social sciences, humanities, [2] and business.

  8. What Is Data Collection? A Guide for Aspiring Data Scientists

    During the data collection process, researchers must identify the different data types, sources of data, and methods being employed since there are many different methods to collect data for analysis. Many fields, including commercial, government and research, rely heavily on data collection.

  9. Data Collection Methods: A Comprehensive View

    The data obtained by primary data collection methods is exceptionally accurate and geared to the research's motive. They are divided into two categories: quantitative and qualitative. We'll explore the specifics later. Secondary data collection. Secondary data is the information that's been used in the past.

  10. Design: Selection of Data Collection Methods

    In this Rip Out we focus on data collection, but in qualitative research, the entire project must be considered. 1, 2 Careful design of the data collection phase requires the following: deciding who will do what, where, when, and how at the different stages of the research process; acknowledging the role of the researcher as an instrument of ...

  11. Best Practices in Data Collection and Preparation: Recommendations for

    Our recommendations regarding data collection address (a) type of research design, (b) control variables, (c) sampling procedures, and (d) missing data management. Our recommendations regarding data preparation address (e) outlier management, (f) use of corrections for statistical and methodological artifacts, and (g) data transformations.

  12. Data Collection Methods

    Data collection is a process of collecting information from all the relevant sources to find answers to the research problem, test the hypothesis (if you are following deductive approach) and evaluate the outcomes.Data collection methods can be divided into two categories: secondary methods of data collection and primary methods of data collection.

  13. Guide to Data Collection Methods and Tools

    Surveys, interviews, observations, focus groups, and forms are common data collection methods. Sampling involves selecting a representative group from a larger population. Choosing the right sampling method to gather representative and relevant data is crucial. Crafting effective data collection instruments like surveys and questionnaires is ...

  14. Data Collection

    Data collection is the process of gathering and measuring information used for research. Collecting data is one of the most important steps in the research process, and is part of all disciplines including physical and social sciences, humanities, business, etc. Data comes in many forms with different ways to store and record data, either written in a lab notebook and or recorded digitally on ...

  15. Data Collection

    The data collected for your study informs the analysis of your research. Gathering data in a transparent and thorough manner informs the rest of your research and makes it persuasive to your audience. Interviews and focus groups are common forms of qualitative data collection.

  16. What is Data Collection? Key Methods, Steps And Tools

    In general, data collection is the process that combines gathering and analyzing information involving relevant variables in a methodical, predetermined manner. Data collection can help businesses answer particular research questions, examine specific hypotheses, and, ultimately, assess results. Data collection can be qualitative or quantitative.

  17. 7 Data Collection Methods & Tools For Research

    Primary Data Collection. Primary data collection by definition is the gathering of raw data collected at the source. It is a process of collecting the original data collected by a researcher for a specific research purpose. It could be further analyzed into two segments; qualitative research and quantitative data collection methods.

  18. What is data collection?

    Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

  19. Data Collection Methods

    Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental, or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem.

  20. Data Collection Methods and Tools for Research; A Step-by-Step Guide to

    Data Collection, Research Methodology, Data Collection Methods, Academic Research Paper, Data Collection Techniques. I. INTRODUCTION Different methods for gathering information regarding specific variables of the study aiming to employ them in the data analysis phase to achieve the results of the study, gain the answer of the research ...

  21. 5 Methods of Data Collection for Quantitative Research

    5 Methods of Data Collection for Quantitative Research. In this blog, read up on five different ways to approach data collection for quantitative studies - online surveys, offline surveys, interviews, etc. quantilope is the Consumer Intelligence Platform for all end-to-end research needs. Get in touch to learn more.

  22. What are the Data Collection Tools and How to Use Them?

    Data Collection - Qualitative Vs. Quantitative. When researchers conduct studies or experiments, they need to collect data to answer their research questions, which is where data collection tools come in. Data collection tools are methods or instruments that researchers use to gather and analyze data. Data collection tools can be used in both ...

  23. What Is Qualitative Research? An Overview and Guidelines

    This guide explains the focus, rigor, and relevance of qualitative research, highlighting its role in dissecting complex social phenomena and providing in-depth, human-centered insights. ... action research, and general inquiry, the guide sheds light on diverse data collection and analysis techniques. Noteworthily, the guide underscores the ...

  24. What is Data Collection? Its Benefits, Methods, and Challenges

    Data collection is the process of collecting, measuring, and analyzing data from various sources to gain insights. Data can be collected through various sources, such as social media monitoring, online tracking, surveys, feedback, etc. In fact, there are three main categories of data that businesses endeavor to collect.

  25. Improving Clerkship to Enhance Patients' Quality of care (ICEPACQ): a

    The data collection tool on Google Forms was distributed to the gadgets that were given to the assistants to enter the data. The qualitative data collection was performed via key informant interviews of the health workers involved in the clerkship of the patients, and the interviews were performed by the investigators.

  26. Data from the Capture and Collection of Non Die-off Seabirds Across

    This data package contains one table with morphometric and diet information for "non-die-off" seabirds captured and collected in southcentral and southwest Alaska. Data pertains to birds captured (live) or collected (lethally) including, bird identification numbers, sampling dates, geographic locations, body measurements, diets (from either stomach contents or regurgitated prey), and sex and age o

  27. Mental Illness

    Definitions. The data presented here are from the 2021 National Survey on Drug Use and Health (NSDUH) by the Substance Abuse and Mental Health Services Administration (SAMHSA). For inclusion in NSDUH prevalence estimates, mental illnesses include those that are diagnosable currently or within the past year; of sufficient duration to meet diagnostic criteria specified within the 4th edition of ...

  28. Plan Market Research For A Selected Product/Service Using Appropriate

    Plan market research for a selected product/service using appropriate methods of data collection. Me and my friends group also used market research in order to find out what was likely to be sold, we used primary research and we designed our own questionnaire and this helped us to find out a lot of information that we needed and that was going to help us sale our smoothies.

  29. What Is CRM Software? A Comprehensive Guide

    Customer relationship management (CRM) software is a technology that makes it easy for different departments across a business to share the latest information about their customers and prospects. The software that powers CRM helps companies build stronger relationships, simplify processes, increase productivity, and grow revenue.

  30. Precision Media and Data Collection Strategies for a Post-Cookie World

    Precision Media and Data Collection Strategies for a Post-Cookie World. July 19, 2024 Molson Coors developed a data-driven marketing playbook to sustain its digital advertising successes in a post-cookie world. ... The Ask service validated the research that my team had already done [and] saved us time." Michael Harvin, Senior Manager, Global ...