Open Education Online

10 Reasons Why Research is Important

No matter what career field you’re in or how high up you are, there’s always more to learn . The same applies to your personal life. No matter how many experiences you have or how diverse your social circle, there are things you don’t know. Research unlocks the unknowns, lets you explore the world from different perspectives, and fuels a deeper understanding. In some areas, research is an essential part of success. In others, it may not be absolutely necessary, but it has many benefits. Here are ten reasons why research is important:

#1. Research expands your knowledge base

The most obvious reason to do research is that you’ll learn more. There’s always more to learn about a topic, even if you are already well-versed in it. If you aren’t, research allows you to build on any personal experience you have with the subject. The process of research opens up new opportunities for learning and growth.

#2. Research gives you the latest information

Research encourages you to find the most recent information available . In certain fields, especially scientific ones, there’s always new information and discoveries being made. Staying updated prevents you from falling behind and giving info that’s inaccurate or doesn’t paint the whole picture. With the latest info, you’ll be better equipped to talk about a subject and build on ideas.

#3. Research helps you know what you’re up against

In business, you’ll have competition. Researching your competitors and what they’re up to helps you formulate your plans and strategies. You can figure out what sets you apart. In other types of research, like medicine, your research might identify diseases, classify symptoms, and come up with ways to tackle them. Even if your “enemy” isn’t an actual person or competitor, there’s always some kind of antagonist force or problem that research can help you deal with.

#4. Research builds your credibility

People will take what you have to say more seriously when they can tell you’re informed. Doing research gives you a solid foundation on which you can build your ideas and opinions. You can speak with confidence about what you know is accurate. When you’ve done the research, it’s much harder for someone to poke holes in what you’re saying. Your research should be focused on the best sources. If your “research” consists of opinions from non-experts, you won’t be very credible. When your research is good, though, people are more likely to pay attention.

#5. Research helps you narrow your scope

When you’re circling a topic for the first time, you might not be exactly sure where to start. Most of the time, the amount of work ahead of you is overwhelming. Whether you’re writing a paper or formulating a business plan, it’s important to narrow the scope at some point. Research helps you identify the most unique and/or important themes. You can choose the themes that fit best with the project and its goals.

#6. Research teaches you better discernment

Doing a lot of research helps you sift through low-quality and high-quality information. The more research you do on a topic, the better you’ll get at discerning what’s accurate and what’s not. You’ll also get better at discerning the gray areas where information may be technically correct but used to draw questionable conclusions.

#7. Research introduces you to new ideas

You may already have opinions and ideas about a topic when you start researching. The more you research, the more viewpoints you’ll come across. This encourages you to entertain new ideas and perhaps take a closer look at yours. You might change your mind about something or, at least, figure out how to position your ideas as the best ones.

#8. Research helps with problem-solving

Whether it’s a personal or professional problem, it helps to look outside yourself for help. Depending on what the issue is, your research can focus on what others have done before. You might just need more information, so you can make an informed plan of attack and an informed decision. When you know you’ve collected good information, you’ll feel much more confident in your solution.

#9. Research helps you reach people

Research is used to help raise awareness of issues like climate change , racial discrimination, gender inequality , and more. Without hard facts, it’s very difficult to prove that climate change is getting worse or that gender inequality isn’t progressing as quickly as it should. The public needs to know what the facts are, so they have a clear idea of what “getting worse” or “not progressing” actually means. Research also entails going beyond the raw data and sharing real-life stories that have a more personal impact on people.

#10. Research encourages curiosity

Having curiosity and a love of learning take you far in life. Research opens you up to different opinions and new ideas. It also builds discerning and analytical skills. The research process rewards curiosity. When you’re committed to learning, you’re always in a place of growth. Curiosity is also good for your health. Studies show curiosity is associated with higher levels of positivity, better satisfaction with life, and lower anxiety.

Leave a Comment Cancel reply

You must be logged in to post a comment.

Main navigation

  • Our Articles
  • Dr. Joe's Books
  • Media and Press
  • Our History
  • Public Lectures
  • Past Newsletters

Subscribe to the OSS Weekly Newsletter!

Register for the oss 25th anniversary event, doing your own research a little bit better.

why doing your own research is important

  • Add to calendar
  • Tweet Widget

The COVID-19 pandemic helped popularize a hair-raising phrase: “do your own research.” Portrayed as a call for self-empowerment, it became the tell-tale sign of someone who didn’t trust public health authorities, an invitation to go digging for “alternative facts."

But “doing your own research” doesn’t have to stink of conspiracy ideation: non-scientists have been throwing themselves into the scientific literature for a while, out of a need to understand a new diagnosis or out of sheer curiosity, and it is a process that has been greatly facilitated by the Internet.

Telling non-experts to stay away from papers can be paternalistic. After all, so much of science is funded by citizens. Everyone deserves access to its findings. But developing a nose for bad studies or scientific papers that are simply irrelevant to our lives takes time and expertise. There is a reason why researchers spend years in university honing their craft and deepening their understanding.

In the end, there is an imperfect process that non-experts can use to try to gauge the competence and relevance of a study. I will focus here on biomedical papers, as this is what I know: studies on the application of biology and biochemistry to health and medicine, focusing on understanding disease and its causes, and testing new ways to diagnose and treat it.

A caveat: some scientific papers are open access, meaning that anyone with an Internet connection can read them for free. Others are paywalled on journal websites and require a one-time payment or a subscription which university libraries tend to offer. There are ways around that , which have not made science journals happy.

Let’s dig in.

Is it even a study?

The first step in gauging the relevance of a paper is to figure out the kind of paper it is. I am still surprised when a reader sends me an opinion piece or a letter to the editor, labelling it “a study,” as if it provides solid evidence for their position. Scientific journals publish more than just studies. A doctor’s opinion, though published in The New England Journal of Medicine , can enrich a discussion, but it should not be mistaken for a clinical trial done on 5,000 people. So, tip #1: is it even a study?

Then comes the zoological question: what animal (or part thereof) was tested here? If the answer is “humans,” then the study is more likely to be relevant to us. Very often, however, experiments are conducted in animal models, like mice, hamsters, and worms, or even in cells grown in culture flasks, what are known as in vitro studies (meaning “in glass” or in laboratory glassware, although nowadays this is more likely to be plastic). There is a reason why a very loud and successful Twitter account screams “IN MICE” whenever it shares a media story about a new study that failed to label its animal origin. Transparency here is important.

I want to make it clear that a study in mice is not a “bad study;” too often, however, people search the scientific literature to find answers that are relevant to their lives. We are not large mice, nor are we simply piles of cells. In vitro studies and experiments done in laboratory animals are very useful first steps, but they are not sufficient to endorse a new treatment in humans, for example.

Next comes the question: was this an observational study or an experimental one? As the names suggest, in the former, scientists watch what naturally happens; in the latter, they intervene. An observational study, for example, would have scientists look at how old are the people who eat a lot of fruits and vegetables and those who don’t when they die. The problem here is that any difference that is reported may also be explained by other dissimilarities between the two groups. The people who eat more fruits and vegetables may be better off financially, for instance, and may have access to better healthcare or less stressful jobs. Squeezing strong conclusions out of a single observational study is rarely warranted.

Clinical trials are examples of experimental studies, but even there, not all trials are as relevant as we might think. Typically, there are three phases to clinical trials. Phase I trials are concerned with safety. They give a small number of human participants increasing doses of the drug being tested, for example, and watch for side effects. A successful phase I trial does not automatically mean a drug is efficacious. For that, we need a phase II trial, which looks at efficacy, and a phase III trial, in which the new drug is compared to standard of care or placebo. Only when an intervention successfully passes through this gauntlet can the proper committees consider its approval.

This initial classification we make of a paper—expert opinion vs. actual study; in vitro work vs. animal experimentation vs. human study; observational vs. experimental evidence—can be looked up on a pyramid of evidence to see whether it lives near the bottom or near the top. Pyramids of evidence (plural, as there are many models ) are attempts at sorting weaker forms of scientific evidence, like an individual expert’s opinion, toward the bottom of a pyramid and the best forms, like a meta-analysis, at the top. They are not perfect and have been criticized. Indeed, a strong clinical trial is actually superior to a bad meta-analysis of many, poorly done studies, even though the meta-analysis is often placed at the very apex of the pyramid. Also, sometimes a clinical trial would be unethical, so observational research is what we have to rely on. Judgement is required, but these pyramids should help a non-expert figure out what type of study tends to provide more reliable evidence.

Now that you know what kind of study it is, let’s scan the paper for red flags.

Turning the dial down

Conflicts of interest should be looked at. On the first page of a paper, you can typically see the affiliations of the authors. If they all work for a company that sells a supplement, and the paper supposedly proves the supplement is beneficial, it’s time to be a bit skeptical. There is also a section at the very end of the paper that lists the conflicts of interest the authors disclosed, such as receiving funding from or sitting on the board of a pharmaceutical company.

Nuance is important, though. I don’t think of any conflict of interest, or any single one of the other red flags described below, as a reason to toss a paper out. Conflicts of interest are bound to arise, especially as public universities encourage researchers to seek out private financing. Rather, I think of trust in a study as a dial. When I see a red flag, I turn the dial down a bit. If I see enough red flags, the dial is turned all the way down to zero. If I see signs of trust, I crank the dial higher up.

Conflicts of interest can also be harder to see. If a systematic review (meaning a review of all the studies done to answer a specific question) or a meta-analysis (meaning the combination of the results of multiple studies to arrive at our best estimate) is done by a group of people who strongly benefit from their review or analysis churning out a positive result, we should also have our fingers on the dial. A meta-analysis of studies done on a questionable intervention that flies in the face of science done by its very practitioners should arouse suspicion.

Another important question: where was this study published? Some journals are predatory: they are set up for the sole purpose of making money and publishing anything. Identifying these can be challenging , but we should keep in mind that the mere existence of a journal is no proof of its legitimacy. Was the study published in a journal that specializes in a pseudoscience, like homeopathy or energy healing? These fake sciences have a long history of conducting loose studies that favour chance results and steering clear of more robust study designs. Turn that dial down.

Was the paper peer reviewed, meaning was it published by a journal whose editor sent the manuscript to fellow scientists in the field for a critical evaluation prior to publication? Peer review is not perfect, but it’s better than nothing. The pandemic saw an explosion in pre-prints, manuscripts that have not been peer reviewed, in an effort to speed up the broadcasting of discoveries. With a pre-print, turn that dial down.

Is it a pilot study? Research costs money. Often, a researcher will trial an idea with a small pilot study and publish its results. The phrase “pilot study” should be in the title and abstract. Pilot studies tend to be done in too few people to be relevant. Turn that dial down.

Then we get into the meat of the paper: an introduction that sets up what we know and which questions are to be answered; a materials and methods section detailing what was done; the results; and a discussion, which weaves in interpretations. Is the sample size really small? It can be hard to gauge, but if the study was done on five people, you’ll want to turn that confidence dial down. If an intervention is tested (such as giving people a drug or supplement), was there a control group that did not receive it? If not, turn the dial way down. Were participants randomized to the intervention and control groups? If not, the dial goes down. Studies are often designed to answer a single question, but researchers tend to ask a constellation of secondary questions as well. Watch out for studies where that main question (often called the primary outcome or endpoint) is negative, but where one of many secondary questions turns up positive and is sold as a really important finding. That’s not what the study was originally designed to answer, and confirmation of this result will be needed.

Remember that the more tests a scientist conducts, the more likely they are to get a falsely positive result. There are ways to adjust for this (with things like Bonferroni corrections), but they are not perfect. Another thing to keep in mind: are the results clinically significant? A new supplement to help people with insomnia might deliver statistically significant results, but are they clinically relevant if they only help people fall asleep on average ten minutes faster? Turn that dial down.

Finally, the limitations of a study can usually be found toward the end of the discussion section. Researchers are encouraged to point out the weaknesses in their study: too few participants, a sample of convenience that may not reflect reality, a follow-up with the participants that should have been longer, etc. And as we finish reading that paper, it is important to remember that, despite what the authors wrote and how this paper was sold to you by whoever cited it on social media, science usually grows in tiny steps, not massive revolutions. One study is unlikely to shake an entire field’s foundation.

Know your limits

Assessing the worth and rigour of a scientific paper is hard. Even expert scientists have difficulty doing it in their own field, which is why, in part, retractions do happen: peer reviewers failed to spot important reasons why the paper should never have been published in the first place. The ability that researchers have to abuse the choices they have to make in collecting and analyzing data—what is called p -hacking —makes an assessment of their work even more challenging.

As we read the scientific literature to “do our own research,” we also need to guard against motivated reasoning. We can be very kind to a bad study whose conclusion we find comforting. We have to be open-minded but, as Professor Walter Kotschnig said , not so open-minded that “your brains fall out.”

Critically appraising a study is an activity best done in groups, such as journal clubs in universities. This is why a site like PubPeer , that publishes comments on a paper after its publication, is so useful, and I would invite you to search for a paper’s title on PubPeer to see what other scientists have said about it. Some scientists have also made it their mandate to call attention to bad studies on social media. This is not an exhaustive list, but I benefit from the expertise of data detectives such as Elisabeth Bik , Nick Brown , and Gideon Meyerowitz-Katz . It’s also worth keeping an eye on Retraction Watch , which unearths stories of scientific misconduct and incompetence.

Doing our own research requires keeping our fingers on the trust and relevance dials and tuning them up or down as needed. It also benefits from us admitting the limits of our expertise and lending an ear to what the experts have to say.

Take-home message: - Figuring out the trustworthiness and relevance of a scientific paper first requires identifying what kind of study it is (if it even is a study), which helps us know if the evidence is likely to be strong or weak - There are red flags that should reduce our trust in the evidence presented in a paper, such as the absence of a control group, a very small number of research participants, and a spotlighting of a positive secondary result when the main outcome the study was designed to look at was negative - Evaluating the worth of a paper can be helped by having many scientists look at it, which is why data detectives who spend their spare time denouncing bad papers are helpful, as well as websites like PubPeer and Retraction Watch

@CrackedScience

What to read next

Dirty dozen a good movie name, but gets thumbs down as list of pesticide residue 12 apr 2024.

why doing your own research is important

Crank Magnetism at the Weston A. Price Foundation 12 Apr 2024

why doing your own research is important

MOSH Bars Are Starved of Good Science 5 Apr 2024

why doing your own research is important

You Probably Don’t Need that Green AG1 Smoothie 22 Mar 2024

why doing your own research is important

The Chilled Truth: Debunking Myths About Icing Your Face for Better Skin 22 Mar 2024

why doing your own research is important

The History of Clinical Trials 15 Mar 2024

why doing your own research is important

Department and University Information

Office for science and society.

Office for Science and Society

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

11.1 The Purpose of Research Writing

Learning objectives.

  • Identify reasons to research writing projects.
  • Outline the steps of the research writing process.

Why was the Great Wall of China built? What have scientists learned about the possibility of life on Mars? What roles did women play in the American Revolution? How does the human brain create, store, and retrieve memories? Who invented the game of football, and how has it changed over the years?

You may know the answers to these questions off the top of your head. If you are like most people, however, you find answers to tough questions like these by searching the Internet, visiting the library, or asking others for information. To put it simply, you perform research.

Whether you are a scientist, an artist, a paralegal, or a parent, you probably perform research in your everyday life. When your boss, your instructor, or a family member asks you a question that you do not know the answer to, you locate relevant information, analyze your findings, and share your results. Locating, analyzing, and sharing information are key steps in the research process, and in this chapter, you will learn more about each step. By developing your research writing skills, you will prepare yourself to answer any question no matter how challenging.

Reasons for Research

When you perform research, you are essentially trying to solve a mystery—you want to know how something works or why something happened. In other words, you want to answer a question that you (and other people) have about the world. This is one of the most basic reasons for performing research.

But the research process does not end when you have solved your mystery. Imagine what would happen if a detective collected enough evidence to solve a criminal case, but she never shared her solution with the authorities. Presenting what you have learned from research can be just as important as performing the research. Research results can be presented in a variety of ways, but one of the most popular—and effective—presentation forms is the research paper . A research paper presents an original thesis, or purpose statement, about a topic and develops that thesis with information gathered from a variety of sources.

If you are curious about the possibility of life on Mars, for example, you might choose to research the topic. What will you do, though, when your research is complete? You will need a way to put your thoughts together in a logical, coherent manner. You may want to use the facts you have learned to create a narrative or to support an argument. And you may want to show the results of your research to your friends, your teachers, or even the editors of magazines and journals. Writing a research paper is an ideal way to organize thoughts, craft narratives or make arguments based on research, and share your newfound knowledge with the world.

Write a paragraph about a time when you used research in your everyday life. Did you look for the cheapest way to travel from Houston to Denver? Did you search for a way to remove gum from the bottom of your shoe? In your paragraph, explain what you wanted to research, how you performed the research, and what you learned as a result.

Research Writing and the Academic Paper

No matter what field of study you are interested in, you will most likely be asked to write a research paper during your academic career. For example, a student in an art history course might write a research paper about an artist’s work. Similarly, a student in a psychology course might write a research paper about current findings in childhood development.

Having to write a research paper may feel intimidating at first. After all, researching and writing a long paper requires a lot of time, effort, and organization. However, writing a research paper can also be a great opportunity to explore a topic that is particularly interesting to you. The research process allows you to gain expertise on a topic of your choice, and the writing process helps you remember what you have learned and understand it on a deeper level.

Research Writing at Work

Knowing how to write a good research paper is a valuable skill that will serve you well throughout your career. Whether you are developing a new product, studying the best way to perform a procedure, or learning about challenges and opportunities in your field of employment, you will use research techniques to guide your exploration. You may even need to create a written report of your findings. And because effective communication is essential to any company, employers seek to hire people who can write clearly and professionally.

Writing at Work

Take a few minutes to think about each of the following careers. How might each of these professionals use researching and research writing skills on the job?

  • Medical laboratory technician
  • Small business owner
  • Information technology professional
  • Freelance magazine writer

A medical laboratory technician or information technology professional might do research to learn about the latest technological developments in either of these fields. A small business owner might conduct research to learn about the latest trends in his or her industry. A freelance magazine writer may need to research a given topic to write an informed, up-to-date article.

Think about the job of your dreams. How might you use research writing skills to perform that job? Create a list of ways in which strong researching, organizing, writing, and critical thinking skills could help you succeed at your dream job. How might these skills help you obtain that job?

Steps of the Research Writing Process

How does a research paper grow from a folder of brainstormed notes to a polished final draft? No two projects are identical, but most projects follow a series of six basic steps.

These are the steps in the research writing process:

  • Choose a topic.
  • Plan and schedule time to research and write.
  • Conduct research.
  • Organize research and ideas.
  • Draft your paper.
  • Revise and edit your paper.

Each of these steps will be discussed in more detail later in this chapter. For now, though, we will take a brief look at what each step involves.

Step 1: Choosing a Topic

As you may recall from Chapter 8 “The Writing Process: How Do I Begin?” , to narrow the focus of your topic, you may try freewriting exercises, such as brainstorming. You may also need to ask a specific research question —a broad, open-ended question that will guide your research—as well as propose a possible answer, or a working thesis . You may use your research question and your working thesis to create a research proposal . In a research proposal, you present your main research question, any related subquestions you plan to explore, and your working thesis.

Step 2: Planning and Scheduling

Before you start researching your topic, take time to plan your researching and writing schedule. Research projects can take days, weeks, or even months to complete. Creating a schedule is a good way to ensure that you do not end up being overwhelmed by all the work you have to do as the deadline approaches.

During this step of the process, it is also a good idea to plan the resources and organizational tools you will use to keep yourself on track throughout the project. Flowcharts, calendars, and checklists can all help you stick to your schedule. See Chapter 11 “Writing from Research: What Will I Learn?” , Section 11.2 “Steps in Developing a Research Proposal” for an example of a research schedule.

Step 3: Conducting Research

When going about your research, you will likely use a variety of sources—anything from books and periodicals to video presentations and in-person interviews.

Your sources will include both primary sources and secondary sources . Primary sources provide firsthand information or raw data. For example, surveys, in-person interviews, and historical documents are primary sources. Secondary sources, such as biographies, literary reviews, or magazine articles, include some analysis or interpretation of the information presented. As you conduct research, you will take detailed, careful notes about your discoveries. You will also evaluate the reliability of each source you find.

Step 4: Organizing Research and the Writer’s Ideas

When your research is complete, you will organize your findings and decide which sources to cite in your paper. You will also have an opportunity to evaluate the evidence you have collected and determine whether it supports your thesis, or the focus of your paper. You may decide to adjust your thesis or conduct additional research to ensure that your thesis is well supported.

Remember, your working thesis is not set in stone. You can and should change your working thesis throughout the research writing process if the evidence you find does not support your original thesis. Never try to force evidence to fit your argument. For example, your working thesis is “Mars cannot support life-forms.” Yet, a week into researching your topic, you find an article in the New York Times detailing new findings of bacteria under the Martian surface. Instead of trying to argue that bacteria are not life forms, you might instead alter your thesis to “Mars cannot support complex life-forms.”

Step 5: Drafting Your Paper

Now you are ready to combine your research findings with your critical analysis of the results in a rough draft. You will incorporate source materials into your paper and discuss each source thoughtfully in relation to your thesis or purpose statement.

When you cite your reference sources, it is important to pay close attention to standard conventions for citing sources in order to avoid plagiarism , or the practice of using someone else’s words without acknowledging the source. Later in this chapter, you will learn how to incorporate sources in your paper and avoid some of the most common pitfalls of attributing information.

Step 6: Revising and Editing Your Paper

In the final step of the research writing process, you will revise and polish your paper. You might reorganize your paper’s structure or revise for unity and cohesion, ensuring that each element in your paper flows into the next logically and naturally. You will also make sure that your paper uses an appropriate and consistent tone.

Once you feel confident in the strength of your writing, you will edit your paper for proper spelling, grammar, punctuation, mechanics, and formatting. When you complete this final step, you will have transformed a simple idea or question into a thoroughly researched and well-written paper you can be proud of!

Review the steps of the research writing process. Then answer the questions on your own sheet of paper.

  • In which steps of the research writing process are you allowed to change your thesis?
  • In step 2, which types of information should you include in your project schedule?
  • What might happen if you eliminated step 4 from the research writing process?

Key Takeaways

  • People undertake research projects throughout their academic and professional careers in order to answer specific questions, share their findings with others, increase their understanding of challenging topics, and strengthen their researching, writing, and analytical skills.
  • The research writing process generally comprises six steps: choosing a topic, scheduling and planning time for research and writing, conducting research, organizing research and ideas, drafting a paper, and revising and editing the paper.

Writing for Success Copyright © 2015 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

TAA Abstract

The Why: Explaining the significance of your research

In the first four articles of this series, we examined The What: Defining a research project , The Where: Constructing an effective writing environment , The When: Setting realistic timeframes for your research , and The Who: Finding key sources in the existing literature . In this article, we will explore the fifth, and final, W of academic writing, The Why: Explaining the significance of your research.

Q1: When considering the significance of your research, what is the general contribution you make?

According to the Unite for Sight online module titled “ The Importance of Research ”:

“The purpose of research is to inform action. Thus, your study should seek to contextualize its findings within the larger body of research. Research must always be of high quality in order to produce knowledge that is applicable outside of the research setting. Furthermore, the results of your study may have implications for policy and future project implementation.”

In response to this TweetChat question, Twitter user @aemidr shared that the “dissemination of the research outcomes” is their contribution. Petra Boynton expressed a contribution of “easy to follow resources other people can use to help improve their health/wellbeing”.

Eric Schmieder said, “In general, I try to expand the application of technology to improve the efficiency of business processes through my research and personal use and development of technology solutions.” While Janet Salmons offered the response, “ I am a metaresearcher , that is, I research emerging qualitative methods & write about them. I hope contribution helps student & experienced researchers try new approaches.”

Despite the different contributions each of these participants noted as the significance of their individual research efforts, there is a significance to each. In addition to the importance stated through the above examples, Leann Zarah offered 7 Reasons Why Research Is Important , as follows:

  • A Tool for Building Knowledge and for Facilitating Learning
  • Means to Understand Various Issues and Increase Public Awareness
  • An Aid to Business Success
  • A Way to Prove Lies and to Support Truths
  • Means to Find, Gauge, and Seize Opportunities
  • A Seed to Love Reading, Writing, Analyzing, and Sharing Valuable Information
  • Nourishment and Exercise for the Mind

Q1a: What is the specific significance of your research to yourself or other individuals?

The first of “ 3 Important Things to Consider When Selecting Your Research Topic ”, as written by Stephen Fiedler is to “choose something that interests you”. By doing so, you are more likely to stay motivated and persevere through inevitable challenges.

As mentioned earlier, for Salmons her interests lie in emerging methods and new approaches to research. As Salmons pointed out in the TweetChat, “Conventional methods may not be adequate in a globally-connected world – using online methods expands potential participation.”

For @aemidr, “specific significance of my research is on health and safety from the environment and lifestyle”. In contrast, Schmieder said “my ongoing research allows me to be a better educator, to be more efficient in my own business practices, and to feel comfortable engaging with new technology”.

Regardless of discipline, a personal statement can help identify for yourself and others your suitability for specific research. Some things to include in the statement are:

  • Your reasons for choosing your topic of research
  • The aspects of your topic of research that interest you most
  • Any work experience, placement or voluntary work you have undertaken, particularly if it is relevant to your subject. Include the skills and abilities you have gained from these activities
  • How your choice of research fits in with your future career plans

Q2: Why is it important to communicate the value of your research?

According to Salmons, “If you research and no one knows about it or can use what you discover, it is just an intellectual exercise. If we want the public to support & fund research, we must show why it’s important!” She has written for the SAGE MethodSpace blog on the subject Write with Purpose, Publish for Impact building a collection of articles from both the MethodSpace blog and TAA’s blog, Abstract .

Peter J. Stogios shares with us benefits to both the scientist and the public in his article, “ Why Sharing Your Research with the Public is as Necessary as Doing the Research Itself ”. Unsure where to start? Stogios states, “There are many ways scientists can communicate more directly with the public. These include writing a personal blog, updating their lab’s or personal website to be less technical and more accessible to non-scientists, popular science forums and message boards, and engaging with your institution’s research communication office. Most organizations publish newsletters or create websites showcasing the work being done, and act as intermediaries between the researchers and the media. Scientists can and should interact more with these communicators.”

Schmieder stated during the TweetChat that the importance of communicating the value of your research is “primarily to help others understand why you do what you do, but also for funding purposes, application of your results by others, and increased personal value and validation”.

In her article, “ Explaining Your Research to the Public: Why It Matters, How to Do It! ”, Sharon Page-Medrich conveys the importance, stating “UC Berkeley’s 30,000+ undergraduate and 11,000+ graduate students generate or contribute to diverse research in the natural and physical sciences, social sciences and humanities, and many professional fields. Such research and its applications are fundamental to saving lives, restoring healthy environments, making art and preserving culture, and raising standards of living. Yet the average person-in-the-street may not see the connection between students’ investigations and these larger outcomes.”

Q2a: To whom is it most difficult to explain that value?

Although important, it’s not always easy to share our research efforts with others. Erin Bedford sets the scene as she tells us “ How to (Not) Talk about Your Research ”. “It’s happened to the best of us. First, the question: ‘so, what is your research on?’ Then, the blank stare as you try to explain. And finally, the uninterested but polite nod and smile.”

Schmieder acknowledges that these polite people who care enough to ask, but often are the hardest to explain things to are “family and friends who don’t share the same interests or understanding of the subject matter.” It’s not that they don’t care about the efforts, it’s that the level to which a researcher’s investment and understanding is different from those asking about their work.

When faced with less-than-supportive reactions from friends, Noelle Sterne shares some ways to retain your perspective and friendship in her TAA blog article, “ Friends – How to deal with their negative responses to your academic projects ”.

Q3: What methods have you used to explain your research to others (both inside and outside of your discipline)?

Schmieder stated, “I have done webinars, professional development seminars, blog articles, and online courses” in an effort to communicate research to others. The Edinburg Napier University LibGuides guide to Sharing Your Research includes some of these in their list of resources as well adding considerations of online presence, saving time / online efficiency, copyright, and compliance to the discussion.

Michaela Panter states in her article, “ Sharing Your Findings with a General Audience ”, that “tips and guidelines for conveying your research to a general audience are increasingly widespread, yet scientists remain wary of doing so.” She notes, however, that “effectively sharing your research with a general audience can positively affect funding for your work” and “engaging the general public can further the impact of your research”.

If these are affects you desire, consider CES’s “ Six ways to share your research findings ”, as follows:

  • Know your audience and define your goal
  • Collaborate with others
  • Make a plan
  • Embrace plain language writing
  • Layer and link, and
  • Evaluate your work

Q4: What are some places you can share your research and its significance beyond your writing?

Beyond traditional journal article publication efforts, there are many opportunities to share your research with a larger community. Schmieder listed several options during the TweetChat event, specifically, “conference presentations, social media, blogs, professional networks and organizations, podcasts, and online courses”.

Elsevier’s resource, “ Sharing and promoting your article ” provides advice on sharing your article in the following ten places:

  • At a conference
  • For classroom teaching purposes
  • For grant applications
  • With my colleagues
  • On a preprint server
  • On my personal blog or website
  • On my institutional repository
  • On a subject repository (or other non-commercial repository)
  • On Scholarly Communication Network (SCN), such as Mendeley or Scholar Universe
  • Social Media, such as Facebook, LinkedIn, Twitter

Nature Publishing Group’s “ tips for promoting your research ” include nine ways to get started:

  • Share your work with your social networks
  • Update your professional profile
  • Utilize research-sharing platforms
  • Create a Google Scholar profile – or review and enhance your existing one
  • Highlight key and topical points in a blog post
  • Make your research outputs shareable and discoverable
  • Register for a unique ORCID author identifier
  • Encourage readership within your institution

Finally, Sheffield Solutions produced a top ten list of actions you can take to help share and disseminate your work more widely online, as follows:

  • Create an ORCID ID
  • Upload to Sheffield’s MyPublications system
  • Make your work Open Access
  • Create a Google Scholar profile
  • Join an academic social network
  • Connect through Twitter
  • Blog about your research
  • Upload to Slideshare or ORDA
  • Track your research

Q5: How is the significance of your study conveyed in your writing efforts?

Schmieder stated, “Significance is conveyed through the introduction, the structure of the study, and the implications for further research sections of articles”. According to The Writing Center at University of North Carolina at Chapel Hill, “A thesis statement tells the reader how you will interpret the significance of the subject matter under discussion”.

In their online Tips & Tools resource on Thesis Statements , they share the following six questions to ask to help determine if your thesis is strong:

  • Do I answer the question?
  • Have I taken a position that others might challenge or oppose?
  • Is my thesis statement specific enough?
  • Does my thesis pass the “So what?” test?
  • Does my essay support my thesis specifically and without wandering?
  • Does my thesis pass the “how and why?” test?

Some journals, such as Elsevier’s Acta Biomaterialia, now require a statement of significance with manuscript submissions. According to the announcement linked above, “these statements will address the novelty aspect and the significance of the work with respect to the existing literature and more generally to the society.” and “by highlighting the scientific merit of your research, these statements will help make your work more visible to our readership.”

Q5a: How does the significance influence the structure of your writing?

According to Jeff Hume-Pratuch in the Academic Coaching & Writing (ACW) article, “ Using APA Style in Academic Writing: Precision and Clarity ”, “The need for precision and clarity of expression is one of the distinguishing marks of academic writing.” As a result, Hume-Pratuch advises that you “choose your words wisely so that they do not come between your idea and the audience.” To do so, he suggests avoiding ambiguous expressions, approximate language, and euphemisms and jargon in your writing.

Schmieder shared in the TweetChat that “the impact of the writing is affected by the target audience for the research and can influence word choice, organization of ideas, and elements included in the narrative”.

Discussing the organization of ideas, Patrick A. Regoniel offers “ Two Tips in Writing the Significance of the Study ” claiming that by referring to the statement of the problem and writing from general to specific contribution, you can “prevent your mind from wandering wildly or aimlessly as you explore the significance of your study”.

Q6: What are some ways you can improve your ability to explain your research to others?

For both Schmieder and Salmons, practice is key. Schmieder suggested, “Practice simplifying the concepts. Focus on why rather than what. Share research in areas where they are active and comfortable”. Salmons added, “answer ‘so what’ and ‘who cares’ questions. Practice creating a sentence. For my study of the collaborative process: ‘Learning to collaborate is important for team success in professional life’ works better than ‘a phenomenological study of instructors’ perceptions’”.

In a guest blog post for Scientific American titled “ Effective Communication, Better Science ”, Mónica I. Feliú-Mójer claimed “to be a successful scientist, you must be an effective communicator.” In support of the goal of being an effective communicator, a list of training opportunities and other resources are included in the article.

Along the same lines, The University of Melbourne shared the following list of resources, workshops, and programs in their online resource on academic writing and communication skills :

  • Speaking and Presenting : Resources for presenting your research, using PowerPoint to your advantage, presenting at conferences and helpful videos on presenting effectively
  • Research Impact Library Advisory Service  (RILAS): Helps you to determine the impact of your publications and other research outputs for academic promotions and grant applications
  • Three Minute Thesis Competition  (3MT): Research communication competition that requires you to deliver a compelling oration on your thesis topic and its significance in just three minutes or less.
  • Visualise your Thesis Competition : A dynamic and engaging audio-visual “elevator pitch” (e-Poster) to communicate your research to a broad non-specialist audience in 60 seconds.

As we complete this series exploration of the five W’s of academic writing, we hope that you are adequately prepared to apply them to your own research efforts of defining a research project, constructing an effective writing environment, setting realistic timeframes for your research, finding key sources in the existing literature, and last, but not least, explaining the significance of your research.

Share this:

why doing your own research is important

  • Share on Tumblr

why doing your own research is important

Prindle Institute Logo

  • Ethics in Culture

On “Doing Your Own Research”

why doing your own research is important

In early August, American news outlets began to circulate a surprising headline: neck gaiters — a popular form of face covering used by many to help prevent the spread of COVID-19 — could reportedly increase the infection rate. In general, face masks work by catching respiratory droplets that would otherwise contaminate a virus-carrier’s immediate environment (in much the same way that traditional manners have long-prescribed covering your mouth when you sneeze); however, according to the initial report by CBS News , a new study found that the stretchy fabric typically used to make neck gaiters might actually work like a sieve to turn large droplets into smaller, more transmissible ones. Instead of helping to keep people safe from the coronavirus, gaiters might even “ be worse than no mask at all .”

The immediate problem with this headline is that it’s not true; but, more generally, the way that this story developed evidences several larger problems for anyone hoping to learn things from the internet.

The neck gaiter story began on August 7th when the journal Science Advances published new research on a measurement test for face mask efficacy . Interested by the widespread use of homemade face-coverings, a team of researchers from Duke University set out to identify an easy, inexpensive method that people could use at home with their cell phones to roughly assess how effective different commonly-available materials might be at blocking respiratory droplets. Importantly, the study was not about the overall efficacy rates of any particular mask, nor was it focused on the length of time that respiratory droplets emitted by mask-wearers stayed in the air (which is why smaller droplets could potentially be more infectious than larger ones); the study was only designed to assess the viability of the cell phone test itself. The observation that the single brand of neck gaiter used in the experiment might be “counterproductive” was an off-hand, untested suggestion in the final paragraph of the study’s “Results” section. Nevertheless, the dramatic-sounding (though misleading) headline exploded across the pages of the internet for weeks; as recently as August 20th, The Today Show was still presenting the untested “result” of the study as if it were a scientific fact.

The ethics of science journalism (and the problems that can arise from sensationalizing and misreporting the results of scientific studies ) is a growing concern, but it is particularly salient when the reporting in question pertains to an ongoing global pandemic. While it might be unsurprising that news sites hungry for clicks ran a salacious-though-inaccurate headline, it is far from helpful and, arguably, morally wrong.

Furthermore, the kind of epistemic malpractice entailed by underdeveloped science journalism poses larger concerns for the possibility of credible online investigation more broadly. Although we have surrounded ourselves with technology that allows us to access the internet (and the vast amount of information it contains), it is becoming ever-more difficult to filter out genuinely trustworthy material from the melodramatic noise of websites designed more for attracting attention than disseminating knowledge. As Kenneth Boyd described in an article here last year , the algorithmic underpinnings of internet search engines can lead self-directed researchers into all manner of over-confident mistaken beliefs; this kind of structural issue is only exacerbated when the inputs to those algorithms (the articles and websites themselves) are also problematic.

These sorts of issues cast an important, cautionary light on a growing phenomenon: the credo that one must “ Do Your Own Research ” in order to be epistemically responsible. Whereas it might initially seem plain that the internet’s easily-accessible informational treasure trove would empower auto-didacts to always (or usually) draw reasonable conclusions about whatever they set their minds to study, the epistemic murkiness of what can actually be found online suggests that reality is more complicated. It is not at all clear that non-expert researchers who are ignorant of a topic can, on their own, justifiably identify trustworthy information (or information sources) about that topic; but, on the other hand, if a researcher does has enough knowledge to judge a claim’s accuracy, then it seems like they don’t need to be researching the topic to begin with!

This is a rough approximation of what philosophers sometimes call “ Meno’s Paradox ” after its presentation in the Platonic dialogue of that name. The Meno discusses how inquiry works and highlights that uninformed inquirers have no clear way to recognize the correct answer to a question without already knowing something about what they are questioning. While Plato goes on to spin this line of thinking into a creative argument for the innateness of all knowledge (and, by extension, the immortality of the soul!), subsequent thinkers have often taken different approaches to argue that a researcher only needs to have partial knowledge either of the claim they are researching or of the source of the claim they are choosing to trust in order to come to justified conclusions.

Unfortunately, “partial knowledge” solutions have problems of their own. On one hand, human susceptibility to a bevy of psychological biases make a researcher’s “partial” understanding of a topic a risky foundation for subsequent knowledge claims; it is exceedingly easy, for example, for the person “doing their own research” to be unwittingly led astray by their unconscious prejudices, preconceptions, or the pressures of their social environment. On the other hand, grounding one’s confidence in a testimonial claim on the trustworthiness of the claim’s source seems to (in most cases) simply push the justification problem back a step without really solving much: in much the same way that a non-expert cannot make a reasonable judgment about a proposition, that same non-expert also can’t, all by themselves, determine who can make such a judgment .

So, what can the epistemically responsible person do online?

First, we must cultivate an attitude of epistemic humility (of the sort summarized by Plato’s infamous comment “ I know that I know nothing ”) — something which often requires us to admit not only that we don’t know things, but that we often can’t know things without the help of teachers or other subject matter experts doing the important work of filtering the bad sources of information away from the good ones. All too often, “doing your own research” functionally reduces to a triggering of the confirmation bias and lasts only as long as it takes to find a few posts or videos that satisfy what a person was already thinking in the first place (regardless of whether those posts/videos are themselves worthy of being believed). If we instead work to remember our own intellectual limitations, both about specific subjects and the process of inquiry writ large, we can develop a welcoming attitude to the epistemic assistance offered by others.

Secondly, we must maintain an attitude of suspicion about bold claims to knowledge, especially in an environment like the internet. It is a small step from skepticism about our own capacities for inquiry and understanding to skepticism about that of others, particularly when we have plenty of independent evidence that many of the most accessible or popular voices online are motivated by concerns other than the truth. Virtuous researchers have to focus on identifying and cultivating relationships with knowledgeable guides (who can range from individuals to their writings to the institutions they create) on whom they can rely when it comes time to ask questions.

Together, these two points lead to a third: we must be patient researchers. Developing epistemic virtues like humility and cultivating relationships with experts that can overcome rational skepticism — in short, creating an intellectually vibrant community — takes a considerable amount of effort and time. After a while, we can come to recognize trustworthy informational authorities as “the ones who tend to be right, more often than not” even if we ourselves have little understanding of the technical fields of those experts.

It’s worth noting here, too, that experts can sometimes be wrong and nevertheless still be experts! Even specialists continue to learn and grow in their own understanding of their chosen fields; this sometimes produces confident assertions from experts that later turn out to be wrong. So, for example, when the Surgeon General urged people in February to not wear face masks in public (based on then-current assumptions about the purportedly low risk of asymptomatic patients) it made sense at the time; the fact that those assumptions later proved to be false (at which point the medical community, including the epistemically humble Surgeon General, then recommended widespread face mask usage ) is simply a demonstration of the learning/research process at work. On the flip side, choosing to still cite the outdated February recommendation simply because you disagree with face mask mandates in August exemplifies a lack of epistemic virtue.

Put differently, briefly using a search engine to find a simple answer to a complex question is not “doing your own research” because it’s not research . Research is somewhere between an academic technique and a vocational aspiration: it’s a practice that can be done with varying degrees of competence and it takes training to develop the skill to do it well. On this view, an “expert” is simply someone who has become particularly good at this art. Education, then, is not simply a matter of “memorizing facts,” but rather a training regimen in performing the project of inquiry within a field. This is not easy, requires practice, and still often goes badly when done in isolation — which is why academic researchers rely so heavily on their peers to review, critique, and verify their discoveries and ideas before assigning them institutional confidence. Unfortunately, this complicated process is far less sexy (and far slower) than a scandalous-sounding daily headline that oversimplifies data into an attractive turn of phrase.

So, poorly-communicated science journalism not only undermines our epistemic community by directly misinforming readers, but also by perpetuating the fiction that anyone is an epistemic island unto themselves. Good reporting must work to contextualize information within broader conversations (and, of course, get the information right in the first place).

Please don’t misunderstand me: this isn’t meant to be some elitist screed about how “only the learned can truly know stuff, therefore smart people with fancy degrees (or something) are best.” If degrees are useful credentials at all (a debatable topic for a different article!) they are so primarily as proof that a person has put in considerable practice to become a good (and trustworthy) researcher. Nevertheless, the Meno Paradox and the dangers of cognitive biases remain problems for all humans, and we need each other to work together to overcome our epistemic limitations. In short: we would all benefit from a flourishing epistemic community.

And if we have to sacrifice a few splashy headlines to get there, so much the better.

photograph of Herman Cain

Taking Pleasure at the Ultimate Self-Own?

photograph of surgery

The Heartless Matter of Organ Transplantation and COVID Vaccination

photograph of multiple arrows in target's bullseye

Why Vaccinating the World Is the Best Thing for Australia

photograph of lone wooden figurine holding sign

On Booster Shot Boycotts and Participatory Democracy

Email Icon

Receive a weekly digest of our best content!

2.1 Why Is Research Important?

Learning objectives.

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure 2.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student's acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children's development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

Link to Learning

Watch this video about early childhood program effectiveness to learn how scientists evaluate effectiveness and how best to invest money into programs that are most effective.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine that your sister, Maria, expresses concern about her two-year-old child, Umberto. Umberto does not speak as much or as clearly as the other children in his daycare or others in the family. Umberto's pediatrician undertakes some screening and recommends an evaluation by a speech pathologist, but does not refer Maria to any other specialists. Maria is concerned that Umberto's speech delays are signs of a developmental disorder, but Umberto's pediatrician does not; she sees indications of differences in Umberto's jaw and facial muscles. Hearing this, you do some internet searches, but you are overwhelmed by the breadth of information and the wide array of sources. You see blog posts, top-ten lists, advertisements from healthcare providers, and recommendations from several advocacy organizations. Why are there so many sites? Which are based in research, and which are not?

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

NOTABLE RESEARCHERS

Psychological research has a long history involving important figures from diverse backgrounds. While the introductory chapter discussed several researchers who made significant contributions to the discipline, there are many more individuals who deserve attention in considering how psychology has advanced as a science through their work ( Figure 2.3 ). For instance, Margaret Floy Washburn (1871–1939) was the first woman to earn a PhD in psychology. Her research focused on animal behavior and cognition (Margaret Floy Washburn, PhD, n.d.). Mary Whiton Calkins (1863–1930) was a preeminent first-generation American psychologist who opposed the behaviorist movement, conducted significant research into memory, and established one of the earliest experimental psychology labs in the United States (Mary Whiton Calkins, n.d.).

Francis Sumner (1895–1954) was the first African American to receive a PhD in psychology in 1920. His dissertation focused on issues related to psychoanalysis. Sumner also had research interests in racial bias and educational justice. Sumner was one of the founders of Howard University’s department of psychology, and because of his accomplishments, he is sometimes referred to as the “Father of Black Psychology.” Thirteen years later, Inez Beverly Prosser (1895–1934) became the first African American woman to receive a PhD in psychology. Prosser’s research highlighted issues related to education in segregated versus integrated schools, and ultimately, her work was very influential in the hallmark Brown v. Board of Education Supreme Court ruling that segregation of public schools was unconstitutional (Ethnicity and Health in America Series: Featured Psychologists, n.d.).

Although the establishment of psychology’s scientific roots occurred first in Europe and the United States, it did not take much time until researchers from around the world began to establish their own laboratories and research programs. For example, some of the first experimental psychology laboratories in South America were founded by Horatio Piñero (1869–1919) at two institutions in Buenos Aires, Argentina (Godoy & Brussino, 2010). In India, Gunamudian David Boaz (1908–1965) and Narendra Nath Sen Gupta (1889–1944) established the first independent departments of psychology at the University of Madras and the University of Calcutta, respectively. These developments provided an opportunity for Indian researchers to make important contributions to the field (Gunamudian David Boaz, n.d.; Narendra Nath Sen Gupta, n.d.).

When the American Psychological Association (APA) was first founded in 1892, all of the members were White males (Women and Minorities in Psychology, n.d.). However, by 1905, Mary Whiton Calkins was elected as the first female president of the APA, and by 1946, nearly one-quarter of American psychologists were female. Psychology became a popular degree option for students enrolled in the nation’s historically Black higher education institutions, increasing the number of Black Americans who went on to become psychologists. Given demographic shifts occurring in the United States and increased access to higher educational opportunities among historically underrepresented populations, there is reason to hope that the diversity of the field will increasingly match the larger population, and that the research contributions made by the psychologists of the future will better serve people of all backgrounds (Women and Minorities in Psychology, n.d.).

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested in the real world; in inductive reasoning , real-world observations lead to new ideas ( Figure 2.4 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure 2.5 .

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( Figure 2.6 ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/2-1-why-is-research-important

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

  • U.S. Department of Health & Human Services

National Institutes of Health (NIH) - Turning Discovery into Health

  • Virtual Tour
  • Staff Directory
  • En Español

You are here

Science, health, and public trust.

September 8, 2021

Explaining How Research Works

Understanding Research infographic

We’ve heard “follow the science” a lot during the pandemic. But it seems science has taken us on a long and winding road filled with twists and turns, even changing directions at times. That’s led some people to feel they can’t trust science. But when what we know changes, it often means science is working.

Expaling How Research Works Infographic en español

Explaining the scientific process may be one way that science communicators can help maintain public trust in science. Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle.

Questions about how the world works are often investigated on many different levels. For example, scientists can look at the different atoms in a molecule, cells in a tissue, or how different tissues or systems affect each other. Researchers often must choose one or a finite number of ways to investigate a question. It can take many different studies using different approaches to start piecing the whole picture together.

Sometimes it might seem like research results contradict each other. But often, studies are just looking at different aspects of the same problem. Researchers can also investigate a question using different techniques or timeframes. That may lead them to arrive at different conclusions from the same data.

Using the data available at the time of their study, scientists develop different explanations, or models. New information may mean that a novel model needs to be developed to account for it. The models that prevail are those that can withstand the test of time and incorporate new information. Science is a constantly evolving and self-correcting process.

Scientists gain more confidence about a model through the scientific process. They replicate each other’s work. They present at conferences. And papers undergo peer review, in which experts in the field review the work before it can be published in scientific journals. This helps ensure that the study is up to current scientific standards and maintains a level of integrity. Peer reviewers may find problems with the experiments or think different experiments are needed to justify the conclusions. They might even offer new ways to interpret the data.

It’s important for science communicators to consider which stage a study is at in the scientific process when deciding whether to cover it. Some studies are posted on preprint servers for other scientists to start weighing in on and haven’t yet been fully vetted. Results that haven't yet been subjected to scientific scrutiny should be reported on with care and context to avoid confusion or frustration from readers.

We’ve developed a one-page guide, "How Research Works: Understanding the Process of Science" to help communicators put the process of science into perspective. We hope it can serve as a useful resource to help explain why science changes—and why it’s important to expect that change. Please take a look and share your thoughts with us by sending an email to  [email protected].

Below are some additional resources:

  • Discoveries in Basic Science: A Perfectly Imperfect Process
  • When Clinical Research Is in the News
  • What is Basic Science and Why is it Important?
  • ​ What is a Research Organism?
  • What Are Clinical Trials and Studies?
  • Basic Research – Digital Media Kit
  • Decoding Science: How Does Science Know What It Knows? (NAS)
  • Can Science Help People Make Decisions ? (NAS)

Connect with Us

  • More Social Media from NIH

8 Why Is Research Important?

[latexpage]

Learning Objectives

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( [link] ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

USE OF RESEARCH INFORMATION

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the hypothesized link between exposure to media violence and subsequent aggression has been debated in the scientific community for roughly 60 years. Even today, we will find detractors, but a consensus is building. Several professional organizations view media violence exposure as a risk factor for actual violence, including the American Medical Association, the American Psychiatric Association, and the American Psychological Association (American Academy of Pediatrics, American Academy of Child & Adolescent Psychiatry, American Psychological Association, American Medical Association, American Academy of Family Physicians, American Psychiatric Association, 2000).

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding the D.A.R.E. (Drug Abuse Resistance Education) program in public schools ( [link] ). This program typically involves police officers coming into the classroom to educate students about the dangers of becoming involved with alcohol and other drugs. According to the D.A.R.E. website (www.dare.org), this program has been very popular since its inception in 1983, and it is currently operating in 75% of school districts in the United States and in more than 40 countries worldwide. Sounds like an easy decision, right? However, on closer review, you discover that the vast majority of research into this program consistently suggests that participation has little, if any, effect on whether or not someone uses alcohol or other drugs (Clayton, Cattarello, & Johnstone, 1996; Ennett, Tobler, Ringwalt, & Flewelling, 1994; Lynam et al., 1999; Ringwalt, Ennett, & Holt, 1991). If you are committed to being a good steward of taxpayer money, will you fund this particular program, or will you try to find other programs that research has consistently demonstrated to be effective?

A D.A.R.E. poster reads “D.A.R.E. to resist drugs and violence.”

Watch this news report to learn more about some of the controversial issues surrounding the D.A.R.E. program.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

THE PROCESS OF SCIENTIFIC RESEARCH

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested against the empirical world; in inductive reasoning , empirical observations lead to new ideas ( [link] ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

Play this “Deal Me In” interactive card game to practice using inductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests [link] .

A diagram has four boxes: the top is labeled “theory,” the right is labeled “hypothesis,” the bottom is labeled “research,” and the left is labeled “observation.” Arrows flow in the direction from top to right to bottom to left and back to the top, clockwise. The top right arrow is labeled “use the hypothesis to form a theory,” the bottom right arrow is labeled “design a study to test the hypothesis,” the bottom left arrow is labeled “perform the research,” and the top left arrow is labeled “create or modify the theory.”

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( [link] ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

Visit this website to apply the scientific method and practice its steps by using them to solve a murder mystery, determine why a student is in trouble, and design an experiment to test house paint.

Scientists are engaged in explaining and understanding how the world around them works, and they are able to do so by coming up with theories that generate hypotheses that are testable and falsifiable. Theories that stand up to their tests are retained and refined, while those that do not are discarded or modified. In this way, research enables scientists to separate fact from simple opinion. Having good information generated from research aids in making wise decisions both in public policy and in our personal lives.

Review Questions

Scientific hypotheses are ________ and falsifiable.

________ are defined as observable realities.

Scientific knowledge is ________.

A major criticism of Freud’s early theories involves the fact that his theories ________.

  • were too limited in scope
  • were too outrageous
  • were too broad
  • were not testable

Critical Thinking Questions

In this section, the D.A.R.E. program was described as an incredibly popular program in schools across the United States despite the fact that research consistently suggests that this program is largely ineffective. How might one explain this discrepancy?

There is probably tremendous political pressure to appear to be hard on drugs. Therefore, even though D.A.R.E. might be ineffective, it is a well-known program with which voters are familiar.

The scientific method is often described as self-correcting and cyclical. Briefly describe your understanding of the scientific method with regard to these concepts.

This cyclical, self-correcting process is primarily a function of the empirical nature of science. Theories are generated as explanations of real-world phenomena. From theories, specific hypotheses are developed and tested. As a function of this testing, theories will be revisited and modified or refined to generate new hypotheses that are again tested. This cyclical process ultimately allows for more and more precise (and presumably accurate) information to be collected.

Personal Application Questions

Healthcare professionals cite an enormous number of health problems related to obesity, and many people have an understandable desire to attain a healthy weight. There are many diet programs, services, and products on the market to aid those who wish to lose weight. If a close friend was considering purchasing or participating in one of these products, programs, or services, how would you make sure your friend was fully aware of the potential consequences of this decision? What sort of information would you want to review before making such an investment or lifestyle change yourself?

Creative Commons License

Share This Book

  • Increase Font Size

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

2.1: Why Is Research Important?

  • Last updated
  • Save as PDF
  • Page ID 76868

  • Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett, et al.

Learning Objectives

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure 2.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical: It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student's acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children's development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

Link to Learning

Watch this video about early childhood program effectiveness to learn how scientists evaluate effectiveness and how best to invest money into programs that are most effective.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

NOTABLE RESEARCHERS

Psychological research has a long history involving important figures from diverse backgrounds. While the introductory chapter discussed several researchers who made significant contributions to the discipline, there are many more individuals who deserve attention in considering how psychology has advanced as a science through their work ( Figure 2.3 ). For instance, Margaret Floy Washburn (1871–1939) was the first woman to earn a PhD in psychology. Her research focused on animal behavior and cognition (Margaret Floy Washburn, PhD, n.d.). Mary Whiton Calkins (1863–1930) was a preeminent first-generation American psychologist who opposed the behaviorist movement, conducted significant research into memory, and established one of the earliest experimental psychology labs in the United States (Mary Whiton Calkins, n.d.).

Francis Sumner (1895–1954) was the first African American to receive a PhD in psychology in 1920. His dissertation focused on issues related to psychoanalysis. Sumner also had research interests in racial bias and educational justice. Sumner was one of the founders of Howard University’s department of psychology, and because of his accomplishments, he is sometimes referred to as the “Father of Black Psychology.” Thirteen years later, Inez Beverly Prosser (1895–1934) became the first African American woman to receive a PhD in psychology. Prosser’s research highlighted issues related to education in segregated versus integrated schools, and ultimately, her work was very influential in the hallmark Brown v. Board of Education Supreme Court ruling that segregation of public schools was unconstitutional (Ethnicity and Health in America Series: Featured Psychologists, n.d.).

fig-ch01_patchfile_01.jpg

Although the establishment of psychology’s scientific roots occurred first in Europe and the United States, it did not take much time until researchers from around the world began to establish their own laboratories and research programs. For example, some of the first experimental psychology laboratories in South America were founded by Horatio Piñero (1869–1919) at two institutions in Buenos Aires, Argentina (Godoy & Brussino, 2010). In India, Gunamudian David Boaz (1908–1965) and Narendra Nath Sen Gupta (1889–1944) established the first independent departments of psychology at the University of Madras and the University of Calcutta, respectively. These developments provided an opportunity for Indian researchers to make important contributions to the field (Gunamudian David Boaz, n.d.; Narendra Nath Sen Gupta, n.d.).

When the American Psychological Association (APA) was first founded in 1892, all of the members were white males (Women and Minorities in Psychology, n.d.). However, by 1905, Mary Whiton Calkins was elected as the first female president of the APA, and by 1946, nearly one-quarter of American psychologists were female. Psychology became a popular degree option for students enrolled in the nation’s historically black higher education institutions, increasing the number of black Americans who went on to become psychologists. Given demographic shifts occurring in the United States and increased access to higher educational opportunities among historically underrepresented populations, there is reason to hope that the diversity of the field will increasingly match the larger population, and that the research contributions made by the psychologists of the future will better serve people of all backgrounds (Women and Minorities in Psychology, n.d.).

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the scientific method. Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested in the real world; in inductive reasoning , real-world observations lead to new ideas ( Figure 2.4 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure 2.5 .

A diagram has seven labeled boxes with arrows to show the progression in the flow chart. The chart starts at “Theory” and moves to “Generate hypothesis,” “Collect data,” “Analyze data,” and “Summarize data and report findings.” There are two arrows coming from “Summarize data and report findings” to show two options. The first arrow points to “Confirm theory.” The second arrow points to “Modify theory,” which has an arrow that points back to “Generate hypothesis.”

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( Figure 2.6 ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

Book cover

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

15k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

why doing your own research is important

What is the importance of research in everyday life?

British university

Chemotherapy. Browsing the internet. Predicting hurricanes and storms. What do these things have in common? For one, they all exhibit the importance of research in everyday life; we would not be able to do these today without preceding decades of trial and error. Here are three top reasons we recognise the importance of research in everyday life, and why it is such an integral part of higher education today.

Research increases the quality of life

According to Universities Canada , “Basic research has led to some of the most commercially successful and life-saving discoveries of the past century, including the laser, vaccines and drugs, and the development of radio and television.” Canadian universities, for example, are currently studying how technology can help breed healthier livestock, how dance can provide long-term benefits to people living with Parkinson’s, and how to tackle affordable student housing in Toronto.

We know now that modern problems require modern solutions. Research is a catalyst for solving the world’s most pressing issues, the complexity of which evolves over time. The entire wealth of research findings throughout history has led us to this very point in civilisation, which brings us to the next reason why research matters.

importance of research

What does a university’s research prowess mean for you as a student? Source: Shutterstock

Research empowers us with knowledge

Though scientists carry out research, the rest of the world benefits from their findings. We get to know the way of nature, and how our actions affect it. We gain a deeper understanding of people, and why they do the things they do. Best of all, we get to enrich our lives with the latest knowledge of health, nutrition, technology, and business, among others.

On top of that, reading and keeping up with scientific findings sharpen our own analytical skills and judgment. It compels us to apply critical thinking and exercise objective judgment based on evidence, instead of opinions or rumours. All throughout this process, we are picking up new bits of information and establishing new neural connections, which keeps us alert and up-to-date.

Research drives progress forward

Thanks to scientific research, modern medicine can cure diseases like tuberculosis and malaria. We’ve been able to simplify vaccines, diagnosis, and treatment across the board. Even COVID-19 — a novel disease — could be studied based on what is known about the SARS coronavirus. Now, the vaccine Pfizer and BioNTech have been working on has proven 90% effective at preventing COVID-19 infection.

Mankind has charted such progress thanks to the scientific method. Beyond improving healthcare, it is also responsible for the evolution of technology, which in turn guides the development of almost every other industry in the automation age. The world is the way it is today because academics throughout history have relentlessly sought answers in their laboratories and faculties; our future depends on what we do with all this newfound information.

Popular stories

How to pursue a prestigious mba without help from your family.

How to pursue a prestigious MBA without help from your family

The 10 best student cities in 2024 are some of the most expensive to live in

The 10 best student cities in 2024 are some of the most expensive to live in

Slay like Bey: The best entrepreneurship skills to learn from Beyoncé

Slay like Bey: The best entrepreneurship skills to learn from Beyoncé

8 best leadership skills everyone can learn from Barack Obama

8 best leadership skills everyone can learn from Barack Obama

International PhD students now eligible for UK Research and Innovation scholarships

International scholars make lasting contributions to the US: report

International scholars make lasting contributions to the US: report

ARTiFACTS / Blog / Why Is Academic Research Important? Your Complete Guide

  • Science Students
  • Scientific Research

Why Is Academic Research Important? Your Complete Guide

post image

Table of contents:

The accessibility of the internet has made most information available to anyone at any time. It’s great to have limitless knowledge at the tip of your fingers, but there are some pitfalls. 

For one, it can be difficult and time-consuming to find the most accurate information amid the extra noise. The advancement of scientific inquiry isn’t likely to advance with a random but convincing blog post light on facts, for example. 

It’s crucial to have a culture of people who are working hard to discover new information and document it in a reliable way. This is why academic research is important . 

We’re going to explore the value of academic research in this article. Hopefully, we can give you some idea of the importance it has had in the past and continues to have today.

why academic research is important

Why Academic Research is Important

There are many fields that require you to engage with academic research. Most people use research most heavily when they’re in college. Research  citation tools  are an essential piece of the academic writing process.

Writing academic papers requires that a person cites academic research to make arguments. Trained professionals are also required to engage with academic research in a lot of instances. 

Individuals can rely on academic research because it’s absent of personal opinion. That objectivity is where we’ll start our exploration of research’s importance.

The Scientific Method and Objectivity

Any light research into the state of the media today will show you that, whether justified or not, there is a great deal of mistrust. 

People aren’t sure that their news sources are giving reliable information or if the messages are skewed in favor of one opinion or another. Many reliable sources do objective work every day, but the fact remains that the potential for an unreliable narrator exists.

It’s only natural, considering there’s one person writing the material and the result is bound to their personal opinions. We need the media to provide us with information, though, and it’s often their style and personal take on a story that makes their work so engaging. 

On the other side of things, there are areas of inquiry that require objectivity and as little personal influence as possible.

The Scientific Method

The scientific method is a longstanding formula that, hopefully, prevents false conclusions. Additionally, it defends against personal opinion and preference. 

Ideally, people will trust the scientific method against all diverging opinions. Scientists accept conclusions that come from academic research until new information comes forward.

The method prompts individuals to do a few things. First, a person asks a question. Then a person or team does research on that question. They follow by making a hypothesis.

That hypothesis gets tested with experiments. After the data comes in, researches can either accept or deny their hypothesis. When followed, this method is an excellent defense against mistakes and unchecked ideas. 

Academic research follows this rigorous method. It’s incredibly important to distinguish academic research from speculation or personal opinion. We’ve entered a period where personal opinion is ubiquitous on the internet, and there’s a lack of awareness as to what is fact and what is speculation.

Peer-Reviewed, Ensures Accuracy

Another defense against misinformation is the fact that most academic research is  peer-reviewed.

This simply means that all research, methods, and conclusions are examined by other professionals in a field. These professionals should revere the scientific method and its principles above other loyalties. 

Our description of the scientific is admittedly brief. There is a lot of work and discipline that goes into a proper study. All of those steps are double-checked by trained professionals who, hopefully, have objectivity in mind. 

We should appreciate the work that researchers do and  celebrate opportunities for them  to get exposure.

This strict adherence to truth is the foundation of what makes academic research important. It is the baseline of all advances made in our understanding of the world and each other. 

Whether you’re inquiring into the nature of the atom or discovering how the human mind understands sound, objectivity is key.

Technology is Conceived Through Research

Research into the world of physics, biology, economics, and culture all translate into insights that change the way we live. 

Most notably, those insights lead to an understanding that contributes to the development of new technology. We could labor over numerous research insights that have benefited all of society, but we’ll discuss a couple of the most fundamental for the sake of brevity. 

Without the principles of Newtonian physics, our world would still be very simple. All of the technology used today would be impossible without those principles. 

The law of gravity and the theories of special and general relativity have made almost all of our technology possible. 

Those theories were given scrupulous criticism because they defied what humans thought about the world. Although those ideas were radical when they were conceived, they held up under the scientific method. 

Similarly, groundbreaking research is conducted every day. The ideas explored may even be controversial or troubling to some people. The fact is, though, that we benefit greatly when people dig deeper into reality through academic research.

A Catalyst for Changes in Society

The impact of academic research is spread through all tiers of human civilization. 

As we inch forward, changes are made that benefit all people. Research into microbiology finds a way to  decompose plastic . Inquiry into the cosmos demystifies longstanding cultural myths that people have accepted for centuries. 

The changes caused by academic research are both practical and cultural. Advances in medical technology, for example, can extend the average human lifespan by a large margin. Research into ocean water might prompt a solution to human dehydration in the near future. 

From the soles of your shoes, all the way to the work your dentist does to prevent gingivitis, academic research has been silently improving the quality of your life since before you were born. 

On the other end of things, cultural shifts are caused by new understanding. People will generally change their opinions when faced with reliable, fact-based evidence. For example, research on  human diversity and biology  has given us information that discredits racism. 

As we dig deeper, we find that our similarities far outstretch our differences and that claims to demean or dehumanize people from different races are entirely false. 

Modern Examples of the Importance of Research

It can seem like the world of research is reserved for professionals and academics until the benefits reach society. 

Academic research expands through most areas of modern life, though. The value of research is evident in a lot of the most pressing issues of our times, and a few examples might be useful.

1. The Climate

Whatever your personal opinions on the state of the world’s climate, it can’t be denied that academic research is the avenue that will bring us the most understanding. 

Every layer of the climate change issue is informed by academic research. We know that the earth goes through periods of long climatological change. There’s evidence of glacial advance and retreat as well as other signs that the earth enters into natural periods of change. 

These changes, the science tells us, are prompted by slight changes in the earth’s orbit. Currently, shifts in fundamental pieces of ecosystems, climates, and more are all telling us that another shift is taking place. 

Each component of the vast effects of climate change is informed by academic research. From geological evidence to animal behavior to our understanding of climate itself, research underpins the understanding. 

The body of data and academic research that compose our understanding of the climate crisis is interpreted by those in power. Nasa, one of the more respected scientific institutions, claims that there is a greater than  95 percent chance  that human behavior is causing global warming. 

Researching Solutions

In the case that action is taken to counteract the causes of climate change, academic research will guide our response. 

Research is needed to understand the global systems that contribute most to carbon emissions. Academics will work to uncover the alternatives to current materials and processes that are affecting the environment. 

If those efforts are going to have any notable effect, the actions we take will have to be informed by the scientific method and identified through academic research. 

2. The World of Business

The business world is heavily  informed by academic research . Businesses use research to understand markets and make profitable decisions. 

This benefits consumers as well. For example, a business wouldn’t be very effective if it had no idea what consumers wanted. Alternatively, consumers would be disappointed if businesses didn’t know their needs. 

Research is conducted to find the desires of consumers. Research also ensures that the products and services provided to consumers are safe and reliable. There are a lot of things we use every day that have the potential to be very dangerous. 

Take any one of your household appliances, for example. Without sound understandings of the technology and machinery used in those devices, the manufacturers would be unable to promise that your microwave wouldn’t explode.

You wouldn’t know if your heat would stay on through blistering cold winters. You couldn’t know that the packaging that holds your ground beef would protect against disease. 

All of those safety measures and technological advancements are underpinned by research. 

3. Political Opinion

Most politicians make dozens of claims every single day. As people of power, those claims have a huge influence on thousands of people. 

Now that social media is synonymous with politics, claims can reach hundreds of millions of people in a matter of seconds. It’s important that there is a force in place to fact-check the claims made by people of power. 

Research is used to determine whether or not politicians are being honest or trying to manipulate the masses. Further, research is needed to create the data that politicians use to inform their audiences. 

Things like polling numbers, environmental data, global economic figures, and more are all the results of research. 

So, the next time you click on a political article in your feed, try and make note of all of the potential research that went into the claims. Additionally, try to see if any  claims aren’t reliable . As we mentioned earlier, it’s pretty easy for a journalist or blogger to make false claims these days. 

How to Use Academic Research in Your Life

In light of all of the information above, you might be wondering how to approach the world of research. It would be impossible to fact-check or understand all of the research that holds up the world around us. 

That said, it’s possible to engage with academic research in ways that are meaningful to you. You can start by identifying some of your most prominent opinions and beliefs. Write these ideas out on a piece of paper in as much detail as you can. 

Once you’ve got a visual of these opinions, find a credible source of academic research. Browse through different papers and see how your opinions hold up under the scientific method. There’s so much research out there that you’re bound to find material that relates to you. 

It’s enlightening to learn that we’re wrong about something. It’s encouraging to find out that our opinions are in line with academic understanding. 

Additionally, take your media sources to task on their claims. The next time you read a really bold claim online, try your best to get to the bottom of it. Check the sources of the article and do your own research if sources aren’t provided. 

As we become more informed, our world will be a better-ordered and more reliable place. All of the information is available to you, all you have to do is sit down and do some research of your own!

Want to Learn More?

Clearly, it’s important to understand why academic research is important. Research helps us in all areas of our lives, and there’s limitless knowledge out there for you to discover. 

Contact us  to learn more about academic research, how to access it, and the things it can do.

  • All Categories:
  • Citation Recognition
  • Product News
  • Research Process
  • Uncategorized

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Behav Anal Pract
  • v.8(2); 2015 Oct

The Importance of Research—A Student Perspective

Rachel arena.

grid.252546.20000000122978753Department of Psychology, Auburn University, Magnolia Street and Duncan Drive and West Thatch Ave, Auburn, AL 36849 USA

Sheridan Chambers

Angelyn rhames, katherine donahoe.

As students, we will focus on the importance of an objective ranking system, research, and mentorship to an applicant. We will address points raised in the (Behavior Analysis In Practice 8(1):7–15, 2015) article as well as debate the usefulness of proposed standards of objective ranking.

A Student’s Perspective on Research

A little more than a year ago each of us was madly scrambling to negotiate the process of graduate program admissions. Like many people who go to graduate school, each of us had some history of viewing academic efforts through the lens of “too much is never enough,” and we applied our obsessive habits to the challenge of gathering information about graduate programs. We pored over Web sites and printed brochures. We stalked program faculty at conferences, via email and phone, and during campus visits. We talked to trusted mentors about the programs they respected. When in professional settings, we tried to find out where people who impressed us had attended graduate school, and we sometimes eavesdropped on strangers’ conversations for potentially valuable tidbits about the graduate programs they were considering.

Based on this chaotic and exhausting experience, we agree with Dixon et al. ( 2015 ) that consumers in our field need standardized information about the relative merits of graduate programs in applied behavior analysis (ABA). When we began the process of screening graduate programs, we knew that we were uninformed but we were less sure about what we needed to learn to become better consumers. We suspect that, like us, most college seniors find it difficult to know what aspects of a graduate program are crucial to the training of highly qualified ABA practitioners. To us, the most important contribution of Dixon et al. ( 2015 ) was to emphasize that our field should not abandon students to an uncertain process of self-education.

We agree with Dixon et al. ( 2015 ) that our field is better equipped than outside bodies (e.g., U.S. News & World Report ) to determine what constitutes top-quality graduate training. We were aware that the Behavior Analysis Certification Board publishes the rates at which graduates of various programs pass its certification exam, and we considered this information during our respective searches. Even as undergraduates, however, we knew that there is more to being a capable practitioner than simply passing the certification exam, and we would have appreciated much more guidance from our field than we received.

In the absence of standardized, objective information about graduate programs, prospective graduate students have to rely heavily on hearsay. As we gathered information on program reputations from mentors and colleagues, it occurred to us that this information sometimes says as much about the person providing it as about graduate programs themselves. We learned that some people are impressed by graduate programs that have a reputation for highly selective admissions, but we were not sure how or whether this predicted the quality of training that we could hope to receive. We learned that certain mentors thought highly of certain programs, but different people thought highly of different programs, and it was not always obvious how these opinions related to specific features of the training offered by the programs. We weren’t always sure whether the opinions were generic or had been offered with our individual needs and interests in mind.

Among the features of graduate programs that interested us was the type and degree of emphasis on research. Here, a few words of explanation will provide context for our perspective. As undergraduates, we learned to value evidence-based practices, data-based case management, and the science-based critical thinking that should guide clinical case management. But each of us decided to seek graduate training not just to apply current best practices; we also wanted to contribute to clinical innovation (e.g., Critchfield 2015 ). For various reasons, none of us wished to conduct research for a living, and we chose our program at Auburn University in part because its accelerated, 12-month, non-thesis curriculum would get us swiftly into the workplace where we knew, from past field experiences, our main reinforcers are to be found. Still, program research emphasis was important to us.

Unfortunately, far too much time and effort was required for us to understand that different programs have different types of research emphases. “Research training” comprises not a single repertoire but many. One involves conducting research. Another involves locating and consuming available research on a topic of interest. Yet, another involves translating from research findings in order to develop innovative interventions (Critchfield 2015 ; Critchfield & Reed, 2005 ). It is here that we would quibble with the position of Dixon et al. ( 2015 ), which suggests a one-size-fits-all approach to assessing the research climate at ABA graduate programs.

In order to gain insight about the research environment in graduate programs, undergraduates often compare their own research interests to those of faculty as described on program web sites and as illustrated in published articles. This comparison is most relevant to students who seek to become independent researchers. Our own goal is to become life-long consumers of research. It may not be the full-time job of Masters-level practitioners to conduct research, but in a field that is growing quickly it is pivotal that people like us not be limited to the state of our field’s knowledge at the time we take a certification exam. We need skills for tracking scholarly developments across the full breath of our careers.

We agree with Dixon et al. ( 2015 ) that it is helpful for ABA program faculty to maintain active research programs, but our concern is with what program graduates are able to do with the fruits of research, not how many articles a faculty member can publish. It has been suggested that the process of developing effective and transportable interventions from research findings requires a skill set that is independent of either conducting research or implementing existing interventions (e.g., Critchfield 2015 ; Critchfield and Reed, 2005 ). No skill set seems more relevant to our lifelong professional development.

Yes, we want to learn how to read and critically evaluate research, but we want to learn to do this from faculty who know how to translate and who care about helping us to become translators. Our ideal ABA program faculty member will have the time and inclination to focus on this. We want mentors who can conduct research, but more importantly who will discuss research with us on a regular basis and explore with us how research findings relate to the behavioral processes operating in practice settings. We want mentors whose skills and schedules allow them to provide on-site clinical supervision through which the connections between research and practice can be drawn explicitly.

While we applaud the efforts of Dixon et al. ( 2015 ) to rank ABA graduate programs in terms of program research climate, we stress that this climate has multiple facets. We represent a category of consumer who cares very much about our field’s research foundations, but we wish to harness rather than add to those foundations. Faculty publication counts may not be the best measure of a program’s ability to help us to this. Unfortunately, the program attributes that we particularly value are hard to quantify and thus will be difficult to incorporate into an objective system for ranking programs. Yet, if the purpose of rankings is to assist consumers (Dixon et al., 2015 ), then the needs of consumers like us should not be ignored.

Contributor Information

Rachel Arena, Email: ude.nrubua@0200azr .

Sheridan Chambers, Email: ude.nrubua@5400cms .

Angelyn Rhames, Email: ude.nrubua@7400rza .

Katherine Donahoe, Email: ude.nrubua@4200drk .

  • Critchfield TS. What counts as high-quality practitioner training in applied behavior analysis? Behavior Analysis In Practice. 2015; 8 (1):3–6. doi: 10.1007/s40617-015-0049-0. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Critchfield TS, Reed DD. Conduits of translation in behavior-science bridge research. In: Burgos JE, Ribes E, editors. Theory, basic and applied research, and technological applications in behavior science: Conceptual and methodological issues. Guadalajara, Mexico: University of Guadalajara Press; 2005. pp. 45–84. [ Google Scholar ]
  • Dixon MR, Reed DD, Smith T, Belisle J, Jackson RE. Research rankings of behavior analytic graduate training programs and their faculty. Behavior Analysis In Practice. 2015; 8 (1):7–15. doi: 10.1007/s40617-015-0057-0. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Logo for The Wharton School

  • Youth Program
  • Wharton Online

Why should you do research as an undergraduate?

Alumni, faculty, and employers answer the question., erika james, dean, the wharton school; reliance professor of management and private enterprise.

why doing your own research is important

When I was a student, I took a short detour to a corporate setting, which was an experience that only reinforced my belief that my true calling was in academia. The lasting professional and personal relationships I have developed through my research have proven to be invaluable, and transformed my life in many ways. Though not every student will pursue a career in academia, all students can benefit greatly from the skills gained through research. The experience will prepare you to think critically, anticipate opportunities and be an effective leader in any industry or endeavor.

Diana Roberson, Vice Dean, Wharton Undergraduate Division; Samuel A. Blank Professor of Legal Studies & Business Ethics 

why doing your own research is important

Raveen Kariyawasam, W’22, SEAS’22

why doing your own research is important

Adam Grant, Saul P. Steinberg Professor of Management, Professor of Psychology

why doing your own research is important

I can’t imagine a better way to learn than doing undergraduate research. When I was in college, getting involved in research changed the course of my life. It gave me the chance to explore fascinating questions, soak up wisdom from brilliant mentors, and stretch my creative and critical thinking muscles. I discovered that I loved creating knowledge, not just consuming it.

Dara Cook, W’95

why doing your own research is important

Wendy De La Rosa, Assistant Professor of Marketing

why doing your own research is important

So many consumers, cultures, and organizations have been ignored and under-researched. As a result, so much is still unknown. For me, there is nothing more honorable than being the person who pushes our collective human knowledge forward (even if it is just by a centimeter). You can be that person, and you can start right now, right here at Penn.

Michael Roberts, William H. Lawrence Professor of Finance

why doing your own research is important

Nancy Zhang, Professor of Statistics and Data Science, Vice Dean of Wharton Doctoral Programs

why doing your own research is important

Geoffrey Garrett, Former Dean and Reliance Professor of Management and Private Enterprise, The Wharton School

geoff-garrett

Debi Ogunrinde, C’16, W’16

Debi Ogunrinde

Paul Karner, C’03, W’03

PKarner

Ashish Shah, W’92

My undergrad experience prepared me for success in a crisis that few expected and fewer were prepared for. When at Wharton, I was fortunate enough to conduct research in two completely different areas of finance.   Read more

Kate Lakin, Putnam Investments

Lakin-Kathryn-Bachman

Julio Reynaga, C’13, W’13

Julio-Reynaga

Katherina M. Rosqueta, WG’01, Founding Executive Director, Center for High Impact Philanthropy,  University of Pennsylvania

KRosqueta

Joseph Wang, C’13, W’13

Wang-Joseph

Nada Boualam, C’17, W’17

why doing your own research is important

AOFIRS

  • Board Members
  • Management Team
  • Become a Contributor
  • Volunteer Opportunities
  • Code of Ethical Practices

KNOWLEDGE NETWORK

  • Search Engines List
  • Suggested Reading Library
  • Web Directories
  • Research Papers
  • Industry News

AOFIRS Knowledge Share Network

  • Become a Member
  • Associate Membership
  • Certified Membership
  • Membership Application
  • Corporate Application

Join Professional Group of Online Researchers

  • CIRS Certification Program
  • CIRS Certification Objectives
  • CIRS Certification Benefits
  • CIRS Certification Exam
  • Maintain Your Certification

Top Research Courses

  • Upcoming Events
  • Live Classes
  • Classes Schedule
  • Webinars Schedules

Online Research Training Program

  • Latest Articles
  • Internet Research
  • Search Techniques
  • Research Methods
  • Business Research
  • Search Engines
  • Research & Tools
  • Investigative Research
  • Internet Search
  • Work from Home
  • Internet Ethics
  • Internet Privacy

Six Reasons Why Research is Important

Importance of internet Research

Everyone conducts research in some form or another from a young age, whether news, books, or browsing the Internet. Internet users come across thoughts, ideas, or perspectives - the curiosity that drives the desire to explore. However, when research is essential to make practical decisions, the nature of the study alters - it all depends on its application and purpose. For instance, skilled research offered as a  research paper service  has a definite objective, and it is focused and organized. Professional research helps derive inferences and conclusions from solving problems. visit the HB tool services for the amazing research tools that will help to solve your problems regarding the research on any project.

What is the Importance of Research?

The primary goal of the research is to guide action, gather evidence for theories, and contribute to the growth of knowledge in data analysis. This article discusses the importance of research and the multiple reasons why it is beneficial to everyone, not just students and scientists.

On the other hand, research is important in business decision-making because it can assist in making better decisions when combined with their experience and intuition.

Reasons for the Importance of Research

  • Acquire Knowledge Effectively
  • Research helps in problem-solving
  • Provides the latest information
  • Builds credibility
  • Helps in business success
  • Discover and Seize opportunities

1-  Acquire Knowledge Efficiently through Research

The most apparent reason to conduct research is to understand more. Even if you think you know everything there is to know about a subject, there is always more to learn. Research helps you expand on any prior knowledge you have of the subject. The research process creates new opportunities for learning and progress.

2- Research Helps in Problem-solving

Problem-solving can be divided into several components, which require knowledge and analysis, for example,  identification of issues, cause identification,  identifying potential solutions, decision to take action, monitoring and evaluation of activity and outcomes.

You may just require additional knowledge to formulate an informed strategy and make an informed decision. When you know you've gathered reliable data, you'll be a lot more confident in your answer.

3- Research Provides the Latest Information

Research enables you to seek out the most up-to-date facts. There is always new knowledge and discoveries in various sectors, particularly scientific ones. Staying updated keeps you from falling behind and providing inaccurate or incomplete information. You'll be better prepared to discuss a topic and build on ideas if you have the most up-to-date information. With the help of tools and certifications such as CIRS , you may learn internet research skills quickly and easily. Internet research can provide instant, global access to information.

4- Research Builds Credibility

Research provides a solid basis for formulating thoughts and views. You can speak confidently about something you know to be true. It's much more difficult for someone to find flaws in your arguments after you've finished your tasks. In your study, you should prioritize the most reputable sources. Your research should focus on the most reliable sources. You won't be credible if your "research" comprises non-experts' opinions. People are more inclined to pay attention if your research is excellent.

5-  Research Helps in Business Success

R&D might also help you gain a competitive advantage. Finding ways to make things run more smoothly and differentiate a company's products from those of its competitors can help to increase a company's market worth.

6-  Research Discover and Seize Opportunities

People can maximize their potential and achieve their goals through various opportunities provided by research. These include getting jobs, scholarships, educational subsidies, projects, commercial collaboration, and budgeted travel. Research is essential for anyone looking for work or a change of environment. Unemployed people will have a better chance of finding potential employers through job advertisements or agencies. 

How to Improve Your Research Skills

Start with the big picture and work your way down.

It might be hard to figure out where to start when you start researching. There's nothing wrong with a simple internet search to get you started. Online resources like Google and Wikipedia are a great way to get a general idea of a subject, even though they aren't always correct. They usually give a basic overview with a short history and any important points.

Identify Reliable Source

Not every source is reliable, so it's critical that you can tell the difference between the good ones and the bad ones. To find a reliable source, use your analytical and critical thinking skills and ask yourself the following questions: Is this source consistent with other sources I've discovered? Is the author a subject matter expert? Is there a conflict of interest in the author's point of view on this topic?

Validate Information from Various Sources

Take in new information.

The purpose of research is to find answers to your questions, not back up what you already assume. Only looking for confirmation is a minimal way to research because it forces you to pick and choose what information you get and stops you from getting the most accurate picture of the subject. When you do research, keep an open mind to learn as much as possible.

Facilitates Learning Process

Learning new things and implementing them in daily life can be frustrating. Finding relevant and credible information requires specialized training and web search skills due to the sheer enormity of the Internet and the rapid growth of indexed web pages. On the other hand, short courses and Certifications like CIRS make the research process more accessible. CIRS Certification offers complete knowledge from beginner to expert level. You can become a Certified Professional Researcher and get a high-paying job, but you'll also be much more efficient and skilled at filtering out reliable data. You can learn more about becoming a Certified Professional Researcher.

Stay Organized

You'll see a lot of different material during the process of gathering data, from web pages to PDFs to videos. You must keep all of this information organized in some way so that you don't lose anything or forget to mention something properly. There are many ways to keep your research project organized, but here are a few of the most common:  Learning Management Software , Bookmarks in your browser, index cards, and a bibliography that you can add to as you go are all excellent tools for writing.

Make Use of the library's Resources

If you still have questions about researching, don't worry—even if you're not a student performing academic or course-related research, there are many resources available to assist you. Many high school and university libraries, in reality, provide resources not only for staff and students but also for the general public. Look for research guidelines or access to specific databases on the library's website. Association of Internet Research Specialists enjoys sharing informational content such as research-related articles , research papers , specialized search engines list compiled from various sources, and contributions from our members and in-house experts.

of Conducting Research

Latest from erin r. goodrich.

  • 10 Best People Search Engines and Websites in 2022
  • Leveraging Local SEO Strategies for Small Business Growth
  • 6 Ways to Make Your Small Business Punch Above Its Weight

Live Classes Schedule

World's leading professional association of Internet Research Specialists - We deliver Knowledge, Education, Training, and Certification in the field of Professional Online Research. The AOFIRS is considered a major contributor in improving Web Search Skills and recognizes Online Research work as a full-time occupation for those that use the Internet as their primary source of information.

Get Exclusive Research Tips in Your Inbox

  • Privacy Policy
  • Terms & Conditions
  • Advertising Opportunities
  • Knowledge Network
  • For Europe and the Middle East
  • TED@Work Content
  • Harvard ManageMentor® Content
  • White Paper
  • Reskilling and Talent Mobility
  • Why OpenSesame
  • Diversity Equity and Inclusion
  • Racial Justice
  • Browse Courses

LEARNING ECOSYSTEM

  • Why OpenSesame Transform your organization with online learning programs
  • OpenSesame Plus Publishers Get unlimited access to training courses for one low price
  • Exclusive Publishers Think outside the box and go beyond traditional learning
  • Simon Create captivating elearning courses for a global audience
  • Integrations Integrate seamlessly with your favorite LMS software
  • Pricing Choose an unlimited monthly subscription, buy a bundle of courses, even select one course at a time.

QUALITY CONTENT

  • TED@Work Advance with the best content from TED@Work
  • Harvard ManageMentor Gain access to innovative and always up-to-date content
  • International Build a successful organization in Europe and the Middle East

TAILORED PROGRAMS

  • Partner with us Personalize your training program with curated courses
  • Publish with us Grow sales by selling your courses with OpenSesame
  • SmartPath Personalize your training program with curated courses
  • Coursica Bridge the gap, learn core skills, and launch your career

why doing your own research is important

By Industry

  • Technology For high-tech companies
  • Retail For all retail enterprises
  • Finance For all financial institutions
  • Service For service industries
  • Healthcare For healthcare organizations
  • Manufacturing For manufacturing companies
  • Government For private and public agencies
  • Construction For construction companies

By Category

  • Compliance Minimize organizational risks
  • Business Skills Develop your staff’s soft skills
  • Safety Build a safer workplace
  • Technology Improve IT proficiencies
  • Certifications Validate competencies
  • Diversity, Equity and Inclusion We prioritize the importance of DEI training
  • Leadership & Management Skill development for emerging leaders
  • Wellness Keep your workforce happy and healthy
  • Learning & Development For the L&D Director
  • Human Resources For the head of HR
  • Diversity, Equity and Inclusion DEI courses that Drive Meaningful Change
  • LMS Administration For the training systems admin
  • Compliance For the head of compliance
  • Information Technology For the IT analyst and guru

why doing your own research is important

Let’s see what we can do together.

Get a quick, personalized demo. Learn how OpenSesame can help your specific organization achieve its training goals.

  • About Us We make learning accessible, easy to implement, and rewarding for everyone
  • Racial Justice We want OpenSesame to reflect the diversity of the communities we serve and the world we live in.
  • Diversity & Inclusion We prioritize the importance of our differences
  • Careers We're Hiring We are a workplace to be your authentic self
  • Contact We are here should you need to get in touch with us

why doing your own research is important

  • Case Studies Meet our customers
  • eBooks Learn tips and tricks
  • Infographics Visual insights from industry experts
  • Blog Talent development best practices
  • Webinars Register for upcoming or view on-demand library
  • Learning Unlocked Spark View On-demand event from global L&D experts to optimize elearning for your workforce.
  • Learning Unlocked Podcast Learning & Development conversations with global changemakers and leaders.
  • Knowledge Base Find community answers or submit a ticket
  • Documentation Study our documentation
  • FAQs Review our frequently asked questions

why doing your own research is important

Do Your Research! 6 Reasons Why Research is So Important for Your Business

' src=

When we think of research, we often think of analyzing scholarly information. However, if you’re involved in any kind of business operation, research will help you gather the necessary data for your industry to be successful. In fact, asking questions and researching answers or recommendations is essential for making major business decisions. This may include industry research, market research, or user research based on your business objective so that your business plan is aligned with the right customers and does a great job executing its goals. Here are six reasons why your company needs research:

Define your objectives

What is the size of your industry? How have sales trended in other industries? What goals does it make sense for your company to set? Perhaps the most important research task is to collect initial data that will help you define your business objectives. Typically survey information is available through secondary sources, but often companies do their own surveys as well to measure satisfaction among customers and ensure that their business plan will meet customer’s needs. Researching all kinds of information about the market and your potential customers will be your best friend when defining business objectives.

Understand your competition

Once you know your target market you can identify and research your competition. Whether you’re a small business or a large, successful corporation, markets are often changing and new competition is always a potential threat. Researching your market will help you assess your category, strategize, and make the right decisions for your company to gain an edge above your competition. This research can also help you identify what features your competition lacks so you can add add value to your services or brand through real insights.

Test your products or campaigns

Who are your customers and what do they want? Successful companies research every detail regarding users including their interests, experiences with your product or services, and potential ways to incorporate feedback. User research and testing will help you judge whether your product, advertising, packaging, and brand communication effectively influence consumers. This task is excellent for helping your company make informed decisions. Sample surveys will help you test conceived ideas so you can confidently make decisions.

Optimize your strategy

In any given industry, there may be up to hundreds of brands on the market targeted toward the same set of customers. This makes a marketer’s job quite challenging, since every brand needs a different positioning and strategy. Both qualitative and quantitative market research will help guide marketers when developing a brand strategy and analyzing how your company compares to the competition. Effective marketing comes from user research – understand what brand features matter most to your target market and build from there.

Keep pace with the industry

All industries change over time, so brands must innovate as the market evolves. In order to secure your brand’s relevancy in the market, your company likely must constantly research updates and trends in the market that will influence whether you “perform or perish.” As new competition arises with updated features, focus your innovation efforts on growth opportunities and respond to customer’s changing needs. Remember, if you don’t adapt to the market, someone else will, so staying ahead of the game is a key to success.

Solve problems and make decisions

Businesses often face loss or failure. Market research, user research, and research depending on your industry may help you gain insight into what went wrong. Whether brand awareness is decreasing or sales have fallen, analyzing available data can help you determine possible alternatives to your current strategy and overcome your company’s weaknesses. Research is critical not only for identifying problems but also for developing solutions and making decisions regarding the best strategies to carry out.

While scholarly research may help your company make decisions (for instance, many psychological studies evaluate the best colors to catch attention or the best font design), there are many other types of research that can dramatically influence your company such as market research and user research. Asking questions, evaluating sources, interviewing users, and testing designs all fall under the research umbrella. How do you make sure your company is on the right track? Research it!

Blog archive

why doing your own research is important

You are using an outdated browser. Please upgrade your browser or activate Google Chrome Frame to improve your experience.

why doing your own research is important

Meet Infection Science Awardee: Dr Neil Cunningham

Posted on April 17, 2024   by Microbiology Society

The Microbiology Society Infection Science Award aims to support the exchange of ideas and the career development of promising early career and trainee researchers, helping to translate microbiological research to the clinic. The scheme facilitates selected presenters from the Federation of Infection Society (FIS) conference to present their work at Annual Conference. In this blog, meet one of this year’s awardees, Dr Neil Cunningham (Queen Elizabeth Hospital and Lewisham and Greenwich NHS Trust), who presented in the Infection Forum session at Annual Conference 2024 last week.

What are your current research interests?

I am currently working full time as a clinician on a junior doctor rota and undertaking MRCP exams which means I don’t have as much time for research as I would like. I am very interested in OneHealth and have been continuing work on a project considering the role of weather events and climate change on food-borne pathogen outbreaks. 

What is the theme of your talk?

The theme of my talk is “One Health”,  the interconnectivity of human health, animal health and the environment, and how this can impact infectious disease outbreaks.

How would you explain your research to a GCSE student?

The health of people is closely connected to the health of animals and our shared environment. This idea is called “One Health” and is becoming more important as many factors are changing the interactions between people, animals, plants, and our environment. 

In my research, I have been looking at extreme weather events associated with climate change. These extreme weather events (such as heavy rainfall and flooding) can provide new opportunities for diseases to pass from animals to humans.

We found that heavy rainfall and flooding can help transport bugs (Shiga toxin-producing E.Coli) which are normally found in sheep and cows to fields of crops and cause contamination of the crops. Once these contaminated crops are eaten by people, they can cause illnesses like diarrhoea and vomiting. 

By understanding this transmission pathway from animals, to the environment, to people, we can start to move upstream to predict and prevent infectious disease outbreaks. We can also put in public health strategies to help reduce the risk of people getting infected.

If you could do any other job, what would it be?

I always loved the idea of working in Air Traffic Control, or in a control room for the London Underground - very different!

Dr Neil Cunningham

Queen Elizabeth Hospital

Lewisham and Greenwich NHS Trust

Categories:

Our Members

Share this page:

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

6 Common Leadership Styles — and How to Decide Which to Use When

  • Rebecca Knight

why doing your own research is important

Being a great leader means recognizing that different circumstances call for different approaches.

Research suggests that the most effective leaders adapt their style to different circumstances — be it a change in setting, a shift in organizational dynamics, or a turn in the business cycle. But what if you feel like you’re not equipped to take on a new and different leadership style — let alone more than one? In this article, the author outlines the six leadership styles Daniel Goleman first introduced in his 2000 HBR article, “Leadership That Gets Results,” and explains when to use each one. The good news is that personality is not destiny. Even if you’re naturally introverted or you tend to be driven by data and analysis rather than emotion, you can still learn how to adapt different leadership styles to organize, motivate, and direct your team.

Much has been written about common leadership styles and how to identify the right style for you, whether it’s transactional or transformational, bureaucratic or laissez-faire. But according to Daniel Goleman, a psychologist best known for his work on emotional intelligence, “Being a great leader means recognizing that different circumstances may call for different approaches.”

why doing your own research is important

  • RK Rebecca Knight is a journalist who writes about all things related to the changing nature of careers and the workplace. Her essays and reported stories have been featured in The Boston Globe, Business Insider, The New York Times, BBC, and The Christian Science Monitor. She was shortlisted as a Reuters Institute Fellow at Oxford University in 2023. Earlier in her career, she spent a decade as an editor and reporter at the Financial Times in New York, London, and Boston.

Partner Center

Just married? How to know whether to file your taxes jointly or separately.

why doing your own research is important

What could be more romantic than discussing taxes?

Tax season is officially behind us, but it's never too early to plan for next year, and a question you and your significant other may want to ask is: Should we file our taxes jointly or separately? 

It's the age-old quandary couples face each year because of the benefits and drawbacks that come with each option. A simple coin toss to decide which route to take could end up being more costly or cause you to miss out on hefty tax credits and deductions, leading to a smaller tax refund .

For instance, the standard deduction for married couples filing jointly was $29,200 this year versus $14,600 for separate filers. For newlyweds who aren't yet homeowners this mattered a lot since it likely made more sense for them not to file an itemized return and take the standard deduction, said Tim Speiss, a certified public accountant and partner of EisnerAmper in New York. 

But there are many more considerations to take into account before you make your final decision.

What does filing jointly mean? 

 If you're married you can choose whether you want to file a joint return or file two individual returns. 

Filing a joint tax return means your income and your spouse's income get combined together. The joint income is subject to different tax brackets than single filers.

The Internal Revenue Service raised the thresholds for taxes filed this year to adjust for inflation.

Marginal tax rates for married couples filing jointly were:

  • 35% for incomes over $487,450
  • 32% for incomes over $383,900
  • 24% for incomes over $201,050
  • 22% for incomes over $94,300
  • 12% for incomes over $23,200
  • 10% for incomes less than $23,200

Marginal tax rates for individual filers:

  • 35% for incomes over $243,725
  • 32% for incomes over $191,950
  • 24% for incomes over $100,525
  • 22% for incomes over $47,150
  • 12% for incomes over $11,600
  • 10% for incomes less than $11,600

Importantly, filing jointly means you're both on the hook for the money you and your spouse owe to the IRS prior to your marriage. 

What are the rules for married filing jointly? 

In order to file a joint tax return in 2024, you had to have been legally married by Dec. 31, 2023. So as long as you got your marriage license in 2023, you were considered married in the eyes of the IRS.

But if you got divorced or legally separated from your spouse at any point during 2023, you're considered unmarried for the entirety of the year and cannot file a joint return.

Finally, to file jointly you and your spouse must both agree to it. That's why both signatures are required on the tax return. 

Do you get more money if you file jointly? 

"When you file jointly, that is typically how you get the largest legitimate refund," says Scott Curley, co-CEO of FinishLine Tax Solutions, a tax consulting firm based in Houston.

That's because there are more tax deductions and credits married couples filing jointly are eligible for. For example, the Earned Income Tax Credit is generally only available to married couples who file jointly. The EITC enables low-income households to deduct as much as $7,430 off their taxes if they have three or more children.

Similarly, the Adoption Credit and Child and Dependent Care Tax Credit are only available for married couples filing jointly. These credits can directly lower your tax bill and trigger bigger refunds. 

Additionally, couples filing jointly are subject to significantly higher income thresholds for each making the maximum $6,500 deductible IRA contribution. 

When should a married couple not file jointly?  

If you had a lot of out-of-pocket medical expenses the previous year, it may make sense to file a separate return. That's because the tax code allows you to deduct out-of-pocket medical expenses that exceed 7.5% of your adjusted gross income. When you file jointly you have one adjusted gross income which that 7.5% rule applies to.

So if for instance, you had $15,000 of out-of-pocket medical expenses last year with an adjusted gross income of $70,000 you could deduct $9,480 ($70,000 x 7.5% = $5,250; $15,000 - $5,250 = $9,480). Whereas if you filed taxes jointly and your adjusted gross income was $200,000 you wouldn't be able to deduct any of your medical expenses since it wouldn't exceed 7.5% of it.

Another situation where it may not make sense to file a joint return is if one spouse has a significantly lower income, Speiss says. That's because the lower-income spouse may be eligible for more itemized deductions by filing individually..

Also if you don't owe any money to the IRS but your spouse does, by filing together your tax refund could be applied toward the tab they've racked up with the IRS.

"The system does not distinguish between parties if they file jointly," says Curley of FinishLine. But if you file separately you won't be liable for your spouse's tax burden. 

Curley says "dozens" of his clients over the years ran into this issue because one spouse wasn't transparent with the other about how much money they owe the IRS.

He recommends bringing this up with your partner before you tie the knot.

More of your 2024 tax season questions answered

  • What should you do with your tax refund check?
  • How to save with credits on state tax returns
  • What are the 2023 federal tax brackets?
  • Are you missing important tax dates? Milestone birthdays to know.
  • Tax return extensions: Who should request one?
  • What is a 1098-E form?
  • What is a federal tax credit?
  • What is capital gains tax? 2024 rates.
  • Is Social Security income taxable by the IRS?
  • How much is the child tax credit for 2023?
  • Does my state have an income tax?
  • What does FICA mean?
  • What does this IRS code mean? 826, 846, 570 and more.
  • What does OASDI tax mean on my paycheck?
  • What is the FairTax Act of 2023?

S ign up for our Daily Money newsletter  here

Read our research on: Gun Policy | International Conflict | Election 2024

Regions & Countries

Political typology quiz.

Notice: Beginning April 18th community groups will be temporarily unavailable for extended maintenance. Thank you for your understanding and cooperation.

Where do you fit in the political typology?

Are you a faith and flag conservative progressive left or somewhere in between.

why doing your own research is important

Take our quiz to find out which one of our nine political typology groups is your best match, compared with a nationally representative survey of more than 10,000 U.S. adults by Pew Research Center. You may find some of these questions are difficult to answer. That’s OK. In those cases, pick the answer that comes closest to your view, even if it isn’t exactly right.

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Entire Site
  • Research & Funding
  • Health Information
  • About NIDDK
  • Diabetes Overview

Healthy Living with Diabetes

  • Español

On this page:

How can I plan what to eat or drink when I have diabetes?

How can physical activity help manage my diabetes, what can i do to reach or maintain a healthy weight, should i quit smoking, how can i take care of my mental health, clinical trials for healthy living with diabetes.

Healthy living is a way to manage diabetes . To have a healthy lifestyle, take steps now to plan healthy meals and snacks, do physical activities, get enough sleep, and quit smoking or using tobacco products.

Healthy living may help keep your body’s blood pressure , cholesterol , and blood glucose level, also called blood sugar level, in the range your primary health care professional recommends. Your primary health care professional may be a doctor, a physician assistant, or a nurse practitioner. Healthy living may also help prevent or delay health problems  from diabetes that can affect your heart, kidneys, eyes, brain, and other parts of your body.

Making lifestyle changes can be hard, but starting with small changes and building from there may benefit your health. You may want to get help from family, loved ones, friends, and other trusted people in your community. You can also get information from your health care professionals.

What you choose to eat, how much you eat, and when you eat are parts of a meal plan. Having healthy foods and drinks can help keep your blood glucose, blood pressure, and cholesterol levels in the ranges your health care professional recommends. If you have overweight or obesity, a healthy meal plan—along with regular physical activity, getting enough sleep, and other healthy behaviors—may help you reach and maintain a healthy weight. In some cases, health care professionals may also recommend diabetes medicines that may help you lose weight, or weight-loss surgery, also called metabolic and bariatric surgery.

Choose healthy foods and drinks

There is no right or wrong way to choose healthy foods and drinks that may help manage your diabetes. Healthy meal plans for people who have diabetes may include

  • dairy or plant-based dairy products
  • nonstarchy vegetables
  • protein foods
  • whole grains

Try to choose foods that include nutrients such as vitamins, calcium , fiber , and healthy fats . Also try to choose drinks with little or no added sugar , such as tap or bottled water, low-fat or non-fat milk, and unsweetened tea, coffee, or sparkling water.

Try to plan meals and snacks that have fewer

  • foods high in saturated fat
  • foods high in sodium, a mineral found in salt
  • sugary foods , such as cookies and cakes, and sweet drinks, such as soda, juice, flavored coffee, and sports drinks

Your body turns carbohydrates , or carbs, from food into glucose, which can raise your blood glucose level. Some fruits, beans, and starchy vegetables—such as potatoes and corn—have more carbs than other foods. Keep carbs in mind when planning your meals.

You should also limit how much alcohol you drink. If you take insulin  or certain diabetes medicines , drinking alcohol can make your blood glucose level drop too low, which is called hypoglycemia . If you do drink alcohol, be sure to eat food when you drink and remember to check your blood glucose level after drinking. Talk with your health care team about your alcohol-drinking habits.

A woman in a wheelchair, chopping vegetables at a kitchen table.

Find the best times to eat or drink

Talk with your health care professional or health care team about when you should eat or drink. The best time to have meals and snacks may depend on

  • what medicines you take for diabetes
  • what your level of physical activity or your work schedule is
  • whether you have other health conditions or diseases

Ask your health care team if you should eat before, during, or after physical activity. Some diabetes medicines, such as sulfonylureas  or insulin, may make your blood glucose level drop too low during exercise or if you skip or delay a meal.

Plan how much to eat or drink

You may worry that having diabetes means giving up foods and drinks you enjoy. The good news is you can still have your favorite foods and drinks, but you might need to have them in smaller portions  or enjoy them less often.

For people who have diabetes, carb counting and the plate method are two common ways to plan how much to eat or drink. Talk with your health care professional or health care team to find a method that works for you.

Carb counting

Carbohydrate counting , or carb counting, means planning and keeping track of the amount of carbs you eat and drink in each meal or snack. Not all people with diabetes need to count carbs. However, if you take insulin, counting carbs can help you know how much insulin to take.

Plate method

The plate method helps you control portion sizes  without counting and measuring. This method divides a 9-inch plate into the following three sections to help you choose the types and amounts of foods to eat for each meal.

  • Nonstarchy vegetables—such as leafy greens, peppers, carrots, or green beans—should make up half of your plate.
  • Carb foods that are high in fiber—such as brown rice, whole grains, beans, or fruits—should make up one-quarter of your plate.
  • Protein foods—such as lean meats, fish, dairy, or tofu or other soy products—should make up one quarter of your plate.

If you are not taking insulin, you may not need to count carbs when using the plate method.

Plate method, with half of the circular plate filled with nonstarchy vegetables; one fourth of the plate showing carbohydrate foods, including fruits; and one fourth of the plate showing protein foods. A glass filled with water, or another zero-calorie drink, is on the side.

Work with your health care team to create a meal plan that works for you. You may want to have a diabetes educator  or a registered dietitian  on your team. A registered dietitian can provide medical nutrition therapy , which includes counseling to help you create and follow a meal plan. Your health care team may be able to recommend other resources, such as a healthy lifestyle coach, to help you with making changes. Ask your health care team or your insurance company if your benefits include medical nutrition therapy or other diabetes care resources.

Talk with your health care professional before taking dietary supplements

There is no clear proof that specific foods, herbs, spices, or dietary supplements —such as vitamins or minerals—can help manage diabetes. Your health care professional may ask you to take vitamins or minerals if you can’t get enough from foods. Talk with your health care professional before you take any supplements, because some may cause side effects or affect how well your diabetes medicines work.

Research shows that regular physical activity helps people manage their diabetes and stay healthy. Benefits of physical activity may include

  • lower blood glucose, blood pressure, and cholesterol levels
  • better heart health
  • healthier weight
  • better mood and sleep
  • better balance and memory

Talk with your health care professional before starting a new physical activity or changing how much physical activity you do. They may suggest types of activities based on your ability, schedule, meal plan, interests, and diabetes medicines. Your health care professional may also tell you the best times of day to be active or what to do if your blood glucose level goes out of the range recommended for you.

Two women walking outside.

Do different types of physical activity

People with diabetes can be active, even if they take insulin or use technology such as insulin pumps .

Try to do different kinds of activities . While being more active may have more health benefits, any physical activity is better than none. Start slowly with activities you enjoy. You may be able to change your level of effort and try other activities over time. Having a friend or family member join you may help you stick to your routine.

The physical activities you do may need to be different if you are age 65 or older , are pregnant , or have a disability or health condition . Physical activities may also need to be different for children and teens . Ask your health care professional or health care team about activities that are safe for you.

Aerobic activities

Aerobic activities make you breathe harder and make your heart beat faster. You can try walking, dancing, wheelchair rolling, or swimming. Most adults should try to get at least 150 minutes of moderate-intensity physical activity each week. Aim to do 30 minutes a day on most days of the week. You don’t have to do all 30 minutes at one time. You can break up physical activity into small amounts during your day and still get the benefit. 1

Strength training or resistance training

Strength training or resistance training may make your muscles and bones stronger. You can try lifting weights or doing other exercises such as wall pushups or arm raises. Try to do this kind of training two times a week. 1

Balance and stretching activities

Balance and stretching activities may help you move better and have stronger muscles and bones. You may want to try standing on one leg or stretching your legs when sitting on the floor. Try to do these kinds of activities two or three times a week. 1

Some activities that need balance may be unsafe for people with nerve damage or vision problems caused by diabetes. Ask your health care professional or health care team about activities that are safe for you.

 Group of people doing stretching exercises outdoors.

Stay safe during physical activity

Staying safe during physical activity is important. Here are some tips to keep in mind.

Drink liquids

Drinking liquids helps prevent dehydration , or the loss of too much water in your body. Drinking water is a way to stay hydrated. Sports drinks often have a lot of sugar and calories , and you don’t need them for most moderate physical activities.

Avoid low blood glucose

Check your blood glucose level before, during, and right after physical activity. Physical activity often lowers the level of glucose in your blood. Low blood glucose levels may last for hours or days after physical activity. You are most likely to have low blood glucose if you take insulin or some other diabetes medicines, such as sulfonylureas.

Ask your health care professional if you should take less insulin or eat carbs before, during, or after physical activity. Low blood glucose can be a serious medical emergency that must be treated right away. Take steps to protect yourself. You can learn how to treat low blood glucose , let other people know what to do if you need help, and use a medical alert bracelet.

Avoid high blood glucose and ketoacidosis

Taking less insulin before physical activity may help prevent low blood glucose, but it may also make you more likely to have high blood glucose. If your body does not have enough insulin, it can’t use glucose as a source of energy and will use fat instead. When your body uses fat for energy, your body makes chemicals called ketones .

High levels of ketones in your blood can lead to a condition called diabetic ketoacidosis (DKA) . DKA is a medical emergency that should be treated right away. DKA is most common in people with type 1 diabetes . Occasionally, DKA may affect people with type 2 diabetes  who have lost their ability to produce insulin. Ask your health care professional how much insulin you should take before physical activity, whether you need to test your urine for ketones, and what level of ketones is dangerous for you.

Take care of your feet

People with diabetes may have problems with their feet because high blood glucose levels can damage blood vessels and nerves. To help prevent foot problems, wear comfortable and supportive shoes and take care of your feet  before, during, and after physical activity.

A man checks his foot while a woman watches over his shoulder.

If you have diabetes, managing your weight  may bring you several health benefits. Ask your health care professional or health care team if you are at a healthy weight  or if you should try to lose weight.

If you are an adult with overweight or obesity, work with your health care team to create a weight-loss plan. Losing 5% to 7% of your current weight may help you prevent or improve some health problems  and manage your blood glucose, cholesterol, and blood pressure levels. 2 If you are worried about your child’s weight  and they have diabetes, talk with their health care professional before your child starts a new weight-loss plan.

You may be able to reach and maintain a healthy weight by

  • following a healthy meal plan
  • consuming fewer calories
  • being physically active
  • getting 7 to 8 hours of sleep each night 3

If you have type 2 diabetes, your health care professional may recommend diabetes medicines that may help you lose weight.

Online tools such as the Body Weight Planner  may help you create eating and physical activity plans. You may want to talk with your health care professional about other options for managing your weight, including joining a weight-loss program  that can provide helpful information, support, and behavioral or lifestyle counseling. These options may have a cost, so make sure to check the details of the programs.

Your health care professional may recommend weight-loss surgery  if you aren’t able to reach a healthy weight with meal planning, physical activity, and taking diabetes medicines that help with weight loss.

If you are pregnant , trying to lose weight may not be healthy. However, you should ask your health care professional whether it makes sense to monitor or limit your weight gain during pregnancy.

Both diabetes and smoking —including using tobacco products and e-cigarettes—cause your blood vessels to narrow. Both diabetes and smoking increase your risk of having a heart attack or stroke , nerve damage , kidney disease , eye disease , or amputation . Secondhand smoke can also affect the health of your family or others who live with you.

If you smoke or use other tobacco products, stop. Ask for help . You don’t have to do it alone.

Feeling stressed, sad, or angry can be common for people with diabetes. Managing diabetes or learning to cope with new information about your health can be hard. People with chronic illnesses such as diabetes may develop anxiety or other mental health conditions .

Learn healthy ways to lower your stress , and ask for help from your health care team or a mental health professional. While it may be uncomfortable to talk about your feelings, finding a health care professional whom you trust and want to talk with may help you

  • lower your feelings of stress, depression, or anxiety
  • manage problems sleeping or remembering things
  • see how diabetes affects your family, school, work, or financial situation

Ask your health care team for mental health resources for people with diabetes.

Sleeping too much or too little may raise your blood glucose levels. Your sleep habits may also affect your mental health and vice versa. People with diabetes and overweight or obesity can also have other health conditions that affect sleep, such as sleep apnea , which can raise your blood pressure and risk of heart disease.

Man with obesity looking distressed talking with a health care professional.

NIDDK conducts and supports clinical trials in many diseases and conditions, including diabetes. The trials look to find new ways to prevent, detect, or treat disease and improve quality of life.

What are clinical trials for healthy living with diabetes?

Clinical trials—and other types of clinical studies —are part of medical research and involve people like you. When you volunteer to take part in a clinical study, you help health care professionals and researchers learn more about disease and improve health care for people in the future.

Researchers are studying many aspects of healthy living for people with diabetes, such as

  • how changing when you eat may affect body weight and metabolism
  • how less access to healthy foods may affect diabetes management, other health problems, and risk of dying
  • whether low-carbohydrate meal plans can help lower blood glucose levels
  • which diabetes medicines are more likely to help people lose weight

Find out if clinical trials are right for you .

Watch a video of NIDDK Director Dr. Griffin P. Rodgers explaining the importance of participating in clinical trials.

What clinical trials for healthy living with diabetes are looking for participants?

You can view a filtered list of clinical studies on healthy living with diabetes that are federally funded, open, and recruiting at www.ClinicalTrials.gov . You can expand or narrow the list to include clinical studies from industry, universities, and individuals; however, the National Institutes of Health does not review these studies and cannot ensure they are safe for you. Always talk with your primary health care professional before you participate in a clinical study.

This content is provided as a service of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institutes of Health. NIDDK translates and disseminates research findings to increase knowledge and understanding about health and disease among patients, health professionals, and the public. Content produced by NIDDK is carefully reviewed by NIDDK scientists and other experts.

NIDDK would like to thank: Elizabeth M. Venditti, Ph.D., University of Pittsburgh School of Medicine.

IMAGES

  1. 7 Reasons Why Research Is Important

    why doing your own research is important

  2. Why RESEARCH is Important

    why doing your own research is important

  3. 10 Reasons Why Research is Important!

    why doing your own research is important

  4. 15 Reasons Why Research Is Important

    why doing your own research is important

  5. Why research is important to us v1

    why doing your own research is important

  6. Why Doing Your Research Is Important When Writing A Novel

    why doing your own research is important

VIDEO

  1. Research Profile 1: Why is it so important?

  2. Importance of Research

  3. MR I Marketing Research Important Questions

  4. Importance of Research

  5. HOW TO READ and ANALYZE A RESEARCH STUDY

  6. Importance of Research

COMMENTS

  1. 10 Reasons Why Research is Important

    In some areas, research is an essential part of success. In others, it may not be absolutely necessary, but it has many benefits. Here are ten reasons why research is important: #1. Research expands your knowledge base. The most obvious reason to do research is that you'll learn more. There's always more to learn about a topic, even if you ...

  2. Doing Your Own Research a Little Bit Better

    Know your limits. Assessing the worth and rigour of a scientific paper is hard. Even expert scientists have difficulty doing it in their own field, which is why, in part, retractions do happen: peer reviewers failed to spot important reasons why the paper should never have been published in the first place.

  3. 11.1 The Purpose of Research Writing

    Step 4: Organizing Research and the Writer's Ideas. When your research is complete, you will organize your findings and decide which sources to cite in your paper. You will also have an opportunity to evaluate the evidence you have collected and determine whether it supports your thesis, or the focus of your paper.

  4. Do your own research!

    Philosophical tradition and conspiracy theorists converge in suggesting that ordinary people ought to do their own research, rather than accept the word of others. In this paper, I argue that it's no accident that conspiracy theorists value lay research on expert topics: such research is likely to undermine knowledge, via its effects on truth ...

  5. The Why: Explaining the significance of your research

    In addition to the importance stated through the above examples, Leann Zarah offered 7 Reasons Why Research Is Important, as follows: A Tool for Building Knowledge and for Facilitating Learning. Means to Understand Various Issues and Increase Public Awareness. An Aid to Business Success.

  6. On "Doing Your Own Research"

    On "Doing Your Own Research". In early August, American news outlets began to circulate a surprising headline: neck gaiters — a popular form of face covering used by many to help prevent the spread of COVID-19 — could reportedly increase the infection rate. In general, face masks work by catching respiratory droplets that would ...

  7. 2.1 Why Is Research Important?

    Discuss how scientific research guides public policy. Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck.

  8. Explaining How Research Works

    Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle. Questions about how the world works are often investigated on many different levels.

  9. Why Is Research Important?

    Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck. While many of us feel confident in our abilities to decipher and interact ...

  10. 2.1: Why Is Research Important?

    Discuss how scientific research guides public policy. Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck.

  11. 7 Reasons Why Research Is Important

    Why Research Is Necessary and Valuable in Our Daily Lives. It's a tool for building knowledge and facilitating learning. It's a means to understand issues and increase public awareness. It helps us succeed in business. It allows us to disprove lies and support truths. It is a means to find, gauge, and seize opportunities.

  12. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  13. PDF Why research is important

    There are many reasons why research is important, and needs to be taken seriously by anyone working as a counsellor or psychotherapist. These reasons include: 1 Gaining a wider perspective. Counselling and psychotherapy are largely private activities, conducted alone in conditions of confi-dentiality. Research studies allow therapists to learn ...

  14. What is the importance of research in everyday life?

    Research empowers us with knowledge. Though scientists carry out research, the rest of the world benefits from their findings. We get to know the way of nature, and how our actions affect it. We gain a deeper understanding of people, and why they do the things they do. Best of all, we get to enrich our lives with the latest knowledge of health ...

  15. How to effectively explain why my research is important?

    Many researchers struggle to communicate the significance of their work to a broader audience. This question on academia.stackexchange.com asks for advice on how to effectively explain why one's research is important, and receives several helpful answers from experienced academics. The answers cover topics such as identifying the problem, the gap, and the contribution of the research, using ...

  16. Undergraduate Research: Importance, Benefits, and Challenges

    One of our own students, in response to a departmental exit survey stated, "research methodology is an important portion of the curriculum because graduate schools and supervisors are impressed when they see this on your resume, plus it's a great experience." We certainly believe undergraduate research to be an advantage when seeking post ...

  17. Why Is Academic Research Important? Your Complete Guide

    After the data comes in, researches can either accept or deny their hypothesis. When followed, this method is an excellent defense against mistakes and unchecked ideas. Academic research follows this rigorous method. It's incredibly important to distinguish academic research from speculation or personal opinion.

  18. The Importance of Research—A Student Perspective

    A Student's Perspective on Research. A little more than a year ago each of us was madly scrambling to negotiate the process of graduate program admissions. Like many people who go to graduate school, each of us had some history of viewing academic efforts through the lens of "too much is never enough," and we applied our obsessive habits ...

  19. Why should you do research as an undergraduate?

    Debi Ogunrinde, C'16, W'16. Undergraduate research gives students the opportunity to learn about something that interests them most and take ownership of the thought, discovery, and delivery of new ideas to their field of study. In my case, research via the Social Impact Research Experience (SIRE) enabled me to explore the real-world ...

  20. Six Reasons Why Research Is Important

    2- Research Helps in Problem-solving. The goal of the research is to broaden our understanding. Research gives us the information and knowledge to solve problems and make decisions. To differentiate between research that attempts to advance our knowledge and research that seeks to apply pre-existing information to real-world situations.

  21. Do Your Research! 6 Reasons Why Research is So Important for Your

    User research and testing will help you judge whether your product, advertising, packaging, and brand communication effectively influence consumers. This task is excellent for helping your company make informed decisions. Sample surveys will help you test conceived ideas so you can confidently make decisions. Optimize your strategy.

  22. Have an Interview? 6 Reasons Why Research Is Key

    Doing research beforehand lets you show your interest in the company and come up with ways to help it operate more efficiently or more successfully as needed. Why Research Is Important. Being able to talk about your own accomplishments and skills is crucial for a successful interview, but company research matters just as much.

  23. What Is Ethics in Research & Why Is It Important?

    When most people think of ethics (or morals), they think of rules for distinguishing between right and wrong, such as the Golden Rule ("Do unto others as you would have them do unto you"), a code of professional conduct like the Hippocratic Oath ("First of all, do no harm"), a religious creed like the Ten Commandments ("Thou Shalt not kill..."), or a wise aphorisms like the sayings of Confucius.

  24. Meet Infection Science Awardee: Dr Neil Cunningham

    The Microbiology Society Infection Science Award aims to support the exchange of ideas and the career development of promising early career and trainee researchers, helping to translate microbiological research to the clinic. The scheme facilitates selected presenters from the Federation of Infection Society (FIS) conference to present their work at Annual Conference.<br /> <br /> In this blog ...

  25. 6 Common Leadership Styles

    Summary. Research suggests that the most effective leaders adapt their style to different circumstances — be it a change in setting, a shift in organizational dynamics, or a turn in the business ...

  26. Married filing jointly vs. separately: Pros and cons this tax season

    The Internal Revenue Service raised the thresholds for taxes filed this year to adjust for inflation. Marginal tax rates for married couples filing jointly were: 35% for incomes over $487,450. 32% ...

  27. Q&A: When Supporting Teens Means Getting Out of the Way

    Abby Gillespie Q. How can adults best step back and give teens more of a leading voice? Gillespie: Youth voice is the idea that young people are able to freely express themselves, be heard, and actively lead and drive change and innovation in their communities.Teens bring with them incredible knowledge, experiences, and perspectives.

  28. Political Typology Quiz

    Take our quiz to find out which one of our nine political typology groups is your best match, compared with a nationally representative survey of more than 10,000 U.S. adults by Pew Research Center. You may find some of these questions are difficult to answer. That's OK. In those cases, pick the answer that comes closest to your view, even if ...

  29. 10 Common Misconceptions About Aging

    Research has shown that most individuals can help preserve their health and mobility as they age by adopting or continuing healthy habits and lifestyle choices. Read on to learn about 10 common misconceptions related to aging and older adults. 1. Are depression and loneliness normal in older adults?

  30. Healthy Living with Diabetes

    Healthy living is a way to manage diabetes. To have a healthy lifestyle, take steps now to plan healthy meals and snacks, do physical activities, get enough sleep, and quit smoking or using tobacco products. Healthy living may help keep your body's blood pressure, cholesterol, and blood glucose level, also called blood sugar level, in the ...