• Open access
  • Published: 21 June 2021

The lived experience of people with obesity: study protocol for a systematic review and synthesis of qualitative studies

  • Emma Farrell   ORCID: orcid.org/0000-0002-7780-9428 1 ,
  • Marta Bustillo 2 ,
  • Carel W. le Roux 3 ,
  • Joe Nadglowski 4 ,
  • Eva Hollmann 1 &
  • Deirdre McGillicuddy 1  

Systematic Reviews volume  10 , Article number:  181 ( 2021 ) Cite this article

6035 Accesses

9 Altmetric

Metrics details

Obesity is a prevalent, complex, progressive and relapsing chronic disease characterised by abnormal or excessive body fat that impairs health and quality of life. It affects more than 650 million adults worldwide and is associated with a range of health complications. Qualitative research plays a key role in understanding patient experiences and the factors that facilitate or hinder the effectiveness of health interventions. This review aims to systematically locate, assess and synthesise qualitative studies in order to develop a more comprehensive understanding of the lived experience of people with obesity.

This is a protocol for a qualitative evidence synthesis of the lived experience of people with obesity. A defined search strategy will be employed in conducting a comprehensive literature search of the following databases: PubMed, Embase, PsycInfo, PsycArticles and Dimensions (from 2011 onwards). Qualitative studies focusing on the lived experience of adults with obesity (BMI >30) will be included. Two reviewers will independently screen all citations, abstracts and full-text articles and abstract data. The quality of included studies will be appraised using the critical appraisal skills programme (CASP) criteria. Thematic synthesis will be conducted on all of the included studies. Confidence in the review findings will be assessed using GRADE CERQual.

The findings from this synthesis will be used to inform the EU Innovative Medicines Initiative (IMI)-funded SOPHIA (Stratification of Obesity Phenotypes to Optimize Future Obesity Therapy) study. The objective of SOPHIA is to optimise future obesity treatment and stimulate a new narrative, understanding and vocabulary around obesity as a set of complex and chronic diseases. The findings will also be useful to health care providers and policy makers who seek to understand the experience of those with obesity.

Systematic review registration

PROSPERO CRD42020214560 .

Peer Review reports

Obesity is a complex chronic disease in which abnormal or excess body fat (adiposity) impairs health and quality of life, increases the risk of long-term medical complications and reduces lifespan [ 1 ]. Operationally defined in epidemiological and population studies as a body mass index (BMI) greater than or equal to 30, obesity affects more than 650 million adults worldwide [ 2 ]. Its prevalence has almost tripled between 1975 and 2016, and, globally, there are now more people with obesity than people classified as underweight [ 2 ].

Obesity is caused by the complex interplay of multiple genetic, metabolic, behavioural and environmental factors, with the latter thought to be the proximate factor which enabled the substantial rise in the prevalence of obesity in recent decades [ 3 , 4 ]. This increased prevalence has resulted in obesity becoming a major public health issue with a resulting growth in health care and economic costs [ 5 , 6 ]. At a population level, health complications from excess body fat increase as BMI increases [ 7 ]. At the individual level, health complications occur due to a variety of factors such as distribution of adiposity, environment, genetic, biologic and socioeconomic factors [ 8 ]. These health complications include type 2 diabetes [ 9 ], gallbladder disease [ 10 ] and non-alcoholic fatty liver disease [ 11 ]. Excess body fat can also place an individual at increased cardiometabolic and cancer risk [ 12 , 13 , 14 ] with an estimated 20% of all cancers attributed to obesity [ 15 ].

Although first recognised as a disease by the American Medical Association in 2013 [ 16 ], the dominant cultural narrative continues to present obesity as a failure of willpower. People with obesity are positioned as personally responsible for their weight. This, combined with the moralisation of health behaviours and the widespread association between thinness, self-control and success, has resulted in those who fail to live up to this cultural ideal being subject to weight bias, stigma and discrimination [ 17 , 18 , 19 ]. Weight bias, stigma and discrimination have been found to contribute, independent of weight or BMI, to increased morbidity or mortality [ 20 ].

Thomas et al. [ 21 ] highlighted, more than a decade ago, the need to rethink how we approach obesity so as not to perpetuate damaging stereotypes at a societal level. Obesity research then, as now, largely focused on measurable outcomes and quantifiable terms such as body mass index [ 22 , 23 ]. Qualitative research approaches play a key role in understanding patient experiences, how factors facilitate or hinder the effectiveness of interventions and how the processes of interventions are perceived and implemented by users [ 24 ]. Studies adopting qualitative approaches have been shown to deliver a greater depth of understanding of complex and socially mediated diseases such as obesity [ 25 ]. In spite of an increasing recognition of the integral role of patient experience in health research [ 25 , 26 ], the voices of patients remain largely underrepresented in obesity research [ 27 , 28 ].

Systematic reviews and syntheses of qualitative studies are recognised as a useful contribution to evidence and policy development [ 29 ]. To the best of the authors’ knowledge, this will be the first systematic review and synthesis of qualitative studies focusing on the lived experience of people with obesity. While systematic reviews have been carried out on patient experiences of treatments such as behavioural management [ 30 ] and bariatric surgery [ 31 ], this review and synthesis will be the first to focus on the experience of living with obesity rather than patient experiences of particular treatments or interventions. This focus represents a growing awareness that ‘patients have a specific expertise and knowledge derived from lived experience’ and that understanding lived experience can help ‘make healthcare both effective and more efficient’ [ 32 ].

This paper outlines a protocol for the systematic review of qualitative studies based on the lived experience of people with obesity. The findings of this review will be synthesised in order to develop an overview of the lived experience of patients with obesity. It will look, in particular, at patient concerns around the risks of obesity and their aspirations for response to obesity treatment.

The review protocol has been registered within the PROSPERO database (registration number: CRD42020214560) and is being reported in accordance with the reporting guidance provided in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) statement [ 33 , 34 ] (see checklist in Additional file  1 ).

Information sources and search strategy

The primary source of literature will be a structured search of the following electronic databases (from January 2011 onwards—to encompass the increase in research focused on patient experience observed over the last 10 years): PubMed, Embase, PsycInfo, PsycArticles and Dimensions. There is no methodological agreement as to how many search terms or databases out to be searched as part of a ‘good’ qualitative synthesis (Toye et al. [ 35 ]). However, the breadth and depth of the search terms, the inclusion of clinical and personal language and the variety within the selected databases, which cover areas such as medicine, nursing, psychology and sociology, will position this qualitative synthesis as comprehensive. Grey literature will not be included in this study as its purpose is to conduct a comprehensive review of peer-reviewed primary research. The study’s patient advisory board will be consulted at each stage of the review process, and content experts and authors who are prolific in the field will be contacted. The literature searches will be designed and conducted by the review team which includes an experienced university librarian (MB) following the methodological guidance of chapter two of the JBI Manual for Evidence Synthesis [ 36 ]. The search will include a broad range of terms and keywords related to obesity and qualitative research. A full draft search strategy for PubMed is provided in Additional file  2 .

Eligibility criteria

Studies based on primary data generated with adults with obesity (operationally defined as BMI >30) and focusing on their lived experience will be eligible for inclusion in this synthesis (Table  1 ). The context can include any country and all three levels of care provision (primary, secondary and tertiary). Only peer-reviewed, English language, articles will be included. Studies adopting a qualitative design, such as phenomenology, grounded theory or ethnography, and employing qualitative methods of data collection and analysis, such as interviews, focus groups, life histories and thematic analysis, will be included. Publications with a specific focus, for example, patient’s experience of bariatric surgery, will be included, as well as studies adopting a more general view of the experience of obesity.

Screening and study selection process

Search results will be imported to Endnote X9, and duplicate entries will be removed. Covidence [ 38 ] will be used to screen references with two reviewers (EF and EH) removing entries that are clearly unrelated to the research question. Titles and abstracts will then be independently screened by two reviewers (EF and EH) according to the inclusion criteria (Table  1 ). Any disagreements will be resolved through a third reviewer (DMcG). This layer of screening will determine which publications will be eligible for independent full-text review by two reviewers (EF and EH) with disagreements again being resolved by a third reviewer (DMcG).

Data extraction

Data will be extracted independently by two researchers (EF and EH) and combined in table format using the following headings: author, year, title, country, research aims, participant characteristics, method of data collection, method of data analysis, author conclusions and qualitative themes. In the case of insufficient or unclear information in a potentially eligible article, the authors will be contacted by email to obtain or confirm data, and a timeframe of 3 weeks to reply will be offered before article exclusion.

Quality appraisal of included studies

This qualitative synthesis will facilitate the development of a conceptual understanding of obesity and will be used to inform the development of policy and practice. As such, it is important that the studies included are themselves of suitable quality. The methodological quality of all included studies will be assessed using the critical appraisal skills programme (CASP) checklist, and studies that are deemed of insufficient quality will be excluded. The CASP checklist for qualitative research comprises ten questions that cover three main issues: Are the results of the study under review valid? What are the results? Will the results help locally? Two reviewers (EF and EH) will independently evaluate each study using the checklist with a third and fourth reviewer (DMcG and MB) available for consultation in the event of disagreement.

Data synthesis

The data generated through the systematic review outlined above will be synthesised using thematic synthesis as described by Thomas and Harden [ 39 ]. Thematic synthesis enables researchers to stay ‘close’ to the data of primary studies, synthesise them in a transparent way and produce new concepts and hypotheses. This inductive approach is useful for drawing inference based on common themes from studies with different designs and perspectives. Thematic synthesis is made up of a three-step process. Step one consists of line by line coding of the findings of primary studies. The second step involves organising these ‘free codes’ into related areas to construct ‘descriptive’ themes. In step three, the descriptive themes that emerged will be iteratively examined and compared to ‘go beyond’ the descriptive themes and the content of the initial studies. This step will generate analytical themes that will provide new insights related to the topic under review.

Data will be coded using NVivo 12. In order to increase the confirmability of the analysis, studies will be reviewed independently by two reviewers (EF and EH) following the three-step process outlined above. This process will be overseen by a third reviewer (DMcG). In order to increase the credibility of the findings, an overview of the results will be brought to a panel of patient representatives for discussion. Direct quotations from participants in the primary studies will be italicised and indented to distinguish them from author interpretations.

Assessment of confidence in the review findings

Confidence in the evidence generated as a result of this qualitative synthesis will be assessed using the Grading of Recommendations Assessment, Development and Evaluation Confidence in Evidence from Reviews of Qualitative Research (GRADE CERQual) [ 40 ] approach. Four components contribute to the assessment of confidence in the evidence: methodological limitations, relevance, coherence and adequacy of data. The methodological limitations of included studies will be examined using the CASP tool. Relevance assesses the degree to which the evidence from the primary studies applies to the synthesis question while coherence assesses how well the findings are supported by the primary studies. Adequacy of data assesses how much data supports a finding and how rich this data is. Confidence in the evidence will be independently assessed by two reviewers (EF and EH), graded as high, moderate or low, and discussed collectively amongst the research team.

Reflexivity

For the purposes of transparency and reflexivity, it will be important to consider the findings of the qualitative synthesis and how these are reached, in the context of researchers’ worldviews and experiences (Larkin et al, 2019). Authors have backgrounds in health science (EF and EH), education (DMcG and EF), nursing (EH), sociology (DMcG), philosophy (EF) and information science (MB). Prior to conducting the qualitative synthesis, the authors will examine and discuss their preconceptions and beliefs surrounding the subject under study and consider the relevance of these preconceptions during each stage of analysis.

Dissemination of findings

Findings from the qualitative synthesis will be disseminated through publications in peer-reviewed journals, a comprehensive and in-depth project report and presentation at peer-reviewed academic conferences (such as EASO) within the field of obesity research. It is also envisaged that the qualitative synthesis will contribute to the shared value analysis to be undertaken with key stakeholders (including patients, clinicians, payers, policy makers, regulators and industry) within the broader study which seeks to create a new narrative around obesity diagnosis and treatment by foregrounding patient experiences and voice(s). This synthesis will be disseminated to the 29 project partners through oral presentations at management board meetings and at the general assembly. It will also be presented as an educational resource for clinicians to contribute to an improved understanding of patient experience of living with obesity.

Obesity is a complex chronic disease which increases the risk of long-term medical complications and a reduced quality of life. It affects a significant proportion of the world’s population and is a major public health concern. Obesity is the result of a complex interplay of multiple factors including genetic, metabolic, behavioural and environmental factors. In spite of this complexity, obesity is often construed in simple terms as a failure of willpower. People with obesity are subject to weight bias, stigma and discrimination which in themselves result in increased risk of mobility or mortality. Research in the area of obesity has tended towards measurable outcomes and quantitative variables that fail to capture the complexity associated with the experience of obesity. A need to rethink how we approach obesity has been identified—one that represents the voices and experiences of people living with obesity. This paper outlines a protocol for the systematic review of available literature on the lived experience of people with obesity and the synthesis of these findings in order to develop an understanding of patient experiences, their concerns regarding the risks associated with obesity and their aspirations for response to obesity treatment. Its main strengths will be the breadth of its search remit—focusing on the experiences of people with obesity rather than their experience of a particular treatment or intervention. It will also involve people living with obesity and its findings disseminated amongst the 29 international partners SOPHIA research consortium, in peer reviewed journals and at academic conferences. Just as the study’s broad remit is its strength, it is also a potential challenge as it is anticipated that searchers will generate many thousands of results owing to the breadth of the search terms. However, to the best of the authors’ knowledge, this will be the first systematic review and synthesis of its kind, and its findings will contribute to shaping the optimisation of future obesity understanding and treatment.

Availability of data and materials

Not applicable.

Abbreviations

Body mass index

Critical appraisal skills programme

Grading of Recommendations Assessment, Development and Evaluation Confidence in Evidence from Reviews of Qualitative Research

Innovative Medicines Initiative

Medical Subject Headings

Population, phenomenon of interest, context, study type

Stratification of Obesity Phenotypes to Optimize Future Obesity Therapy

Wharton S, Lau DCW, Vallis M, Sharma AM, Biertho L, Campbell-Scherer D, et al. Obesity in adults: a clinical practice guideline. Can Med Assoc J. 2020;192(31):E875–91. https://doi.org/10.1503/cmaj.191707 .

Article   Google Scholar  

World Health Organisation. Fact sheet: obesity and overweight. Geneva: World Health Organisation; 2020.

Google Scholar  

Mechanick J, Hurley D, Garvey W. Adiposity-based chronic disease as a new diagnostic term: the American Association of Clinical Endocrinologists and American College Of Endocrinology position statement. Endocrine Pract. 2017;23(3):372–8. https://doi.org/10.4158/EP161688.PS .

Garvey W, Mechanick J. Proposal for a scientifically correct and medically actionable disease classification system (ICD) for obesity. Obesity. 2020;28(3):484–92. https://doi.org/10.1002/oby.22727 .

Article   PubMed   Google Scholar  

Biener A, Cawley J, Meyerhoefer C. The high and rising costs of obesity to the US health care system. J Gen Intern Med. 2017;32(Suppl 1):6–8. https://doi.org/10.1007/s11606-016-3968-8 .

Article   PubMed   PubMed Central   Google Scholar  

Department of Health and Social Care. Healthy lives, healthy people: a call to action on obesity in England. London: Department of Health and Social Care; 2011.

Di Angelantonio E, Bhupathiraju SN, Wormser D, Gao P, Kaptoge S, de Gonzalez AB, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388(10046):776–86. https://doi.org/10.1016/S0140-6736(16)30175-1 .

Sharma AM. M, M, M & M: a mnemonic for assessing obesity. Obesity Reviews. 2010;11(11):808–9. https://doi.org/10.1111/j.1467-789X.2010.00766.x .

Article   PubMed   CAS   Google Scholar  

Asnawi A, Peeters A, de Courten M, Stoelwinder J. The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract 2010;89:309-19. Diab Res Clin Pract. 2010;89:309–19.

Dagfinn A, Teresa N, Lars JV. Body mass index, abdominal fatness and the risk of gallbladder disease. 2015;30(9):1009.

Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. 2019;20(9).

Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. 2003;289(2):187-193.

Grover SA, Kaouache M, Rempel P, Joseph L, Dawes M, Lau DCW, et al. Years of life lost and healthy life-years lost from diabetes and cardiovascular disease in overweight and obese people: a modelling study. 2015;3(2):114-122.

Ackerman S, Blackburn O, Marchildon F, Cohen P. Insights into the link between obesity and cancer. Curr Obes Rep. 2017;6(2):195–203. https://doi.org/10.1007/s13679-017-0263-x .

Wolin K, Carson K, Colditz G. Obesity and cancer. Oncol. 2010;15(6):556–65. https://doi.org/10.1634/theoncologist.2009-0285 .

Resolution 420: Recognition of obesity as a disease [press release]. 05/16/13 2013.

Brownell KD. Personal responsibility and control over our bodies: when expectation exceeds reality. 1991;10(5):303-10.

Puhl RM, Latner JD, O'Brien K, Luedicke J, Danielsdottir S, Forhan M. A multinational examination of weight bias: predictors of anti-fat attitudes across four countries. 2015;39(7):1166-1173.

Browne NT. Weight bias, stigmatization, and bullying of obese youth. 2012;7(3):107-15.

Sutin AR, Stephan Y, Terracciano A. Weight discrimination and risk of mortality. 2015;26(11):1803-11.

Thomas SL, Hyde J, Karunaratne A, Herbert D, Komesaroff PA. Being “fat” in today’s world: a qualitative study of the lived experiences of people with obesity in Australia. 2008;11(4):321-30.

Ogden K, Barr J, Rossetto G, Mercer J. A “messy ball of wool”: a qualitative study of the dimensions of the lived experience of obesity. 2020;8(1):1-14.

Ueland V, Furnes B, Dysvik E, R¯rtveit K. Living with obesity-existential experiences. 2019;14(1):1-12.

Avenell A, Robertson C, Skea Z, Jacobsen E, Boyers D, Cooper D, et al. Bariatric surgery, lifestyle interventions and orlistat for severe obesity: the REBALANCE mixed-methods systematic review and economic evaluation. 2018;22(68).

The PLoS Medicine Editors. Qualitative research: understanding patients’ needs and experiences. Plos Med. 2007;4(8):1283–4.

Boulton M, Fitzpatrick R. Qualitative methods for assessing health care doi:10.1136/qshc.3.2.107. Qual Health Care. 1994;3:107–13.

Johnstone J, Herredsberg C, Lacy L, Bayles P, Dierking L, Houck A, et al. What I wish my doctor really knew: the voices of patients with obesity. Ann Fam Med. 2020;18(2):169–71. https://doi.org/10.1370/afm.2494 .

Brown I, Thompson J, Tod A, Jones G. Primary care support for tackling obesity: a qualitative study of the perceptions of obese patients. Br J Gen Pract. 2006;56(530):666–72.

PubMed   PubMed Central   Google Scholar  

Brown I, Gould J. Qualitative studies of obesity: a review of methodology. Health. 2013;5(8A3):69–80.

Garip G, Yardley L. A synthesis of qualitative research on overweight and obese people’s views and experiences of weight management. Clin Obes. 2011;1(2-3):10–126.

Coulman K, MacKichan F, Blazeby J, Owen-Smith A. Patient experiences of outcomes of bariatric surgery: a systematic review and qualitative synthesis. Obes Rev. 2017;18(5):547–59. https://doi.org/10.1111/obr.12518 .

European Patients’ Forum. “Patients’ Perceptions of Quality in Healthcare”: Report of a survey conducted by EPF in 2016 Brussels: European Patients’ Forum; 2017.

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. https://doi.org/10.1186/2046-4053-4-1 .

Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349(jan02 1):g7647. https://doi.org/10.1136/bmj.g7647 .

Toye F, et al. Meta-ethnography 25 years on: challenges and insights for synthesising a large number of qualitative studies. BMC Med Res Methodol. 2014;14(80).

Lockwood C, Porrit K, Munn Z, Rittenmeyer L, Salmond S, Bjerrum M, et al. Chapter 2: Systematic reviews of qualitative evidence. In: Aromataris E, Munn Z, editors. JBI Manual for Evidence Synthesis: JBI; 2020, doi: https://doi.org/10.46658/JBIMES-20-03 .

Methley AM, et al. PICO, PICOS and SPIDER: a comparison study of spcificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Services Res. 2014;14.

Covidence. Cochrane Community; 2020. Available from: https://www.covidence.org .

Thomas J, Harden A. Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Med Res Methodol. 2008;8(1):45. https://doi.org/10.1186/1471-2288-8-45 .

Lewin S, Booth A, Glenton C, Munthe-Kaas H, Rashidian A, Wainwright M, et al. Applying GRADE-CERQual to qualitative evidence synthesis findings: introduction to the series. Implement Sci. 2018;13(1):2. https://doi.org/10.1186/s13012-017-0688-3 .

Download references

Acknowledgements

Any amendments made to this protocol when conducting the study will be outlined in PROSPERO and reported in the final manuscript.

This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 875534. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA and T1D Exchange, JDRF and Obesity Action Coalition. The funding body had no role in the design of the study and will not have a role in collection, analysis and interpretation of data or in writing the manuscript.

Author information

Authors and affiliations.

School of Education, University College Dublin, Belfield, Dublin 4, Ireland

Emma Farrell, Eva Hollmann & Deirdre McGillicuddy

University College Dublin Library, Dublin, Ireland

Marta Bustillo

Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland

Carel W. le Roux

Obesity Action Coalition, Tampa, USA

Joe Nadglowski

You can also search for this author in PubMed   Google Scholar

Contributions

EF conceptualised and designed the protocol with input from DMcG and MB. EF drafted the initial manuscript. EF and MB defined the concepts and search items with input from DmcG, CleR and JN. MB and EF designed and executed the search strategy. DMcG, CleR, JN and EH provided critical insights and reviewed and revised the protocol. All authors have approved and contributed to the final written manuscript.

Corresponding author

Correspondence to Emma Farrell .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1:..

PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis Protocols) 2015 checklist: recommended items to address in a systematic review protocol*.

Additional file 2: Table 1

. Search PubMed search string.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Farrell, E., Bustillo, M., le Roux, C.W. et al. The lived experience of people with obesity: study protocol for a systematic review and synthesis of qualitative studies. Syst Rev 10 , 181 (2021). https://doi.org/10.1186/s13643-021-01706-5

Download citation

Received : 28 October 2020

Accepted : 14 May 2021

Published : 21 June 2021

DOI : https://doi.org/10.1186/s13643-021-01706-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Lived experience
  • Patient experience
  • Obesity treatment
  • Qualitative

Systematic Reviews

ISSN: 2046-4053

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

case study essay about obesity

  • Reference Manager
  • Simple TEXT file

People also looked at

Review article, childhood and adolescent obesity: a review.

case study essay about obesity

  • 1 Division of Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
  • 2 Division of Adolescent Medicine, Department of Pediatrics, Medical College of Wisconsin Affiliated Hospitals, Milwaukee, WI, United States
  • 3 Division of Adolescent Medicine, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States

Obesity is a complex condition that interweaves biological, developmental, environmental, behavioral, and genetic factors; it is a significant public health problem. The most common cause of obesity throughout childhood and adolescence is an inequity in energy balance; that is, excess caloric intake without appropriate caloric expenditure. Adiposity rebound (AR) in early childhood is a risk factor for obesity in adolescence and adulthood. The increasing prevalence of childhood and adolescent obesity is associated with a rise in comorbidities previously identified in the adult population, such as Type 2 Diabetes Mellitus, Hypertension, Non-alcoholic Fatty Liver disease (NAFLD), Obstructive Sleep Apnea (OSA), and Dyslipidemia. Due to the lack of a single treatment option to address obesity, clinicians have generally relied on counseling dietary changes and exercise. Due to psychosocial issues that may accompany adolescence regarding body habitus, this approach can have negative results. Teens can develop unhealthy eating habits that result in Bulimia Nervosa (BN), Binge- Eating Disorder (BED), or Night eating syndrome (NES). Others can develop Anorexia Nervosa (AN) as they attempt to restrict their diet and overshoot their goal of “being healthy.” To date, lifestyle interventions have shown only modest effects on weight loss. Emerging findings from basic science as well as interventional drug trials utilizing GLP-1 agonists have demonstrated success in effective weight loss in obese adults, adolescents, and pediatric patients. However, there is limited data on the efficacy and safety of other weight-loss medications in children and adolescents. Nearly 6% of adolescents in the United States are severely obese and bariatric surgery as a treatment consideration will be discussed. In summary, this paper will overview the pathophysiology, clinical, and psychological implications, and treatment options available for obese pediatric and adolescent patients.

Introduction

Obesity is a complex issue that affects children across all age groups ( 1 – 3 ). One-third of children and adolescents in the United States are classified as either overweight or obese. There is no single element causing this epidemic, but obesity is due to complex interactions between biological, developmental, behavioral, genetic, and environmental factors ( 4 ). The role of epigenetics and the gut microbiome, as well as intrauterine and intergenerational effects, have recently emerged as contributing factors to the obesity epidemic ( 5 , 6 ). Other factors including small for gestational age (SGA) status at birth, formula rather than breast feeding in infancy, and early introduction of protein in infant's dietary intake have been reportedly associated with weight gain that can persist later in life ( 6 – 8 ). The rising prevalence of childhood obesity poses a significant public health challenge by increasing the burden of chronic non-communicable diseases ( 1 , 9 ).

Obesity increases the risk of developing early puberty in children ( 10 ), menstrual irregularities in adolescent girls ( 1 , 11 ), sleep disorders such as obstructive sleep apnea (OSA) ( 1 , 12 ), cardiovascular risk factors that include Prediabetes, Type 2 Diabetes, High Cholesterol levels, Hypertension, NAFLD, and Metabolic syndrome ( 1 , 2 ). Additionally, obese children and adolescents can suffer from psychological issues such as depression, anxiety, poor self-esteem, body image and peer relationships, and eating disorders ( 13 , 14 ).

So far, interventions for overweight/obesity prevention have mainly focused on behavioral changes in an individual such as increasing daily physical exercise or improving quality of diet with restricting excess calorie intake ( 1 , 15 , 16 ). However, these efforts have had limited results. In addition to behavioral and dietary recommendations, changes in the community-based environment such as promotion of healthy food choices by taxing unhealthy foods ( 17 ), improving lunch food quality and increasing daily physical activity at school and childcare centers, are extra measures that are needed ( 16 ). These interventions may include a ban on unhealthy food advertisements aimed at children as well as access to playgrounds and green spaces where families can feel their children can safely recreate. Also, this will limit screen time for adolescents as well as younger children.

However, even with the above changes, pharmacotherapy and/or bariatric surgery will likely remain a necessary option for those youth with morbid obesity ( 1 ). This review summarizes our current understanding of the factors associated with obesity, the physiological and psychological effects of obesity on children and adolescents, and intervention strategies that may prevent future concomitant issues.

Definition of Childhood Obesity

Body mass index (BMI) is an inexpensive method to assess body fat and is derived from a formula derived from height and weight in children over 2 years of age ( 1 , 18 , 19 ). Although more sophisticated methods exist that can determine body fat directly, they are costly and not readily available. These methods include measuring skinfold thickness with a caliper, Bioelectrical impedance, Hydro densitometry, Dual-energy X-ray Absorptiometry (DEXA), and Air Displacement Plethysmography ( 2 ).

BMI provides a reasonable estimate of body fat indirectly in the healthy pediatric population and studies have shown that BMI correlates with body fat and future health risks ( 18 ). Unlike in adults, Z-scores or percentiles are used to represent BMI in children and vary with the age and sex of the child. BMI Z-score cut off points of >1.0, >2.0, and >3.0 are recommended by the World Health Organization (WHO) to define at risk of overweight, overweight and obesity, respectively ( 19 ). However, in terms of percentiles, overweight is applied when BMI is >85th percentile <95th percentile, whereas obesity is BMI > 95th percentile ( 20 – 22 ). Although BMI Z-scores can be converted to BMI percentiles, the percentiles need to be rounded and can misclassify some normal-weight children in the under or overweight category ( 19 ). Therefore, to prevent these inaccuracies and for easier understanding, it is recommended that the BMI Z-scores in children should be used in research whereas BMI percentiles are best used in the clinical settings ( 20 ).

As BMI does not directly measure body fat, it is an excellent screening method, but should not be used solely for diagnostic purposes ( 23 ). Using 85th percentile as a cut off point for healthy weight may miss an opportunity to obtain crucial information on diet, physical activity, and family history. Once this information is obtained, it may allow the provider an opportunity to offer appropriate anticipatory guidance to the families.

Pathophysiology of Obesity

The pathophysiology of obesity is complex that results from a combination of individual and societal factors. At the individual level, biological, and physiological factors in the presence of ones' own genetic risk influence eating behaviors and tendency to gain weight ( 1 ). Societal factors include influence of the family, community and socio-economic resources that further shape these behaviors ( Figure 1 ) ( 3 , 24 ).

www.frontiersin.org

Figure 1 . Multidimensional factors contributing to child and adolescent obesity.

Biological Factors

There is a complex architecture of neural and hormonal regulatory control, the Gut-Brain axis, which plays a significant role in hunger and satiety ( Figure 2 ). Sensory stimulation (smell, sight, and taste), gastrointestinal signals (peptides, neural signals), and circulating hormones further contribute to food intake ( 25 – 27 ).

www.frontiersin.org

Figure 2 . Pictorial representation of the Hunger-Satiety pathway a and the various hormones b involved in the pathway. a, Y1/Y5R and MC3/4 are second order neuro receptors which are responsible in either the hunger or satiety pathway. Neurons in the ARC include: NPY, Neuropeptide Y; AgRP, Agouti-Related Peptide; POMC, Pro-Opiomelanocortin; CART, Cocaine-and Amphetamine-regulated Transcript; α-MSH, α-Melanocyte Stimulating Hormone. b, PYY, Peptide YY; PP, Pancreatic Polypeptide; GLP-1, Glucagon-Like Peptide- I; OMX, Oxyntomodulin.

The hypothalamus is the crucial region in the brain that regulates appetite and is controlled by key hormones. Ghrelin, a hunger-stimulating (orexigenic) hormone, is mainly released from the stomach. On the other hand, leptin is primarily secreted from adipose tissue and serves as a signal for the brain regarding the body's energy stores and functions as an appetite -suppressing (anorexigenic) hormone. Several other appetite-suppressing (anorexigenic) hormones are released from the pancreas and gut in response to food intake and reach the hypothalamus through the brain-blood barrier (BBB) ( 28 – 32 ). These anorexigenic and orexigenic hormones regulate energy balance by stimulating hunger and satiety by expression of various signaling pathways in the arcuate nucleus (ARC) of the hypothalamus ( Figure 2 ) ( 28 , 33 ). Dysregulation of appetite due to blunted suppression or loss of caloric sensing signals can result in obesity and its morbidities ( 34 ).

Emotional dysfunction due to psychiatric disorders can cause stress and an abnormal sleep-wake cycles. These modifications in biological rhythms can result in increased appetite, mainly due to ghrelin, and can contribute to emotional eating ( 35 ).

Recently, the role of changes in the gut microbiome with increased weight gain through several pathways has been described in literature ( 36 , 37 ). The human gut serves as a host to trillions of microorganisms, referred to as gut microbiota. The dominant gut microbial phyla are Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia, with Firmicutes and Bacteroidetes representing 90% of human gut microbiota ( 5 , 38 ). The microbes in the gut have a symbiotic relationship within their human host and provide a nutrient-rich environment. Gut microbiota can be affected by various factors that include gestational age at birth, mode of infant delivery, type of neonatal and infant feeding, introduction of solid food, feeding practices and external factors like antibiotic use ( 5 , 38 ). Also, the maturation of the bacterial phyla that occurs from birth to adulthood ( 39 ), is influenced by genetics, environment, diet, lifestyle, and gut physiology and stabilizes in adulthood ( 5 , 39 , 40 ). Gut microbiota is unique to each individual and plays a specific role in maintaining structural integrity, and the mucosal barrier of the gut, nutrient metabolism, immune response, and protection against pathogens ( 5 , 37 , 38 ). In addition, the microbiota ferments the indigestible food and synthesizes other essential micronutrients as well as short chain fatty acids (SCFAs') ( 40 , 41 ). Dysbiosis or imbalance of the gut microbiota, in particularly the role of SCFA has been linked with the patho-physiology of obesity ( 36 , 38 , 41 , 42 ). SCFAs' are produced by anaerobic fermentation of dietary fiber and indigestible starch and play a role in mammalian energy metabolism by influencing gut-brain communication axis. Emerging evidence has shown that increased ratio of Firmicutes to Bacteroidetes causes increased energy extraction of calories from diets and is evidenced by increased production of short chain fatty acids (SCFAs') ( 43 – 45 ). However, this relationship is not affirmed yet, as a negative relationship between SCFA levels and obesity has also been reported ( 46 ). Due to the conflicting data, additional randomized control trials are needed to clarify the role of SCFA's in obese and non-obese individuals.

The gut microbiota also has a bidirectional interaction with the liver, and various additional factors such as diet, genetics, and the environment play a key role in this relationship. The Gut- Liver Axis is interconnected at various levels that include the mucus barrier, epithelial barrier, and gut microbiome and are essential to maintain normal homeostasis ( 47 ). Increased intestinal mucosal permeability can disrupt the gut-liver axis, which releases various inflammatory markers, activates an innate immune response in the liver, and results in a spectrum of liver diseases that include hepatic steatosis, non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC) ( 48 , 49 ).

Other medical conditions, including type 2 Diabetes Mellitus, Metabolic Syndrome, eating disorders as well as psychological conditions such as anxiety and depression are associated with the gut microbiome ( 50 – 53 ).

Genetic Factors

Genetic causes of obesity can either be monogenic or polygenic types. Monogenic obesity is rare, mainly due to mutations in genes within the leptin/melanocortin pathway in the hypothalamus that is essential for the regulation of food intake/satiety, body weight, and energy metabolism ( 54 ). Leptin regulates eating behaviors, the onset of puberty, and T-cell immunity ( 55 ). About 3% of obese children have mutations in the leptin ( LEP ) gene and the leptin receptor (LEPR) and can also present with delayed puberty and immune dysfunction ( 55 , 56 ). Obesity caused by other genetic mutations in the leptin-melanocortin pathway include proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R), brain-derived neurotrophic factor (BDNF), and the tyrosine kinase receptor B (NTRK2) genes ( 57 , 58 ). Patients with monogenic forms generally present during early childhood (by 2 years old) with severe obesity and abnormal feeding behaviors ( 59 ). Other genetic causes of severe obesity are Prader Willi Syndrome (PWS), Alström syndrome, Bardet Biedl syndrome. Patients with these syndromes present with additional characteristics, including cognitive impairment, dysmorphic features, and organ-specific developmental abnormalities ( 60 ). Individuals who present with obesity, developmental delay, dysmorphic features, and organ dysfunction should receive a genetics referral for further evaluation.

Polygenic obesity is the more common form of obesity, caused by the combined effect of multiple genetic variants. It is the result of the interplay between genetic susceptibility and the environment, also known as the Gene-Environment Interaction (GEI) ( 61 – 64 ). Genome-wide association studies (GWAS) have identified gene variants [single nucleotide polymorphism (SNPs)] for body mass index (BMI) that likely act synergistically to affect body weight ( 65 ). Studies have identified genetic variants in several genes that may contribute to excessive weight gain by increasing hunger and food intake ( 66 – 68 ). When the genotype of an individual confers risk for obesity, exposure to an obesogenic environment may promote a state of energy imbalance due to behaviors that contribute to conserving rather than expending energy ( 69 , 70 ). Research studies have shown that obese individuals have a genetic variation that can influence their actions, such as increased food intake, lack of physical activity, a decreased metabolism, as well as an increased tendency to store body fat ( 63 , 66 , 67 , 69 , 70 ).

Recently the role of epigenetic factors in the development of obesity has emerged ( 71 ). The epigenetic phenomenon may alter gene expression without changing the underlying DNA sequence. In effect, epigenetic changes may result in the addition of chemical tags known as methyl groups, to the individual's chromosomes. This alteration can result in a phenomenon where critical genes are primed to on and off regulate. Complex physiological and psychological adjustment occur during infancy and can thereafter set the stage for health vs. disease. Developmental origins of health and disease (DOHaD) shows that early life environment can impact the risk of chronic diseases later in life due to fetal programming secondary to epigenetic changes ( 72 ). Maternal nutrition during the prenatal or early postnatal period may trigger these epigenetic changes and increase the risk for chronic conditions such as obesity, metabolic and cardiovascular disease due to epigenetic modifications that may persist and cause intergenerational effect on the health children and adults ( 58 , 73 , 74 ). Similarly, adverse childhood experiences (ACE) have been linked to a broad range of negative outcomes through epigenetic mechanisms ( 75 ) and promote unhealthy eating behaviors ( 76 , 77 ). Other factors such as diet, physical activity, environmental and psychosocial stressors can cause epigenetic changes and place an individual at risk for weight gain ( 78 ).

Developmental Factors

Eating behaviors evolve over the first few years of life. Young children learn to eat through their direct experience with food and observing others eating around them ( 79 ). During infancy, feeding defines the relationship of security and trust between a child and the parent. Early childhood eating behaviors shift to more self-directed control due to rapid physical, cognitive, communicative, and social development ( 80 ). Parents or caregivers determine the type of food that is made available to the infant and young child. However, due to economic limitations and parents having decreased time to prepare nutritious meals, consumption of processed and cheaper energy-dense foods have occurred in Western countries. Additionally, feeding practices often include providing large or super-sized portions of palatable foods and encouraging children to finish the complete meal (clean their plate even if they do not choose to), as seen across many cultures ( 81 , 82 ). Also, a segment of parents are overly concerned with dietary intake and may pressurize their child to eat what they perceive as a healthy diet, which can lead to unintended consequences ( 83 ). Parents' excessive restriction of food choices may result in poor self-regulation of energy intake by their child or adolescent. This action may inadvertently promote overconsumption of highly palatable restricted foods when available to the child or adolescent outside of parental control with resultant excessive weight gain ( 84 , 85 ).

During middle childhood, children start achieving greater independence, experience broader social networks, and expand their ability to develop more control over their food choices. Changes that occur in the setting of a new environment such as daycare or school allow exposure to different food options, limited physical activity, and often increased sedentary behaviors associated with school schedules ( 24 ). As the transition to adolescence occurs, physical and psychosocial development significantly affect food choices and eating patterns ( 25 ). During the teenage years, more independence and interaction with peers can impact the selection of fast foods that are calorically dense. Moreover, during the adolescent years, more sedentary behaviors such as video and computer use can limit physical exercise. Adolescence is also a period in development with an enhanced focus on appearance, body weight, and other psychological concerns ( 86 , 87 ).

Environmental Factors

Environmental changes within the past few decades, particularly easy access to high-calorie fast foods, increased consumption of sugary beverages, and sedentary lifestyles, are linked with rising obesity ( 88 ). The easy availability of high caloric fast foods, and super-sized portions, are increasingly common choices as individuals prefer these highly palatable and often less expensive foods over fruits and vegetables ( 89 ). The quality of lunches and snacks served in schools and childcare centers has been an area of debate and concern. Children and adolescents consume one-third to one-half of meals in the above settings. Despite policies in place at schools, encouraging foods, beverages, and snacks that are deemed healthier options, the effectiveness of these policies in improving children's dietary habits or change in obesity rate has not yet been seen ( 90 ). This is likely due to the fact that such policies primarily focus on improving dietary quality but not quantity which can impact the overweight or obese youth ( 91 ). Policies to implement taxes on sugary beverages are in effect in a few states in the US ( 92 ) as sugar and sugary beverages are associated with increased weight gain ( 2 , 3 ). This has resulted in reduction in sales of sugary drinks in these states, but the sales of these types of drinks has risen in neighboring states that did not implement the tax ( 93 ). Due to advancements in technology, children are spending increased time on electronic devices, limiting exercise options. Technology advancement is also disrupting the sleep-wake cycle, causing poor sleeping habits, and altered eating patterns ( 94 ). A study published on Canadian children showed that the access to and night-time use of electronic devices causes decreased sleep duration, resulting in excess body weight, inferior diet quality, and lower physical activity levels ( 95 ).

Infant nutrition has gained significant popularity in relation to causing overweight/obesity and other diseases later in life. Breast feeding is frequently discussed as providing protection against developing overweight/obesity in children ( 8 ). Considerable heterogeneity has been observed in studies and conducting randomized clinical trials between breast feeding vs. formula feeding is not feasible ( 8 ). Children fed with a low protein formula like breast milk are shown to have normal weight gain in early childhood as compared to those that are fed formulas with a high protein load ( 96 ). A recent Canadian childbirth cohort study showed that breast feeding within first year of life was inversely associated with weight gain and increased BMI ( 97 ). The effect was stronger if the child was exclusively breast fed directly vs. expressed breast milk or addition of formula or solid food ( 97 ). Also, due to the concern of poor growth in preterm or SGA infants, additional calories are often given for nutritional support in the form of macronutrient supplements. Most of these infants demonstrate “catch up growth.” In fact, there have been reports that in some children the extra nutritional support can increase the risk for overweight/obesity later in life. The association, however, is inconsistent. Recently a systemic review done on randomized controlled trials comparing the studies done in preterm and SGA infants with feeds with and without macronutrient supplements showed that macronutrient supplements may increase weight and length in toddlers but did not show a significant increase in the BMI during childhood ( 98 ). Increased growth velocity due to early introduction of formula milk and protein in infants' diet, may influence the obesity pathways, and can impact fetal programming for metabolic disease later in life ( 99 ).

General pediatricians caring for children with overweight/obesity, generally recommend endocrine testing as parents often believe that there may be an underlying cause for this condition and urge their primary providers to check for conditions such as thyroid abnormalities. Endocrine etiologies for obesity are rarely identified and patients with underlying endocrine disorders causing excessive weight gain usually are accompanied by attenuated growth patterns, such that a patient continues to gain weight with a decline in linear height ( 100 ). Various endocrine etiologies that one could consider in a patient with excessive weight gain in the setting of slow linear growth: severe hypothyroidism, growth hormone deficiency, and Cushing's disease/syndrome ( 58 , 100 ).

Clinical-Physiology of Pediatric Obesity

It is a well-known fact that early AR(increased BMI) before the age of 5 years is a risk factor for adult obesity, obesity-related comorbidities, and metabolic syndrome ( 101 – 103 ). Typically, body mass index (BMI) declines to a minimum in children before it starts increasing again into adulthood, also known as AR. Usually, AR happens between 5 and 7 years of age, but if it occurs before the age of 5 years is considered early AR. Early AR is a marker for higher risk for obesity-related comorbidities. These obesity-related health comorbidities include cardiovascular risk factors (hypertension, dyslipidemia, prediabetes, and type 2 diabetes), hormonal issues, orthopedic problems, sleep apnea, asthma, and fatty liver disease ( Figure 3 ) ( 9 ).

www.frontiersin.org

Figure 3 . Obesity related co-morbidities a in children and adolescents. a, NAFLD, Non-Alcoholic Fatty Liver Disease; SCFE, Slipped Capital Femoral Epiphysis; PCOS, Polycystic Ovary Syndrome; OSA, Obstructive Sleep Apnea.

Clinical Comorbidities of Obesity in Children

Growth and puberty.

Excess weight gain in children can influence growth and pubertal development ( 10 ). Childhood obesity can cause prepubertal acceleration of linear growth velocity and advanced bone age in boys and girls ( 104 ). Hyperinsulinemia is a normal physiological state during puberty, but children with obesity can have abnormally high insulin levels ( 105 ). Leptin resistance also occurs in obese individuals who have higher leptin levels produced by their adipose tissue ( 55 , 106 ). The insulin and leptin levels can act on receptors that impact the growth plates with a resultant bone age advancement ( 55 ).

Adequate nutrition is essential for the typical timing and tempo of pubertal onset. Excessive weight gain can initiate early puberty, due to altered hormonal parameters ( 10 ). Obese children may present with premature adrenarche, thelarche, or precocious puberty (PP) ( 107 ). The association of early pubertal changes with obesity is consistent in girls, and is well-reported; however, data is sparse in boys ( 108 ). One US study conducted in racially diverse boys showed obese boys had delayed puberty, whereas overweight boys had early puberty as compared to normal-weight boys ( 109 ). Obese girls with PP have high leptin levels ( 110 , 111 ). Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) is a cross-sectional study and suggested an indirect relationship between elevated leptin levels, early puberty, and cardiometabolic and inflammatory markers in obese girls ( 112 ). Additionally, obese girls with premature adrenarche carry a higher risk for developing polycystic ovary syndrome (PCOS) in the future ( 113 , 114 ).

Sleep Disorders

Obesity is an independent risk factor for obstructive sleep apnea (OSA) in children and adolescents ( 12 , 115 ). Children with OSA have less deleterious consequences in terms of cardiovascular stress of metabolic syndrome when compared to adolescents and adults ( 116 , 117 ). In children, abnormal behaviors and neurocognitive dysfunction are the most critical and frequent end-organ morbidities associated with OSA ( 12 ). However, in adolescents, obesity and OSA can independently cause oxidative systemic stress and inflammation ( 118 , 119 ), and when this occurs concurrently, it can result in more severe metabolic dysfunction and cardiovascular outcomes later in life ( 120 ).

Other Comorbidities

Obesity is related to a clinical spectrum of liver abnormalities such as NAFLD ( 121 ); the most important cause of liver disease in children ( 122 – 124 ). NAFLD includes steatosis (increased liver fat without inflammation) and NASH (increased liver fat with inflammation and hepatic injury). While in some adults NAFLD can progress to an end-stage liver disease requiring liver transplant ( 125 , 126 ), the risk of progression during childhood is less well-defined ( 127 ). NAFLD is closely associated with metabolic syndrome including central obesity, insulin resistance, type 2 diabetes, dyslipidemia, and hypertension ( 128 ).

Obese children are also at risk for slipped capital femoral epiphysis (SCFE) ( 129 ), and sedentary lifestyle behaviors may have a negative influence on the brain structure and executive functioning, although the direction of causality is not clear ( 130 , 131 ).

Clinical Comorbidities of Obesity in Adolescents

Menstrual irregularities and pcos.

At the onset of puberty, physiologically, sex steroids can cause appropriate weight gain and body composition changes that should not affect normal menstruation ( 132 , 133 ). However, excessive weight gain in adolescent girls can result in irregular menstrual cycles and puts them at risk for PCOS due to increased androgen levels. Additionally, they can have excessive body hair (hirsutism), polycystic ovaries, and can suffer from distorted body images ( 134 , 135 ). Adolescent girls with PCOS also have an inherent risk for insulin resistance irrespective of their weight. However, weight gain further exacerbates their existing state of insulin resistance and increases the risk for obesity-related comorbidities such as metabolic syndrome, and type 2 diabetes. Although the diagnosis of PCOS can be challenging at this age due to an overlap with predictable pubertal changes, early intervention (appropriate weight loss and use of hormonal methods) can help restore menstrual cyclicity and future concerns related to childbearing ( 11 ).

Metabolic Syndrome and Sleep Disorders

Metabolic syndrome (MS) is a group of cardiovascular risk factors characterized by acanthosis nigricans, prediabetes, hypertension, dyslipidemia, and non-alcoholic steatohepatitis (NASH), that occurs from insulin resistance caused by obesity ( 136 ). Diagnosis of MS in adults requires at least three out of the five risk factors: increased central adiposity, hypertension, hyperglycemia, hypertriglyceridemia, or low HDL level. Definitions to diagnose MS are controversial in younger age groups, and many definitions have been proposed ( 136 ). This is due to the complex physiology of growth and development during puberty, which causes significant overlap between MS and features of normal growth. However, childhood obesity is associated with an inflammatory state even before puberty ( 137 ). In obese children and adolescents, hyperinsulinemia during puberty ( 138 , 139 ) and unhealthy sleep behaviors increase MS's risk and severity ( 140 ). Even though there is no consensus on diagnosis regarding MS in this age group, when dealing with obese children and adolescents, clinicians should screen them for MS risk factors and sleep behaviors and provide recommendations for weight management.

Social Psychology of Pediatric Obesity in Children and Adolescents

Obese children and adolescents may experience psychosocial sequelae, including depression, bullying, social isolation, diminished self-esteem, behavioral problems, dissatisfaction with body image, and reduced quality of life ( 13 , 141 ). Compared with normal-weight counterparts, overweight/obesity is one of the most common reasons children and adolescents are bullied at school ( 142 ). The consequence of stigma, bullying, and teasing related to childhood obesity are pervasive and can have severe implications for emotional and physical health and performance that can persist later in life ( 13 ).

In adolescents, psychological outcomes associated with obesity are multifactorial and have a bidirectional relationship ( Figure 4 ). Obese adolescents due to their physique may have a higher likelihood of psychosocial health issues, including depression, body image/dissatisfaction, lower self-esteem, peer victimization/bullying, and interpersonal relationship difficulties. They may also demonstrate reduced resilience to challenging situations compared to their non-obese/overweight counterparts ( 9 , 143 – 146 ). Body image dissatisfaction has been associated with further weight gain but can also be related to the development of a mental health disorder or an eating disorder (ED) or disorder eating habits (DEH). Mental health disorders such as depression are associated with poor eating habits, a sedentary lifestyle, and altered sleep patterns. ED or DEH that include anorexia nervosa (AN), bulimia nervosa (BN), binge-eating disorder (BED) or night eating syndrome (NES) may be related to an individual's overvaluation of their body shape and weight or can result during the treatment for obesity ( 147 – 150 ). The management of obesity can place a patient at risk of AN if there is a rigid focus on caloric intake or if a patient overcorrects and initiates obsessive self-directed dieting. Healthcare providers who primarily care for obese patients, usually give the advice to diet to lose weight and then maintain it. However, strict dieting (hypocaloric diet), which some patients may later engage in can lead to an eating disorder such as anorexia nervosa ( 151 ). This behavior leads to a poor relationship with food, and therefore, adolescents perseverate on their weight and numbers ( 152 ).

www.frontiersin.org

Figure 4 . Bidirectional relationship of different psychological outcomes of obesity.

Providers may not recognize DEHs when a morbidly obese patient loses the same weight as a healthy weight individual ( 149 ). It may appear as a positive result with families and others praising the individual without realizing that this youth may be engaging in destructive behaviors related to weight control. Therefore, it is essential to screen regarding the process of how weight loss was achieved ( 144 , 150 ).

Support and attention to underlying psychological concerns can positively affect treatment, overall well-being, and reduce the risk of adult obesity ( 150 ). The diagram above represents the complexity of the different psychological issues which can impact the clinical care of the obese adolescent.

Eating family meals together can improve overall dietary intake due to enhanced food choices mirrored by parents. It has also may serve as a support to individuals with DEHs if there is less attention to weight and a greater focus on appropriate, sustainable eating habits ( 148 ).

Prevention and Anticipatory Guidance

It is essential to recognize and provide preventive measures for obesity during early childhood and adolescence ( 100 , 153 , 154 ). It is well-established that early AR is a risk factor for adult obesity ( 66 – 68 ). Therefore, health care providers caring for the pediatric population need to focus on measures such as BMI but provide anticipatory guidance regarding nutritional counseling without stigmatizing or judging parents for their children's overweight/obesity ( 155 ). Although health care providers continue to pursue effective strategies to address the obesity epidemic; ironically, they frequently exhibit weight bias and stigmatizing behaviors. Research has demonstrated that the language that health care providers use when discussing a patient's body weight can reinforce stigma, reduce motivation for weight loss, and potentially cause avoidance of routine preventive care ( 155 ). In adolescents, rather than motivating positive changes, stigmatizing language regarding weight may negatively impact a teen and result in binge eating, decreased physical activity, social isolation, avoidance of health care services, and increased weight gain ( 156 , 157 ). Effective provider-patient communication using motivational interviewing techniques are useful to encourage positive behavior changes ( 155 , 158 ).

Anticipatory guidance includes educating the families on healthy eating habits and identifying unhealthy eating practices, encouraging increased activity, limiting sedentary activities such as screen time. Lifestyle behaviors in children and adolescents are influenced by many sectors of our society, including the family ( Figure 1 ) ( 3 , 24 ). Therefore, rather than treating obesity in isolation as an individual problem, it is crucial to approach this problem by focusing on the family unit. Family-based multi-component weight loss behavioral treatment is the gold standard for treating childhood obesity, and it is having been found useful in those between 2 and 6 years old ( 150 , 159 ). Additionally, empowering the parents to play an equal role in developing and implementing an intervention for weight management has shown promising results in improving the rate of obesity by decreasing screen time, promoting healthy eating, and increasing support for children's physical activity ( 160 , 161 ).

When dietary/lifestyle modifications have failed, the next option is a structured weight -management program with a multidisciplinary approach ( 15 ). The best outcomes are associated with an interdisciplinary team comprising a physician, dietician, and psychologist generally 1–2 times a week ( 15 , 162 ). However, this treatment approach is not effective in patients with severe obesity ( 122 ). Although healthier lifestyle recommendations for weight loss are the current cornerstone for obesity management, they often fail. As clinicians can attest, these behavioral and dietary changes are hard to achieve, and all too often is not effective in patients with severe obesity. Failure to maintain substantial weight loss over the long term is due to poor adherence to the prescribed lifestyle changes as well as physiological responses that resist weight loss ( 163 ). American TV hosts a reality show called “The Biggest Loser” that centers on overweight and obese contestants attempting to lose weight for a cash prize. Contestants from “The Biggest Loser” competition, had metabolic adaptation (MA) after drastic weight loss, regained more than they lost weight after 6 years due to a significant slow resting metabolic rate ( 164 ). MA is a physiological response which is a reduced basal metabolic rate seen in individuals who are losing or have lost weight. In MA, the body alters how efficient it is at turning the food eaten into energy; it is a natural defense mechanism against starvation and is a response to caloric restriction. Plasma leptin levels decrease substantially during caloric restriction, suggesting a role of this hormone in the drop of energy expenditure ( 165 ).

Pharmacological Management

The role of pharmacological therapy in the treatment of obesity in children and adolescents is limited.

Orlistat is the only FDA approved medication for weight loss in 12-18-year-olds but has unpleasant side effects ( 166 ). Another medicine, Metformin, has been used in children with signs of insulin resistance, may have some impact on weight, but is not FDA approved ( 167 ). The combination of phentermine/topiramate (Qsymia) has been FDA approved for weight loss in obese individuals 18 years and older. In studies, there has been about 9–10% weight loss over 2 years. However, caution must be taken in females as it can lead to congenital disabilities, especially with use in the first trimester of pregnancy ( 167 ).

GLP-1 agonists have demonstrated great success in effective weight loss and are approved by the FDA for adult obesity ( 168 – 170 ). A randomized control clinical trial recently published showed a significant weight loss in those using liraglutide (3.0 mg)/day plus lifestyle therapy group compared to placebo plus lifestyle therapy in children between the ages of 12–18 years ( 171 ).

Recently during the EASL conference, academic researchers and industry partners presented novel interventions targeting different gut- liver axis levels that include intestinal content, intestinal microbiome, intestinal mucosa, and peritoneal cavity ( 47 ). The focus for these therapeutic interventions within the gut-liver axis was broad and ranged anywhere from newer drugs protecting the intestinal mucus lining, restoring the intestinal barriers and improvement in the gut microbiome. One of the treatment options was Hydrogel technology which was shown to be effective toward weight loss in patients with metabolic syndrome. Hydrogel technology include fibers and high viscosity polysaccharides that absorb water in the stomach and increasing the volume, thereby improving satiety ( 47 ). Also, a clinical trial done in obese pregnant mothers using Docosahexaenoic acid (DHA) showed that the mothers' who got DHA had children with lower adiposity at 2 and 4 years of age ( 172 ). Recently the role of probiotics in combating obesity has emerged. Probiotics are shown to alter the gut microbiome that improves intestinal digestive and absorptive functions of the nutrients. Intervention including probiotics may be a possible solution to manage pediatric obesity ( 173 , 174 ). Additionally, the role of Vitamin E for treating the comorbidities of obesity such as diabetes, hyperlipidemia, NASH, and cardiovascular risk, has been recently described ( 175 , 176 ). Vitamin E is a lipid- soluble compound and contains both tocopherols and tocotrienols. Tocopherols have lipid-soluble antioxidants properties that interact with cellular lipids and protects them from oxidation damage ( 177 ). In metabolic disease, certain crucial pathways are influenced by Vitamin E and some studies have summarized the role of Vitamin E regarding the treatment of obesity, metabolic, and cardiovascular disease ( 178 ). Hence, adequate supplementation of Vitamin E as an appropriate strategy to help in the treatment of the prevention of obesity and its associated comorbidities has been suggested. Nonetheless, some clinical trials have shown contradictory results with Vitamin E supplementation ( 177 ). Although Vitamin E has been recognized as an antioxidant that protects from oxidative damage, however, a full understanding of its mechanism of action is still lacking.

Bariatric Surgery

Bariatric surgery has gained popularity since the early 2000s in the management of severe obesity. If performed earlier, there are better outcomes for reducing weight and resolving obesity-related comorbidities in adults ( 179 – 182 ). Currently, the indication for bariatric in adolescents; those who have a BMI >35 with at least one severe comorbidity (Type 2 Diabetes, severe OSA, pseudotumor cerebri or severe steatohepatitis); or BMI of 40 or more with other comorbidities (hypertension, hyperlipidemia, mild OSA, insulin resistance or glucose intolerance or impaired quality of life due to weight). Before considering bariatric surgery, these patients must have completed most of their linear growth and participated in a structured weight-loss program for 6 months ( 159 , 181 , 183 ). The American Society for Metabolic and Bariatric Surgery (AMBS) outlines the multidisciplinary approach that must be taken before a patient undergoing bariatric surgery. In addition to a qualified bariatric surgeon, the patient must have a pediatrician or provider specialized in adolescent medicine, endocrinology, gastroenterology and nutrition, registered dietician, mental health provider, and exercise specialist ( 181 ). A mental health provider is essential as those with depression due to obesity or vice versa may have persistent mental health needs even after weight loss surgery ( 184 ).

Roux-en-Y Gastric Bypass (RYGB), laparoscopic Sleeve Gastrectomy (LSG), and Gastric Banding are the options available. RYGB and LSG currently approved for children under 18 years of age ( 166 , 181 , 185 ). At present, gastric banding is not an FDA recommended procedure in the US for those under 18y/o. One study showed some improvements in BMI and severity of comorbidities but had multiple repeat surgeries and did not believe a suitable option for obese adolescents ( 186 ).

Compared to LSG, RYGB has better outcomes for excess weight loss and resolution of obesity-related comorbidities as shown in studies and clinical trials ( 183 , 184 , 187 ). Overall, LSG is a safer choice and may be advocated for more often ( 179 – 181 ). The effect on the Gut-Brain axis after Bariatric surgery is still inconclusive, especially in adolescents, as the number of procedures performed is lower than in adults. Those who underwent RYGB had increased fasting and post-prandial PYY and GLP-1, which could have contributed to the rapid weight loss ( 185 ); this effect was seen less often in patients with gastric banding ( 185 ). Another study in adult patients showed higher bile acid (BA) subtype levels and suggested a possible BA's role in the surgical weight loss response after LSG ( 188 ). Adolescents have lower surgical complication rates than their adult counterparts, hence considering bariatric surgery earlier rather than waiting until adulthood has been entertained ( 180 ). Complications after surgery include nutritional imbalance in iron, calcium, Vitamin D, and B12 and should be monitored closely ( 180 , 181 , 185 ). Although 5-year data for gastric bypass in very obese teens is promising, lifetime outcome is still unknown, and the psychosocial factors associated with adolescent adherence post-surgery are also challenging and uncertain.

Obesity in childhood and adolescence is not amenable to a single easily modified factor. Biological, cultural, and environmental factors such as readily available high-density food choices impact youth eating behaviors. Media devices and associated screen time make physical activity a less optimal choice for children and adolescents. This review serves as a reminder that the time for action is now. The need for interventions to change the obesogenic environment by instituting policies around the food industry and in the schools needs to be clarified. In clinical trials GLP-1 agonists are shown to be effective in weight loss in children but are not yet FDA approved. Discovery of therapies to modify the gut microbiota as treatment for overweigh/obesity through use of probiotics or fecal transplantation would be revolutionary. For the present, ongoing clinical research efforts in concert with pharmacotherapeutic and multidisciplinary lifestyle programs hold promise.

Author Contributions

AK, SL, and MJ contributed to the conception and design of the study. All authors contributed to the manuscript revision, read, and approved the submitted version.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

1. Gurnani M, Birken C, Hamilton. J. Childhood obesity: causes, consequences, and management. Pediatr Clin North Am. (2015) 62:821–40. doi: 10.1016/j.pcl.2015.04.001

PubMed Abstract | CrossRef Full Text | Google Scholar

2. Sahoo K, Sahoo B, Choudhury AK, Sofi NY, Kumar R, Bhadoria. AS. Childhood obesity: causes and consequences. J Family Med Prim Care. (2015) 4:187–92. doi: 10.4103/2249-4863.154628

3. Brown CL, Halvorson EE, Cohen GM, Lazorick S, Skelton JA. Addressing childhood obesity: opportunities for prevention. Pediatr Clin North Am. (2015) 62:1241–61. doi: 10.1016/j.pcl.2015.05.013

4. Qasim A, Turcotte M, de Souza RJ, Samaan MC, Champredon D, Dushoff J, et al. On the origin of obesity: identifying the biological, environmental, and cultural drivers of genetic risk among human populations. Obes Rev. (2018) 19:121–49. doi: 10.1111/obr.12625

5. Rinninella E, Raoul P, Cintoni M, Fransceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases. Microorganisms. (2019) 7:14. doi: 10.3390/microorganisms7010014

6. Indrio F, Martini S, Francavilla R, Corvaglia L, Cristofori F, Mastrolia SA, et al. Epigenetic matters: the link between early nutrition, microbiome, and long-term health development. Front Pediatr. (2017) 5:178. doi: 10.3389/fped.2017.00178

7. Marcovecchio ML, Gorman S, Watson LPE, Dunger DB, Beardsall K. Catch-up growth in children born small for gestational age related to body composition and metabolic risk at six years of age in the UK. Horm Res Paediatr. (2020) 93:119–27. doi: 10.1159/000508974

8. Koletzko B, Fishbein M, Lee WS, Moreno L, Mouane N, Mouzaki M, et al. Prevention of childhood obesity: a position paper of the global federation of international societies of paediatric gastroenterology, hepatology nutrition (FISPGHAN). J Pediatr Gastroenterol Nutr. (2020) 70:702–10. doi: 10.1097/MPG.0000000000002708

9. Pulgarón ER. Childhood obesity: a review of increased risk for physical and psychological comorbidities. Clin Ther. (2013) 35:A18–32. doi: 10.1016/j.clinthera.2012.12.014

10. De Leonibus C, Marcovecchio ML, Chiarelli F. Update on statural growth and pubertal development in obese children. Pediatr Rep. (2012) 4:e35. doi: 10.4081/pr.2012.e35

11. Witchel SF, Burghard AC, Tao RH, Oberfield SE. The diagnosis and treatment of PCOS in adolescents. Curr Opin Pediatr . (2019) 31:562–9. doi: 10.1097/MOP.0000000000000778

12. Marcus CL, Brooks LJ, Draper KA, Gozal D, Halbower AC, Jones J, et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics . (2012) 130:e714–55. doi: 10.1542/peds.2012-1672

CrossRef Full Text | Google Scholar

13. Rankin J, Matthews L, Cobley S, Han A, Sanders R, Wiltshire HD, et al. Psychological consequences of childhood obesity: psychiatric comorbidity and prevention. Adolesc Health Med Ther . (2016) 7:125–46. doi: 10.2147/AHMT.S101631

14. Topçu S, Orhon FS, Tayfun M, Uçaktürk SA, Demirel F. Anxiety, depression, and self-esteem levels in obese children: a case-control study. J Pediatr Endocrinol Metabol. (2016) 29:357–61. doi: 10.1515/jpem-2015-0254

15. Katzmarzyk PT, Barlow S, Bouchard C, Catalano PM, Hsia DS, Inge TH, et al. An evolving scientific basis for the prevention and treatment of pediatric obesity. Int J Obes. (2014) 38:887–905. doi: 10.1038/ijo.2014.49

16. Brown T, Moore TH, Hooper L, Gao Y, Zayegh A, Ijaz S, et al. Interventions for preventing obesity in children. Cochrane Database Syst Rev . (2019) 7:CD001871. doi: 10.1002/14651858.CD001871.pub4

17. Smith E, Scarborough P, Rayner M, Briggs ADM. Should we tax unhealthy food and drink? Proc Nutr Soc. (2019) 77:314–20. doi: 10.1017/S0029665117004165

18. Adab P, Pallan M, Whincup PH. Is BMI the best measure of obesity? BMJ. (2018) 360:k 1274. doi: 10.1136/bmj.k1274

19. Anderson LN, Carsley S, Lebovic G, Borkhoff CM, Maguire JL, Parkin PC, et al. Misclassification of child body mass index from cut-points defined by rounded percentiles instead of Z-scores. BMC Res Notes. (2017) 10:639. doi: 10.1186/s13104-017-2983-0

20. Must A, Anderson SE. Body mass index in children and adolescents: consideration for population-based applications. Int J Obes. (2006) 30:590–4. doi: 10.1038/sj.ijo.0803300

21. Flegal KM, Wei R, Ogden C. Weight-for-stature compared with body mass index-for-age growth charts for the United States from the centers for disease control and prevention. Am J Clin Nutr. (2002) 75:761–6.22. doi: 10.1093/ajcn/75.4.761

22. Himes JH, Dietz WH. Guidelines for overweight in adolescent preventive services: recommendations from an expert committee. The expert committee on clinical guidelines for overweight in adolescent preventive services. Am J Clin Nutr. (1994) 59:307–16. doi: 10.1093/ajcn/59.2.307

23. Lazarus R, Baur L, Webb K, Blyth F. Body mass index in screening for adiposity in children and adolescents: systematic evaluation using receiver operating characteristic curves. Am J Clin Nutr. (1996) 63:500–6. doi: 10.1093/ajcn/63.4.500

24. McGinnis JM, Gootman JA. Food Marketing to Children and Youth: Threat or Opportunity? Institute of Medicine of the National Academies. Washington, DC: The National Academies Press. (2006).

Google Scholar

25. Chaudhri OB, Salem V, Murphy KG, Bloom SR. Gastrointestinal satiety signals. Annu Rev Physiol. (2008) 70:239–55. doi: 10.1146/annurev.physiol.70.113006.100506

26. Scaglioni S, De Cosmi V, Ciappolino V, Parazzini F, Brambilla P, Agostoni C. Factors influencing children's eating behaviours. Nutrients. (2018) 10:706. doi: 10.3390/nu10060706

27. Ahima RS, Antwi DA. Brain regulation of appetite and satiety. Endocrinol Metab Clin North Am. (2008) 37:811–23. doi: 10.1016/j.ecl.2008.08.005

28. Niswender KD, Baskin DG, Schwartz MW. Review insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis. Trends Endocrinol Metab. (2004) 15:362–9. doi: 10.1016/j.tem.2004.07.009

29. Niswender KD, Schwartz MW. Review insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol. (2003) 24:1–10. doi: 10.1016/S0091-3022(02)00105-X

30. Amitani M, Asakawa A, Amitani H, Inui. A. The role of leptin in the control of insulin-glucose axis. Front Neurosci. (2013) 7:51. doi: 10.3389/fnins.2013.00051

31. Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. (2003) 37:649–61. doi: 10.1016/S0896-6273(03)00063-1

32. Buhmann H, le Roux CW, Bueter M. The gut–brain axis in obesity. Best Prac Res Clin Gastroenterol. (2014) 28:559–71. doi: 10.1016/j.bpg.2014.07.003

33. Cone RD. Review anatomy and regulation of the central melanocortin system. Nat Neurosci. (2005) 8:571–8. doi: 10.1038/nn1455

34. Timper K, Brüning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech. (2017) 10:679–89. doi: 10.1242/dmm.026609

35. Labarthe A, Fiquet O, Hassouna R, Zizzari P, Lanfumey L, Ramoz N, et al. Ghrelin-derived peptides: a link between appetite/reward, gh axis, and psychiatric disorders? Front Endocrinol. (2014) 5:163. doi: 10.3389/fendo.2014.00163

36. Hills R. D Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: profound implications for diet and disease. Nutrients. (2019) 11:1613. doi: 10.3390/nu11071613

37. Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol. (2017) 2:747–56. doi: 10.1016/S2468-1253(17)30147-4

38. Gérard P. Gut microbiota and obesity. Cell Mol Life Sci. (2016) 73:147–62. doi: 10.1007/s00018-015-2061-5

39. Derrien M, Alvarez AS, de Vos WM. The gut microbiota in the first decade of life. Trends Microbiol. (2019) 27:997–1010.40. doi: 10.1016/j.tim.2019.08.001

40. Dao MC, Clément K. Gut microbiota and obesity: concepts relevant to clinical care. Eur J Intern Med . (2018) 48:18–24.41. doi: 10.1016/j.ejim.2017.10.005

41. Kim KN, Yao Y., Ju SY. Short chain fatty acids and fecal microbiota abundance in humans with obesity: a systematic review and meta-analysis. Nutrients. (2019) 11:2512. doi: 10.3390/nu11102512

42. Castaner O, Goday A, Park YM, Lee SH, Magkos F, Shiow STE, et al. The gut microbiome profile in obesity: a systematic review. Int J Endocrinol. (2018) 2018:4095789. doi: 10.1155/2018/4095789

43. Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E, et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in firmicutes populations. Enviroin Microbiol. (2017) 19:95–105. doi: 10.1111/1462-2920.13463

44. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TMS, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes . (2014) 4:e121. doi: 10.1038/nutd.2014.23

45. Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TMS. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes . (2014) 38:1525–31. doi: 10.1038/ijo.2014.46

46. Barczyńska R, Litwin M, Slizewska K, Szalecki M, Berdowska A, Bandurska K, et al. Bacterial microbiota fatty acids in the faeces of overweight obese children. Pol. J. Microbiol. (2018) 67:339–45. doi: 10.21307/pjm-2018-041

47. Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol. (2020) 72:558–77. doi: 10.1016/j.jhep.2019.10.003

48. Yu EL, Golshan S, Harlow KE, Angeles JE, Durelle J, Goyal NP, et al. Prevalence of nonalcoholic fatty liver disease in children with obesity. J Pediatr. (2019) 207:64–70. doi: 10.1016/j.jpeds.2018.11.021

49. Ranucci G, Spagnuolo MI, Iorio R. Obese children with fatty liver: Between reality and disease mongering. World J Gastroenterol. (2017) 23:8277–82. doi: 10.3748/wjg.v23.i47.8277

50. Cox AJ, West NP, Cripps A. W. Obesity, inflammation, and the gut microbiota. Lancet Diabet Endocrinol. (2015) 3:207–15. doi: 10.1016/S2213-8587(14)70134-2

51. Seitz J, Trinh S, Herpertz-Dahlmann B. The microbiome and eating disorders. Psychiatr Clin North Am. . (2019) 42:93–103. doi: 10.1016/j.psc.2018.10.004

52. Deans E. Microbiome and mental health in the modern environment. J Physiol Anthropol. (2016) 36:1. doi: 10.1186/s40101-016-0101-y

53. Peirce JM, Alviña K. The role of inflammation and the gut microbiome in depression and anxiety. J Neurosci Res . (2019) 97:1223–41. doi: 10.1002/jnr.24476

54. Ranadive SA, Vaisse C. Lessons from extreme human obesity: monogenic disorders. Endocrinol Metab Clin North Am. (2008) 37:733–51. doi: 10.1016/j.ecl.2008.07.003

55. Soliman AT, Yasin M, Kassem A. Leptin in pediatrics: a hormone from adipocyte that wheels several functions in children. Indian J Endocrinol Metab . (2012) 16(Suppl. 3):S577–87. doi: 10.4103/2230-8210.105575

56. Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh JM, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. (2007) 356:237–47. doi: 10.1056/NEJMoa063988

57. Mutch DM, Clément K. Unraveling the genetics of human obesity. PLoS Genet. (2006) 2:e188. doi: 10.1371/journal.pgen.0020188

58. Crocker MK, Yanovski JA. Pediatric obesity: etiology and treatment. Endocrinol Metab Clin North Am. (2009) 38:525–48. doi: 10.1016/j.ecl.2009.06.007

59. Huvenne H, Dubern B, Clément K, Poitou C. Rare genetic forms of obesity: clinical approach and current treatments in 2016. Obes Facts. (2016) 9:158–73. doi: 10.1159/000445061

60. Stefan M, Nicholls RD. What have rare genetic syndromes taught us about the pathophysiology of the common forms of obesity? Curr Diab Rep. (2004) 4:143–50. doi: 10.1007/s11892-004-0070-0

61. Hetherington MM, Cecil JE. Gene-Environment interactions in obesity. Forum Nutr. (2009) 63:195–203. doi: 10.1159/000264407

62. Reddon H, Guéant JL, Meyre D. The importance of gene-environment interactions in human obesity. Clin Sci. (2016) 130:1571–97. doi: 10.1042/CS20160221

63. Castillo JJ, Orlando RA, Garver WS. Gene-nutrient interactions and susceptibility to human obesity. Genes Nutr. (2017) 12:29. doi: 10.1186/s12263-017-0581-3

64. Heianza Y, Qi L. Gene-Diet interaction and precision nutrition in obesity. Int J Mol Sci. (2017) 18:787. doi: 10.3390/ijms18040787

65. Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. (2018) 6:223–36. . doi: 10.1016/S2213-8587(17)30200-0

66. Bouchard L, Drapeau V, Provencher V, Lemieux S, Chagnon Y, Rice T, et al. Neuromedin beta: a strong candidate gene linking eating behaviors and susceptibility to obesity. Am J Clin Nutr. (2004) 80:1478–86. . doi: 10.1093/ajcn/80.6.1478

67. Grimm ER, Steinle NI. Genetics of eating behavior: established and emerging concepts. Nutr Rev. (2011) 69:52–60. . doi: 10.1111/j.1753-4887.2010.00361.x

68. van der Klaauw AA, Farooqi IS. The hunger genes: pathways to obesity. Cell. (2015) 161:119–32. . doi: 10.1016/j.cell.2015.03.008

69. Martinez JA. Bodyweight regulation causes of obesity. Proc Nutr Soc. (2000) 59:337–45. Review. doi: 10.1017/S0029665100000380

70. Rask-Andersen M, Karlsson T, Ek WE, Johansson Å. Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status. PLoS Genet. (2017) 5:1. doi: 10.1371/journal.pgen.1006977

71. Xulong S, Pengzhou L, Xiangwu Y, Weizheng L, Xianjie Q, Shaihong Z, et al. From genetics and epigenetics to the future of precision treatment for obesity. Gastroenterol Rep. (2017) 5:266–70. doi: 10.1093/gastro/gox033

72. Bianco-Miotto T, Craig JM, Gasser YP, van dijk SJ, Ozanne SE. Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis. (2017) 8:513–9. doi: 10.1017/S2040174417000733

73. van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS, Members of EpiSCOPE. Epigenetics and human obesity. Int J Obes . (2015) 39:85–97. doi: 10.1038/ijo.2014.34

74. Li Y. Epigenetic mechanisms link maternal diets and gut microbiome to obesity in the offspring. Front Genet . (2018) 9:342. doi: 10.3389/fgene.2018.00342

75. Kaufman J, Montalvo-Ortiz JL, Holbrook H, O'Loughlin K, Orr C, Kearney C, et al. Adverse childhood experiences, epigenetic measures, and obesity in youth. J Pediatr. (2018) 202:150–6.76. doi: 10.1016/j.jpeds.2018.06.051

76. May Gardner R, Feely A, Layte R, Williams J, McGavock J. Adverse childhood experiences are associated with an increased risk of obesity in early adolescence: a population-based prospective cohort study. Pediatr Res. (2019) 86:522–28. doi: 10.1038/s41390-019-0414-8

77. Cheon BK„ Hong YY. Mere experience of low subjective socioeconomic status stimulates appetite food intake. Proc Natl Acad Sci USA . (2017) 114:72–7. doi: 10.1073/pnas.1607330114

78. Alegría-Torres JA, Baccarelli A, Bollati V. Epigenetics lifestyle. Epigenomics . (2011) 3:267-77. doi: 10.2217/epi.11.22

79. Birch LL, Fisher JO. Development of eating behaviors among children and adolescents. Pediatrics . (2011) 101:539–49.

PubMed Abstract | Google Scholar

80. Birch L, Savage JS, Ventura A. Influences on the development of children's eating behaviours: from infancy to adolescence. Can J Diet Pract Res. (2007) 68:s1–s56.

81. Nielsen SJ, Popkin BM. Patterns and trends in food portion sizes, 1977- 1998. JAMA. (2003) 289:450–53. . doi: 10.1001/jama.289.4.450

82. Munoz KA, Krebs-Smith SM, Ballard-Barbash R, Cleveland LE. Food intakes of US children and adolescents compared with recommendations. Pediatrics. (1997) 100:323–29. doi: 10.1542/peds.100.3.323

83. Fisher JO, Birch LL. Restricting access to palatable foods affects children's behavioral response, food selection, and intake. Am J Clin Nutr. (1999) 69:1264–72. doi: 10.1093/ajcn/69.6.1264

84. Faith MS, Scanlon KS, Birch LL, Francis LA, Sherry B. Parent-child feeding strategies and their relationships to child eating and weight status. Obes Res. (2004) 12:1711–22. . doi: 10.1038/oby.2004.212

85. Smith AD, Sanchez N, Reynolds C, Casamassima M, Verros M, Annameier SK, et al. Associations of parental feeding practices and food reward responsiveness with adolescent stress-eating. Appetite. (2020) 152:104715. doi: 10.1016/j.appet.2020.104715

86. Lowe CJ, Morton JB, Reichelt AC. Adolescent obesity and dietary decision making-a brain-health perspective. Lancet Child Adolesc Health. (2020) 4:388–96. doi: 10.1016/S2352-4642(19)30404-3

87. Goran MI, Treuth MS. Energy expenditure, physical activity, and obesity in children. Pediatr Clin North Am. (2001) 48:931–53. doi: 10.1016/S0031-3955(05)70349-7

88. Romieu I, Dossus L, Barquera S, Blottière HM, Franks PW, Gunter M, et al. Energy balance and obesity: what are the main drivers? Cancer Causes Control. (2017) 28:247–58. doi: 10.1007/s10552-017-0869-z

89. Mattes R, Foster GD. Food environment and obesity. Obesity. (2014) 22:2459–61. doi: 10.1002/oby.20922

90. Ickovics JR, O'Connor Duffany K, Shebl FM, Peters SM, Read MS, Gilstad-Hayden KR, et al. Implementing school-based policies to prevent obesity: cluster randomized trial. Am J Prev Med. (2019) 56:e1–11. doi: 10.1016/j.amepre.2018.08.026

91. Micha R, Karageorgou D, Bakogianni I, Trichia E, Whitsel LP, Story M, et al. Effectiveness of school food environment policies on children's dietary behaviors: A systematic review and meta-analysis. PLoS ONE. ( 2018 ) 13:e0194555. doi: 10.1371/journal.pone.0194555

92. Cawley J, Frisvold D, Hill A, Jones DJ. The impact of the philadelphia beverage tax on purchases and consumption by adults and children. Health Econ. (2019) 67:102225. doi: 10.1016/j.jhealeco.2019.102225

93. John Cawley J, Thow AM, Wen K, Frisvold D. The economics of taxes on sugar-sweetened beverages: a review of the effects on prices, sales, cross-border shopping, and consumption. Annu Rev Nutr. (2019) 39:317–38. doi: 10.1146/annurev-nutr-082018-124603

94. Fuller C, Lehman E, Hicks S, Novick MB. Bedtime use of technology and associated sleep problems in children. Glob Pediatr Health. (2017) 4:2333794X17736972. doi: 10.1177/2333794X17736972

95. Chahal H, Fung C, Kuhle S, Veugelers PJ. Availability and night-time use of electronic entertainment and communication devices are associated with short sleep duration and obesity among Canadian children. Pediatr Obes. (2012) 8:42–51. doi: 10.1111/j.2047-6310.2012.00085.x

96. Minghua T. Protein intake during the first two years of life and its association with growth and risk of overweight. Int J Environ Res Public Health. ( 2018 ) 15:1742. doi: 10.3390/ijerph15081742

97. Azad MB, Vehling L, Chan D, Klopp A, Nickel NC, McGavock JM, et al. Infant feeding and weight gain: separating breast milk from breastfeeding and formula from food. Pediatrics. (2018) 142:e20181092. doi: 10.1542/peds.2018-1092

98. Lin L, Amissah E, Gamble GD, Crowther CA, Harding JE. Impact of macronutrient supplements on later growth of children born preterm or small for gestational age: a systematic review and meta-analysis of randomised and quasirandomised controlled trials. PLoS Med. (2020) 17:e1003122. . doi: 10.1371/journal.pmed.1003122

99. Rzehak P, Oddy WH, Mearin ML, Grote V, Mori TA, Szajewska H, et al. Infant feeding and growth trajectory patterns in childhood and body composition in young adulthood. Am J Clin Nutr. (2017) 106:568–80. doi: 10.3945/ajcn.116.140962

100. Styne DM, Arslanian SA, Connor EL, Farooqi IS, Murad MH, Silverstein JH. Pediatric obesity-assessment, treatment, and prevention: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. (2017) 102:709–57. doi: 10.1210/jc.2016-2573

101. Whitaker RC, Pepe MS, Wright JA, Seidel KD, Dietz WH. Early adiposity rebound and the risk of adult obesity. Pediatrics . (1998) 101:E5. doi: 10.1542/peds.101.3.e5

102. Geserick M, Vogel M, Gausche R, Lipek T, Spielau U, Keller E, et al. Acceleration of BMI in early childhood and risk of sustained obesity. N Engl J Med. (2018) 379:1303–12. doi: 10.1056/NEJMoa1803527

103. Jabakhanji SB, Boland F, Ward M, Biesma RJ. Body mass index changes in early childhood. Pediatrics. (2018) 202:106–14. doi: 10.1016/j.jpeds.2018.06.049

104. Chung S. Growth and puberty in obese children and implications of body composition. J Obes Metab Syndr. (2017) 26:243–50. doi: 10.7570/jomes.2017.26.4.243

105. Tagi VM, Giannini C, Chiarelli F. Insulin resistance in children. Front Endocrinol. (2019) 10:342. doi: 10.3389/fendo.2019.00342

106. Kelesidis I, Mantzoros CS. Leptin and its emerging role in children and adolescents. Clin Pediatr Endocrinol . (2006) 15:1–14. doi: 10.1297/cpe.15.1

107. Burt Solorzano CM, McCartney CR, Obesity and the pubertal transition in girls and boys. Reproduction . (2010) 140:399–410. doi: 10.1530/REP-10-0119

108. Li W, Liu Q, Deng X, Chen Y, Liu S, Story M. Association between obesity and puberty timing: a systematic review and meta-analysis. Int J Environ Res Public Health. (2017) 14:1266. doi: 10.3390/ijerph14101266

109. Lee JM, Wasserman R, Kaciroti N, Gebremariam A, Steffes J, Dowshen S, et al. Timing of puberty in overweight vs. obese boys. Pediatrics. (2016) 137:e20150164. doi: 10.1542/peds.2015-0164

110. He J, Kang Y, Zheng L. Serum levels of LH, IGF-1 and leptin in girls with idiopathic central precocious puberty (ICPP) and the correlations with the development of ICPP. Minerva Pediatr . (2018). doi: 10.23736/S0026-4946.18.05069-7

111. Kang MJ, Oh YJ, Shim YS, Baek JW, Yang S, Hwang IT. The usefulness of circulating levels of leptin, kisspeptin, and neurokinin B in obese girls with precocious puberty. Gynecol Endocrinol. (2018) 34:627–30. doi: 10.1080/09513590.2017.1423467

112. Rendo-Urteaga T, Ferreira de Moraes AC, Torres-Leal FL, Manios Y, Gottand F, Sjöström M, et al. Leptin and adiposity as mediators on the association between early puberty and several biomarkers in European adolescents: the helena study. J Pediatr Endocrinol Metab. (2018) 31:1221–29. doi: 10.1515/jpem-2018-0120

113. Franks S. Adult polycystic ovary syndrome begins in childhood. Best Pract Res Clin Endocrinol Metab. (2002) 16:263–72. doi: 10.1053/beem.2002.0203

114. Franks S. Polycystic ovary syndrome in adolescents. Int J Obes. (2008) 32:1035–41. doi: 10.1038/ijo.2008.61

115. Jehan S, Zizi F, Pandi-Perumal SR, Wall S, Auguste E, Myers K, et al. Obstructive sleep apnea and obesity: implications for public health. Sleep Med Disord. (2017) 1:00019.

116. Patinkin ZW, Feinn R, Santos M. Metabolic consequences of obstructive sleep apnea in adolescents with obesity: a systematic literature review and meta-analysis. Childhood Obes. (2017) 13:102–10. doi: 10.1089/chi.2016.0248

117. Kaditis A. From obstructive sleep apnea in childhood to cardiovascular disease in adulthood: what is the evidence? Sleep. (2010) 33:1279–80. doi: 10.1093/sleep/33.10.1279

118. Marseglia L, Manti S, D'Angelo G, Nicotera A, Parisi E, Di Rose G, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci . (2014) 16:378–400. doi: 10.3390/ijms16010378

119. Eisele HJ, Markart P, Schulz R. Obstructive sleep apnea, oxidative stress, and cardiovascular disease: evidence from human studies. Oxid Med Cell Longev . (2015) 2015:608438. doi: 10.1155/2015/608438

120. Hui W, Slorach C, Guerra V, Parekh RS, Hamilton J, Messiha S, et al. Effect of obstructive sleep apnea on cardiovascular function in obese youth. Am J Cardiol. (2019) 123:341–7. doi: 10.1016/j.amjcard.2018.09.038

121. Matteoni CA, Younossi Z .m., Gramlich T, Boparai N, Liu YC, et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. (1999) 1999:116:1413. doi: 10.1016/S0016-5085(99)70506-8

122. Lavine JE, Schwimmer JB. Nonalcoholic fatty liver disease in the pediatric population. Clin Liver Dis. ( 2004 ) 8:549. doi: 10.1016/j.cld.2004.04.010

123. Huang JS, Barlow SE, Quiros-Tejeira RE, Scheimann A, Skelton J, Suskind D, et al. Childhood obesity for pediatric gastroenterologists. J Pediatr Gastroenterol Nutr. (2013) 2013:56:99. doi: 10.1097/MPG.0b013e31826d3c62

124. Anderson EL, Howe LD, Jones HE, Higgins JPT, Lawlor DA, Fraser A. The prevalence of non-alcoholic fatty liver disease in children and adolescents: a systematic review and meta-analysis. PLoS ONE. ( 2015 ) 10:e0140908. doi: 10.1371/journal.pone.0140908

125. Nobili V, Alisi A, Newton KP, Schwimmer JB. Comparison of the phenotype and approach to pediatric vs adult patients with nonalcoholic fatty liver disease. Gastroenterology. (2016) 150:1798–810. doi: 10.1053/j.gastro.2016.03.009

126. Rafiq N, Bai C, Fang Y, Srishord M, McCullough A, Gramlich T, et al. Long-term follow-up of patients with nonalcoholic fatty liver. Clin Gastroenterol Hepatol. (2009) 7:234–38. doi: 10.1016/j.cgh.2008.11.005

127. Feldstein AE, Charatcharoenwitthaya P, Treeprasertsuk S, Benson JT, Enders FB, Angula P. The natural history of non-alcoholic fatty liver disease in children: a follow-up study for up to 20 years. Gut. (2009) 58:1538. doi: 10.1136/gut.2008.171280

128. Schwimmer JB, Pardee PE, Lavine JE, Blumkin AK, Cook S. Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease. Circulation . (2008) 118:277. doi: 10.1161/CIRCULATIONAHA.107.739920

129. Perry DC, Metcalfe D, Lane S, Turner S. Childhood obesity and slipped capital femoral epiphysis. Pediatrics. (2018) 142:e20181067. doi: 10.1542/peds.2018-1067

130. Zavala-Crichton JP, Esteban-Cornejo I, Solis-Urra P, Mora-Gonzalez J, Cadenas-Sanchez C, Rodriguez-Ayllon M, et al. Association of sedentary behavior with brain structure and intelligence in children with overweight or obesity: Active Brains Project . (2020) 9:1101. doi: 10.3390/jcm9041101

131. Ronan L, Alexander-Bloch A, Fletcher PC. Childhood obesity, cortical structure, and executive function in healthy children. Cereb Cortex. (2019) 30:2519–28. doi: 10.1093/cercor/bhz257

132. Baker ER. Body weight and the initiation of puberty. Clin Obstetr Gynecol. (1985) 28:573–9. doi: 10.1097/00003081-198528030-00013

133. Siervogel RM, Demerath EW, Schubert C, Remsberg KE, Chumlea WM, Sun S, et al. Puberty and body composition. Horm Res. (2003) 60:36–45. doi: 10.1159/000071224

134. Sadeeqa S, Mustafa T, Latif S. Polycystic ovarian syndrome- related depression in adolescent girls. J Pharm Bioallied Sci. (2018) 10:55–9. doi: 10.4103/JPBS.JPBS_1_18

135. Himelein MJ, Thatcher SS. Depression and body image among women with polycystic ovary syndrome. J Health Psychol . (2006) 11:613–25. doi: 10.1177/1359105306065021

136. Magge SN, Goodman E, Armstrong SC. The metabolic syndrome in children and adolescents: shifting the focus to cardiometabolic risk factor clustering. Pediatrics. (2017) 140:e20171603. doi: 10.1542/peds.2017-1603

137. Mauras N, Delgiorno C, Kollman C, Bird K, Morgan M, Sweeten S, et al. Obesity without established comorbidities of the metabolic syndrome is associated with a proinflammatory and prothrombotic state, even before the onset of puberty in children. J Clin Endocrinol Metab. (2010) 95:1060–8. doi: 10.1210/jc.2009-1887

138. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. (2004) 350:2362–74. doi: 10.1056/NEJMoa031049

139. Erdmann J, Kallabis B, Oppel U, Sypchenko O, Wagenpfeil S, Schusdziarra V. Development of hyperinsulinemia and insulin resistance during the early stage of weight gain. Am J Physiol Endocrinol Metabol. (2008) 294:e568–75. . doi: 10.1152/ajpendo.00560.2007

140. Pulido-Arjona L, Correa-Bautista JE, Agostinis-Sobrinho C, Mota J, Santos R, Correa-Rodrigues M, et al. Role of sleep duration and sleep- related problems in the metabolic syndrome among children and adolescents. Ital J Pediatr. (2018) 44:9. doi: 10.1186/s13052-018-0451-7

141. Harriger JA, Thompson JK. Psychological consequences of obesity: weight bias and body image in overweight and obese youth. Int Rev Psychiatry. (2012) 24:247–53. . doi: 10.3109/09540261.2012.678817

142. Bacchini D, Licenziati MR, Garrasi A, Corciulo N, Driul D, Tanas R, et al. Bullying and victimization in overweight and obese outpatient children and adolescents: an italian multicentric study. PLoS ONE. (2015) 10:e0142715. doi: 10.1371/journal.pone.0142715

143. Loth KA, Watts AW, Berg PVD, Neumark-Sztainer D. Does body satisfaction help or harm overweight teens? A 10-year longitudinal study of the relationship between body satisfaction and body mass index. J Adolesc Health. (2015) 57:559–61. doi: 10.1016/j.jadohealth.2015.07.008

144. Gowey MA, Lim CS, Clifford LM, Janicke DM. Disordered eating and health-related quality of life in overweight and obese children. J Pediatr Psychol. (2014) 39:552–61. doi: 10.1093/jpepsy/jsu012

145. Mannan M, Mamun A, Doi S, Clavarino A. Prospective associations between depression and obesity for adolescent males and females- a systematic review and meta-analysis of longitudinal studies. PLoS ONE. (2016) 11:e0157240. doi: 10.1371/journal.pone.0157240

146. Ruiz LD, Zuelch ML, Dimitratos SM, Scherr RE. Adolescent obesity: diet quality, psychosocial health, and cardiometabolic risk factors. Nutrients. (2019) 12:43. doi: 10.3390/nu12010043

147. Goldschmidt AB, Aspen VP, Sinton MM, Tanofsky-Kraff M, Wilfley DE. Disordered eating attitudes and behaviors in overweight youth. Obesity. (2008) 16:257–64. doi: 10.1038/oby.2007.48

148. Golden NH, Schneider M, Wood C. Preventing obesity and eating disorders in adolescents. Pediatrics. (2016) 138:e1–e12. doi: 10.1542/peds.2016-1649

149. Rastogi R, Rome ES. Restrictive eating disorders in previously overweight adolescents and young adults. Cleve Clin J Med. (2020) 87:165–71. doi: 10.3949/ccjm.87a.19034

150. Hayes JF, Fitzsimmons-Craft EE, Karam AM, Jakubiak JL, Brown ME, Wilfley D. Disordered eating attitudes and behaviors in youth with overweight and obesity: implications for treatment. Curr Obes Rep. (2018) 7:235. doi: 10.1007/s13679-018-0316-9

151. Goldschmidt AB, Wall MM, Loth KA, Neumark-Sztainer D. Risk factors for disordered eating in overweight adolescents and young adults: Table I. J Pediatr Psychol. (2015) 40:1048–55. doi: 10.1093/jpepsy/jsv053

152. Follansbee-Junger K, Janicke DM, Sallinen BJ. The influence of a behavioral weight management program on disordered eating attitudes and behaviors in children with overweight. J Am Diet Assoc. (2010) 110:653–9. doi: 10.1016/j.jada.2010.08.005

153. Blake-Lamb TL, Locks LM, Perkins ME, Woo Baidal JA, Cheng ER, Taveras EM. Interventions for childhood obesity in the first 1,000 days a systematic review. Am J Prev Med. (2016) 50:780–9. doi: 10.1016/j.amepre.2015.11.010

154. McGuire S. Institute of Medicine (IOM). Early childhood obesity prevention policies. Washington, DC: The National Academies Press. Adv Nutr . (2011) 3:56–7. doi: 10.3945/an.111.001347

155. Pont SJ, Puhl R, Cook SR, Slusser W. Stigma experienced by children and adolescents with obesity. Pediatrics. (2017) 140:e20173034. doi: 10.1542/peds.2017-3034

156. Puhl R, Suh Y. Health consequences of weight stigma: implications for obesity prevention and treatment. Curr Obes Rep. (2015) 4:182–90. doi: 10.1007/s13679-015-0153-z

157. Schwimmer JB, Burwinkle TM, Varni JW. Health-related quality of life of severely obese children and adolescents. JAMA. (2003) 289:1813–9. doi: 10.1001/jama.289.14.1813

158. Carcone AI, Jacques-Tiura AJ, Brogan Hartlieb KE, Albrecht T, Martin T. Effective patient-provider communication in pediatric obesity. Pediatr Clin North Am. (2016) 63:525–38. doi: 10.1016/j.pcl.2016.02.002

159. Coppock JH, Ridolfi DR, Hayes JF, Paul MS, Wilfley DE. Current approaches to the management of pediatric overweight and obesity. Curr Treat Options Cardiovasc Med. (2014) 16:343. doi: 10.1007/s11936-014-0343-0

160. Davison KK, Jurkowski JM, Li K, Kranz S, Lawson HA. A childhood obesity intervention developed by families for families: results from a pilot study. Int J Behav Nutr Phys Act. (2013) 10:3. doi: 10.1186/1479-5868-10-3

161. Krystia O, Ambrose T, Darlington G, Ma DWL, Buchholz AC, Haines J. A randomized home- based childhood obesity prevention pilot intervention has favourable effects on parental body composition: preliminary evidence from the guelph family health study. BMC Obes. (2019) 6:10. doi: 10.1186/s40608-019-0231-y

162. Skjåkødegård HF, Danielsen YS, Morken M, Linde SRF, Kolko RP, Balantekin KN, et al. Study protocol: a randomized controlled trial evaluating the effect of family-based behavioral treatment of childhood and adolescent obesity–The FABO-study. BMC Public Health. (2016) 16:1106. doi: 10.1186/s12889-016-3755-9

163. Hall KD, Kahan S. Maintenance of lost weight and long-term management of obesity. Med Clin North Am. (2018) 102:183–97. doi: 10.1016/j.mcna.2017.08.012

164. Hall KD. Diet vs. exercise in “the biggest loser” weight loss competition. Obesity. (2013) 21:957–9. doi: 10.1002/oby.20065

165. Lecoultre V, Ravussin E, Redman LM. The fall in leptin concentration is a major determinant of the metabolic adaptation induced by caloric restriction independently of the changes in leptin circadian rhythms. J Clin Endocrinol Metabol. (2011) 96:E1512–E516. doi: 10.1210/jc.2011-1286

166. Kaur KK, Allahbadia G, Singh M. Childhood obesity: a comprehensive review of epidemiology, aetiopathogenesis and management of this global threat of the 21st century. Acta Sci Paediatr. (2019) 2:56–66. doi: 10.31080/ASPE.2019.02.0132

167. Crimmins NA, Xanthakos SA. Obesity. in Neinstein's Adolescent and Young Adult Health , Guide. Philadelphia, PA: Wolters Kluwer (2016). p. 295–300.

168. Astrup A, Rossner S, Van Gaal L, Rissanen A, Niskanen L, Al Hakim M, et al. Effects of liraglutide in the treatment of obesity: a randomized, double-blind, placebo-controlled study. Lancet. (2009) 374:1606–16. doi: 10.1016/S0140-6736(09)61375-1

169. Monami M, Dicembrini I, Marchionni N, Rotella CM, Mannucci E. Effects of glucagon-like peptide-1 receptor agonists on body weight: a meta-analysis. Exp Diabetes Res. (2012) 2012:672658. doi: 10.1155/2012/672658

170. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. (2015) 373:11–22 . doi: 10.1056/NEJMoa1411892

171. Kelly AS, Auerbach P, Barrientos-Perez M, Gies I, Hale PM, Marcus C, et al. A randomized, controlled trial of liraglutide for adolescents with obesity. N Engl J Med. (2020) 382:2117–28. doi: 10.1056/NEJMoa1916038

172. Foster BA, Escaname E, Powell T, Larsen B, Siddiqui SK, Menchaca J, et al. Randomized controlled trial of DHA supplementation during pregnancy: child adiposity outcomes. Nutrients . (2017) 9:566. doi: 10.3390/nu9060566

173. Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, et al. Gut microbiota and obesity: a role for probiotics. Nutrients. (2019) 11:2690. doi: 10.3390/nu11112690

174. Vajro P, Mandato C, Veropalumbo C, De Micco I. Probiotics: a possible role in treatment of adult and pediatric nonalcoholic fatty liver disease. Ann Hepatol. (2013) 12:161–63. doi: 10.1016/S1665-2681(19)31401-2

175. Zhao L, Fang X, Marshall M, Chung S. Regulation of obesity and metabolic complications by gamma and delta tocotrienols. Molecules. (2016) 21:344. doi: 10.3390/molecules21030344

176. Wong SK, Chin K-Y, Suhaimi FH, Ahmad F, Ima-Nirwana S. Vitamin E as a potential interventional treatment for metabolic syndrome: evidence from animal and human studies. Front Pharmacol. (2017) 8:444. doi: 10.3389/fphar.2017.00444

177. Galli F, Azzi A, Birringer A, Cook-Mills JM, Eggersdorfer M, Frank J, et al. Vitamin E: Emerging aspects and new directions. Free Radic Biol Med. (2017) 102:16–36. doi: 10.1016/j.freeradbiomed.2016.09.017

178. Galmés S, Serra F, Palou A. Vitamin E metabolic effects and genetic variants: a challenge for precision nutrition in obesity and associated disturbances. Nutrients . (2018) 10:1919. doi: 10.3390/nu10121919

179. Ahn SM. Current issues in bariatric surgery for adolescents with severe obesity: durability, complications, and timing of intervention. J. Obes Metabol Syndrome. (2020) 29:4–11. doi: 10.7570/jomes19073

180. Lamoshi A, Chernoguz A, Harmon CM, Helmrath M. Complications of bariatric surgery in adolescents. Semin Pediatr Surg. (2020) 29:150888. doi: 10.1016/j.sempedsurg.2020.150888

181. Weiss AL, Mooney A, Gonzalvo JP. Bariatric surgery. Adv Pediatr. (2017) 6:269–83. doi: 10.1016/j.yapd.2017.03.005

182. Stanford FC, Mushannen T, Cortez P, Reyes KJC, Lee H, Gee DW, et al. Comparison of short and long-term outcomes of metabolic and bariatric surgery in adolescents and adults. Front Endocrinol. (2020) 11:157. doi: 10.3389/fendo.2020.00157

183. Inge TH, Zeller MH, Jenkins TM, Helmrath M, Brandt ML, Michalsky MP, et al. Perioperative outcomes of adolescents undergoing bariatric surgery: the teen-longitudinal assessment of bariatric surgery (Teen-LABS) study . JAMA Pediatr . (2014) 168:47–53. doi: 10.1001/jamapediatrics.2013.4296

184. Järvholm K, Bruze G, Peltonen M, Marcus C, Flodmark CE, Henfridsson P, et al. 5-year mental health and eating pattern outcomes following bariatric surgery in adolescents: a prospective cohort study. Lancet Child AdolescHealth . (2020) 4:210–9. doi: 10.1016/S2352-4642(20)30024-9

185. Xanthakos SA. Bariatric surgery for extreme adolescent obesity: indications, outcomes, and physiologic effects on the gut–brain axis. Pathophysiology. (2008) 15:135–46. doi: 10.1016/j.pathophys.2008.04.005

186. Zitsman JL, Digiorgi MF, Kopchinski JS, Sysko R, Lynch L, Devlin M, et al. Adolescent Gastric Banding: a five-year longitudinal study in 137 individuals. Surg Obes Relat Dis. (2018) 14. doi: 10.1016/j.soard.2018.09.030

187. Inge TH, Jenkins TM, Xanthakos SA, Dixon JB, Daniels SR, Zeller MH, et al. Long-term outcomes of bariatric surgery in adolescents with severe obesity (FABS-5+). A prospective follow-up analysis. Lancet Diabet Endocrinol . (2017) 5:165–73. doi: 10.1016/S2213-8587(16)30315-1

188. Kindel TL, Krause C, Helm MC, Mcbride CL, Oleynikov D, Thakare R, et al. Increased glycine-amidated hyocholic acid correlates to improved early weight loss after sleeve gastrectomy. Surg Endosc. (2017) 32:805–12. doi: 10.1007/s00464-017-5747-y

Keywords: obesity, childhood, review (article), behavior, adolescent

Citation: Kansra AR, Lakkunarajah S and Jay MS (2021) Childhood and Adolescent Obesity: A Review. Front. Pediatr. 8:581461. doi: 10.3389/fped.2020.581461

Received: 08 July 2020; Accepted: 23 November 2020; Published: 12 January 2021.

Reviewed by:

Copyright © 2021 Kansra, Lakkunarajah and Jay. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Alvina R. Kansra, akansra@mcw.edu

This article is part of the Research Topic

Pediatric Obesity: From the Spectrum of Clinical-Physiology, Social-Psychology, and Translational Research

Data and case studies

Resources Policy Dossiers Obesity & COVID-19 Data and case studies

  • Sugar-Sweetened Beverage Tax
  • Digital Marketing
  • School-based interventions
  • Community-level interventions
  • Pregnancy & Obesity
  • Childhood Obesity Treatment
  • Front-of-pack nutrition labelling
  • Obesity & COVID-19
  • Physical Activity
  • Food Systems
  • Weight Stigma

World Obesity have collated some of the recent data and case studies available looking pertaining to obesity and the current outbreak of COVID-19. 

Researchers at Johns Hopkins University in the US examined 265 patients to determine if younger patients hospitalised with COVID-19 were more likely to be living with overweight and obesity. They found a correlation, which they hypothesise may be due to physiologic changes from obesity. Other comorbidities these patients may have had were not reported. Read the full study here .

Chinese researchers identified 66 patients with COVID-19 and fatty liver disease and compared the outcomes for those with and without obesity. They found obesity was a significant risk factor for severe illness in this population after accounting for other factors (age, gender, smoking, diabetes, high blood pressure, and dyslipidaemia). Read the full study here . 

The global rise in the prevalence of obesity and type 2 diabetes can be partially explained by a rise in diets high in fats, sugars and refined carbohydrates. Diets high in saturated fatty acids cause inflammation and immune disfunction, which may explain why minority groups (who experience disproportionate rates of diseases linked to nutrition, such as obesity and diabetes) are also hospitalised with COVID-19 at higher rates. Read the full study here .

MicroRNAs (abbreviated miRNAs) are produced in human cells to regulate gene expression. Some research has suggested that these may also defend against viruses. These researchers identified 848 miRNAs that are may be effective against SARS and 873 that could target COVID-19 using genome sequences of each of these viruses. Previous studies have suggested that the elderly and those with underlying conditions (including obesity) may produce less of these miRNAs, possibly explaining why these groups are at increased risk of severe illness from COVID-19. However, trials in human and animal subjects are needed to verify these theoretical results. Read the full study here .  

Given the importance of determining the risk factors for morbidity and mortality related to COVID-19, this retrospective study analysed the frequency and outcomes of COVID-19 patients in critical care who are living with overweight or obesity. “Of the 3,615 individuals who tested positive for COVID-19, 775 (21%) had a body mass index (BMI) 30-34, and 595 (16% of the total cohort) had a BMI >35.” While patients were separated into elderly (over 60) and younger (under 60) groups, it was not reported if the study controlled for other variables that may affect the course of COVID-19. Read the full study here .

This piece describes two patients with obesity that experienced damage to their airways while being intubated due to severe illness from COVID-19. The authors recommend videolaryngoscopy for intubation to protect both patients and healthcare workers. Read the full study here .

These researchers chose to specifically examine how many COVID-19 patients living with obesity or overweight were placed on ventilators. Based in Lille, France, the study included 124 patients, 68.8% of whom ultimately required ventilation. They established a dose-response relationship- increasing body max index (BMI) increased the risk of needing ventilation. This study found that BMI seemed to be associated with ventilator treatments independently of age, diabetes or high blood pressure. However, further research must be conducted before this relationship is proven. Read the full study here .

Researchers obtained medical records of 16,749 people hospitalised for COVID-19 to determine what were some of the factors that made patients more likely to experience severe cases of the illness. Slightly over half of patients had at least one underlying condition (including obesity) and these patients were more likely to die from COVID-19. The study found that obesity is linked to mortality, independently of age, gender and other associated conditions. Read the full study here .

Using a very large sample size of 17,425,455, this cohort study aimed to identify risk factors associated with mortality due to COVID-19 across the general population. Among the comorbidities, most of them were associated with increased risk, including obesity. Furthermore, deprivation was also identified as a major risk factor. Specifically, for patients with overweight and obesity, as their body mass index increased, so did their risk of dying from COVID-19. Read the full study here .

This study included 48 critically ill patients with COVID-19 treated with invasive ventilation in Spain. Of this population, 48% were living with obesity, 44% with hypertension, and 38% with chronic lung disease. Symptoms and patient outcomes were also described. Read the full study here .

This study examined the correlation between severe disease and body mass index (BMI) among 357 patients in France. People diagnosed with severe COVID-19 were 1.35 times more likely to also be living with obesity and people in critical care with COVID-19 were 1.89 times more likely to be living with obesity than the general public. This study adjusted for age and gender of patients but no other cofounding factors. Read the full study here .

Previous research has demonstrated that children tend to gain weight during when school is not in session, so experts have been concerned about the impact of lockdowns due to coronavirus on childhood obesity rates. This study observed lifestyle behaviours in 41 children living with obesity at baseline and then three weeks into quarantine. Scientists found that children reported eating more meals, as well as more potato chips, red meat, and sugar-sweetened beverages. They slept more, exercised less and spent much more time looking at screens. As a result, researchers recommend that lifestyle interventions be delivered through telemedicine while the lockdown lasts. Read the full study here .

A recent study from France examined 1317 COVID-19 patients living with diabetes. Of these, more than 10% passed away and almost 33% needed to be placed on a ventilator within a week of admission to the hospital. Obesity was found to be an independent risk factor for poor outcomes when other cofounding factors were accounted for. Read the full study here .

This study found that, of 5700 patients admitted to 12 selected New York hospitals with COVID-19, 56.6% had hypertension (high blood pressure), 41.7% were living with obesity and 33.8% had diabetes. It also reported data on patient outcomes. Read the full study here .  

Wuhan city, the capital of Hubei province in China, was for a long time the epicentre of the COVID-19 outbreak. This study presents information of patients admitted to two Wuhan hospitals with laboratory-confirmed COVID-19. 191 patients were included in order to determine what risk factors lead to fatalities, describe Covid-19 symptoms over time, determine how long patients are infectious after they recover and record what treatments were tried. It should be noted that almost half of patients had underlying health conditions such as hypertension or heart disease, although obesity was not measured. Read the full study here . 

This study examined 24 adults to determine which populations in the Seattle area were hospitalised with severe illness from COVID-19, what underlying conditions they had, the results of medical imaging tests and whether they recovered. Patients had an average body mass index of 33.2 (give or take 7.2 units) and over half (58%) of patients were diagnosed with diabetes. Scientists concluded that “patients with coexisting conditions and older age are at risk for severe disease and poor outcomes after ICU [intensive care unit] admission.” Read the full study here .

Looking at 383 patients in Shenzen, China, this study was the first to directly examine the correlation between obesity and severe illness from coronavirus. For this study, a person with a body mass index (BMI) between 24.0 - 27.9 was considered overweight and a person with a BMI greater than 28 was considered to be living with obesity. While people living with obesity generally experienced the same length of illness, they were significantly more likely to develop severe pneumonia, even when accounting for other risk factors. Read the full study here .

Based on a sample of 4,103 New York City residents, this paper evaluates what characteristics make people more likely to be admitted to the hospital and critical care.  Overall, it was observed that 39.8% of people living with obesity were hospitalised, compared to 14.5% without. Scientists found “particularly strong associations of older age, obesity, heart failure and chronic kidney disease with hospitalization risk, with much less influence of race, smoking status, chronic pulmonary disease and other forms of heart disease.” Read the full study here .

In order to ensure the proper monitoring of COVID-19-related hospitalisations across the United States, the COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) was developed. This report “presents age-stratified COVID-19-associated hospitalisation rates for patients admitted during March 1-28, 2020, and clinical data on patients admitted during March 1-30, 2020.” Among the 1,482 patients diagnosed and hospitalised with COVID-19, 90% had at least one comorbidity and 42% were living with obesity, with African Americans and the elderly disproportionately affected. Read the full study here .

This report examined demographic information of patients hospitalised with COVID-19 in China. Of these, older patients, diabetics and those living with obesity were significantly more likely to be considered “severely ill.” The study also looked at symptoms during admission at admission and treatment options. Read the full study here .

In this study, researchers used data from 103 consecutive patients hospitalized in the USA. There were two major findings- a correlation between critical care admissions due to COVID-19 and a body mass index greater than 35 in general, and a correlation between needing invasive mechanical ventilation and having both heart disease and obesity. These findings were adjusted for age, sex, and race. Read the full study here .

This article examined how SARS- CoV-2 impacts pregnancy using 46 patients in the USA. Almost all patients who developed severe disease were living with overweight and obesity. After diagnosis, 16% of patients were admitted to the hospital and 2% were placed in intensive care. Researchers believe this, along with the need to induce labour prematurely in some patients to improve breathing, may suggest that pregnant women should be classified as a vulnerable group. Read the full study here .

School and recreational space closures due to COVID-19 have reduced physical activity among children. Researchers used modeling software to simulate the following scenarios: 

  • No school closures (control) 
  • Schools closed for two months 
  • Schools closed for two months and 10% reduction in physical activity over the summer break  
  • Schools closed for four months (April through May and September through October) and 10% reduction in physical activity over the summer break 
  • Schools closed for six months (April through May and September through December) and 10% reduction in physical activity over the summer break 

Overall, the pandemic is projected to increase mean standardised body mass index (BMI) between 0.056 (two-month closure) and 0.198 (six-month closure) units. It may also increase the percentage of children living with obesity in the USA by up to 2.373 percentage points. Read the full study here .

This study was conducted to examine the characteristics and course of disease in 50 New York children (under 21 years of age) hospitalised with COVID-19. Of the study population, 11 patients had obesity and 8 had overweight.  Obesity was found to be a significant risk factor for both severe disease and mechanical ventilation while immunosuppression was not.  Read the full study here .

Researchers at the University of Chicago Medical Center found that patients hospitalized with COVID-19 were more likely to die if they were also living with obesity, even when accounting for age, sex, and underlying conditions. 238 patients were included within the study. These researchers did not find a significant connection with admission to critical care units or mechanical ventilation in patients with obesity. Limitations included the makeup of the study population, as the sample size was small and the vast majority were African American, so the results may not be representative of all people. Read the full study here.  

This meta-analysis and systematic review found nine separate articles regarding the link between COVID-19, obesity and more severe diseases. Between all studies, 1817 patients were examined. Researchers found an odds ratio of 1.89 for poor outcomes in patients with obesity, especially among younger patients, which indicates that obesity increases the risk of severe diseases. Read the full study here . 

A meta-analysis concluded that people living with obesity were more likely to have worse outcomes if they also contracted COVID-19. Researchers identified nine articles (six of which were retrospective case-control studies, four of which were retrospective cohort studies, and one of which used both methods) and extracted data from each. Limitations included heterogeneity in study design (particularly regarding the definition of obesity), lack of comorbidity reporting, and low quantity of studies used. Read the full study here .

As almost 75% of American adults over the age of 20 are living with overweight or obesity, this disease should be considered a public health priority, especially given the increased likelihood of poor outcomes in COVID-19 patients with obesity. The paper outlines several mechanisms explaining why obesity may lead to more severe disease, including having more of the receptor the virus uses to enter cells, reduced lung function, chronic inflammation, endothelial disfunction, changes in blood clotting, and physiological changes related to common comorbidities of obesity. Finally, several compelling studies linking obesity to increased risk of complications are included. Read the full study here .

Evidence shows that the impact of COVID-19 tends to be more serious in specific vulnerable groups, including people living with obesity. Furthermore, the pandemic also seems to have a number of indirect repercussions including on eating behaviour patterns among people with obesity. The objective of this study was “to examine the impact of the COVID-19 pandemic on patronage to unhealthy eating establishments in populations with obesity.”   

These researchers combined GPS data with known obesity rates to determine how many people with obesity entered unhealthy restaurants during the COVID-19 pandemic (December 2019- April 2020). Prior to lockdowns, more people in areas with high obesity rates entered fast food restaurants; in March, fewer people did across all areas; however, the numbers of patrons steadily increased during April, at a faster rate in areas with higher obesity rates. While informative, a number of limitations were observed, including the fact that not all consumers exactly match the demographics of the area they live in and that more variables may contribute to restaurant traffic than accounted for here. Read the full study here . 

Various studies over the past few months have linked obesity to a more serious course of illness from COVID-19. It is therefore essential that we improve our understanding of the possible reasons for the link and what it means for those living with obesity. This systematic review looks at the influence of obesity on COVID-19 outcomes and proposes biological mechanisms as to why a more severe courseof illness can occur. It also discusses the implications of COVID-19 for those living with obesity. Read the full study here .

Both COVID-19 and childhood obesity are pandemics raging across America today. Obesity is an independent risk factor for the severity of COVID-19, suggesting that children with obesity could see a more severe course of illness due to COVID-19. The stay-at-home mandates and physical distancing preventative measures have resulted in a lack of access to nutritious foods, physical activity, routines and social interactions, all of which could negatively impact children -especially those living with obesity. Read the full study here .

Obesity has been suggested as a risk factor for poor outcome in those with COVID-19. Studies show that patients with obesity are more likely to require mechanical ventilation. In fact, multiorgan failure in patients with COVID-19 and obesity could be dueto the chronic metabolic inflammation and predisposition to the “enhanced release of cytokines-pathophysiology accompanying severe obesity”. However, the association between body mass index (BMI) and COVID-19 outcomes has yet to be fully explored. This study intends to address that gap. Read the full study here .

Emerging evidence suggests that the severity of COVID-19 in a patient is associated with overweight and obesity. Patients with obesity are at risk for a number of other non-communicable diseases, including cardiovascular dysfunction and hypertension and diabetes. In individuals living with overweight and obesity, macronutrient excess in adipose tissue stimulates adipocytes “to release tumour necrosis factor α(TNF-α), interleukin-6 (IL-6) and other pro-inflammatory mediators and to reduce production of the anti-inflammatory adiponectin, thus predisposing to a proinflammatory state and oxidative stress”. Obesity also impairs immune responses; it has a negative impact on pathogen defences within the body. Therefore, the acceleration of viral inflammatory responses in COVID-19 and more unfavourable prognoses are associated with individuals living with obesity. Read the full study here .

Obesity has been identified as a comorbidity for severe outcomes in patients with COVID-19. In this study, comorbidities associated with increased risk of COVID-19 were determined in a population-based analysis of Mexicans with at least one comorbidity. Data was obtained from the COVID-19 database of the publicly available Mexican Ministry of Health “Dirección General de Epidemiología”. Variables of the patients’ heath were all noted, such as age, gender, smoking status, history of COVID-19 contact, comorbidities, etc. Patients with missing information were excluded in the analysis. To determine the independent effect of each comorbidityon COVID-19 and separate the effect of two or more, “analysis was limited to patients reporting only one comorbidity." Read the full study here .

Obesity has arisen as a major complication for the COVID-19 pandemic, which has been caused by the novel SARS-CoV-2 virus. The former is a major health concern due to its side-effects on human health and association with morbidity and mortality. Evidence points out that obesity can worsen patient prognosis due to COVID-19 infection. There may be a “pathophysiological link that could explain the fact that obese patients are prone to present with SARS-CoV-2 complications”. The authors present mechanistic obesity-related issues that aggravate the SARS-CoV-2 infection in patients living with obesity and the possible molecular links between obesity and SARS-CoV-2 infection. Read the full study here .

The highly infectious serious acute respiratory syndrome COVID-19 has caused high morbidity and mortality all over the world. It has been suggested that SARS-CoV-2, the pathogen of COVID-19, uses angiotensin-converting enzyme 2 (ACE2) as a cell receptor. This receptor is found in the lungs but also many other organs, including the adipose tissue, heart, and oral epithelium. Previous studies have identified obesity as a critical factor in the prognoses of COVID-19 patients, and that, in patients with COVID-19, non-survivors had a higher body mass index (BMI) than survivors. This study intended to “investigate the association between obesity and poor outcomes of COVID-19 patients." Read the full study here .

Approximately 45% of individuals worldwide have overweight or obesity. Obesity is characterized by its pro-inflammatory condition. The excess visceral and omental adiposity seen in individuals with obesity are linked with an increase in pro-inflammatory cytokines that affect systemic cellular processes. Importantly, they “change the nature and frequency of immune cells infiltration”. When a high percentage of a population have obesity, more virulent viral strains tend to develop, and the reach of a virus is wider. Furthermore, the state of obesity is correlated to the presence of comorbidities that are dangerous to human health, such as type 2 diabetes and hypertension. This systematic review includes articles from a myriad of databases in order to address how living with obesity impacts one’s reaction to the SARS-CoV-2 virus and course of COVID-19. Read the full study here .

The psychological impact of COVID-19 lockdown and quarantine on children has been documented to cause “anxiety, worrying, irritability, depressive symptoms, and even post-traumatic stress disorder symptoms”. In particular, children living with severe obesity may struggle with anxieties about the possibility of obesogenic issues that can arise during the course of illness due to COVID-19. In this study, 75 families (one child interviewed per family) were interviewed on anxiety that their child with severe obesity may have, and on what specific type anxieties they are. 24 of 75 children reported having COVID-19 related anxieties. Read the full study here . 

In this multi-centre study focused on retrospective observational data from eight hospitals throughout Greece, the data on 90 critically ill patients positive for COVID-19 is analysed. Those hospitalised due to COVID-19 reflect critically ill patients whodeveloped extremely severe acute respiratory syndrome (SARS) in elderly patients with COVID-19-related pneumonia and/or underlying chronic diseases. Many underlying chronic diseases have been identified as risk factors for developing more severe COVID-19. These include type-2 diabetes, cardiovascular diseases, and hypertension. Obesity has also been associated with disease severity. In this study the relation of comorbidities such as obesity and type-2 diabetes and COVID-19 disease severity is explored. Read the full study here .

According to the World Health Organisation, physical inactivity is the fourth leading cause of death, and increases the risk of a person contracting a “metabolic disease, including obesity and type 2 diabetes (T2D).” This article points out that those seeking treatment for obesity or T2D may find difficulty in doing so during the COVID-19 pandemic due to lockdowns. As it has been found that sedentary behaviour increases one's risk for many chronic diseases, the authors wished to explore hypothetical immunopathologyof COVID-19 in patients living with obesity and how the immune defences against COVID-19 may be related to the “immuno-metabolic dysregulations'' characterised by it. Furthermore, they explore the possibility of exercise as a counteractive measure due to its anti-inflammatory properties. Read the full study here .

Obesity has been linked to a less-efficient immune response in the human body as well as poorer outcomes for respiratory diseases. In this article, researchers hypothesised that a higher Body Mass Index is a risk factor for a more severe course of illness for COVID-19. They followed all patients hospitalised from 11 January to 16 February 2020 until March 26 2020 at the Third People’s Hospital of Shenzhen (China), which was dedicated to COVID-19 treatment. Read the full study here .

As reported by the World Health Organization, the global prevalence of obesity is still on the rise both across high-income as well as low-and middle-income countries. Obesity has been associated with an increase in mortality for patients fighting COVID-19. The authors suggest that the inflammatory profile associated with patients with obesity is conducive to a more severe course of illness in patients with COVID-19. Read the full study here .

Researchers studying COVID-19, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), have concluded that obesity, diabetes, hypertension or cardiovascular disease is correlated to an increased severity of illness due to COVID-19. Obesity has been associated with SARS-CoV-2 due to the “cytokine storm” of the latter; a number of the pro-inflammatory cytokines released in the “storm” which are detrimental to organ function are also found contributing to the chronic low-grade inflammation in patients with obesity. The authors wished to study a Middle Eastern population and assess the outcome of COVID-19 in relation to obesity. They observed clinical data from patients in the Al Kuwait Hospital in Dubai, UAE, to study the correlation between obesity and poor clinical outcomes of COVID-19. Read the full study here .

In many previous studies, underlying conditions such as obesity, hypertension and diabetes have been found to be correlated with an increased rate of hospitalisation and death due to SARS-CoV-2. Obesity is a non-communicable disease marked by an imbalanced energy state due to hypertrophy and hyperplasia of adipose tissue. Increased secretion of various cytokines and hormones, such as interleukin-6, tumour necrosis factor alpha and leptin, establishes a low-grade inflammatory state in patients with obesity. These pro-inflammatory cytokines predispose individuals “to increased risk for infection and adverse outcomes”. The metabolic disorders that are associated with obesity are numerous, including diabetes, hypertension and cardiovascular diseases. Most are associated with an increased risk of severe COVID-19. Due to this link, obesity is “an important factor in determining the morbidity and mortality risk in SARS CoV 2 patients” as well as the need for mechanical ventilation. Read the full study here .

Pulmonary consolidation is the most common complication of COVID-19. A high percentageof COVID-19 related pulmonary consolidationis due to extensive pulmonary fibrosis (PF). Viral infections have been shown to be a risk factor for PF, and both viral infections and aging were“strongly associated cofactors” for PF in this study. Infection with SARS-CoV-2, the virus responsible for COVID-19,suppresses the angiotensin-converting enzyme 1 (ACE2), which is a receptor exploited by the virus for cell entry; this receptor is “a negative regulator of” PF, which therefore links the virus to the progression of PF. Read the full study here .

Elevated body mass index has been marked as a risk factor for COVID-19 severity, hospital admissions and mortality. Diabetes and hypertension have also been associated with severe and fatal cases of COVID-19. Mendelian randomisation (MR) analyses the causal effect of an exposure risk factor on an outcome using genetic variants as instruments of estimation. In this study, the causal relationship between obesity traits (such as elevated BMI and metabolic disorders) and quantitative cardiometabolic biomarkers and COVID-19 susceptibility was examined by MR. Data was obtained from the UK Biobank. 1,211 individuals who had tested positive for COVID-19 and 387,079 individuals who were negativeor untestedwere analysed. Read the full study here .

Obesity and diabetes have both been identified in epidemiological reports as comorbidities “frequently associated with severe forms of COVID-19”. Both have also been identified as an independent risk factor for the severity of COVID-19 in a patient. The presence of these diseases is associated with each other; therefore, they could “confer a particularly high risk of severe COVID-19”. In previous analysis of the CORONAvirus-SARS-CoV-2 and Diabetes Outcomes (CORONADO) Study, it was shown “that body mass index (BMI) was positively and independently associated with severe COVID-19-related outcomes ... in patients with diabetes hospitalised for COVID-19”. In this analysis of the CORONADO data, the course of COVID-19 and its relationship to obesity in patients with type 2 diabetes hospitalised for this disease is explored. The influence of age on BMI and COVID-19 prognosis is also addressed due to the heightened impact of COVID-19 on the elderly population. Read the full study here .

Share this page

Training & Events

SCOPE E-Learning

We offer the only internationally recognised course on obesity management. Read more here.

Global Obesity Observatory

We offer various statistics, maps and key data around the topic of obesity. You can find all that and more here.

Policy & Advocacy

Our Policy Priorities

We have developed five key areas of policy that are a priority to us. Want to know more? Check them out here!

  • Our Members
  • Partnerships
  • Patient Portal
  • Membership Application Form
  • Member Benefits
  • Finance Committee
  • Annual Report and Financials
  • Prevalence of Obesity
  • Causes of Obesity
  • Obesity Classification
  • Prevention of Obesity
  • Obesity as a disease
  • Commercial determinants of obesity
  • Childhood Obesity
  • Obesity in Universal Health Coverage
  • The ROOTS of Obesity
  • World Obesity Day
  • Healthy Venues
  • Reinventing the Food System: A Report
  • The Spotlight Project
  • SCOPE Examination
  • Guide to SCOPE Certification
  • SCOPE Schools
  • Accreditation
  • SCOPE Fellows
  • Leadership Programme
  • SCOPE Pricing
  • SCOPE Accredited Events
  • Event Archive
  • International Congress on Obesity

Sign up for notifications

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts

IJO top image

Welcome to the International Journal of Obesity

Publishing the latest research and reviews on biochemical, physiological, genetic, molecular, metabolic, nutritional, psychological and epidemiological aspects of obesity and related disorders. 

case study essay about obesity

Association of body-mass index with physiological brain pulsations across adulthood – a fast fMRI study

  • Lauri Raitamaa
  • Joona Kautto
  • Vesa Kiviniemi

case study essay about obesity

Calorie restriction-induced leptin reduction and T-lymphocyte activation in blood and adipose tissue in men with overweight and obesity

  • Rebecca L. Travers
  • William V. Trim
  • Dylan Thompson

case study essay about obesity

Comparing body composition between the sweet-liking phenotypes: experimental data, systematic review and individual participant data meta-analysis

  • Rhiannon Mae Armitage
  • Vasiliki Iatridi
  • Martin Richard Yeomans

Current issue

Microbiome and pregnancy: focus on microbial dysbiosis coupled with maternal obesity.

  • Kalie F. Beckers
  • Juliet P. Flanagan
  • Jenny L. Sones

Obesogens: a unifying theory for the global rise in obesity

  • Jerrold J. Heindel
  • Robert H. Lustig
  • Barbara E. Corkey

Patterns of weight change during adulthood and incidence of nephrolithiasis: a population-based study

  • Chaoxue Zhang

BMAL1 deletion protects against obesity and non-alcoholic fatty liver disease induced by a high-fat diet

  • Chongwen Zhan
  • Haoran Chen

Interindividual variability in appetitive sensations and relationships between appetitive sensations and energy intake

  • Eunjin Cheon
  • Richard D. Mattes

Sex-specific differences in ectopic fat and metabolic characteristics of paediatric nonalcoholic fatty liver disease

  • Eun Hye Lee
  • Ji Young Kim
  • Hye Ran Yang

Volume 48 Issue 4

Announcements

image of new International Journal of Obesity Editor in Chief Nikhil Dhurandhar.

NEW: Obesity Management with Next-Generation Drugs

Coming soon: Drugs for weight loss have been used for a long time in practice, however recent developments prompted the need for this special edition. The goals of this collection are to discuss the current generations of weight loss drugs as it relates to their practical use by clinicians, consideration for future developments by scientists, regulatory framework, economics, and ethics.

Meet our Editors!

Learn more about the Editors for the International Journal of Obesity

image of Twitter logo.

Follow us on Twitter

  • @IntJObesity

Advertisement

About the Journal

IJO logo

Guide for Authors

IJO logo

Research Data

IJO logo

Advertisement

Advertisement

Browse articles

case study essay about obesity

Association between BMI-based metabolic phenotypes and prevalence of intracranial atherosclerotic stenosis: a cross-sectional study

  • Xinsheng Han

Confronting the challenge of promoting fruit and vegetable intake for obesity management: An alternative approach

  • Marleigh Hefner
  • Gaurav Kudchadkar
  • Nikhil V. Dhurandhar

case study essay about obesity

Genetic evidence for involvement of β2-adrenergic receptor in brown adipose tissue thermogenesis in humans

  • Yuka Ishida
  • Mami Matsushita
  • Kazuhiro Nakayama

case study essay about obesity

Visceral-to-peripheral adiposity ratio: a critical determinant of sex and ethnic differences in cardiovascular risks among Asian Indians and African Creoles in Mauritius

  • Vinaysing Ramessur
  • Sadhna Hunma
  • Abdul G. Dulloo

case study essay about obesity

The influence of body composition on the response to dynamic stimulation of the endocrine pituitary-testis axis

  • Julie Abildgaard
  • Anne Kirstine Bang
  • Niels Jørgensen

case study essay about obesity

Distinguishing health-related parameters between metabolically healthy and metabolically unhealthy obesity in women

  • Fernando Mendonça
  • Pietra Soares

case study essay about obesity

The effect of GLP-1 receptor agonist use on negative evaluations of women with higher and lower body weight

  • Stacy M. Post
  • Susan Persky

Collections

collection image

Pediatric Highlights

Advertisement

Trending - Altmetric

Score 491

Does dieting make you fat? A twin study

Score 221

Controlled trial of hypnotherapy for weight loss in patients with obstructive sleep apnoea

Score 18

Waist-to-height ratio: a simple option for determining excess central adiposity in young people

Quick links.

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

case study essay about obesity

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Heart-Healthy Living
  • High Blood Pressure
  • Sickle Cell Disease
  • Sleep Apnea
  • Information & Resources on COVID-19
  • The Heart Truth®
  • Learn More Breathe Better®
  • Blood Diseases and Disorders Education Program
  • Publications and Resources
  • Blood Disorders and Blood Safety
  • Sleep Science and Sleep Disorders
  • Lung Diseases
  • Health Disparities and Inequities
  • Heart and Vascular Diseases
  • Precision Medicine Activities
  • Obesity, Nutrition, and Physical Activity
  • Population and Epidemiology Studies
  • Women’s Health
  • Research Topics
  • Clinical Trials
  • All Science A-Z
  • Grants and Training Home
  • Policies and Guidelines
  • Funding Opportunities and Contacts
  • Training and Career Development
  • Email Alerts
  • NHLBI in the Press
  • Research Features
  • Past Events
  • Upcoming Events
  • Mission and Strategic Vision
  • Divisions, Offices and Centers
  • Advisory Committees
  • Budget and Legislative Information
  • Jobs and Working at the NHLBI
  • Contact and FAQs
  • NIH Sleep Research Plan
  • < Back To Research Topics

Obesity Research

Language switcher.

Over the years, NHLBI-supported research on overweight and obesity has led to the development of evidence-based prevention and treatment guidelines for healthcare providers. NHLBI research has also led to guidance on how to choose a behavioral weight loss program.

Studies show that the skills learned and support offered by these programs can help most people make the necessary lifestyle changes for weight loss and reduce their risk of serious health conditions such as heart disease and diabetes.

Our research has also evaluated new community-based programs for various demographics, addressing the health disparities in overweight and obesity.

Illustration of a document with the red cross medical symbol

NHLBI research that really made a difference

  • In 1991, the NHLBI developed an Obesity Education Initiative to educate the public and health professionals about obesity as an independent risk factor for cardiovascular disease and its relationship to other risk factors, such as high blood pressure and high blood cholesterol. The initiative led to the development of clinical guidelines for treating overweight and obesity.
  • The NHLBI and other NIH Institutes funded the Obesity-Related Behavioral Intervention Trials (ORBIT) projects , which led to the ORBIT model for developing behavioral treatments to prevent or manage chronic diseases. These studies included families and a variety of demographic groups. A key finding from one study focuses on the importance of targeting psychological factors in obesity treatment.

Current research funded by the NHLBI

The Division of Cardiovascular Sciences , which includes the Clinical Applications and Prevention Branch, funds research to understand how obesity relates to heart disease. The Center for Translation Research and Implementation Science supports the translation and implementation of research, including obesity research, into clinical practice. The Division of Lung Diseases and its National Center on Sleep Disorders Research fund research on the impact of obesity on sleep-disordered breathing.

Find funding opportunities and program contacts for research related to obesity and its complications.

Current research on obesity and health disparities

Health disparities happen when members of a group experience negative impacts on their health because of where they live, their racial or ethnic background, how much money they make, or how much education they received. NHLBI-supported research aims to discover the factors that contribute to health disparities and test ways to eliminate them.

  • NHLBI-funded researchers behind the RURAL: Risk Underlying Rural Areas Longitudinal Cohort Study want to discover why people in poor rural communities in the South have shorter, unhealthier lives on average. The study includes 4,000 diverse participants (ages 35–64 years, 50% women, 44% whites, 45% Blacks, 10% Hispanic) from 10 of the poorest rural counties in Kentucky, Alabama, Mississippi, and Louisiana. Their results will support future interventions and disease prevention efforts.
  • The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is looking at what factors contribute to the higher-than-expected numbers of Hispanics/Latinos who suffer from metabolic diseases such as obesity and diabetes. The study includes more than 16,000 Hispanic/Latino adults across the nation.

Find more NHLBI-funded studies on obesity and health disparities at NIH RePORTER.

Closeup view of a healthy plate of vegan soul food prepared for the NEW Soul program.

Read how African Americans are learning to transform soul food into healthy, delicious meals to prevent cardiovascular disease: Vegan soul food: Will it help fight heart disease, obesity?

Current research on obesity in pregnancy and childhood

  • The NHLBI-supported Fragile Families Cardiovascular Health Follow-Up Study continues a study that began in 2000 with 5,000 American children born in large cities. The cohort was racially and ethnically diverse, with approximately 40% of the children living in poverty. Researchers collected socioeconomic, demographic, neighborhood, genetic, and developmental data from the participants. In this next phase, researchers will continue to collect similar data from the participants, who are now young adults.
  • The NHLBI is supporting national adoption of the Bright Bodies program through Dissemination and Implementation of the Bright Bodies Intervention for Childhood Obesity . Bright Bodies is a high-intensity, family-based intervention for childhood obesity. In 2017, a U.S. Preventive Services Task Force found that Bright Bodies lowered children’s body mass index (BMI) more than other interventions did.
  • The NHLBI supports the continuation of the nuMoM2b Heart Health Study , which has followed a diverse cohort of 4,475 women during their first pregnancy. The women provided data and specimens for up to 7 years after the birth of their children. Researchers are now conducting a follow-up study on the relationship between problems during pregnancy and future cardiovascular disease. Women who are pregnant and have obesity are at greater risk than other pregnant women for health problems that can affect mother and baby during pregnancy, at birth, and later in life.

Find more NHLBI-funded studies on obesity in pregnancy and childhood at NIH RePORTER.

Learn about the largest public health nonprofit for Black and African American women and girls in the United States: Empowering Women to Get Healthy, One Step at a Time .

Current research on obesity and sleep

  • An NHLBI-funded study is looking at whether energy balance and obesity affect sleep in the same way that a lack of good-quality sleep affects obesity. The researchers are recruiting equal numbers of men and women to include sex differences in their study of how obesity affects sleep quality and circadian rhythms.
  • NHLBI-funded researchers are studying metabolism and obstructive sleep apnea . Many people with obesity have sleep apnea. The researchers will look at the measurable metabolic changes in participants from a previous study. These participants were randomized to one of three treatments for sleep apnea: weight loss alone, positive airway pressure (PAP) alone, or combined weight loss and PAP. Researchers hope that the results of the study will allow a more personalized approach to diagnosing and treating sleep apnea.
  • The NHLBI-funded Lipidomics Biomarkers Link Sleep Restriction to Adiposity Phenotype, Diabetes, and Cardiovascular Risk study explores the relationship between disrupted sleep patterns and diabetes. It uses data from the long-running Multiethnic Cohort Study, which has recruited more than 210,000 participants from five ethnic groups. Researchers are searching for a cellular-level change that can be measured and can predict the onset of diabetes in people who are chronically sleep deprived. Obesity is a common symptom that people with sleep issues have during the onset of diabetes.

Find more NHLBI-funded studies on obesity and sleep at NIH RePORTER.

Newborn sleeping baby stock photo

Learn about a recent study that supports the need for healthy sleep habits from birth: Study finds link between sleep habits and weight gain in newborns .

Obesity research labs at the NHLBI

The Cardiovascular Branch and its Laboratory of Inflammation and Cardiometabolic Diseases conducts studies to understand the links between inflammation, atherosclerosis, and metabolic diseases.

NHLBI’s Division of Intramural Research , including its Laboratory of Obesity and Aging Research , seeks to understand how obesity induces metabolic disorders. The lab studies the “obesity-aging” paradox: how the average American gains more weight as they get older, even when food intake decreases.

Related obesity programs and guidelines

  • Aim for a Healthy Weight is a self-guided weight-loss program led by the NHLBI that is based on the psychology of change. It includes tested strategies for eating right and moving more.
  • The NHLBI developed the We Can! ® (Ways to Enhance Children’s Activity & Nutrition) program to help support parents in developing healthy habits for their children.
  • The Accumulating Data to Optimally Predict obesity Treatment (ADOPT) Core Measures Project standardizes data collected from the various studies of obesity treatments so the data can be analyzed together. The bigger the dataset, the more confidence can be placed in the conclusions. The main goal of this project is to understand the individual differences between people who experience the same treatment.
  • The NHLBI Director co-chairs the NIH Nutrition Research Task Force, which guided the development of the first NIH-wide strategic plan for nutrition research being conducted over the next 10 years. See the 2020–2030 Strategic Plan for NIH Nutrition Research .
  • The NHLBI is an active member of the National Collaborative on Childhood Obesity (NCCOR) , which is a public–private partnership to accelerate progress in reducing childhood obesity.
  • The NHLBI has been providing guidance to physicians on the diagnosis, prevention, and treatment of obesity since 1977. In 2017, the NHLBI convened a panel of experts to take on some of the pressing questions facing the obesity research community. See their responses: Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents (PDF, 3.69 MB).
  • In 2021, the NHLBI held a Long Non-coding (lnc) RNAs Symposium to discuss research opportunities on lnc RNAs, which appear to play a role in the development of metabolic diseases such as obesity.
  • The Muscatine Heart Study began enrolling children in 1970. By 1981, more than 11,000 students from Muscatine, Iowa, had taken surveys twice a year. The study is the longest-running study of cardiovascular risk factors in children in the United States. Today, many of the earliest participants and their children are still involved in the study, which has already shown that early habits affect cardiovascular health later in life.
  • The Jackson Heart Study is a unique partnership of the NHLBI, three colleges and universities, and the Jackson, Miss., community. Its mission is to discover what factors contribute to the high prevalence of cardiovascular disease among African Americans. Researchers aim to test new approaches for reducing this health disparity. The study incudes more than 5,000 individuals. Among the study’s findings to date is a gene variant in African Americans that doubles the risk of heart disease.

Explore more NHLBI research on overweight and obesity

The sections above provide you with the highlights of NHLBI-supported research on overweight and obesity . You can explore the full list of NHLBI-funded studies on the NIH RePORTER .

To find more studies:

  • Type your search words into the  Quick Search  box and press enter. 
  • Check  Active Projects  if you want current research.
  • Select the  Agencies  arrow, then the  NIH  arrow, then check  NHLBI .

If you want to sort the projects by budget size — from the biggest to the smallest — click on the  FY Total Cost by IC  column heading.

Patient With Obesity: Risks and Intervention Case Study

Clinical manifestations, potential risks of obesity and bariatric surgery as an appropriate intervention, health patterns assessment, esrd prevention and health promotion, available resources.

Objective perceptions of Mr. C’s health are as follows:

  • Swollen ankles, pitting edemas on both feet, pruritus;
  • Obesity (BMI 44.9);
  • High blood pressure of 172/98 (120/80 – 140/90 is considered the norm); Normal heart rate of 88 BPM, High respiratory rate of 26 breaths per minute (norm is 1220) (Pagana & Pagana, 2017);
  • High levels of fasting blood glucose levels of 146 mg/dL (norm is around 100 mg/dl);
  • High levels of total cholesterol (250 mg/dL vs. 200 mg/dL or less as norm, and 240 mg/dL as borderline high);
  • High levels of triglycerides, standing at 312 mg/dL, when the norm is 150, with the upper border at 199 mg/dL;
  • Low levels of highdensity lipoproteins (HDL), standing at 30 mg/dL, when the norm is 4060 mg/dL;
  • High levels of serum creatinine, standing at 1.8 mg/dL when the normal age for an adult male is between 0.6 – 1.2 mg/dL (Pagana & Pagana, 2017);
  • High blood urea nitrogen (BUN) levels, standing at 32 mg/dL when the norm is between 7 to 20 mg/dL for adults (Pagana & Pagana, 2017).

The patient’s subjective reports of having gained over 100 pounds in the last 2-3 years, shortness of breath, sleep apnea, and exhaustion.

Obesity presents a variety of healthcare risks to an individual such as Mr. C. The primary hazards faced by obese patients include high blood sugar levels, diabetes, hypertension, dyslipidemia, high blood fats, a variety of heart diseases, increased chances of heart failure and stroke (Sattar & Preiss, 2018). In addition, the increased weight forces more pressure on bones and joints, causing a plethora of problems associated with low mobility (Sattar & Preiss, 2018). One of the most common diseases on obese people is osteoarthritis, which causes unpleasant feelings in joints and sleep apnea – a condition when a patient stops breathing during sleep. It reduces the effectiveness of rest, increases sleepiness, and causes lapses in attention (Sattar & Preiss, 2018). Gallstones and liver problems are also associated with obesity and overeating/drinking. Finally, obesity is associated with increased chances of developing esophageal, colorectal, breast, kidney, thyroid, bladder, and pancreatic cancers (Sattar & Preiss, 2018).

Bariatric surgery achieves weight by restricting stomach space (Tewksbury, Williams, Dumon, & Sarwer, 2017). Alternatively, the same result is achieved by blocking parts of the intestinal tract, or by creating food passage sleeves through the stomach (Tewksbury et al., 2017). Bariatric surgery is recommended to obese individuals with BMI above 40, individuals at risk of kidney failure, and diabetic patients (Tewksbury et al., 2017). At the same time, the surgery is associated with numerous side-effects, and is quite expensive (Tewksbury et al., 2017). Based on the analyses and information provided, the patient would be eligible for bariatric surgery.

Mr. C’s assessment of functional health patterns based on the case presented is as follows (Urden, Stacy, & Lough, 2019):

  • Health perception. The patient is obviously overweight and suffering from one or several diseases. He perceives himself as unwell;
  • Health management. The patient is willing to participate in health management and has attempted to do so by controlling the amounts of consumed sodium;
  • Nutritional. It is unclear whether obesity from a young age is associated with poor eating habits of hormonal irregularities. Since he has a normal metabolism, the connection between overweightness and overeating is likely;
  • Metabolic. Normal metabolism, no irregularities;
  • Elimination. No problems with elimination were reported;
  • Activityexercise. No information is given;
  • Sleeprest. The patient suffers from sleep apnea;
  • Cognitiveperceptual. No cognitive or perceptual issues indicated;
  • Selfperception. Though nothing was directly mentioned about the customer’s selfperception, it is likely that obesity caused a negative perception of himself;
  • Rolerelationship. No information is given;
  • Sexuality. No direct information is given. However, since the patient is obese, 32, and single, it is likely that he is not engaging in active sexual relationships;
  • Coping/Stress tolerance. No information is given.

The patient’s most prominent actual and potential problems are associated with activity/exercise, sleep-rest (sleep apnea), self-perception (likely poor due to stigma of obesity), sexuality (decreased attractiveness as a result of obesity), and health perception (likelihood of developing diabetes/ESRD/cirrhosis/etc.) (Urden et al., 2019).

What is ESRD?

ESRD stands for end-stage renal disease, and it is the 5th stage of chronic kidney disease (Nissenson & Fine, 2016). At this point, kidneys operate only at 15% efficiency, requiring a transplant or a dialysis machine to survive (Nissenson & Fine, 2016). Contributing factors to ESRD include diabetes, high blood pressure, existing kidney problems, childhood obesity, certain medicine, genetic predisposition, alcohol, and smoking (Nissenson & Fine, 2016). The majority of these factors are already present in Mr. C.

In order to prevent ESRD and promote health in patients, the first step is to teach them about what ESRD and CKD are, especially individuals who are obese and at risk of developing diabetes (Nissenson & Fine, 2016). Managing blood sugar and blood pressure will help reduce the damage to kidneys. Lifestyle changes would include healthy eating, exercises, and adhering to an eating plan that is low in salt and fat (Nissenson & Fine, 2016). Medications include those that lower blood pressure and reduce the decline of kidney functions. No smoking or drinking policy is also a good idea. Finally, the patient must avoid certain drugs that might trigger renal dysfunction (Nissenson & Fine, 2016). All of these steps should be included in Mr. C’s patient education plan.

There are multiple resources available to Mr. C. The primary source of consultation and information is his nephrologist. However, other sources of information and control include dietitians, community centers, social services, and online support groups (Nissenson & Fine, 2016). Mobile devices could be used to remind oneself to take medicine, control activity progress, and food intake (Nissenson & Fine, 2016). Assistance with mobility and return to work should be administered when required.

Nissenson, A. R., & Fine, R. E. (2016). Handbook of dialysis therapy . New York, NY: Elsevier Health Sciences.

Pagana, K. D., & Pagana, T. J. (2017). Mosby’s manual of diagnostic and laboratory tests . New York, NY: Elsevier Health Sciences.

Sattar, N., & Preiss, D. (2018). Research digest: Assessment and risks of obesity. The Lancet Diabetes & Endocrinology , 6 (6), 442.

Tewksbury, C., Williams, N. N., Dumon, K. R., & Sarwer, D. B. (2017). Preoperative medical weight management in bariatric surgery: a review and reconsideration. Obesity Surgery , 27 (1), 208-214.

Urden, L. D., Stacy, K. M., & Lough, M. E. (2019). Priorities in critical care nursing . New York, NY: Elsevier Health Sciences.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2024, February 29). Patient With Obesity: Risks and Intervention. https://ivypanda.com/essays/patient-with-obesity-risks-and-intervention/

"Patient With Obesity: Risks and Intervention." IvyPanda , 29 Feb. 2024, ivypanda.com/essays/patient-with-obesity-risks-and-intervention/.

IvyPanda . (2024) 'Patient With Obesity: Risks and Intervention'. 29 February.

IvyPanda . 2024. "Patient With Obesity: Risks and Intervention." February 29, 2024. https://ivypanda.com/essays/patient-with-obesity-risks-and-intervention/.

1. IvyPanda . "Patient With Obesity: Risks and Intervention." February 29, 2024. https://ivypanda.com/essays/patient-with-obesity-risks-and-intervention/.

Bibliography

IvyPanda . "Patient With Obesity: Risks and Intervention." February 29, 2024. https://ivypanda.com/essays/patient-with-obesity-risks-and-intervention/.

  • "Implementation and Effects of MRC in a Nursing Home" by Henskens
  • Obesity and Bariatric Surgery Intervention
  • Bariatric Nursing Certification and University Degrees
  • Obesity and Kidney Disease Treatment and Rehabilitation
  • Bariatric Surgery and Obesity in America
  • The Role of Telenursing in the Management of Diabetes Type 1
  • Tachycardia and Coughing in a 67-Year-Old
  • Hypoparathyroid Disease: Review
  • Nursing Care for End-Stage Renal Disease
  • Designing Accessible and Inclusive Bariatric Facilities
  • Morbidity and Mortality Rates in the United States
  • Triatoma Sanguisuga: Kissing Bug in Delaware
  • Healthcare in Non-English Speaking Patients
  • Online Communication for Improving Relations Between Patients and Healthcare Providers
  • Cultural Impact on Healthcare Perception
  • Arnold School of Public Health
  • Location Location
  • Contact Contact
  • Colleges and Schools
  • 2024 News Archive

Does a USC-designed wearable device accurately measure daily activity and sleep for children? A new series of studies will tell

Kids playing with blocks

April 12, 2024  | Erin Bluvas,  [email protected]

Exercise science assistant professor Bridget Armstrong has been awarded $3.5 million from the National Heart Lung and Blood Institute. She will use the five-year R01 grant to test the effectiveness of PATCH (Platform for Accurate Tracking of Children’s Health). The wearable device was designed by exercise science and electrical engineering faculty in 2020 to measure children’s routine activities (e.g., physical activity, sedentary time, sleep etc.).

“Assessing children’s 24-hour movement behaviors can reveal the complex and interdependent ways energy expenditure and sleep are related to health outcomes,” Armstrong says. “However, assessing these activities among children in free-living conditions is inherently difficult, and every available method has its own limitations.”

Our long-term goal is to give scientists better tools to measure kids' energy expenditure and sleep when they are outside the lab, going about their daily lives; doing so is essential if we want to understand how kids grow, move and develop.

Previous research has shown that devices that measure both heart rate and accelerometry offer the most precise estimates of activity and sleep. Yet those that do measure both (e.g., ActiHeart, Fitbit) are not designed for children. They can be distracting, uncomfortable and inaccurate. Further, most commercially available trackers use proprietary algorithms that do not allow access to the raw data that researchers need to analyze.

Enter PATCH. This small (only one inch by one inch), open-source wearable device integrates multiple sensors that accurately capture everyday activities. Custom-made to meet the needs of scientists and the comfort of kids, PATCH is designed to be unobtrusive, water resistant and worn for many hours/days (important for scientific studies) .

Bridget Armstrong

The team has already conducted a pilot study funded by the National Institute of Diabetes and Digestive and Kidney Diseases. Using a $420K R21 grant, Armstrong and members of the Arnold Healthy Kids Initiative and Research Center for Child Well-Being invited 60 children (ages three to eight years old) to test drive an early version of the device with promising results.

With this study, the team will conduct a series of studies to establish PATCH’s validity in both laboratory and free-living conditions. If their research establishes its effectiveness, this device (made from off-the-shelf parts) and its open-source software could be a game-changer for scientists working to combat the childhood obesity epidemic.

“Our long-term goal is to give scientists better tools to measure kids' energy expenditure and sleep when they are outside the lab, going about their daily lives; doing so is essential if we want to understand how kids grow, move and develop,” Armstrong says. “The results from this project will help other researchers to build their own PATCH device and independently process the data, thereby overcoming issues related to proprietary hardware and algorithms that currently limit the field of wearable devices.”

PATCH logo

Participate in a Study

Learn more about opportunities to participate in a PATCH study (or another children's physical activity/health study) by completing a survey or texting 803-768-5652.

ACOI

Find Out More

The Arnold Healthy Kids Initiative is a multidisciplinary group of researchers working  to fight childhood obesity by studying related factors  (i.e., physical activity, sedentary behaviors, sleep, diet).

RCCWB Logo

Focusing on Children's Well-Being

The Research Center for Child Well-Being conducts prevention research impacting the well-being of children ages 2 to 10, with the goals of reducing the risk for social, emotional, and behavioral problems and decreasing unhealthy lifestyle behaviors.

You May Also Like

Glenn Weaver investigates when and why children gain weight during school breaks

Health behaviors of children negatively impacted when learning virtually during pandemic

New device offers first comprehensive assessment of kids’ daily activity

Exercise science assistant professor Bridget Armstrong looks for unique behavioral patterns to help address childhood obesity

Challenge the conventional. Create the exceptional. No Limits.

X

Institute of Advanced Studies (IAS)

  • Think Pieces
  • Calls & Funding
  • Early Career Network

Menu

Call for Papers 'Precarity in Urban China: Surviving in Capitalist Ruins'

17 April 2024

We are inviting research papers for 15-minute presentations as part of an in-person only workshop at the Institute of Advanced Studies on 21st June, 2024. Deadline for submissions: 15th May, 2024

a street in China with neon signs and shops

Keynote speakers

Prof Margaret Hillenbrand, University of Oxford Dr Carwyn Morris, University of Leiden

The Chinese city now exists in a time and space where the economy slows, work intensifies, and Xi Jinping’s “Chinese Dream” of social mobility seems to dim. In this context, surviving and thriving in the city has become increasingly resource intensive and experiences of precarity have diversified. As Margaret Hillenbrand (2023) has recently demonstrated, states of precarity in China’s urban spaces have been largely underexplored by scholars. Yet exploring precarity in Chinese cities can help us scrutinise the “global city” (Saskia Sassen, 1991) with a local eye: international capitalism under state-managed conditions has created particular pressures and responses which call for academic investigation. 

Funded by the IAS Critical Area Studies Fund , this half-day workshop uses Anna Tsing’s (2015) The Mushroom at the End of the World as a gateway to invite participants from the humanities and social sciences to explore these local conditions, particularly in connection to the idea that meaningful lives and meaning are pieced together in the “ruins” of capitalism. The concept of capitalist ruins invokes images of what is left behind in the wake of capitalist advancement and reminds us that capitalism has boundaries and externality, domains of non-capitalist experience from which capitalism itself scavenges. Using Tsing’s work as an entry point, this workshop invites researchers to think of their work in China’s cities in connection to these notions of “salvage accumulation,” and to explore the “landscapes of unintentional design” that rapid development leaves behind, while also drawing attention to the global pull of supply chains and markets. Ranging from lived experiences of precarity and informal work, the gig economy and social media livelihoods, to urban exploration, to urban design and planning policy, through to play and rebellion in the city, this workshop aims to highlight the Chinese city as both a space of precarity and a space made out of the creative response to that precarity. 

We warmly welcome contributors from researchers at all career stages to participate in two panels of 3-4 papers and discussions. To apply, please submit the following information:

  • Presentation title and 300-word abstract
  • 100-word bio
  • Email to the organisers, Dr Alison Lamont (IOE, UCL) and Dr Annabella Massey (IOE, UCL) at  [email protected] by 5pm BST on Wednesday 15th May, 2024

Please note this workshop will take place in-person at UCL, London. Refreshments will be provided during the day, and a speaker’s dinner will be provided after the event at a local restaurant.

Lilly's weight-loss drug reduces sleep apnea severity in late-stage trials

  • Medium Text

An injection pen of Zepbound, Eli Lilly’s weight loss drug, is displayed in New York

  • Company Eli Lilly and Co Follow
  • Company Inspire Medical Systems Inc Follow
  • Company Novo Nordisk A/S Follow

EXPANDING AVENUES

Keep up with the latest medical breakthroughs and healthcare trends with the Reuters Health Rounds newsletter. Sign up here.

Reporting by Bhanvi Satija in Bengaluru; Editing by Sriraj Kalluvila, Shinjini Ganguli and Devika Syamnath

Our Standards: The Thomson Reuters Trust Principles. New Tab , opens new tab

case study essay about obesity

Thomson Reuters

Bhanvi Satija reports on pharmaceutical companies and the healthcare industry in the United States. She has a postgraduate degree in International Journalism from City, University of London.

The "Mini-Mondes en voie d'illumination" exhibition at the Jardin des Plantes in Paris

Business Chevron

A street sign for Wall Street is seen outside the New York Stock Exchange (NYSE) in New York City

Walmart-backed Ibotta shares surge 33% in strong market debut

Shares of digital marketing firm Ibotta soared 33% on their debut on the New York Stock Exchange on Thursday, giving the Walmart-backed company a market valuation of $3.55 billion.

El Palito refinery of the Venezuelan state oil company PDVSA, in Puerto Cabello

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.317(7153); 1998 Jul 25

Evidence based case report

Helping an obese patient make informed choices.

Not long ago, a patient, whom I will call Mrs Bariatrico, asked me to prescribe a diet pill for her. Mrs Bariatrico is a middle class woman aged 48 years. She is 1.6 m tall and weighs 77.2 kg. Her body mass index is 30.2 and her waist to hip ratio is 1.0. Mrs Bariatrico is healthy and does not smoke. She told me she plans to enrol in a commercial diet programme and believes her ability to change her lifestyle is good. 1 Her main concern is cosmetic—she values “looking good” and considers weight loss an important outcome.

As her primary care provider, I had several concerns. I knew the health insurance system that serves Mrs Bariatrico has no formal weight loss programmes, and the cost of appetite suppressing drugs is not reimbursed. I had some doubts about my own ability to manage obesity and asked the following questions:

  • What are the actual health risks associated with obesity in a middle aged woman with few cardiovascular risk factors?
  • What are the expected benefits and hazards of weight loss?
  • What are Mrs Bariatrico’s treatment options and their expected benefits and adverse effects?

Risks of obesity

Obesity is a chronic condition associated with hyperlipidaemia, hypertension, non-insulin dependent diabetes, gall bladder disease, some cancers, sleep apnoea, and degenerative joint disease. 2 , 3 Assessing the magnitude of risk for these conditions is complicated by several elements: many patients have several interacting risks; measuring the impact of some risks requires large, long cohort studies; and there are several confounding factors such as smoking and the duration of obesity. Regardless of these cautions, studies suggest that people who are more than 20% overweight have prevalences of hyperlipidaemia, hypertension, and diabetes that are between 1.5 and 3.5 times higher than those in people whose weight is normal. 2 , 3 The morbidity risks increase steadily from a body mass index of 25-30 and more rapidly at higher index values. Mortality risks increase above body mass indices of 20-27. 4 , 5 Relevant to Mrs Bariatrico, values of 29.0-31.9 in non-smoking middle aged women are associated with a relative mortality risk of 1.7 (95% confidence interval. 1.4 to 2.2; reference body mass index <19). 4

Expected benefits and hazards

Randomised trials confirm several physiological benefits—including reductions in blood pressure and glucose and lipid concentrations—when weight is reduced by 10-15%. 2 Trials are neither large enough nor long enough to identify survival benefits. One observational study that lasted 12 years showed that an intentional weight loss of 0.5-9.0 kg in overweight women with disorders related to obesity was associated with a 20% reduction in all cause mortality (relative risk=0.80; 0.68 to 0.94). 6 Potential hazards of weight loss include increased risks of gall stones during rapid weight loss and loss of bone density. 2

Treatment options

A comprehensive systematic review from the Centre for Reviews and Dissemination evaluates treatment options appropriate for Mrs Bariatrico. 7 These include diet, exercise, and appetite suppressing drugs. A recent book describes many complementary therapies, including herbal remedies and chromium, but none have been adequately evaluated in controlled trials. 8

Diet and exercise

Randomised controlled trials show that diets allowing an intake of 1200 kcal/day coupled with behaviour modification result in an approximate weight loss of 8.5 kg at 20 weeks. 9 Providing patients with food and meal plans, focusing on restricting fat as well as calories, and encouraging daily self monitoring of weight may be particularly effective strategies. 7 Very low calorie diets of less than 800 kcal/day result in a weight loss of approximately 20 kg at 12 to 16 weeks. One half to two thirds of the weight loss is maintained at one year. 9 Adding regular aerobic exercise results in minimal additional weight loss (approximately 2.5 kg after six months) and limits the amount of weight regained. 10 Resistance exercise has little effect on weight but increases the lean body mass. 10

Appetite suppressants

Double blind randomised trials of longer than six months’ duration show that antidepressant serotonergic agents such as fluoxetine are not effective weight loss treatments. 7 , 11 Other serotonergic agents, dexfenfluramine and fenfluramine (a racemic mixture of d -fenfluramine and l -fenfluramine), are effective when combined with diet. 7 , 11 Five trials, in which 1029 patients participated, showed that the weight loss with dexfenfluramine was 2.5 to 8.7 kg greater than with placebo at six months; two trials showed losses of 2.6 and 4.2 kg at 12 months. 11 The combination of fenfluramine and phentermine (colloquially known as fen-phen) resulted in a loss of 9.7 kg after six months compared with placebo. Two new drug are sibutramine (serotonin and noradrenergic reuptake inhibitor) and orlistat (a fat absorption inhibitor). In one multicentre randomised trial, sibutramine showed a 2.8 kg loss compared with placebo at 12 months. 7 In a preliminary report from one centre of a multicentre trial comparing orlistat with placebo, weight reduction with orlistat was 3.1 kg more than with placebo at six months. 12 Trial data beyond 12 months of active treatment are not available for either of the two agents, and effects on mortality are not known.

Adverse effects that occur in more than 10% of patients taking dexfenfluramine include tiredness, diarrhoea, and dry mouth. Use of appetite suppressants (mostly dexfenfluramine) for more than three months is associated with pulmonary hypertension. 13 The risk is estimated at 23-46 cases per million per year or one in 22 000-44 000 patients taking appetite suppressing drugs. Highly publicised case series describe unusual heart valve deterioration in 60 otherwise healthy women taking newer agents. 14 , 15 Most were taking the combination of fenfluramine and phentermine, but six were taking either fenfluramine or dexfenfluramine alone. 14 , 15 In addition, a case series of 291 asymptomatic people taking these drugs showed that 92 had evidence of valvular disease, primarily aortic regurgitation. 16 This information prompted manufacturers to withdraw dexfenfluramine and fenfluramine from the market in September 1997.

The informed decision

I gave Mrs Bariatrico feedback on the health risks of obesity, listed the treatment options, and advised her about the expected effects. She viewed the health risks of obesity as relatively minor and reiterated her primary value of losing weight so she would “look and feel good.” She was surprised that the weight loss expected from diet pills was not greater and worried about possible serious adverse heart effects. She was determined to try a low fat, low calorie diet and daily exercise. I praised her willingness to tackle difficult lifestyle changes. On her way out the door, she turned, smiled at me, and requested a prescription for phentermine—one of the few remaining appetite suppressants available on the market.

An external file that holds a picture, illustration, etc.
Object name is mulc18sp.f1.jpg

Wanting to “look and feel good” is often the spur to undertaking difficult lifestyle changes

Funding: None.

Conflict of interest: None.

IMAGES

  1. Obesity Evaluation and Treatment Essay Example

    case study essay about obesity

  2. Obesity & Lifestyle Condition Case Study

    case study essay about obesity

  3. Obesity essay

    case study essay about obesity

  4. Childhood Obesity-Essay Outline

    case study essay about obesity

  5. Obesity Case Study

    case study essay about obesity

  6. Leading Causes of Child Obesity Essay Example

    case study essay about obesity

VIDEO

  1. M8. Case Study 1

  2. obesity #short essay YouTube viral short #video

  3. Issues of Lego Group: Analysis Case Study

  4. Hon'ble Shri.Justice Surendra Tawade, President- State Consumer Dispute & Redressal Commission

  5. Reality Therapy Applied to a Patient's Case Study

  6. OBESITY

COMMENTS

  1. Case Reports: Multifaceted Experiences Treating Youth with Severe Obesity

    CPS has the ability to identify and address issues that are beyond the reach of providers in the tertiary care setting. The aim of this paper is to present three case studies that convey the complexity of the circumstances of youth with severe obesity and the multifaceted aspects of their care. To highlight connections between the medical care ...

  2. Obesity: Risk factors, complications, and strategies for sustainable

    The obesity epidemic. The World Health Organization (WHO) defines overweight and obesity as abnormal or excessive fat accumulation that presents a risk to health (WHO, 2016a).A body mass index (BMI) ≥25 kg/m 2 is generally considered overweight, while obesity is considered to be a BMI ≥ 30 kg/m 2.It is well known that obesity and overweight are a growing problem globally with high rates in ...

  3. Obesity and Overweight: Probing Causes, Consequences, and Novel

    Studies were also performed in the subcutaneous adipose tissue versus omental adipose tissue of humans with obesity versus morbid obesity. It was found that in subcutaneous adipose tissue, but not omental adipose tissue, the expression pattern of genes in the advanced glycation end products/RAGE/DIAPH1 axis is significantly and positively ...

  4. Case Study: Behavior changes in the Family-Focused, Obesity-Prevention

    The HOME Plus study used a randomized controlled trial design to test the effects of a community-based, family-focused childhood obesity prevention program. A description of the methodology can be found elsewhere ( Fulkerson et al., 2014 ). Primary meal preparing parents (n=160) and one 8-12 year old child (n=160) per family were recruited ...

  5. Obesity Case Study Essay

    Obesity Case Study Essay; Obesity Case Study Essay. 1402 Words 6 Pages. Introduction Obesity is a complex chronic health issue that affects over one-third of adults in the United States (Centers for Disease Control and Prevention, 2017). The high prevalence of obesity is estimated to incur an annual medical expense of 147 billion dollars (CDC ...

  6. The lived experience of people with obesity: study protocol for a

    Obesity is a complex chronic disease in which abnormal or excess body fat (adiposity) impairs health and quality of life, increases the risk of long-term medical complications and reduces lifespan [].Operationally defined in epidemiological and population studies as a body mass index (BMI) greater than or equal to 30, obesity affects more than 650 million adults worldwide [].

  7. Evidence from big data in obesity research: international case studies

    Indeed, in a negative control analysis, Case Study 2 found a higher incidence of lung cancer among those with obesity, and particularly those undergoing obesity treatment, compared with the ...

  8. Frontiers

    Obesity is a complex condition that interweaves biological, developmental, environmental, behavioral, and genetic factors; it is a significant public health problem. The most common cause of obesity throughout childhood and adolescence is an inequity in energy balance; that is, excess caloric intake without appropriate caloric expenditure. Adiposity rebound (AR) in early childhood is a risk ...

  9. PDF Evidence from big data in obesity research: international case studies

    An earlier mapping exercise [13] demon-strated that combining big data with traditional data could provide information spanning over 82% of the 108 nodes in the Foresight Obesity System Map. The ...

  10. Case Examples

    The following case examples focus on the role of psychologists (or other behavioral health providers), particularly at the early stages of treatment, rather than illustrating all aspects or stages of multicomponent behavioral treatment. These cases point to the need to consider such factors as the patient's age, gender, socioeconomic status ...

  11. Essay on Obesity in America

    Published: Mar 5, 2024. Obesity has become a major public health crisis in the United States, with over 42% of the population considered to be clinically obese. This issue has far-reaching consequences for individuals, families, and the healthcare system, making it a topic of great concern and interest. The obesity epidemic is not just a matter ...

  12. A systematic literature review on obesity ...

    The present study conducted a systematic literature review to examine obesity research and machine learning techniques for the prevention and treatment of obesity from 2010 to 2020. Accordingly, 93 papers are identified from the review articles as primary studies from an initial pool of over 700 papers addressing obesity.

  13. Obesity: causes, consequences, treatments, and challenges

    Obesity has become a global epidemic and is one of today's most public health problems worldwide. Obesity poses a major risk for a variety of serious diseases including diabetes mellitus, non-alcoholic liver disease (NAFLD), cardiovascular disease, hypertension and stroke, and certain forms of cancer (Bluher, 2019).Obesity is mainly caused by imbalanced energy intake and expenditure due to a ...

  14. Data and case studies

    In many previous studies, underlying conditions such as obesity, hypertension and diabetes have been found to be correlated with an increased rate of hospitalisation and death due to SARS-CoV-2. Obesity is a non-communicable disease marked by an imbalanced energy state due to hypertrophy and hyperplasia of adipose tissue.

  15. International Journal of Obesity

    International Journal of Obesity is a multi-disciplinary forum for papers describing basic, clinical and applied studies of obesity and related disorders.

  16. Obesity Research

    The lab studies the "obesity-aging" paradox: how the average American gains more weight as they get older, even when food intake decreases. Related obesity programs and guidelines Aim for a Healthy Weight is a self-guided weight-loss program led by the NHLBI that is based on the psychology of change.

  17. Patient With Obesity: Risks and Intervention Case Study

    The primary hazards faced by obese patients include high blood sugar levels, diabetes, hypertension, dyslipidemia, high blood fats, a variety of heart diseases, increased chances of heart failure and stroke (Sattar & Preiss, 2018). In addition, the increased weight forces more pressure on bones and joints, causing a plethora of problems ...

  18. Case Study on obesity and type 2 diabetes

    The relationship between obesity/overweightness and type 2 diabetes mellitus (T2DM) has been well described. According to a survey performed in five European countries, nearly one-third of people ...

  19. Severe obesity, emotions and eating habits: a case-control study

    Obesity has a multifaceted etiology that involves genetic, biological and behavioral factors, body growth, eating habits, energy expenditure and the function of adipose tissue. The present study aimed to expand upon knowledge about the relationships among obesity, emotions and eating habits in severely obese individuals using a case-control method.

  20. Cause and Effect of Obesity: [Essay Example], 643 words

    This essay will explore the various causes of obesity and their effects on individuals and society as a whole. One of the primary causes of obesity is dietary habits and nutritional intake. The consumption of high-calorie, low-nutrient foods, such as fast food, sugary beverages, and processed snacks, has become increasingly prevalent in modern ...

  21. Arnold School of Public Health

    With this study, the team will conduct a series of studies to establish PATCH's validity in both laboratory and free-living conditions. If their research establishes its effectiveness, this device (made from off-the-shelf parts) and its open-source software could be a game-changer for scientists working to combat the childhood obesity epidemic.

  22. Call for Papers 'Precarity in Urban China: Surviving in ...

    Funded by the IAS Critical Area Studies Fund, this half-day workshop uses Anna Tsing's (2015) The Mushroom at the End of the World as a gateway to invite participants from the humanities and social sciences to explore these local conditions, particularly in connection to the idea that meaningful lives and meaning are pieced together in the ...

  23. The Epidemiology of Obesity: A Big Picture

    1. Introduction. Obesity is a complex, multifactorial, and largely preventable disease (), affecting, along with overweight, over a third of the world's population today (2,3).If secular trends continue, by 2030 an estimated 38% of the world's adult population will be overweight and another 20% will be obese ().In the USA, the most dire projections based on earlier secular trends point to ...

  24. Lilly's weight-loss drug reduces sleep apnea severity in late-stage

    Eli Lilly said on Wednesday its weight-loss drug helped reduce episodes of irregular breathing associated with a common sleep-related disorder in two late-stage trials, paving the way for ...

  25. Helping an obese patient make informed choices

    Risks of obesity. Obesity is a chronic condition associated with hyperlipidaemia, hypertension, non-insulin dependent diabetes, gall bladder disease, some cancers, sleep apnoea, and degenerative joint disease. 2,3 Assessing the magnitude of risk for these conditions is complicated by several elements: many patients have several interacting risks; measuring the impact of some risks requires ...