What are your chances of acceptance?

Calculate for all schools, your chance of acceptance.

Duke University

Your chancing factors

Extracurriculars.

comparative research titles examples for highschool students

100 Interesting Research Paper Topics for High Schoolers

What’s covered:, how to pick the right research topic, elements of a strong research paper.

  • Interesting Research Paper Topics

Composing a research paper can be a daunting task for first-time writers. In addition to making sure you’re using concise language and your thoughts are organized clearly, you need to find a topic that draws the reader in.

CollegeVine is here to help you brainstorm creative topics! Below are 100 interesting research paper topics that will help you engage with your project and keep you motivated until you’ve typed the final period. 

A research paper is similar to an academic essay but more lengthy and requires more research. This added length and depth is bittersweet: although a research paper is more work, you can create a more nuanced argument, and learn more about your topic. Research papers are a demonstration of your research ability and your ability to formulate a convincing argument. How well you’re able to engage with the sources and make original contributions will determine the strength of your paper. 

You can’t have a good research paper without a good research paper topic. “Good” is subjective, and different students will find different topics interesting. What’s important is that you find a topic that makes you want to find out more and make a convincing argument. Maybe you’ll be so interested that you’ll want to take it further and investigate some detail in even greater depth!

For example, last year over 4000 students applied for 500 spots in the Lumiere Research Scholar Program , a rigorous research program founded by Harvard researchers. The program pairs high-school students with Ph.D. mentors to work 1-on-1 on an independent research project . The program actually does not require you to have a research topic in mind when you apply, but pro tip: the more specific you can be the more likely you are to get in!

Introduction

The introduction to a research paper serves two critical functions: it conveys the topic of the paper and illustrates how you will address it. A strong introduction will also pique the interest of the reader and make them excited to read more. Selecting a research paper topic that is meaningful, interesting, and fascinates you is an excellent first step toward creating an engaging paper that people will want to read.

Thesis Statement

A thesis statement is technically part of the introduction—generally the last sentence of it—but is so important that it merits a section of its own. The thesis statement is a declarative sentence that tells the reader what the paper is about. A strong thesis statement serves three purposes: present the topic of the paper, deliver a clear opinion on the topic, and summarize the points the paper will cover.

An example of a good thesis statement of diversity in the workforce is:

Diversity in the workplace is not just a moral imperative but also a strategic advantage for businesses, as it fosters innovation, enhances creativity, improves decision-making, and enables companies to better understand and connect with a diverse customer base.

The body is the largest section of a research paper. It’s here where you support your thesis, present your facts and research, and persuade the reader.

Each paragraph in the body of a research paper should have its own idea. The idea is presented, generally in the first sentence of the paragraph, by a topic sentence. The topic sentence acts similarly to the thesis statement, only on a smaller scale, and every sentence in the paragraph with it supports the idea it conveys.

An example of a topic sentence on how diversity in the workplace fosters innovation is:

Diversity in the workplace fosters innovation by bringing together individuals with different backgrounds, perspectives, and experiences, which stimulates creativity, encourages new ideas, and leads to the development of innovative solutions to complex problems.

The body of an engaging research paper flows smoothly from one idea to the next. Create an outline before writing and order your ideas so that each idea logically leads to another.

The conclusion of a research paper should summarize your thesis and reinforce your argument. It’s common to restate the thesis in the conclusion of a research paper.

For example, a conclusion for a paper about diversity in the workforce is:

In conclusion, diversity in the workplace is vital to success in the modern business world. By embracing diversity, companies can tap into the full potential of their workforce, promote creativity and innovation, and better connect with a diverse customer base, ultimately leading to greater success and a more prosperous future for all.

Reference Page

The reference page is normally found at the end of a research paper. It provides proof that you did research using credible sources, properly credits the originators of information, and prevents plagiarism.

There are a number of different formats of reference pages, including APA, MLA, and Chicago. Make sure to format your reference page in your teacher’s preferred style.

  • Analyze the benefits of diversity in education.
  • Are charter schools useful for the national education system?
  • How has modern technology changed teaching?
  • Discuss the pros and cons of standardized testing.
  • What are the benefits of a gap year between high school and college?
  • What funding allocations give the most benefit to students?
  • Does homeschooling set students up for success?
  • Should universities/high schools require students to be vaccinated?
  • What effect does rising college tuition have on high schoolers?
  • Do students perform better in same-sex schools?
  • Discuss and analyze the impacts of a famous musician on pop music.
  • How has pop music evolved over the past decade?
  • How has the portrayal of women in music changed in the media over the past decade?
  • How does a synthesizer work?
  • How has music evolved to feature different instruments/voices?
  • How has sound effect technology changed the music industry?
  • Analyze the benefits of music education in high schools.
  • Are rehabilitation centers more effective than prisons?
  • Are congestion taxes useful?
  • Does affirmative action help minorities?
  • Can a capitalist system effectively reduce inequality?
  • Is a three-branch government system effective?
  • What causes polarization in today’s politics?
  • Is the U.S. government racially unbiased?
  • Choose a historical invention and discuss its impact on society today.
  • Choose a famous historical leader who lost power—what led to their eventual downfall?
  • How has your country evolved over the past century?
  • What historical event has had the largest effect on the U.S.?
  • Has the government’s response to national disasters improved or declined throughout history?
  • Discuss the history of the American occupation of Iraq.
  • Explain the history of the Israel-Palestine conflict.
  • Is literature relevant in modern society?
  • Discuss how fiction can be used for propaganda.
  • How does literature teach and inform about society?
  • Explain the influence of children’s literature on adulthood.
  • How has literature addressed homosexuality?
  • Does the media portray minorities realistically?
  • Does the media reinforce stereotypes?
  • Why have podcasts become so popular?
  • Will streaming end traditional television?
  • What is a patriot?
  • What are the pros and cons of global citizenship?
  • What are the causes and effects of bullying?
  • Why has the divorce rate in the U.S. been declining in recent years?
  • Is it more important to follow social norms or religion?
  • What are the responsible limits on abortion, if any?
  • How does an MRI machine work?
  • Would the U.S. benefit from socialized healthcare?
  • Elderly populations
  • The education system
  • State tax bases
  • How do anti-vaxxers affect the health of the country?
  • Analyze the costs and benefits of diet culture.
  • Should companies allow employees to exercise on company time?
  • What is an adequate amount of exercise for an adult per week/per month/per day?
  • Discuss the effects of the obesity epidemic on American society.
  • Are students smarter since the advent of the internet?
  • What departures has the internet made from its original design?
  • Has digital downloading helped the music industry?
  • Discuss the benefits and costs of stricter internet censorship.
  • Analyze the effects of the internet on the paper news industry.
  • What would happen if the internet went out?
  • How will artificial intelligence (AI) change our lives?
  • What are the pros and cons of cryptocurrency?
  • How has social media affected the way people relate with each other?
  • Should social media have an age restriction?
  • Discuss the importance of source software.
  • What is more relevant in today’s world: mobile apps or websites?
  • How will fully autonomous vehicles change our lives?
  • How is text messaging affecting teen literacy?

Mental Health

  • What are the benefits of daily exercise?
  • How has social media affected people’s mental health?
  • What things contribute to poor mental and physical health?
  • Analyze how mental health is talked about in pop culture.
  • Discuss the pros and cons of more counselors in high schools.
  • How does stress affect the body?
  • How do emotional support animals help people?
  • What are black holes?
  • Discuss the biggest successes and failures of the EPA.
  • How has the Flint water crisis affected life in Michigan?
  • Can science help save endangered species?
  • Is the development of an anti-cancer vaccine possible?

Environment

  • What are the effects of deforestation on climate change?
  • Is climate change reversible?
  • How did the COVID-19 pandemic affect global warming and climate change?
  • Are carbon credits effective for offsetting emissions or just marketing?
  • Is nuclear power a safe alternative to fossil fuels?
  • Are hybrid vehicles helping to control pollution in the atmosphere?
  • How is plastic waste harming the environment?
  • Is entrepreneurism a trait people are born with or something they learn?
  • How much more should CEOs make than their average employee?
  • Can you start a business without money?
  • Should the U.S. raise the minimum wage?
  • Discuss how happy employees benefit businesses.
  • How important is branding for a business?
  • Discuss the ease, or difficulty, of landing a job today.
  • What is the economic impact of sporting events?
  • Are professional athletes overpaid?
  • Should male and female athletes receive equal pay?
  • What is a fair and equitable way for transgender athletes to compete in high school sports?
  • What are the benefits of playing team sports?
  • What is the most corrupt professional sport?

Where to Get More Research Paper Topic Ideas

If you need more help brainstorming topics, especially those that are personalized to your interests, you can use CollegeVine’s free AI tutor, Ivy . Ivy can help you come up with original research topic ideas, and she can also help with the rest of your homework, from math to languages.

Disclaimer: This post includes content sponsored by Lumiere Education.

Related CollegeVine Blog Posts

comparative research titles examples for highschool students

National Academies Press: OpenBook

On Evaluating Curricular Effectiveness: Judging the Quality of K-12 Mathematics Evaluations (2004)

Chapter: 5 comparative studies, 5 comparative studies.

It is deceptively simple to imagine that a curriculum’s effectiveness could be easily determined by a single well-designed study. Such a study would randomly assign students to two treatment groups, one using the experimental materials and the other using a widely established comparative program. The students would be taught the entire curriculum, and a test administered at the end of instruction would provide unequivocal results that would permit one to identify the more effective treatment.

The truth is that conducting definitive comparative studies is not simple, and many factors make such an approach difficult. Student placement and curricular choice are decisions that involve multiple groups of decision makers, accrue over time, and are subject to day-to-day conditions of instability, including student mobility, parent preference, teacher assignment, administrator and school board decisions, and the impact of standardized testing. This complex set of institutional policies, school contexts, and individual personalities makes comparative studies, even quasi-experimental approaches, challenging, and thus demands an honest and feasible assessment of what can be expected of evaluation studies (Usiskin, 1997; Kilpatrick, 2002; Schoenfeld, 2002; Shafer, in press).

Comparative evaluation study is an evolving methodology, and our purpose in conducting this review was to evaluate and learn from the efforts undertaken so far and advise on future efforts. We stipulated the use of comparative studies as follows:

A comparative study was defined as a study in which two (or more) curricular treatments were investigated over a substantial period of time (at least one semester, and more typically an entire school year) and a comparison of various curricular outcomes was examined using statistical tests. A statistical test was required to ensure the robustness of the results relative to the study’s design.

We read and reviewed a set of 95 comparative studies. In this report we describe that database, analyze its results, and draw conclusions about the quality of the evaluation database both as a whole and separated into evaluations supported by the National Science Foundation and commercially generated evaluations. In addition to describing and analyzing this database, we also provide advice to those who might wish to fund or conduct future comparative evaluations of mathematics curricular effectiveness. We have concluded that the process of conducting such evaluations is in its adolescence and could benefit from careful synthesis and advice in order to increase its rigor, feasibility, and credibility. In addition, we took an interdisciplinary approach to the task, noting that various committee members brought different expertise and priorities to the consideration of what constitutes the most essential qualities of rigorous and valid experimental or quasi-experimental design in evaluation. This interdisciplinary approach has led to some interesting observations and innovations in our methodology of evaluation study review.

This chapter is organized as follows:

Study counts disaggregated by program and program type.

Seven critical decision points and identification of at least minimally methodologically adequate studies.

Definition and illustration of each decision point.

A summary of results by student achievement in relation to program types (NSF-supported, University of Chicago School Mathematics Project (UCSMP), and commercially generated) in relation to their reported outcome measures.

A list of alternative hypotheses on effectiveness.

Filters based on the critical decision points.

An analysis of results by subpopulations.

An analysis of results by content strand.

An analysis of interactions among content, equity, and grade levels.

Discussion and summary statements.

In this report, we describe our methodology for review and synthesis so that others might scrutinize our approach and offer criticism on the basis of

our methodology and its connection to the results stated and conclusions drawn. In the spirit of scientific, fair, and open investigation, we welcome others to undertake similar or contrasting approaches and compare and discuss the results. Our work was limited by the short timeline set by the funding agencies resulting from the urgency of the task. Although we made multiple efforts to collect comparative studies, we apologize to any curriculum evaluators if comparative studies were unintentionally omitted from our database.

Of these 95 comparative studies, 65 were studies of NSF-supported curricula, 27 were studies of commercially generated materials, and 3 included two curricula each from one of these two categories. To avoid the problem of double coding, two studies, White et al. (1995) and Zahrt (2001), were coded within studies of NSF-supported curricula because more of the classes studied used the NSF-supported curriculum. These studies were not used in later analyses because they did not meet the requirements for the at least minimally methodologically adequate studies, as described below. The other, Peters (1992), compared two commercially generated curricula, and was coded in that category under the primary program of focus. Therefore, of the 95 comparative studies, 67 studies were coded as NSF-supported curricula and 28 were coded as commercially generated materials.

The 11 evaluation studies of the UCSMP secondary program that we reviewed, not including White et al. and Zahrt as previously mentioned, benefit from the maturity of the program, while demonstrating an orientation to both establishing effectiveness and improving a product line. For these reasons, at times we will present the summary of UCSMP’s data separately.

The Saxon materials also present a somewhat different profile from the other commercially generated materials because many of the evaluations of these materials were conducted in the 1980s and the materials were originally developed with a rather atypical program theory. Saxon (1981) designed its algebra materials to combine distributed practice with incremental development. We selected the Saxon materials as a middle grades commercially generated program, and limited its review to middle school studies from 1989 onward when the first National Council of Teachers of Mathematics (NCTM) Standards (NCTM, 1989) were released. This eliminated concerns that the materials or the conditions of educational practice have been altered during the intervening time period. The Saxon materials explicitly do not draw from the NCTM Standards nor did they receive support from the NSF; thus they truly represent a commercial venture. As a result, we categorized the Saxon studies within the group of studies of commercial materials.

At times in this report, we describe characteristics of the database by

comparative research titles examples for highschool students

FIGURE 5-1 The distribution of comparative studies across programs. Programs are coded by grade band: black bars = elementary, white bars = middle grades, and gray bars = secondary. In this figure, there are six studies that involved two programs and one study that involved three programs.

NOTE: Five programs (MathScape, MMAP, MMOW/ARISE, Addison-Wesley, and Harcourt) are not shown above since no comparative studies were reviewed.

particular curricular program evaluations, in which case all 19 programs are listed separately. At other times, when we seek to inform ourselves on policy-related issues of funding and evaluating curricular materials, we use the NSF-supported, commercially generated, and UCSMP distinctions. We remind the reader of the artificial aspects of this distinction because at the present time, 18 of the 19 curricula are published commercially. In order to track the question of historical inception and policy implications, a distinction is drawn between the three categories. Figure 5-1 shows the distribution of comparative studies across the 14 programs.

The first result the committee wishes to report is the uneven distribution of studies across the curricula programs. There were 67 coded studies of the NSF curricula, 11 studies of UCSMP, and 17 studies of the commercial publishers. The 14 evaluation studies conducted on the Saxon materials compose the bulk of these 17-non-UCSMP and non-NSF-supported curricular evaluation studies. As these results suggest, we know more about the

evaluations of the NSF-supported curricula and UCSMP than about the evaluations of the commercial programs. We suggest that three factors account for this uneven distribution of studies. First, evaluations have been funded by the NSF both as a part of the original call, and as follow-up to the work in the case of three supplemental awards to two of the curricula programs. Second, most NSF-supported programs and UCSMP were developed at university sites where there is access to the resources of graduate students and research staff. Finally, there was some reported reluctance on the part of commercial companies to release studies that could affect perceptions of competitive advantage. As Figure 5-1 shows, there were quite a few comparative studies of Everyday Mathematics (EM), Connected Mathematics Project (CMP), Contemporary Mathematics in Context (Core-Plus Mathematics Project [CPMP]), Interactive Mathematics Program (IMP), UCSMP, and Saxon.

In the programs with many studies, we note that a significant number of studies were generated by a core set of authors. In some cases, the evaluation reports follow a relatively uniform structure applied to single schools, generating multiple studies or following cohorts over years. Others use a standardized evaluation approach to evaluate sequential courses. Any reports duplicating exactly the same sample, outcome measures, or forms of analysis were eliminated. For example, one study of Mathematics Trailblazers (Carter et al., 2002) reanalyzed the data from the larger ARC Implementation Center study (Sconiers et al., 2002), so it was not included separately. Synthesis studies referencing a variety of evaluation reports are summarized in Chapter 6 , but relevant individual studies that were referenced in them were sought out and included in this comparative review.

Other less formal comparative studies are conducted regularly at the school or district level, but such studies were not included in this review unless we could obtain formal reports of their results, and the studies met the criteria outlined for inclusion in our database. In our conclusions, we address the issue of how to collect such data more systematically at the district or state level in order to subject the data to the standards of scholarly peer review and make it more systematically and fairly a part of the national database on curricular effectiveness.

A standard for evaluation of any social program requires that an impact assessment is warranted only if two conditions are met: (1) the curricular program is clearly specified, and (2) the intervention is well implemented. Absent this assurance, one must have a means of ensuring or measuring treatment integrity in order to make causal inferences. Rossi et al. (1999, p. 238) warned that:

two prerequisites [must exist] for assessing the impact of an intervention. First, the program’s objectives must be sufficiently well articulated to make

it possible to specify credible measures of the expected outcomes, or the evaluator must be able to establish such a set of measurable outcomes. Second, the intervention should be sufficiently well implemented that there is no question that its critical elements have been delivered to appropriate targets. It would be a waste of time, effort, and resources to attempt to estimate the impact of a program that lacks measurable outcomes or that has not been properly implemented. An important implication of this last consideration is that interventions should be evaluated for impact only when they have been in place long enough to have ironed out implementation problems.

These same conditions apply to evaluation of mathematics curricula. The comparative studies in this report varied in the quality of documentation of these two conditions; however, all addressed them to some degree or another. Initially by reviewing the studies, we were able to identify one general design template, which consisted of seven critical decision points and determined that it could be used to develop a framework for conducting our meta-analysis. The seven critical decision points we identified initially were:

Choice of type of design: experimental or quasi-experimental;

For those studies that do not use random assignment: what methods of establishing comparability of groups were built into the design—this includes student characteristics, teacher characteristics, and the extent to which professional development was involved as part of the definition of a curriculum;

Definition of the appropriate unit of analysis (students, classes, teachers, schools, or districts);

Inclusion of an examination of implementation components;

Definition of the outcome measures and disaggregated results by program;

The choice of statistical tests, including statistical significance levels and effect size; and

Recognition of limitations to generalizability resulting from design choices.

These are critical decisions that affect the quality of an evaluation. We further identified a subset of these evaluation studies that met a set of minimum conditions that we termed at least minimally methodologically adequate studies. Such studies are those with the greatest likelihood of shedding light on the effectiveness of these programs. To be classified as at least minimally methodologically adequate, and therefore to be considered for further analysis, each evaluation study was required to:

Include quantifiably measurable outcomes such as test scores, responses to specified cognitive tasks of mathematical reasoning, performance evaluations, grades, and subsequent course taking; and

Provide adequate information to judge the comparability of samples. In addition, a study must have included at least one of the following additional design elements:

A report of implementation fidelity or professional development activity;

Results disaggregated by content strands or by performance by student subgroups; and/or

Multiple outcome measures or precise theoretical analysis of a measured construct, such as number sense, proof, or proportional reasoning.

Using this rubric, the committee identified a subset of 63 comparative studies to classify as at least minimally methodologically adequate and to analyze in depth to inform the conduct of future evaluations. There are those who would argue that any threat to the validity of a study discredits the findings, thus claiming that until we know everything, we know nothing. Others would claim that from the myriad of studies, examining patterns of effects and patterns of variation, one can learn a great deal, perhaps tentatively, about programs and their possible effects. More importantly, we can learn about methodologies and how to concentrate and focus to increase the likelihood of learning more quickly. As Lipsey (1997, p. 22) wrote:

In the long run, our most useful and informative contribution to program managers and policy makers and even to the evaluation profession itself may be the consolidation of our piecemeal knowledge into broader pictures of the program and policy spaces at issue, rather than individual studies of particular programs.

We do not wish to imply that we devalue studies of student affect or conceptions of mathematics, but decided that unless these indicators were connected to direct indicators of student learning, we would eliminate them from further study. As a result of this sorting, we eliminated 19 studies of NSF-supported curricula and 13 studies of commercially generated curricula. Of these, 4 were eliminated for their sole focus on affect or conceptions, 3 were eliminated for their comparative focus on outcomes other than achievement, such as teacher-related variables, and 19 were eliminated for their failure to meet the minimum additional characteristics specified in the criteria above. In addition, six others were excluded from the studies of commercial materials because they were not conducted within the grade-

level band specified by the committee for the selection of that program. From this point onward, all references can be assumed to refer to at least minimally methodologically adequate unless a study is referenced for illustration, in which case we label it with “EX” to indicate that it is excluded in the summary analyses. Studies labeled “EX” are occasionally referenced because they can provide useful information on certain aspects of curricular evaluation, but not on the overall effectiveness.

The at least minimally methodologically adequate studies reported on a variety of grade levels. Figure 5-2 shows the different grade levels of the studies. At times, the choice of grade levels was dictated by the years in which high-stakes tests were given. Most of the studies reported on multiple grade levels, as shown in Figure 5-2 .

Using the seven critical design elements of at least minimally methodologically adequate studies as a design template, we describe the overall database and discuss the array of choices on critical decision points with examples. Following that, we report on the results on the at least minimally methodologically adequate studies by program type. To do so, the results of each study were coded as either statistically significant or not. Those studies

comparative research titles examples for highschool students

FIGURE 5-2 Single-grade studies by grade and multigrade studies by grade band.

that contained statistically significant results were assigned a percentage of outcomes that are positive (in favor of the treatment curriculum) based on the number of statistically significant comparisons reported relative to the total number of comparisons reported, and a percentage of outcomes that are negative (in favor of the comparative curriculum). The remaining were coded as the percentage of outcomes that are non significant. Then, using seven critical decision points as filters, we identified and examined more closely sets of studies that exhibited the strongest designs, and would therefore be most likely to increase our confidence in the validity of the evaluation. In this last section, we consider alternative hypotheses that could explain the results.

The committee emphasizes that we did not directly evaluate the materials. We present no analysis of results aggregated across studies by naming individual curricular programs because we did not consider the magnitude or rigor of the database for individual programs substantial enough to do so. Nevertheless, there are studies that provide compelling data concerning the effectiveness of the program in a particular context. Furthermore, we do report on individual studies and their results to highlight issues of approach and methodology and to remain within our primary charge, which was to evaluate the evaluations, we do not summarize results of the individual programs.

DESCRIPTION OF COMPARATIVE STUDIES DATABASE ON CRITICAL DECISION POINTS

An experimental or quasi-experimental design.

We separated the studies into experimental and quasiexperimental, and found that 100 percent of the studies were quasiexperimental (Campbell and Stanley, 1966; Cook and Campbell, 1979; and Rossi et al., 1999). 1 Within the quasi-experimental studies, we identified three subcategories of comparative study. In the first case, we identified a study as cross-curricular comparative if it compared the results of curriculum A with curriculum B. A few studies in this category also compared two samples within the curriculum to each other and specified different conditions such as high and low implementation quality.

A second category of a quasi-experimental study involved comparisons that could shed light on effectiveness involving time series studies. These studies compared the performance of a sample of students in a curriculum

comparative research titles examples for highschool students

FIGURE 5-3 The number of comparative studies in each category.

under investigation across time, such as in a longitudinal study of the same students over time. A third category of comparative study involved a comparison to some form of externally normed results, such as populations taking state, national, or international tests or prior research assessment from a published study or studies. We categorized these studies and divided them into NSF, UCSMP, and commercial and labeled them by the categories above ( Figure 5-3 ).

In nearly all studies in the comparative group, the titles of experimental curricula were explicitly identified. The only exception to this was the ARC Implementation Center study (Sconiers et al., 2002), where three NSF-supported elementary curricula were examined, but in the results, their effects were pooled. In contrast, in the majority of the cases, the comparison curriculum is referred to simply as “traditional.” In only 22 cases were comparisons made between two identified curricula. Many others surveyed the array of curricula at comparison schools and reported on the most frequently used, but did not identify a single curriculum. This design strategy is used often because other factors were used in selecting comparison groups, and the additional requirement of a single identified curriculum in

these sites would often make it difficult to match. Studies were categorized into specified (including a single or multiple identified curricula) and nonspecified curricula. In the 63 studies, the central group was compared to an NSF-supported curriculum (1), an unnamed traditional curriculum (41), a named traditional curriculum (19), and one of the six commercial curricula (2). To our knowledge, any systematic impact of such a decision on results has not been studied, but we express concern that when a specified curriculum is compared to an unspecified content which is a set of many informal curriculum, the comparison may favor the coherency and consistency of the single curricula, and we consider this possibility subsequently under alternative hypotheses. We believe that a quality study should at least report the array of curricula that comprise the comparative group and include a measure of the frequency of use of each, but a well-defined alternative is more desirable.

If a study was both longitudinal and comparative, then it was coded as comparative. When studies only examined performances of a group over time, such as in some longitudinal studies, it was coded as quasi-experimental normed. In longitudinal studies, the problems created by student mobility were evident. In one study, Carroll (2001), a five-year longitudinal study of Everyday Mathematics, the sample size began with 500 students, 24 classrooms, and 11 schools. By 2nd grade, the longitudinal sample was 343. By 3rd grade, the number of classes increased to 29 while the number of original students decreased to 236 students. At the completion of the study, approximately 170 of the original students were still in the sample. This high rate of attrition from the study suggests that mobility is a major challenge in curricular evaluation, and that the effects of curricular change on mobile students needs to be studied as a potential threat to the validity of the comparison. It is also a challenge in curriculum implementation because students coming into a program do not experience its cumulative, developmental effect.

Longitudinal studies also have unique challenges associated with outcome measures, a study by Romberg et al. (in press) (EX) discussed one approach to this problem. In this study, an external assessment system and a problem-solving assessment system were used. In the External Assessment System, items from the National Assessment of Educational Progress (NAEP) and Third International Mathematics and Science Survey (TIMSS) were balanced across four strands (number, geometry, algebra, probability and statistics), and 20 items of moderate difficulty, called anchor items, were repeated on each grade-specific assessment (p. 8). Because the analyses of the results are currently under way, the evaluators could not provide us with final results of this study, so it is coded as EX.

However, such longitudinal studies can provide substantial evidence of the effects of a curricular program because they may be more sensitive to an

TABLE 5-1 Scores in Percentage Correct by Everyday Mathematics Students and Various Comparison Groups Over a Five-Year Longitudinal Study

accumulation of modest effects and/or can reveal whether the rates of learning change over time within curricular change.

The longitudinal study by Carroll (2001) showed that the effects of curricula may often accrue over time, but measurements of achievement present challenges to drawing such conclusions as the content and grade level change. A variety of measures were used over time to demonstrate growth in relation to comparison groups. The author chose a set of measures used previously in studies involving two Asian samples and an American sample to provide a contrast to the students in EM over time. For 3rd and 4th grades, where the data from the comparison group were not available, the authors selected items from the NAEP to bridge the gap. Table 5-1 summarizes the scores of the different comparative groups over five years. Scores are reported as the mean percentage correct for a series of tests on number computation, number concepts and applications, geometry, measurement, and data analysis.

It is difficult to compare performances on different tests over different groups over time against a single longitudinal group from EM, and it is not possible to determine whether the students’ performance is increasing or whether the changes in the tests at each grade level are producing the results; thus the results from longitudinal studies lacking a control group or use of sophisticated methodological analysis may be suspect and should be interpreted with caution.

In the Hirsch and Schoen (2002) study, based on a sample of 1,457 students, scores on Ability to Do Quantitative Thinking (ITED-Q) a subset of the Iowa Tests of Education Development, students in Core-Plus showed increasing performance over national norms over the three-year time period. The authors describe the content of the ITED-Q test and point out

that “although very little symbolic algebra is required, the ITED-Q is quite demanding for the full range of high school students” (p. 3). They further point out that “[t]his 3-year pattern is consistent, on average, in rural, urban, and suburban schools, for males and females, for various minority groups, and for students for whom English was not their first language” (p. 4). In this case, one sees that studies over time are important as results over shorter periods may mask cumulative effects of consistent and coherent treatments and such studies could also show increases that do not persist when subject to longer trajectories. One approach to longitudinal studies was used by Webb and Dowling in their studies of the Interactive Mathematics Program (Webb and Dowling, 1995a, 1995b, 1995c). These researchers conducted transcript analyses as a means to examine student persistence and success in subsequent course taking.

The third category of quasi-experimental comparative studies measured student outcomes on a particular curricular program and simply compared them to performance on national tests or international tests. When these tests were of good quality and were representative of a genuine sample of a relevant population, such as NAEP reports or TIMSS results, the reports often provided one a reasonable indicator of the effects of the program if combined with a careful description of the sample. Also, sometimes the national tests or state tests used were norm-referenced tests producing national percentiles or grade-level equivalents. The normed studies were considered of weaker quality in establishing effectiveness, but were still considered valid as examples of comparing samples to populations.

For Studies That Do Not Use Random Assignment: What Methods of Establishing Comparability Across Groups Were Built into the Design

The most fundamental question in an evaluation study is whether the treatment has had an effect on the chosen criterion variable. In our context, the treatment is the curriculum materials, and in some cases, related professional development, and the outcome of interest is academic learning. To establish if there is a treatment effect, one must logically rule out as many other explanations as possible for the differences in the outcome variable. There is a long tradition on how this is best done, and the principle from a design point of view is to assure that there are no differences between the treatment conditions (especially in these evaluations, often there are only the new curriculum materials to be evaluated and a control group) either at the outset of the study or during the conduct of the study.

To ensure the first condition, the ideal procedure is the random assignment of the appropriate units to the treatment conditions. The second condition requires that the treatment is administered reliably during the length of the study, and is assured through the careful observation and

control of the situation. Without randomization, there are a host of possible confounding variables that could differ among the treatment conditions and that are related themselves to the outcome variables. Put another way, the treatment effect is a parameter that the study is set up to estimate. Statistically, an estimate that is unbiased is desired. The goal is that its expected value over repeated samplings is equal to the true value of the parameter. Without randomization at the onset of a study, there is no way to assure this property of unbiasness. The variables that differ across treatment conditions and are related to the outcomes are confounding variables, which bias the estimation process.

Only one study we reviewed, Peters (1992), used randomization in the assignment of students to treatments, but that occurred because the study was limited to one teacher teaching two sections and included substantial qualitative methods, so we coded it as quasi-experimental. Others report partially assigning teachers randomly to treatment conditions (Thompson, et al., 2001; Thompson et al., 2003). Two primary reasons seem to account for a lack of use of pure experimental design. To justify the conduct and expense of a randomized field trial, the program must be described adequately and there must be relative assurance that its implementation has occurred over the duration of the experiment (Peterson et al., 1999). Additionally, one must be sure that the outcome measures are appropriate for the range of performances in the groups and valid relative to the curricula under investigation. Seldom can such conditions be assured for all students and teachers and over the duration of a year or more.

A second reason is that random assignment of classrooms to curricular treatment groups typically is not permitted or encouraged under normal school conditions. As one evaluator wrote, “Building or district administrators typically identified teachers who would be in the study and in only a few cases was random assignment of teachers to UCSMP Algebra or comparison classes possible. School scheduling and teacher preference were more important factors to administrators and at the risk of losing potential sites, we did not insist on randomization” (Mathison et al., 1989, p. 11).

The Joint Committee on Standards for Educational Evaluation (1994, p. 165) committee of evaluations recognized the likelihood of limitations on randomization, writing:

The groups being compared are seldom formed by random assignment. Rather, they tend to be natural groupings that are likely to differ in various ways. Analytical methods may be used to adjust for these initial differences, but these methods are based upon a number of assumptions. As it is often difficult to check such assumptions, it is advisable, when time and resources permit, to use several different methods of analysis to determine whether a replicable pattern of results is obtained.

Does the dearth of pure experimentation render the results of the studies reviewed worthless? Bias is not an “either-or” proposition, but it is a quantity of varying degrees. Through careful measurement of the most salient potential confounding variables, precise theoretical description of constructs, and use of these methods of statistical analysis, it is possible to reduce the amount of bias in the estimated treatment effect. Identification of the most likely confounding variables and their measurement and subsequent adjustments can greatly reduce bias and help estimate an effect that is likely to be more reflective of the true value. The theoretical fully specified model is an alternative to randomization by including relevant variables and thus allowing the unbiased estimation of the parameter. The only problem is realizing when the model is fully specified.

We recognized that we can never have enough knowledge to assure a fully specified model, especially in the complex and unstable conditions of schools. However, a key issue in determining the degree of confidence we have in these evaluations is to examine how they have identified, measured, or controlled for such confounding variables. In the next sections, we report on the methods of the evaluators in identifying and adjusting for such potential confounding variables.

One method to eliminate confounding variables is to examine the extent to which the samples investigated are equated either by sample selection or by methods of statistical adjustments. For individual students, there is a large literature suggesting the importance of social class to achievement. In addition, prior achievement of students must be considered. In the comparative studies, investigators first identified participation of districts, schools, or classes that could provide sufficient duration of use of curricular materials (typically two years or more), availability of target classes, or adequate levels of use of program materials. Establishing comparability was a secondary concern.

These two major factors were generally used in establishing the comparability of the sample:

Student population characteristics, such as demographic characteristics of students in terms of race/ethnicity, economic levels, or location type (urban, suburban, or rural).

Performance-level characteristics such as performance on prior tests, pretest performance, percentage passing standardized tests, or related measures (e.g., problem solving, reading).

In general, four methods of comparing groups were used in the studies we examined, and they permit different degrees of confidence in their results. In the first type, a matching class, school, or district was identified.

Studies were coded as this type if specified characteristics were used to select the schools systematically. In some of these studies, the methodology was relatively complex as correlates of performance on the outcome measures were found empirically and matches were created on that basis (Schneider, 2000; Riordan and Noyce, 2001; and Sconiers et al., 2002). For example, in the Sconiers et al. study, where the total sample of more than 100,000 students was drawn from five states and three elementary curricula are reviewed (Everyday Mathematics, Math Trailblazers [MT], and Investigations [IN], a highly systematic method was developed. After defining eligibility as a “reform school,” evaluators conducted separate regression analyses for the five states at each tested grade level to identify the strongest predictors of average school mathematics score. They reported, “reading score and low-income variables … consistently accounted for the greatest percentage of total variance. These variables were given the greatest weight in the matching process. Other variables—such as percent white, school mobility rate, and percent with limited English proficiency (LEP)—accounted for little of the total variance but were typically significant. These variables were given less weight in the matching process” (Sconiers et al., 2002, p. 10). To further provide a fair and complete comparison, adjustments were made based on regression analysis of the scores to minimize bias prior to calculating the difference in scores and reporting effect sizes. In their results the evaluators report, “The combined state-grade effect sizes for math and total are virtually identical and correspond to a percentile change of about 4 percent favoring the reform students” (p. 12).

A second type of matching procedure was used in the UCSMP evaluations. For example, in an evaluation centered on geometry learning, evaluators advertised in NCTM and UCSMP publications, and set conditions for participation from schools using their program in terms of length of use and grade level. After selecting schools with heterogeneous grouping and no tracking, the researchers used a match-pair design where they selected classes from the same school on the basis of mathematics ability. They used a pretest to determine this, and because the pretest consisted of two parts, they adjusted their significance level using the Bonferroni method. 2 Pairs were discarded if the differences in means and variance were significant for all students or for those students completing all measures, or if class sizes became too variable. In the algebra study, there were 20 pairs as a result of the matching, and because they were comparing three experimental conditions—first edition, second edition, and comparison classes—in the com-

parison study relevant to this review, their matching procedure identified 8 pairs. When possible, teachers were assigned randomly to treatment conditions. Most results are presented with the eight identified pairs and an accumulated set of means. The outcomes of this particular study are described below in a discussion of outcome measures (Thompson et al., 2003).

A third method was to measure factors such as prior performance or socio-economic status (SES) based on pretesting, and then to use analysis of covariance or multiple regression in the subsequent analysis to factor in the variance associated with these factors. These studies were coded as “control.” A number of studies of the Saxon curricula used this method. For example, Rentschler (1995) conducted a study of Saxon 76 compared to Silver Burdett with 7th graders in West Virginia. He reported that the groups differed significantly in that the control classes had 65 percent of the students on free and reduced-price lunch programs compared to 55 percent in the experimental conditions. He used scores on California Test of Basic Skills mathematics computation and mathematics concepts and applications as his pretest scores and found significant differences in favor of the experimental group. His posttest scores showed the Saxon experimental group outperformed the control group on both computation and concepts and applications. Using analysis of covariance, the computation difference in favor of the experimental group was statistically significant; however, the difference in concepts and applications was adjusted to show no significant difference at the p < .05 level.

A fourth method was noted in studies that used less rigorous methods of selection of sample and comparison of prior achievement or similar demographics. These studies were coded as “compare.” Typically, there was no explicit procedure to decide if the comparison was good enough. In some of the studies, it appeared that the comparison was not used as a means of selection, but rather as a more informal device to convince the reader of the plausibility of the equivalence of the groups. Clearly, the studies that used a more precise method of selection were more likely to produce results on which one’s confidence in the conclusions is greater.

Definition of Unit of Analysis

A major decision in forming an evaluation design is the unit of analysis. The unit of selection or randomization used to assign elements to treatment and control groups is closely linked to the unit of analysis. As noted in the National Research Council (NRC) report (1992, p. 21):

If one carries out the assignment of treatments at the level of schools, then that is the level that can be justified for causal analysis. To analyze the results at the student level is to introduce a new, nonrandomized level into

the study, and it raises the same issues as does the nonrandomized observational study…. The implications … are twofold. First, it is advisable to use randomization at the level at which units are most naturally manipulated. Second, when the unit of observation is at a “lower” level of aggregation than the unit of randomization, then for many purposes the data need to be aggregated in some appropriate fashion to provide a measure that can be analyzed at the level of assignment. Such aggregation may be as simple as a summary statistic or as complex as a context-specific model for association among lower-level observations.

In many studies, inadequate attention was paid to the fact that the unit of selection would later become the unit of analysis. The unit of analysis, for most curriculum evaluators, needs to be at least the classroom, if not the school or even the district. The units must be independently responding units because instruction is a group process. Students are not independent, the classroom—even if the teachers work together in a school on instruction—is not entirely independent, so the school is the unit. Care needed to be taken to ensure that an adequate numbers of units would be available to have sufficient statistical power to detect important differences.

A curriculum is experienced by students in a group, and this implies that individual student responses and what they learn are correlated. As a result, the appropriate unit of assignment and analysis must at least be defined at the classroom or teacher level. Other researchers (Bryk et al., 1993) suggest that the unit might be better selected at an even higher level of aggregation. The school itself provides a culture in which the curriculum is enacted as it is influenced by the policies and assignments of the principal, by the professional interactions and governance exhibited by the teachers as a group, and by the community in which the school resides. This would imply that the school might be the appropriate unit of analysis. Even further, to the extent that such decisions about curriculum are made at the district level and supported through resources and professional development at that level, the appropriate unit could arguably be the district. On a more practical level, we found that arguments can be made for a variety of decisions on the selection of units, and what is most essential is to make a clear argument for one’s choice, to use the same unit in the analysis as in the sample selection process, and to recognize the potential limits to generalization that result from one’s decisions.

We would argue in all cases that reports of how sites are selected must be explicit in the evaluation report. For example, one set of evaluation studies selected sites by advertisements in a journal distributed by the program and in NCTM journals (UCSMP) (Thompson et al., 2001; Thompson et al., 2003). The samples in their studies tended to be affluent suburban populations and predominantly white populations. Other conditions of inclusion, such as frequency of use also might have influenced this outcome,

but it is important that over a set of studies on effectiveness, all populations of students be adequately sampled. When a study is not randomized, adjustments for these confounding variables should be included. In our analysis of equity, we report on the concerns about representativeness of the overall samples and their impact on the generalizability of the results.

Implementation Components

The complexity of doing research on curricular materials introduces a number of possible confounding variables. Due to the documented complexity of curricular implementation, most comparative study evaluators attempt to monitor implementation in some fashion. A valuable outcome of a well-conducted evaluation is to determine not only if the experimental curriculum could ideally have a positive impact on learning, but whether it can survive or thrive in the conditions of schooling that are so variable across sites. It is essential to know what the treatment was, whether it occurred, and if so, to what degree of intensity, fidelity, duration, and quality. In our model in Chapter 3 , these factors were referred to as “implementation components.” Measuring implementation can be costly for large-scale comparative studies; however, many researchers have shown that variation in implementation is a key factor in determining effectiveness. In coding the comparative studies, we identified three types of components that help to document the character of the treatment: implementation fidelity, professional development treatments, and attention to teacher effects.

Implementation Fidelity

Implementation fidelity is a measure of the basic extent of use of the curricular materials. It does not address issues of instructional quality. In some studies, implementation fidelity is synonymous with “opportunity to learn.” In examining implementation fidelity, a variety of data were reported, including, most frequently, the extent of coverage of the curricular material, the consistency of the instructional approach to content in relation to the program’s theory, reports of pedagogical techniques, and the length of use of the curricula at the sample sites. Other less frequently used approaches documented the calendar of curricular coverage, requested teacher feedback by textbook chapter, conducted student surveys, and gauged homework policies, use of technology, and other particular program elements. Interviews with teachers and students, classroom surveys, and observations were the most frequently used data-gathering techniques. Classroom observations were conducted infrequently in these studies, except in cases when comparative studies were combined with case studies, typically with small numbers of schools and classes where observations

were conducted for long or frequent time periods. In our analysis, we coded only the presence or absence of one or more of these methods.

If the extent of implementation was used in interpreting the results, then we classified the study as having adjusted for implementation differences. Across all 63 at least minimally methodologically adequate studies, 44 percent reported some type of implementation fidelity measure, 3 percent reported and adjusted for it in interpreting their outcome measures, and 53 percent recorded no information on this issue. Differences among studies, by study type (NSF, UCSMP, and commercially generated), showed variation on this issue, with 46 percent of NSF reporting or adjusting for implementation, 75 percent of UCSMP, and only 11 percent of the other studies of commercial materials doing so. Of the commercial, non-UCSMP studies included, only one reported on implementation. Possibly, the evaluators for the NSF and UCSMP Secondary programs recognized more clearly that their programs demanded significant changes in practice that could affect their outcomes and could pose challenges to the teachers assigned to them.

A study by Abrams (1989) (EX) 3 on the use of Saxon algebra by ninth graders showed that concerns for implementation fidelity extend to all curricula, even those like Saxon whose methods may seem more likely to be consistent with common practice. Abrams wrote, “It was not the intent of this study to determine the effectiveness of the Saxon text when used as Saxon suggests, but rather to determine the effect of the text as it is being used in the classroom situations. However, one aspect of the research was to identify how the text is being taught, and how closely teachers adhere to its content and the recommended presentation” (p. 7). Her findings showed that for the 9 teachers and 300 students, treatment effects favoring the traditional group (using Dolciani’s Algebra I textbook, Houghton Mifflin, 1980) were found on the algebra test, the algebra knowledge/skills subtest, and the problem-solving test for this population of teachers (fixed effect). No differences were found between the groups on an algebra understanding/applications subtest, overall attitude toward mathematics, mathematical self-confidence, anxiety about mathematics, or enjoyment of mathematics. She suggests that the lack of differences might be due to the ways in which teachers supplement materials, change test conditions, emphasize

and deemphasize topics, use their own tests, vary the proportion of time spent on development and practice, use calculators and group work, and basically adapt the materials to their own interpretation and method. Many of these practices conflict directly with the recommendations of the authors of the materials.

A study by Briars and Resnick (2000) (EX) in Pittsburgh schools directly confronted issues relevant to professional development and implementation. Evaluators contrasted the performance of students of teachers with high and low implementation quality, and showed the results on two contrasting outcome measures, Iowa Test of Basic Skills (ITBS) and Balanced Assessment. Strong implementers were defined as those who used all of the EM components and provided student-centered instruction by giving students opportunities to explore mathematical ideas, solve problems, and explain their reasoning. Weak implementers were either not using EM or using it so little that the overall instruction in the classrooms was “hardly distinguishable from traditional mathematics instruction” (p. 8). Assignment was based on observations of student behavior in classes, the presence or absence of manipulatives, teacher questionnaires about the programs, and students’ knowledge of classroom routines associated with the program.

From the identification of strong- and weak-implementing teachers, strong- and weak-implementation schools were identified as those with strong- or weak-implementing teachers in 3rd and 4th grades over two consecutive years. The performance of students with 2 years of EM experience in these settings composed the comparative samples. Three pairs of strong- and weak-implementation schools with similar demographics in terms of free and reduced-price lunch (range 76 to 93 percent), student living with only one parent (range 57 to 82 percent), mobility (range 8 to 16 percent), and ethnicity (range 43 to 98 percent African American) were identified. These students’ 1st-grade ITBS scores indicated similarity in prior performance levels. Finally, evaluators predicted that if the effects were due to the curricular implementation and accompanying professional development, the effects on scores should be seen in 1998, after full implementation. Figure 5-4 shows that on the 1998 New Standards exams, placement in strong- and weak-implementation schools strongly affected students’ scores. Over three years, performance in the district on skills, concepts, and problem solving rose, confirming the evaluator’s predictions.

An article by McCaffrey et al. (2001) examining the interactions among instructional practices, curriculum, and student achievement illustrates the point that distinctions are often inadequately linked to measurement tools in their treatment of the terms traditional and reform teaching. In this study, researchers conducted an exploratory factor analysis that led them to create two scales for instructional practice: Reform Practices and Tradi-

comparative research titles examples for highschool students

FIGURE 5-4 Percentage of students who met or exceeded the standard. Districtwide grade 4 New Standards Mathematics Reference Examination (NSMRE) performance for 1996, 1997, and 1998 by level of Everyday Mathematics implementation. Percentage of students who achieved the standard. Error bars denote the 99 percent confidence interval for each data point.

SOURCE: Re-created from Briars and Resnick (2000, pp. 19-20).

tional Practices. The reform scale measured the frequency, by means of teacher report, of teacher and student behaviors associated with reform instruction and assessment practices, such as using small-group work, explaining reasoning, representing and using data, writing reflections, or performing tasks in groups. The traditional scale focused on explanations to whole classes, the use of worksheets, practice, and short-answer assessments. There was a –0.32 correlation between scores for integrated curriculum teachers. There was a 0.27 correlation between scores for traditional

curriculum teachers. This shows that it is overly simplistic to think that reform and traditional practices are oppositional. The relationship among a variety of instructional practices is rather more complex as they interact with curriculum and various student populations.

Professional Development

Professional development and teacher effects were separated in our analysis from implementation fidelity. We recognized that professional development could be viewed by the readers of this report in two ways. As indicated in our model, professional development can be considered a program element or component or it can be viewed as part of the implementation process. When viewed as a program element, professional development resources are considered mandatory along with program materials. In relation to evaluation, proponents of considering professional development as a mandatory program element argue that curricular innovations, which involve the introduction of new topics, new types of assessment, or new ways of teaching, must make provision for adequate training, just as with the introduction of any new technology.

For others, the inclusion of professional development in the program elements without a concomitant inclusion of equal amounts of professional development relevant to a comparative treatment interjects a priori disproportionate treatments and biases the results. We hoped for an array of evaluation studies that might shed some empirical light on this dispute, and hence separated professional development from treatment fidelity, coding whether or not studies reported on the amount of professional development provided for the treatment and/or comparison groups. A study was coded as positive if it either reported on the professional development provided on the experimental group or reported the data on both treatments. Across all 63 at least minimally methodologically adequate studies, 27 percent reported some type of professional development measure, 1.5 percent reported and adjusted for it in interpreting their outcome measures, and 71.5 percent recorded no information on the issue.

A study by Collins (2002) (EX) 4 illustrates the critical and controversial role of professional development in evaluation. Collins studied the use of Connected Math over three years, in three middle schools in threat of being classified as low performing in the Massachusetts accountability system. A comparison was made between one school (School A) that engaged

substantively in professional development opportunities accompanying the program and two that did not (Schools B and C). In the CMP school reports (School A) totals between 100 and 136 hours of professional development were recorded for all seven teachers in grades 6 through 8. In School B, 66 hours were reported for two teachers and in School C, 150 hours were reported for eight teachers over three years. Results showed significant differences in the subsequent performance by students at the school with higher participation in professional development (School A) and it became a districtwide top performer; the other two schools remained at risk for low performance. No controls for teacher effects were possible, but the results do suggest the centrality of professional development for successful implementation or possibly suggest that the results were due to professional development rather than curriculum materials. The fact that these two interpretations cannot be separated is a problem when professional development is given to one and not the other. The effect could be due to textbook or professional development or an interaction between the two. Research designs should be adjusted to consider these issues when different conditions of professional development are provided.

Teacher Effects

These studies make it obvious that there are potential confounding factors of teacher effects. Many evaluation studies devoted inadequate attention to the variable of teacher quality. A few studies (Goodrow, 1998; Riordan and Noyce, 2001; Thompson et al., 2001; and Thompson et al., 2003) reported on teacher characteristics such as certification, length of service, experience with curricula, or degrees completed. Those studies that matched classrooms and reported by matched results rather than aggregated results sought ways to acknowledge the large variations among teacher performance and its impact on student outcomes. We coded any effort to report on possible teacher effects as one indicator of quality. Across all 63 at least minimally methodologically adequate studies, 16 percent reported some type of teacher effect measure, 3 percent reported and adjusted for it in interpreting their outcome measures, and 81 percent recorded no information on this issue.

One can see that the potential confounding factors of teacher effects, in terms of the provision of professional development or the measure of teacher effects, are not adequately considered in most evaluation designs. Some studies mention and give a subjective judgment as to the nature of the problem, but this is descriptive at the most. Hardly any of the studies actually do anything analytical, and because these are such important potential confounding variables, this presents a serious challenge to the efficacy of these studies. Figure 5-5 shows how attention to these factors varies

comparative research titles examples for highschool students

FIGURE 5-5 Treatment of implementation components by program type.

NOTE: PD = professional development.

across program categories among NSF-supported, UCSMP, and studies of commercial materials. In general, evaluations of NSF-supported studies were the most likely to measure these variables; UCSMP had the most standardized use of methods to do so across studies; and commercial material evaluators seldom reported on issues of implementation fidelity.

Identification of a Set of Outcome Measures and Forms of Disaggregation

Using the selected student outcomes identified in the program theory, one must conduct an impact assessment that refers to the design and measurement of student outcomes. In addition to selecting what outcomes should be measured within one’s program theory, one must determine how these outcomes are measured, when those measures are collected, and what

purpose they serve from the perspective of the participants. In the case of curricular evaluation, there are significant issues involved in how these measures are reported. To provide insight into the level of curricular validity, many evaluators prefer to report results by topic, content strand, or item cluster. These reports often present the level of specificity of outcome needed to inform curriculum designers, especially when efforts are made to document patterns of errors, distribution of results across multiple choices, or analyses of student methods. In these cases, whole test scores may mask essential differences in impact among curricula at the level of content topics, reporting only average performance.

On the other hand, many large-scale assessments depend on methods of test equating that rely on whole test scores and make comparative interpretations of different test administrations by content strands of questionable reliability. Furthermore, there are questions such as whether to present only gain scores effect sizes, how to link pretests and posttests, and how to determine the relative curricular sensitivity of various outcome measures.

The findings of comparative studies are reported in terms of the outcome measure(s) collected. To describe the nature of the database with regard to outcome measures and to facilitate our analyses of the studies, we classified each of the included studies on four outcome measure dimensions:

Total score reported;

Disaggregation of content strands, subtest, performance level, SES, or gender;

Outcome measure that was specific to curriculum; and

Use of multiple outcome measures.

Most studies reported a total score, but we did find studies that reported only subtest scores or only scores on an item-by-item basis. For example, in the Ben-Chaim et al. (1998) evaluation study of Connected Math, the authors were interested in students’ proportional reasoning proficiency as a result of use of this curriculum. They asked students from eight seventh-grade classes of CMP and six seventh-grade classes from the control group to solve a variety of tasks categorized as rate and density problems. The authors provide precise descriptions of the cognitive challenges in the items; however, they do not explain if the problems written up were representative of performance on a larger set of items. A special rating form was developed to code responses in three major categories (correct answer, incorrect answer, and no response), with subcategories indicating the quality of the work that accompanied the response. No reports on reliability of coding were given. Performance on standardized tests indicated that control students’ scores were slightly higher than CMP at the beginning of the

year and lower at the end. Twenty-five percent of the experimental group members were interviewed about their approaches to the problems. The CMP students outperformed the control students (53 percent versus 28 percent) overall in providing the correct answers and support work, and 27 percent of the control group gave an incorrect answer or showed incorrect thinking compared to 13 percent of the CMP group. An item-level analysis permitted the researchers to evaluate the actual strategies used by the students. They reported, for example, that 82 percent of CMP students used a “strategy focused on package price, unit price, or a combination of the two; those effective strategies were used by only 56 of 91 control students (62 percent)” (p. 264).

The use of item or content strand-level comparative reports had the advantage that they permitted the evaluators to assess student learning strategies specific to a curriculum’s program theory. For example, at times, evaluators wanted to gauge the effectiveness of using problems different from those on typical standardized tests. In this case, problems were drawn from familiar circumstances but carefully designed to create significant cognitive challenges, and assess how well the informal strategies approach in CMP works in comparison to traditional instruction. The disadvantages of such an approach include the use of only a small number of items and the concerns for reliability in scoring. These studies seem to represent a method of creating hybrid research models that build on the detailed analyses possible using case studies, but still reporting on samples that provide comparative data. It possibly reflects the concerns of some mathematicians and mathematics educators that the effectiveness of materials needs to be evaluated relative to very specific, research-based issues on learning and that these are often inadequately measured by multiple-choice tests. However, a decision not to report total scores led to a trade-off in the reliability and representativeness of the reported data, which must be addressed to increase the objectivity of the reports.

Second, we coded whether outcome data were disaggregated in some way. Disaggregation involved reporting data on dimensions such as content strand, subtest, test item, ethnic group, performance level, SES, and gender. We found disaggregated results particularly helpful in understanding the findings of studies that found main effects, and also in examining patterns across studies. We report the results of the studies’ disaggregation by content strand in our reports of effects. We report the results of the studies’ disaggregation by subgroup in our discussions of generalizability.

Third, we coded whether a study used an outcome measure that the evaluator reported as being sensitive to a particular treatment—this is a subcategory of what was defined in our framework as “curricular validity of measures.” In such studies, the rationale was that readily available measures such as state-mandated tests, norm-referenced standardized tests, and

college entrance examinations do not measure some of the aims of the program under study. A frequently cited instance of this was that “off the shelf” instruments do not measure well students’ ability to apply their mathematical knowledge to problems embedded in complex settings. Thus, some studies constructed a collection of tasks that assessed this ability and collected data on it (Ben-Chaim et al., 1998; Huntley et al., 2000).

Finally, we recorded whether a study used multiple outcome measures. Some studies used a variety of achievement measures and other studies reported on achievement accompanied by measures such as subsequent course taking or various types of affective measures. For example, Carroll (2001, p. 47) reported results on a norm-referenced standardized achievement test as well as a collection of tasks developed in other studies.

A study by Huntley et al. (2000) illustrates how a variety of these techniques were combined in their outcome measures. They developed three assessments. The first emphasized contextualized problem solving based on items from the American Mathematical Association of Two-Year Colleges and others; the second assessment was on context-free symbolic manipulation and a third part requiring collaborative problem solving. To link these measures to the overall evaluation, they articulated an explicit model of cognition based on how one links an applied situation to mathematical activity through processes of formulation and interpretation. Their assessment strategy permitted them to investigate algebraic reasoning as an ability to use algebraic ideas and techniques to (1) mathematize quantitative problem situations, (2) use algebraic principles and procedures to solve equations, and (3) interpret results of reasoning and calculations.

In presenting their data comparing performance on Core-Plus and traditional curriculum, they presented both main effects and comparisons on subscales. Their design of outcome measures permitted them to examine differences in performance with and without context and to conclude with statements such as “This result illustrates that CPMP students perform better than control students when setting up models and solving algebraic problems presented in meaningful contexts while having access to calculators, but CPMP students do not perform as well on formal symbol-manipulation tasks without access to context cues or calculators” (p. 349). The authors go on to present data on the relationship between knowing how to plan or interpret solutions and knowing how to carry them out. The correlations between these variables were weak but significantly different (0.26 for control groups and 0.35 for Core-Plus). The advantage of using multiple measures carefully tied to program theory is that they can permit one to test fine content distinctions that are likely to be the level of adjustments necessary to fine tune and improve curricular programs.

Another interesting approach to the use of outcome measures is found in the UCSMP studies. In many of these studies, evaluators collected infor-

TABLE 5-2 Mean Percentage Correct on the Subject Tests

mation from teachers’ reports and chapter reviews as to whether topics for items on the posttests were taught, calling this an “opportunity to learn” measure. The authors reported results from three types of analyses: (1) total test scores, (2) fair test scores (scores reported by program but only on items on topics taught), and (3) conservative test scores (scores on common items taught in both). Table 5-2 reports on the variations across the multiple- choice test scores for the Geometry study (Thompson et al., 2003) on a standardized test, High School Subject Tests-Geometry Form B , and the UCSMP-constructed Geometry test, and for the Advanced Algebra Study on the UCSMP-constructed Advanced Algebra test (Thompson et al., 2001). The table shows the mean scores for UCSMP classes and comparison classes. In each cell, mean percentage correct is reported first by whole test, then by fair test, and then by conservative test.

The authors explicitly compare the items from the standard Geometry test with the items from the UCSMP test and indicate overlap and difference. They constructed their own test because, in their view, the standard test was not adequately balanced among skills, properties, and real-world uses. The UCSMP test included items on transformations, representations, and applications that were lacking in the national test. Only five items were taught by all teachers; hence in the case of the UCSMP geometry test, there is no report on a conservative test. In the Advanced Algebra evaluation, only a UCSMP-constructed test was viewed as appropriate to cover the treatment of the prior material and alignment to the goals of the new course. These data sets demonstrate the challenge of selecting appropriate outcome measures, the sensitivity of the results to those decisions, and the importance of full disclosure of decision-making processes in order to permit readers to assess the implications of the choices. The methodology utilized sought to ensure that the material in the course was covered adequately by treatment teachers while finding ways to make comparisons that reflected content coverage.

Only one study reported on its outcomes using embedded assessment items employed over the course of the year. In a study of Saxon and UCSMP, Peters (1992) (EX) studied the use of these materials with two classrooms taught by the same teacher. In this small study, he randomly assigned students to treatment groups and then measured their performance on four unit tests composed of items common to both curricula and their progress on the Orleans-Hanna Algebraic Prognosis Test.

Peters’ study showed no significant difference in placement scores between Saxon and UCSMP on the posttest, but did show differences on the embedded assessment. Figure 5-6 (Peters, 1992, p. 75) shows an interesting display of the differences on a “continuum” that shows both the direction and magnitude of the differences and provides a level of concept specificity missing in many reports. This figure and a display ( Figure 5-7 ) in a study by Senk (1991, p. 18) of students’ mean scores on Curriculum A versus Curriculum B with a 10 percent range of differences marked represent two excellent means to communicate the kinds of detailed content outcome information that promises to be informative to curriculum writers, publishers, and school decision makers. In Figure 5-7 , 16 items listed by number were taken from the Second International Mathematics Study. The Functions, Statistics, and Trigonometry sample averaged 41 percent correct on these items whereas the U.S. precalculus sample averaged 38 percent. As shown in the figure, differences of 10 percent or less fall inside the banded area and greater than 10 percent fall outside, producing a display that makes it easy for readers and designers to identify the relative curricular strengths and weaknesses of topics.

While we value detailed outcome measure information, we also recognize the importance of examining curricular impact on students’ standardized test performance. Many developers, but not all, are explicit in rejecting standardized tests as adequate measures of the outcomes of their programs, claiming that these tests focus on skills and manipulations, that they are overly reliant on multiple-choice questions, and that they are often poorly aligned to new content emphases such as probability and statistics, transformations, use of contextual problems and functions, and process skills, such as problem solving, representation, or use of calculators. However, national and state tests are being revised to include more content on these topics and to draw on more advanced reasoning. Furthermore, these high-stakes tests are of major importance in school systems, determining graduation, passing standards, school ratings, and so forth. For this reason, if a curricular program demonstrated positive impact on such measures, we referred to that in Chapter 3 as establishing “curricular alignment with systemic factors.” Adequate performance on these measures is of paramount importance to the survival of reform (to large groups of parents and

comparative research titles examples for highschool students

FIGURE 5-6 Continuum of criterion score averages for studied programs.

SOURCE: Peters (1992, p. 75).

school administrators). These examples demonstrate how careful attention to outcomes measures is an essential element of valid evaluation.

In Table 5-3 , we document the number of studies using a variety of types of outcome measures that we used to code the data, and also report on the types of tests used across the studies.

comparative research titles examples for highschool students

FIGURE 5-7 Achievement (percentage correct) on Second International Mathematics Study (SIMS) items by U.S. precalculus students and functions, statistics, and trigonometry (FST) students.

SOURCE: Re-created from Senk (1991, p. 18).

TABLE 5-3 Number of Studies Using a Variety of Outcome Measures by Program Type

A Choice of Statistical Tests, Including Statistical Significance and Effect Size

In our first review of the studies, we coded what methods of statistical evaluation were used by different evaluators. Most common were t-tests; less frequently one found Analysis of Variance (ANOVA), Analysis of Co-

comparative research titles examples for highschool students

FIGURE 5-8 Statistical tests most frequently used.

variance (ANCOVA), and chi-square tests. In a few cases, results were reported using multiple regression or hierarchical linear modeling. Some used multiple tests; hence the total exceeds 63 ( Figure 5-8 ).

One of the difficult aspects of doing curriculum evaluations concerns using the appropriate unit both in terms of the unit to be randomly assigned in an experimental study and the unit to be used in statistical analysis in either an experimental or quasi-experimental study.

For our purposes, we made the decision that unless the study concerned an intact student population such as the freshman at a single university, where a student comparison was the correct unit, we believed that for statistical tests, the unit should be at least at the classroom level. Judgments were made for each study as to whether the appropriate unit was utilized. This question is an important one because statistical significance is related to sample size, and as a result, studies that inappropriately use the student as the unit of analysis could be concluding significant differences where they are not present. For example, if achievement differences between two curricula are tested in 16 classrooms with 400 students, it will always be easier to show significant differences using scores from those 400 students than using 16 classroom means.

Fifty-seven studies used students as the unit of analysis in at least one test of significance. Three of these were coded as correct because they involved whole populations. In all, 10 studies were coded as using the

TABLE 5-4 Performance on Applied Algebra Problems with Use of Calculators, Part 1

TABLE 5-5 Reanalysis of Algebra Performance Data

correct unit of analysis; hence, 7 studies used teachers or classes, or schools. For some studies where multiple tests were conducted, a judgment was made as to whether the primary conclusions drawn treated the unit of analysis adequately. For example, Huntley et al. (2000) compared the performance of CPMP students with students in a traditional course on a measure of ability to formulate and use algebraic models to answer various questions about relationships among variables. The analysis used students as the unit of analysis and showed a significant difference, as shown in Table 5-4 .

To examine the robustness of this result, we reanalyzed the data using an independent sample t-test and a matched pairs t-test with class means as the unit of analysis in both tests ( Table 5-5 ). As can be seen from the analyses, in neither statistical test was the difference between groups found to be significantly different (p < .05), thus emphasizing the importance of using the correct unit in analyzing the data.

Reanalysis of student-level data using class means will not always result

TABLE 5-6 Mean Percentage Correct on Entire Multiple-Choice Posttest: Second Edition and Non-UCSMP

in a change in finding. Furthermore, using class means as the unit of analysis does not suggest that significant differences will not be found. For example, a study by Thompson et al. (2001) compared the performance of UCSMP students with the performance of students in a more traditional program across several measures of achievement. They found significant differences between UCSMP students and the non-UCSMP students on several measures. Table 5-6 shows results of an analysis of a multiple-choice algebraic posttest using class means as the unit of analysis. Significant differences were found in five of eight separate classroom comparisons, as shown in the table. They also found a significant difference using a matched-pairs t-test on class means.

The lesson to be learned from these reanalyses is that the choice of unit of analysis and the way the data are aggregated can impact study findings in important ways including the extent to which these findings can be generalized. Thus it is imperative that evaluators pay close attention to such considerations as the unit of analysis and the way data are aggregated in the design, implementation, and analysis of their studies.

Second, effect size has become a relatively common and standard way of gauging the practical significance of the findings. Statistical significance only indicates whether the main-level differences between two curricula are large enough to not be due to chance, assuming they come from the same population. When statistical differences are found, the question remains as to whether such differences are large enough to consider. Because any innovation has its costs, the question becomes one of cost-effectiveness: Are the differences in student achievement large enough to warrant the costs of change? Quantifying the practical effect once statistical significance is established is one way to address this issue. There is a statistical literature for doing this, and for the purposes of this review, the committee simply noted whether these studies have estimated such an effect. However, the committee further noted that in conducting meta-analyses across these studies, effect size was likely to be of little value. These studies used an enormous variety of outcome measures, and even using effect size as a means to standardize units across studies is not sensible when the measures in each

study address such a variety of topics, forms of reasoning, content levels, and assessment strategies.

We note very few studies drew upon the advances in methodologies employed in modeling, which include causal modeling, hierarchical linear modeling (Bryk and Raudenbush, 1992; Bryk et al., 1993), and selection bias modeling (Heckman and Hotz, 1989). Although developing detailed specifications for these approaches is beyond the scope of this review, we wish to emphasize that these methodological advances should be considered within future evaluation designs.

Results and Limitations to Generalizability Resulting from Design Constraints

One also must consider what generalizations can be drawn from the results (Campbell and Stanley, 1966; Caporaso and Roos, 1973; and Boruch, 1997). Generalization is a matter of external validity in that it determines to what populations the study results are likely to apply. In designing an evaluation study, one must carefully consider, in the selection of units of analysis, how various characteristics of those units will affect the generalizability of the study. It is common for evaluators to conflate issues of representativeness for the purpose of generalizability (external validity) and comparativeness (the selection of or adjustment for comparative groups [internal validity]). Not all studies must be representative of the population served by mathematics curricula to be internally valid. But, to be generalizable beyond restricted communities, representativeness must be obtained by the random selection of the basic units. Clearly specifying such limitations to generalizability is critical. Furthermore, on the basis of equity considerations, one must be sure that if overall effectiveness is claimed, that the studies have been conducted and analyzed with reference of all relevant subgroups.

Thus, depending on the design of a study, its results may be limited in generalizability to other populations and circumstances. We identified four typical kinds of limitations on the generalizability of studies and coded them to determine, on the whole, how generalizable the results across studies might be.

First, there were studies whose designs were limited by the ability or performance level of the students in the samples. It was not unusual to find that when new curricula were implemented at the secondary level, schools kept in place systems of tracking that assigned the top students to traditional college-bound curriculum sequences. As a result, studies either used comparative groups who were matched demographically but less skilled than the population as a whole, in relation to prior learning, or their results compared samples of less well-prepared students to samples of students

with stronger preparations. Alternatively, some studies reported on the effects of curricula reform on gifted and talented students or on college-attending students. In these cases, the study results would also limit the generalizability of the results to similar populations. Reports using limited samples of students’ ability and prior performance levels were coded as a limitation to the generalizability of the study.

For example, Wasman (2000) conducted a study of one school (six teachers) and examined the students’ development of algebraic reasoning after one (n=100) and two years (n=73) in CMP. In this school, the top 25 percent of the students are counseled to take a more traditional algebra course, so her experimental sample, which was 61 percent white, 35 percent African American, 3 percent Asian, and 1 percent Hispanic, consisted of the lower 75 percent of the students. She reported on the student performance on the Iowa Algebraic Aptitude Test (IAAT) (1992), in the subcategories of interpreting information, translating symbols, finding relationships, and using symbols. Results for Forms 1 and 2 of the test, for the experimental and norm group, are shown in Table 5-7 for 8th graders.

In our coding of outcomes, this study was coded as showing no significant differences, although arguably its results demonstrate a positive set of

TABLE 5-7 Comparing Iowa Algebraic Aptitude Test (IAAT) Mean Scores of the Connected Mathematics Project Forms 1 and 2 to the Normative Group (8th Graders)

outcomes as the treatment group was weaker than the control group. Had the researcher used a prior achievement measure and a different statistical technique, significance might have been demonstrated, although potential teacher effects confound interpretations of results.

A second limitation to generalizability was when comparative studies resided entirely at curriculum pilot site locations, where such sites were developed as a means to conduct formative evaluations of the materials with close contact and advice from teachers. Typically, pilot sites have unusual levels of teacher support, whether it is in the form of daily technical support in the use of materials or technology or increased quantities of professional development. These sites are often selected for study because they have established cooperative agreements with the program developers and other sources of data, such as classroom observations, are already available. We coded whether the study was conducted at a pilot site to signal potential limitations in generalizability of the findings.

Third, studies were also coded as being of limited generalizability if they failed to disaggregate their data by socioeconomic class, race, gender, or some other potentially significant sources of restriction on the claims. We recorded the categories in which disaggregation occurred and compiled their frequency across the studies. Because of the need to open the pipeline to advanced study in mathematics by members of underrepresented groups, we were particularly concerned about gauging the extent to which evaluators factored such variables into their analysis of results and not just in terms of the selection of the sample.

Of the 46 included studies of NSF-supported curricula, 19 disaggregated their data by student subgroup. Nine of 17 studies of commercial materials disaggregated their data. Figure 5-9 shows the number of studies that disaggregated outcomes by race or ethnicity, SES, gender, LEP, special education status, or prior achievement. Studies using multiple categories of disaggregation were counted multiple times by program category.

The last category of restricted generalization occurred in studies of limited sample size. Although such studies may have provided more indepth observations of implementation and reports on professional development factors, the smaller numbers of classrooms and students in the study would limit the extent of generalization that could be drawn from it. Figure 5-10 shows the distribution of sizes of the samples in terms of numbers of students by study type.

Summary of Results by Student Achievement Among Program Types

We present the results of the studies as a means to further investigate their methodological implications. To this end, for each study, we counted across outcome measures the number of findings that were positive, nega-

comparative research titles examples for highschool students

FIGURE 5-9 Disaggregation of subpopulations.

comparative research titles examples for highschool students

FIGURE 5-10 Proportion of studies by sample size and program.

tive, or indeterminate (no significant difference) and then calculated the proportion of each. We represented the calculation of each study as a triplet (a, b, c) where a indicates the proportion of the results that were positive and statistically significantly stronger than the comparison program, b indicates the proportion that were negative and statistically significantly weaker than the comparison program, and c indicates the proportion that showed no significant difference between the treatment and the comparative group. For studies with a single outcome measure, without disaggregation by content strand, the triplet is always composed of two zeros and a single one. For studies with multiple measures or disaggregation by content strand, the triplet is typically a set of three decimal values that sum to one. For example, a study with one outcome measure in favor of the experimental treatment would be coded (1, 0, 0), while one with multiple measures and mixed results more strongly in favor of the comparative curriculum might be listed as (.20, .50, .30). This triplet would mean that for 20 percent of the comparisons examined, the evaluators reported statistically significant positive results, for 50 percent of the comparisons the results were statistically significant in favor of the comparison group, and for 30 percent of the comparisons no significant difference were found. Overall, the mean score on these distributions was (.54, .07, .40), indicating that across all the studies, 54 percent of the comparisons favored the treatment, 7 percent favored the comparison group, and 40 percent showed no significant difference. Table 5-8 shows the comparison by curricular program types. We present the results by individual program types, because each program type relies on a similar program theory and hence could lead to patterns of results that would be lost in combining the data. If the studies of commercial materials are all grouped together to include UCSMP, their pattern of results is (.38, .11, .51). Again we emphasize that due to our call for increased methodological rigor and the use of multiple methods, this result is not sufficient to establish the curricular effectiveness of these programs as a whole with adequate certainty.

We caution readers that these results are summaries of the results presented across a set of evaluations that meet only the standard of at least

TABLE 5-8 Comparison by Curricular Program Types

minimally methodologically adequate . Calculations of statistical significance of each program’s results were reported by the evaluators; we have made no adjustments for weaknesses in the evaluations such as inappropriate use of units of analysis in calculating statistical significance. Evaluations that consistently used the correct unit of analysis, such as UCSMP, could have fewer reports of significant results as a consequence. Furthermore, these results are not weighted by study size. Within any study, the results pay no attention to comparative effect size or to the established credibility of an outcome measure. Similarly, these results do not take into account differences in the populations sampled, an important consideration in generalizing the results. For example, using the same set of studies as an example, UCSMP studies used volunteer samples who responded to advertisements in their newsletters, resulting in samples with disproportionately Caucasian subjects from wealthier schools compared to national samples. As a result, we would suggest that these results are useful only as baseline data for future evaluation efforts. Our purpose in calculating these results is to permit us to create filters from the critical decision points and test how the results change as one applies more rigorous standards.

Given that none of the studies adequately addressed all of the critical criteria, we do not offer these results as definitive, only suggestive—a hypothesis for further study. In effect, given the limitations of time and support, and the urgency of providing advice related to policy, we offer this filtering approach as an informal meta-analytic technique sufficient to permit us to address our primary task, namely, evaluating the quality of the evaluation studies.

This approach reflects the committee’s view that to deeply understand and improve methodology, it is necessary to scrutinize the results and to determine what inferences they provide about the conduct of future evaluations. Analogous to debates on consequential validity in testing, we argue that to strengthen methodology, one must consider what current methodologies are able (or not able) to produce across an entire series of studies. The remainder of the chapter is focused on considering in detail what claims are made by these studies, and how robust those claims are when subjected to challenge by alternative hypothesis, filtering by tests of increasing rigor, and examining results and patterns across the studies.

Alternative Hypotheses on Effectiveness

In the spirit of scientific rigor, the committee sought to consider rival hypotheses that could explain the data. Given the weaknesses in the designs generally, often these alternative hypotheses cannot be dismissed. However, we believed that only after examining the configuration of results and

alternative hypotheses can the next generation of evaluations be better informed and better designed. We began by generating alternative hypotheses to explain the positive directionality of the results in favor of experimental groups. Alternative hypotheses included the following:

The teachers in the experimental groups tended to be self-selecting early adopters, and thus able to achieve effects not likely in regular populations.

Changes in student outcomes reflect the effects of professional development instruction, or level of classroom support (in pilot sites), and thus inflate the predictions of effectiveness of curricular programs.

Hawthorne effect (Franke and Kaul, 1978) occurs when treatments are compared to everyday practices, due to motivational factors that influence experimental participants.

The consistent difference is due to the coherence and consistency of a single curricular program when compared to multiple programs.

The significance level is only achieved by the use of the wrong unit of analysis to test for significance.

Supplemental materials or new teaching techniques produce the results and not the experimental curricula.

Significant results reflect inadequate outcome measures that focus on a restricted set of activities.

The results are due to evaluator bias because too few evaluators are independent of the program developers.

At the same time, one could argue that the results actually underestimate the performance of these materials and are conservative measures, and their alternative hypotheses also deserve consideration:

Many standardized tests are not sensitive to these curricular approaches, and by eliminating studies focusing on affect, we eliminated a key indicator of the appeal of these curricula to students.

Poor implementation or increased demands on teachers’ knowledge dampens the effects.

Often in the experimental treatment, top-performing students are missing as they are advised to take traditional sequences, rendering the samples unequal.

Materials are not well aligned with universities and colleges because tests for placement and success in early courses focus extensively on algebraic manipulation.

Program implementation has been undercut by negative publicity and the fears of parents concerning change.

There are also a number of possible hypotheses that may be affecting the results in either direction, and we list a few of these:

Examining the role of the teacher in curricular decision making is an important element in effective implementation, and design mandates of evaluation design make this impossible (and the positives and negatives or single- versus dual-track curriculum as in Lundin, 2001).

Local tests that are sensitive to the curricular effects typically are not mandatory and hence may lead to unpredictable performance by students.

Different types and extent of professional development may affect outcomes differentially.

Persistence or attrition may affect the mean scores and are often not considered in the comparative analyses.

One could also generate reasons why the curricular programs produced results showing no significance when one program or the other is actually more effective. This could include high degrees of variability in the results, samples that used the correct unit of analysis but did not obtain consistent participation across enough cases, implementation that did not show enough fidelity to the measures, or outcome measures insensitive to the results. Again, subsequent designs should be better informed by these findings to improve the likelihood that they will produce less ambiguous results and replication of studies could also give more confidence in the findings.

It is beyond the scope of this report to consider each of these alternative hypotheses separately and to seek confirmation or refutation of them. However, in the next section, we describe a set of analyses carried out by the committee that permits us to examine and consider the impact of various critical evaluation design decisions on the patterns of outcomes across sets of studies. A number of analyses shed some light on various alternative hypotheses and may inform the conduct of future evaluations.

Filtering Studies by Critical Decision Points to Increase Rigor

In examining the comparative studies, we identified seven critical decision points that we believed would directly affect the rigor and efficacy of the study design. These decision points were used to create a set of 16 filters. These are listed as the following questions:

Was there a report on comparability relative to SES?

Was there a report on comparability of samples relative to prior knowledge?

Was there a report on treatment fidelity?

Was professional development reported on?

Was the comparative curriculum specified?

Was there any attempt to report on teacher effects?

Was a total test score reported?

Was total test score(s) disaggregated by content strand?

Did the outcome measures match the curriculum?

Were multiple tests used?

Was the appropriate unit of analysis used in their statistical tests?

Did they estimate effect size for the study?

Was the generalizability of their findings limited by use of a restricted range of ability levels?

Was the generalizability of their findings limited by use of pilot sites for their study?

Was the generalizability of their findings limited by not disaggregating their results by subgroup?

Was the generalizability of their findings limited by use of small sample size?

The studies were coded to indicate if they reported having addressed these considerations. In some cases, the decision points were coded dichotomously as present or absent in the studies, and in other cases, the decision points were coded trichotomously, as description presented, absent, or statistically adjusted for in the results. For example, a study may or may not report on the comparability of the samples in terms of race, ethnicity, or socioeconomic status. If a report on SES was given, the study was coded as “present” on this decision; if a report was missing, it was coded as “absent”; and if SES status or ethnicity was used in the analysis to actually adjust outcomes, it was coded as “adjusted for.” For each coding, the table that follows reports the number of studies that met that condition, and then reports on the mean percentage of statistically significant results, and results showing no significant difference for that set of studies. A significance test is run to see if the application of the filter produces changes in the probability that are significantly different. 5

In the cases in which studies are coded into three distinct categories—present, absent, and adjusted for—a second set of filters is applied. First, the studies coded as present or adjusted for are combined and compared to those coded as absent; this is what we refer to as a weak test of the rigor of the study. Second, the studies coded as present or absent are combined and compared to those coded as adjusted for. This is what we refer to as a strong test. For dichotomous codings, there can be as few as three compari-

sons, and for trichotomous codings, there can be nine comparisons with accompanying tests of significance. Trichotomous codes were used for adjustments for SES and prior knowledge, examining treatment fidelity, professional development, teacher effects, and reports on effect sizes. All others were dichotomous.

NSF Studies and the Filters

For example, there were 11 studies of NSF-supported curricula that simply reported on the issues of SES in creating equivalent samples for comparison, and for this subset the mean probabilities of getting positive, negative, or results showing no significant difference were (.47, .10, .43). If no report of SES was supplied (n= 21), those probabilities become (.57, .07, .37), indicating an increase in positive results and a decrease in results showing no significant difference. When an adjustment is made in outcomes based on differences in SES (n=14), the probabilities change to (.72, .00, .28), showing a higher likelihood of positive outcomes. The probabilities that result from filtering should always be compared back to the overall results of (.59, .06, .35) (see Table 5-8 ) so as to permit one to judge the effects of more rigorous methodological constraints. This suggests that a simple report on SES without adjustment is least likely to produce positive outcomes; that is, no report produces the outcomes next most likely to be positive and studies that adjusted for SES tend to have a higher proportion of their comparisons producing positive results.

The second method of applying the filter (the weak test for rigor) for the treatment of the adjustment of SES groups compares the probabilities when a report is either given or adjusted for compared to when no report is offered. The combined percentage of a positive outcome of a study in which SES is reported or adjusted for is (.61, .05, .34), while the percentage for no report remains as reported previously at (.57, .07, .37). A final filter compares the probabilities of the studies in which SES is adjusted for with those that either report it only or do not report it at all. Here we compare the percentage of (.72, .00, .28) to (.53, .08, .37) in what we call a strong test. In each case we compared the probability produced by the whole group to those of the filtered studies and conducted a test of the differences to determine if they were significant. These differences were not significant. These findings indicate that to date, with this set of studies, there is no statistically significant difference in results when one reports or adjusts for changes in SES. It appears that by adjusting for SES, one sees increases in the positive results, and this result deserves a closer examination for its implications should it prove to hold up over larger sets of studies.

We ran tests that report the impact of the filters on the number of studies, the percentage of studies, and the effects described as probabilities

for each of the three study categories, NSF-supported and commercially generated with UCSMP included. We claim that when a pattern of probabilities of results does not change after filtering, one can have more confidence in that pattern. When the pattern of results changes, there is a need for an explanatory hypothesis, and that hypothesis can shed light on experimental design. We propose that this “filtering process” constitutes a test of the robustness of the outcome measures subjected to increasing degrees of rigor by using filtering.

Results of Filtering on Evaluations of NSF-Supported Curricula

For the NSF-supported curricular programs, out of 15 filters, 5 produced a probability that differed significantly at the p<.1 level. The five filters were for treatment fidelity, specification of control group, choosing the appropriate statistical unit, generalizability for ability, and generalizability based on disaggregation by subgroup. For each filter, there were from three to nine comparisons, as we examined how the probabilities of outcomes change as tests were more stringent and across the categories of positive results, negative results, and results with no significant differences. Out of a total of 72 possible tests, only 11 produced a probability that differed significantly at the p < .1 level. With 85 percent of the comparisons showing no significant difference after filtering, we suggest the results of the studies were relatively robust in relation to these tests. At the same time, when rigor is increased for the five filters just listed, the results become generally more ambiguous and signal the need for further research with more careful designs.

Studies of Commercial Materials and the Filters

To ensure enough studies to conduct the analysis (n=17), our filtering analysis of the commercially generated studies included UCSMP (n=8). In this case, there were six filters that produced a probability that differed significantly at the p < .1 level. These were treatment fidelity, disaggregation by content, use of multiple tests, use of effect size, generalizability by ability, and generalizability by sample size. In this case, because there were no studies in some possible categories, there were a total of 57 comparisons, and 9 displayed significant differences in the probabilities after filtering at the p < .1 level. With 84 percent of the comparisons showing no significant difference after filtering, we suggest the results of the studies were relatively robust in relation to these tests. Table 5-9 shows the cases in which significant differences were recorded.

Impact of Treatment Fidelity on Probabilities

A few of these differences are worthy of comment. In the cases of both the NSF-supported and commercially generated curricula evaluation studies, studies that reported treatment fidelity differed significantly from those that did not. In the case of the studies of NSF-supported curricula, it appeared that a report or adjustment on treatment fidelity led to proportions with less positive effects and more results showing no significant differences. We hypothesize that this is partly because larger studies often do not examine actual classroom practices, but can obtain significance more easily due to large sample sizes.

In the studies of commercial materials, the presence or absence of measures of treatment fidelity worked differently. Studies reporting on or adjusting for treatment fidelity tended to have significantly higher probabilities in favor of experimental treatment, less positive effects in fewer of the comparative treatments, and more likelihood of results with no significant differences. We hypothesize, and confirm with a separate analysis, that this is because UCSMP frequently reported on treatment fidelity in their designs while study of Saxon typically did not, and the change represents the preponderance of these different curricular treatments in the studies of commercially generated materials.

Impact of Identification of Curricular Program on Probabilities

The significant differences reported under specificity of curricular comparison also merit discussion for studies of NSF-supported curricula. When the comparison group is not specified, a higher percentage of mean scores in favor of the experimental curricula is reported. In the studies of commercial materials, a failure to name specific curricular comparisons also produced a higher percentage of positive outcomes for the treatment, but the difference was not statistically significant. This suggests the possibility that when a specified curriculum is compared to an unspecified curriculum, reports of impact may be inflated. This finding may suggest that in studies of effectiveness, specifying comparative treatments would provide more rigorous tests of experimental approaches.

When studies of commercial materials disaggregate their results of content strands or use multiple measures, their reports of positive outcomes increase, the negative outcomes decrease, and in one case, the results show no significant differences. Percentage of significant difference was only recorded in one comparison within each one of these filters.

TABLE 5-9 Cases of Significant Differences

Impact of Units of Analysis on Probabilities 6

For the evaluations of the NSF-supported materials, a significant difference was reported on the outcomes for the studies that used the correct unit of analysis compared to those that did not. The percentage for those with the correct unit were (.30, .40, .30) compared to (.63, .01, .36) for those that used the incorrect result. These results suggest that our prediction that using the correct unit of analysis would decrease the percentage of positive outcomes is likely to be correct. It also suggests that the most serious threat to the apparent conclusions of these studies comes from selecting an incorrect unit of analysis. It causes a decrease in favorable results, making the results more ambiguous, but never reverses the direction of the effect. This is a concern that merits major attention in the conduct of further studies.

For the commercially generated studies, most of the ones coded with the correct unit of analysis were UCSMP studies. Because of the small number of studies involved, we could not break out from the overall filtering of studies of commercial materials, but report this issue to assist readers in interpreting the relative patterns of results.

Impact of Generalizability on Probabilities

Both types of studies yielded significant differences for some of the comparisons coded as restrictions to generalizability. Investigating these is important in order to understand the effects of these curricular programs on different subpopulations of students. In the case of the studies of commercially generated materials, significantly different results occurred in the categories of ability and sample size. In the studies of NSF-supported materials, the significant differences occurred in ability and disaggregation by subgroups.

In relation to generalizability, the studies of NSF-supported curricula reported significantly more positive results in favor of the treatment when they included all students. Because studies coded as “limited by ability” were restricted either by focusing only on higher achieving students or on lower achieving students, we sorted these two groups. For higher performing students (n=3), the probabilities of effects were (.11, .67, .22). For lower

performing students (n=2), the probabilities were (.39, .025, .59). The first two comparisons are significantly different at p < .05. These findings are based on only a total of five studies, but they suggest that these programs may be serving the weaker ability students more effectively than the stronger ability students, serving both less well than they serve whole heterogeneous groups. For the studies of commercial materials, there were only three studies that were restricted to limited populations. The results for those three studies were (.23, .41, .32) and for all students (n=14) were (.42, .53, .09). These studies were significantly different at p = .004. All three studies included UCSMP and one also included Saxon and was limited by serving primarily high-performing students. This means both categories of programs are showing weaker results when used with high-ability students.

Finally, the studies on NSF-supported materials were disaggregated by subgroups for 28 studies. A complete analysis of this set follows, but the studies that did not report results disaggregated by subgroup generated probabilities of results of (.48, .09, .43) whereas those that did disaggregate their results reported (.76, 0, .24). These gains in positive effects came from significant losses in reporting no significant differences. Studies of commercial materials also reported a small decrease in likelihood of negative effects for the comparison program when disaggregation by subgroup is reported offset by increases in positive results and results with no significant differences, although these comparisons were not significantly different. A further analysis of this topic follows.

Overall, these results suggest that increased rigor seems to lead in general to less strong outcomes, but never reports of completely contrary results. These results also suggest that in recommending design considerations to evaluators, there should be careful attention to having evaluators include measures of treatment fidelity, considering the impact on all students as well as one particular subgroup; using the correct unit of analysis; and using multiple tests that are also disaggregated by content strand.

Further Analyses

We conducted four further analyses: (1) an analysis of the outcome probabilities by test type; (2) content strands analysis; (3) equity analysis; and (4) an analysis of the interactions of content and equity by grade band. Careful attention to the issues of content strand, equity, and interaction is essential for the advancement of curricular evaluation. Content strand analysis provides the detail that is often lost by reporting overall scores; equity analysis can provide essential information on what subgroups are adequately served by the innovations, and analysis by content and grade level can shed light on the controversies that evolve over time.

Analysis by Test Type

Different studies used varied combinations of outcome measures. Because of the importance of outcome measures on test results, we chose to examine whether the probabilities for the studies changed significantly across different types of outcome measures (national test, local test). The most frequent use of tests across all studies was a combination of national and local tests (n=18 studies), a local test (n=16), and national tests (n=17). Other uses of test combinations were used by three studies or less. The percentages of various outcomes by test type in comparison to all studies are described in Table 5-10 .

These data ( Table 5-11 ) suggest that national tests tend to produce less positive results, and with the resulting gains falling into results showing no significant differences, suggesting that national tests demonstrate less curricular sensitivity and specificity.

TABLE 5-10 Percentage of Outcomes by Test Type

TABLE 5-11 Percentage of Outcomes by Test Type and Program Type

TABLE 5-12 Number of Studies That Disaggregated by Content Strand

Content Strand

Curricular effectiveness is not an all-or-nothing proposition. A curriculum may be effective in some topics and less effective in others. For this reason, it is useful for evaluators to include an analysis of curricular strands and to report on the performance of students on those strands. To examine this issue, we conducted an analysis of the studies that reported their results by content strand. Thirty-eight studies did this; the breakdown is shown in Table 5-12 by type of curricular program and grade band.

To examine the evaluations of these content strands, we began by listing all of the content strands reported across studies as well as the frequency of report by the number of studies at each grade band. These results are shown in Figure 5-11 , which is broken down by content strand, grade level, and program type.

Although there are numerous content strands, some of them were reported on infrequently. To allow the analysis to focus on the key results from these studies, we separated out the most frequently reported on strands, which we call the “major content strands.” We defined these as strands that were examined in at least 10 percent of the studies. The major content strands are marked with an asterisk in the Figure 5-11 . When we conduct analyses across curricular program types or grade levels, we use these to facilitate comparisons.

A second phase of our analysis was to examine the performance of students by content strand in the treatment group in comparison to the control groups. Our analysis was conducted across the major content strands at the level of NSF-supported versus commercially generated, initially by all studies and then by grade band. It appeared that such analysis permitted some patterns to emerge that might prove helpful to future evaluators in considering the overall effectiveness of each approach. To do this, we then coded the number of times any particular strand was measured across all studies that disaggregated by content strand. Then, we coded the proportion of times that this strand was reported as favoring the experimental treatment, favoring the comparative curricula, or showing no significant difference. These data are presented across the major content strands for the NSF-supported curricula ( Figure 5-12 ) and the commercially generated curricula, ( Figure 5-13 ) (except in the case of the elemen-

comparative research titles examples for highschool students

FIGURE 5-11 Study counts for all content strands.

tary curricula where no data were available) in the forms of percentages, with the frequencies listed in the bars.

The presentation of results by strands must be accompanied by the same restrictions as stated previously. These results are based on studies identified as at least minimally methodologically adequate. The quality of the outcome measures in measuring the content strands has not been examined. Their results are coded in relation to the comparison group in the study and are indicated as statistically in favor of the program, as in favor of the comparative program, or as showing no significant differences. The results are combined across studies with no weighting by study size. Their results should be viewed as a means for the identification of topics for potential future study. It is completely possible that a refinement of methodologies may affect the future patterns of results, so the results are to be viewed as tentative and suggestive.

comparative research titles examples for highschool students

FIGURE 5-12 Major content strand result: All NSF (n=27).

According to these tentative results, future evaluations should examine whether the NSF-supported programs produce sufficient competency among students in the areas of algebraic manipulation and computation. In computation, approximately 40 percent of the results were in favor of the treatment group, no significant differences were reported in approximately 50 percent of the results, and results in favor of the comparison were revealed 10 percent of the time. Interpreting that final proportion of no significant difference is essential. Some would argue that because computation has not been emphasized, findings of no significant differences are acceptable. Others would suggest that such findings indicate weakness, because the development of the materials and accompanying professional development yielded no significant difference in key areas.

comparative research titles examples for highschool students

FIGURE 5-13 Major content strand result: All commercial (n=8).

From Figure 5-13 of findings from studies of commercially generated curricula, it appears that mixed results are commonly reported. Thus, in evaluations of commercial materials, lack of significant differences in computations/operations, word problems, and probability and statistics suggest that careful attention should be given to measuring these outcomes in future evaluations.

Overall, the grade band results for the NSF-supported programs—while consistent with the aggregated results—provide more detail. At the elementary level, evaluations of NSF-supported curricula (n=12) report better performance in mathematics concepts, geometry, and reasoning and problem solving, and some weaknesses in computation. No content strand analysis for commercially generated materials was possible. Evaluations

(n=6) at middle grades of NSF-supported curricula showed strength in measurement, geometry, and probability and statistics and some weaknesses in computation. In the studies of commercial materials, evaluations (n=4) reported favorable results in reasoning and problem solving and some unfavorable results in algebraic procedures, contextual problems, and mathematics concepts. Finally, at the high school level, the evaluations (n=9) by content strand for the NSF-supported curricula showed strong favorable results in algebra concepts, reasoning/problem solving, word problems, probability and statistics, and measurement. Results in favor of the control were reported in 25 percent of the algebra procedures and 33 percent of computation measures.

For the studies of commercial materials (n=4), only the geometry results favor the control group 25 percent of the time, with 50 percent having favorable results. Algebra concepts, reasoning, and probability and statistics also produced favorable results.

Equity Analysis of Comparative Studies

When the goal of providing a standards-based curriculum to all students was proposed, most people could recognize its merits: the replacement of dull, repetitive, largely dead-end courses with courses that would lead all students to be able, if desired and earned, to pursue careers in mathematics-reliant fields. It was clear that the NSF-supported projects, a stated goal of which was to provide standards-based courses to all students, called for curricula that would address the problem of too few students persisting in the study of mathematics. For example, as stated in the NSF Request for Proposals (RFP):

Rather than prematurely tracking students by curricular objectives, secondary school mathematics should provide for all students a common core of mainstream mathematics differentiated instructionally by level of abstraction and formalism, depth of treatment and pace (National Science Foundation, 1991, p. 1). In the elementary level solicitation, a similar statement on causes for all students was made (National Science Foundation, 1988, pp. 4-5).

Some, but not enough attention has been paid to the education of students who fall below the average of the class. On the other hand, because the above average students sometimes do not receive a demanding education, it may be incorrectly assumed they are easy to teach (National Science Foundation, 1989, p. 2).

Likewise, with increasing numbers of students in urban schools, and increased demographic diversity, the challenges of equity are equally significant for commercial publishers, who feel increasing pressures to demonstrate the effectiveness of their products in various contexts.

The problem was clearly identified: poorer performance by certain subgroups of students (minorities—non-Asian, LEP students, sometimes females) and a resulting lack of representation of such groups in mathematics-reliant fields. In addition, a secondary problem was acknowledged: Highly talented American students were not being provided adequate challenge and stimulation in comparison with their international counterparts. We relied on the concept of equity in examining the evaluation. Equity was contrasted to equality, where one assumed all students should be treated exactly the same (Secada et al., 1995). Equity was defined as providing opportunities and eliminating barriers so that the membership in a subgroup does not subject one to undue and systematically diminished possibility of success in pursuing mathematical study. Appropriate treatment therefore varies according to the needs of and obstacles facing any subgroup.

Applying the principles of equity to evaluate the progress of curricular programs is a conceptually thorny challenge. What is challenging is how to evaluate curricular programs on their progress toward equity in meeting the needs of a diverse student body. Consider how the following questions provide one with a variety of perspectives on the effectiveness of curricular reform regarding equity:

Does one expect all students to improve performance, thus raising the bar, but possibly not to decrease the gap between traditionally well-served and under-served students?

Does one focus on reducing the gap and devote less attention to overall gains, thus closing the gap but possibly not raising the bar?

Or, does one seek evidence that progress is made on both challenges—seeking progress for all students and arguably faster progress for those most at risk?

Evaluating each of the first two questions independently seems relatively straightforward. When one opts for a combination of these two, the potential for tensions between the two becomes more evident. For example, how can one differentiate between the case in which the gap is closed because talented students are being underchallenged from the case in which the gap is closed because the low-performing students improved their progress at an increased rate? Many believe that nearly all mathematics curricula in this country are insufficiently challenging and rigorous. Therefore achieving modest gains across all ability levels with evidence of accelerated progress by at-risk students may still be criticized for failure to stimulate the top performing student group adequately. Evaluating curricula with regard to this aspect therefore requires judgment and careful methodological attention.

Depending on one’s view of equity, different implications for the collection of data follow. These considerations made examination of the quality of the evaluations as they treated questions of equity challenging for the committee members. Hence we spell out our assumptions as precisely as possible:

Evaluation studies should include representative samples of student demographics, which may require particular attention to the inclusion of underrepresented minority students from lower socioeconomic groups, females, and special needs populations (LEP, learning disabled, gifted and talented students) in the samples. This may require one to solicit participation by particular schools or districts, rather than to follow the patterns of commercial implementation, which may lead to an unrepresentative sample in aggregate.

Analysis of results should always consider the impact of the program on the entire spectrum of the sample to determine whether the overall gains are distributed fairly among differing student groups, and not achieved as improvements in the mean(s) of an identifiable subpopulation(s) alone.

Analysis should examine whether any group of students is systematically less well served by curricular implementation, causing losses or weakening the rate of gains. For example, this could occur if one neglected the continued development of programs for gifted and talented students in mathematics in order to implement programs focused on improving access for underserved youth, or if one improved programs solely for one group of language learners, ignoring the needs of others, or if one’s study systematically failed to report high attrition affecting rates of participation of success or failure.

Analyses should examine whether gaps in scores between significantly disadvantaged or underperforming subgroups and advantaged subgroups are decreasing both in relation to eliminating the development of gaps in the first place and in relation to accelerating improvement for underserved youth relative to their advantaged peers at the upper grades.

In reviewing the outcomes of the studies, the committee reports first on what kinds of attention to these issues were apparent in the database, and second on what kinds of results were produced. Some of the studies used multiple methods to provide readers with information on these issues. In our report on the evaluations, we both provide descriptive information on the approaches used and summarize the results of those studies. Developing more effective methods to monitor the achievement of these objectives may need to go beyond what is reported in this study.

Among the 63 at least minimally methodologically adequate studies, 26 reported on the effects of their programs on subgroups of students. The

TABLE 5-13 Most Common Subgroups Used in the Analyses and the Number of Studies That Reported on That Variable

other 37 reported on the effects of the curricular intervention on means of whole groups and their standard deviations, but did not report on their data in terms of the impact on subpopulations. Of those 26 evaluations, 19 studies were on NSF-supported programs and 7 were on commercially generated materials. Table 5-13 reports the most common subgroups used in the analyses and the number of studies that reported on that variable. Because many studies used multiple categories for disaggregation (ethnicity, SES, and gender), the number of reports is more than double the number of studies. For this reason, we report the study results in terms of the “frequency of reports on a particular subgroup” and distinguish this from what we refer to as “study counts.” The advantage of this approach is that it permits reporting on studies that investigated multiple ways to disaggregate their data. The disadvantage is that in a sense, studies undertaking multiple disaggregations become overrepresented in the data set as a result. A similar distinction and approach were used in our treatment of disaggregation by content strands.

It is apparent from these data that the evaluators of NSF-supported curricula documented more equity-based outcomes, as they reported 43 of the 56 comparisons. However, the same percentage of the NSF-supported evaluations disaggregated their results by subgroup, as did commercially generated evaluations (41 percent in both cases). This is an area where evaluations of curricula could benefit greatly from standardization of ex-

pectation and methodology. Given the importance of the topic of equity, it should be standard practice to include such analyses in evaluation studies.

In summarizing these 26 studies, the first consideration was whether representative samples of students were evaluated. As we have learned from medical studies, if conclusions on effectiveness are drawn without careful attention to representativeness of the sample relative to the whole population, then the generalizations drawn from the results can be seriously flawed. In Chapter 2 we reported that across the studies, approximately 81 percent of the comparative studies and 73 percent of the case studies reported data on school location (urban, suburban, rural, or state/region), with suburban students being the largest percentage in both study types. The proportions of students studied indicated a tendency to undersample urban and rural populations and oversample suburban schools. With a high concentration of minorities and lower SES students in these areas, there are some concerns about the representativeness of the work.

A second consideration was to see whether the achievement effects of curricular interventions were achieved evenly among the various subgroups. Studies answered this question in different ways. Most commonly, evaluators reported on the performance of various subgroups in the treatment conditions as compared to those same subgroups in the comparative condition. They reported outcome scores or gains from pretest to posttest. We refer to these as “between” comparisons.

Other studies reported on the differences among subgroups within an experimental treatment, describing how well one group does in comparison with another group. Again, these reports were done in relation either to outcome measures or to gains from pretest to posttest. Often these reports contained a time element, reporting on how the internal achievement patterns changed over time as a curricular program was used. We refer to these as “within” comparisons.

Some studies reported both between and within comparisons. Others did not report findings by comparing mean scores or gains, but rather created regression equations that predicted the outcomes and examined whether demographic characteristics are related to performance. Six studies (all on NSF-supported curricula) used this approach with variables related to subpopulations. Twelve studies used ANCOVA or Multiple Analysis of Variance (MANOVA) to study disaggregation by subgroup, and two reported on comparative effect sizes. In the studies using statistical tests other than t-tests or Chi-squares, two were evaluations of commercially generated materials and the rest were of NSF-supported materials.

Of the studies that reported on gender (n=19), the NSF-supported ones (n=13) reported five cases in which the females outperformed their counterparts in the controls and one case in which the female-male gap decreased within the experimental treatments across grades. In most cases, the studies

present a mixed picture with some bright spots, with the majority showing no significant difference. One study reported significant improvements for African-American females.

In relation to race, 15 of 16 reports on African Americans showed positive effects in favor of the treatment group for NSF-supported curricula. Two studies reported decreases in the gaps between African Americans and whites or Asians. One of the two evaluations of African Americans, performance reported for the commercially generated materials, showed significant positive results, as mentioned previously.

For Hispanic students, 12 of 15 reports of the NSF-supported materials were significantly positive, with the other 3 showing no significant difference. One study reported a decrease in the gaps in favor of the experimental group. No evaluations of commercially generated materials were reported on Hispanic populations. Other reports on ethnic groups occurred too seldom to generalize.

Students from lower socioeconomic groups fared well, according to reported evaluations of NSF-supported materials (n=8), in that experimental groups outperformed control groups in all but one case. The one study of commercially generated materials that included SES as a variable reported no significant difference. For students with limited English proficiency, of the two evaluations of NSF-supported materials, one reported significantly more positive results for the experimental treatment. Likewise, one study of commercially generated materials yielded a positive result at the elementary level.

We also examined the data for ability differences and found reports by quartiles for a few evaluation studies. In these cases, the evaluations showed results across quartiles in favor of the NSF-supported materials. In one case using the same program, the lower quartiles showed the most improvement, and in the other, the gains were in the middle and upper groups for the Iowa Test of Basic Skills and evenly distributed for the informal assessment.

Summary Statements

After reviewing these studies, the committee observed that examining differences by gender, race, SES, and performance levels should be examined as a regular part of any review of effectiveness. We would recommend that all comparative studies report on both “between” and “within” comparisons so that the audience of an evaluation can simply and easily consider the level of improvement, its distribution across subgroups, and the impact of curricular implementation on any gaps in performance. Each of the major categories—gender, race/ethnicity, SES, and achievement level—contributes a significant and contrasting view of curricular impact. Further-

more, more sophisticated accounts would begin to permit, across studies, finer distinctions to emerge, such as the effect of a program on young African-American women or on first generation Asian students.

In addition, the committee encourages further study and deliberation on the use of more complex approaches to the examination of equity issues. This is particularly important due to the overlaps among these categories, where poverty can show itself as its own variable but also may be highly correlated to prior performance. Hence, the use of one variable can mask differences that should be more directly attributable to another. The committee recommends that a group of measurement and equity specialists confer on the most effective design to advance on these questions.

Finally, it is imperative that evaluation studies systematically include demographically representative student populations and distinguish evaluations that follow the commercial patterns of use from those that seek to establish effectiveness with a diverse student population. Along these lines, it is also important that studies report on the impact data on all substantial ethnic groups, including whites. Many studies, perhaps because whites were the majority population, failed to report on this ethnic group in their analyses. As we saw in one study, where Asian students were from poor homes and first generation, any subgroup can be an at-risk population in some setting, and because gains in means may not necessarily be assumed to translate to gains for all subgroups or necessarily for the majority subgroup. More complete and thorough descriptions and configurations of characteristics of the subgroups being served at any location—with careful attention to interactions—is needed in evaluations.

Interactions Among Content and Equity, by Grade Band

By examining disaggregation by content strand by grade levels, along with disaggregation by diverse subpopulations, the committee began to discover grade band patterns of performance that should be useful in the conduct of future evaluations. Examining each of these issues in isolation can mask some of the overall effects of curricular use. Two examples of such analysis are provided. The first example examines all the evaluations of NSF-supported curricula from the elementary level. The second examines the set of evaluations of NSF-supported curricula at the high school level, and cannot be carried out on evaluations of commercially generated programs because they lack disaggregation by student subgroup.

Example One

At the elementary level, the findings of the review of evaluations of data on effectiveness of NSF-supported curricula report consistent patterns of

benefits to students. Across the studies, it appears that positive results are enhanced when accompanied by adequate professional development and the use of pedagogical methods consistent with those indicated by the curricula. The benefits are most consistently evidenced in the broadening topics of geometry, measurement, probability, and statistics, and in applied problem solving and reasoning. It is important to consider whether the outcome measures in these areas demonstrate a depth of understanding. In early understanding of fractions and algebra, there is some evidence of improvement. Weaknesses are sometimes reported in the areas of computational skills, especially in the routinization of multiplication and division. These assertions are tentative due to the possible flaws in designs but quite consistent across studies, and future evaluations should seek to replicate, modify, or discredit these results.

The way to most efficiently and effectively link informal reasoning and formal algorithms and procedures is an open question. Further research is needed to determine how to most effectively link the gains and flexibility associated with student-generated reasoning to the automaticity and generalizability often associated with mastery of standard algorithms.

The data from these evaluations at the elementary level generally present credible evidence of increased success in engaging minority students and students in poverty based on reported gains that are modestly higher for these students than for the comparative groups. What is less well documented in the studies is the extent to which the curricula counteract the tendencies to see gaps emerge and result in long-term persistence in performance by gender and minority group membership as they move up the grades. However, the evaluations do indicate that these curricula can help, and almost never do harm. Finally, on the question of adequate challenge for advanced and talented students, the data are equivocal. More attention to this issue is needed.

Example Two

The data at the high school level produced the most conflicting results, and in conducting future evaluations, evaluators will need to examine this level more closely. We identify the high school as the crucible for curricular change for three reasons: (1) the transition to postsecondary education puts considerable pressure on these curricula; (2) the criteria outlined in the NSF RFP specify significant changes from traditional practice; and (3) high school freshmen arrive from a myriad of middle school curricular experiences. For the NSF-supported curricula, the RFP required that the programs provide a core curriculum “drawn from statistics/probability, algebra/functions, geometry/trigonometry, and discrete mathematics” (NSF, 1991, p. 2) and use “a full range of tools, including graphing calculators

and computers” (NSF, 1991, p. 2). The NSF RFP also specified the inclusion of “situations from the natural and social sciences and from other parts of the school curriculum as contexts for developing and using mathematics” (NSF, 1991, p. 1). It was during the fourth year that “course options should focus on special mathematical needs of individual students, accommodating not only the curricular demands of the college-bound but also specialized applications supportive of the workplace aspirations of employment-bound students” (NSF, 1991, p. 2). Because this set of requirements comprises a significant departure from conventional practice, the implementation of the high school curricula should be studied in particular detail.

We report on a Systemic Initiative for Montana Mathematics and Science (SIMMS) study by Souhrada (2001) and Brown et al. (1990), in which students were permitted to select traditional, reform, and mixed tracks. It became apparent that the students were quite aware of the choices they faced, as illustrated in the following quote:

The advantage of the traditional courses is that you learn—just math. It’s not applied. You get a lot of math. You may not know where to use it, but you learn a lot…. An advantage in SIMMS is that the kids in SIMMS tell me that they really understand the math. They understand where it comes from and where it is used.

This quote succinctly captures the tensions reported as experienced by students. It suggests that student perceptions are an important source of evidence in conducting evaluations. As we examined these curricular evaluations across the grades, we paid particular attention to the specificity of the outcome measures in relation to curricular objectives. Overall, a review of these studies would lead one to draw the following tentative summary conclusions:

There is some evidence of discontinuity in the articulation between high school and college, resulting from the organization and emphasis of the new curricula. This discontinuity can emerge in scores on college admission tests, placement tests, and first semester grades where nonreform students have shown some advantage on typical college achievement measures.

The most significant areas of disadvantage seem to be in students’ facility with algebraic manipulation, and with formalization, mathematical structure, and proof when isolated from context and denied technological supports. There is some evidence of weakness in computation and numeration, perhaps due to reliance on calculators and varied policies regarding their use at colleges (Kahan, 1999; Huntley et al., 2000).

There is also consistent evidence that the new curricula present

strengths in areas of solving applied problems, the use of technology, new areas of content development such as probability and statistics and functions-based reasoning in the use of graphs, using data in tables, and producing equations to describe situations (Huntley et al., 2000; Hirsch and Schoen, 2002).

Despite early performance on standard outcome measures at the high school level showing equivalent or better performance by reform students (Austin et al., 1997; Merlino and Wolff, 2001), the common standardized outcome measures (Preliminary Scholastic Assessment Test [PSAT] scores or national tests) are too imprecise to determine with more specificity the comparisons between the NSF-supported and comparison approaches, while program-generated measures lack evidence of external validity and objectivity. There is an urgent need for a set of measures that would provide detailed information on specific concepts and conceptual development over time and may require use as embedded as well as summative assessment tools to provide precise enough data on curricular effectiveness.

The data also report some progress in strengthening the performance of underrepresented groups in mathematics relative to their counterparts in the comparative programs (Schoen et al., 1998; Hirsch and Schoen, 2002).

This reported pattern of results should be viewed as very tentative, as there are only a few studies in each of these areas, and most do not adequately control for competing factors, such as the nature of the course received in college. Difficulties in the transition may also be the result of a lack of alignment of measures, especially as placement exams often emphasize algebraic proficiencies. These results are presented only for the purpose of stimulating further evaluation efforts. They further emphasize the need to be certain that such designs examine the level of mathematical reasoning of students, particularly in relation to their knowledge of understanding of the role of proofs and definitions and their facility with algebraic manipulation as we as carefully document the competencies taught in the curricular materials. In our framework, gauging the ease of transition to college study is an issue of examining curricular alignment with systemic factors, and needs to be considered along with those tests that demonstrate a curricular validity of measures. Furthermore, the results raising concerns about college success need replication before secure conclusions are drawn.

Also, it is important that subsequent evaluations also examine curricular effects on students’ interest in mathematics and willingness to persist in its study. Walker (1999) reported that there may be some systematic differences in these behaviors among different curricula and that interest and persistence may help students across a variety of subgroups to survive entry-level hurdles, especially if technical facility with symbol manipulation

can be improved. In the context of declines in advanced study in mathematics by American students (Hawkins, 2003), evaluation of curricular impact on students’ interest, beliefs, persistence, and success are needed.

The committee takes the position that ultimately the question of the impact of different curricula on performance at the collegiate level should be resolved by whether students are adequately prepared to pursue careers in mathematical sciences, broadly defined, and to reason quantitatively about societal and technological issues. It would be a mistake to focus evaluation efforts solely or primarily on performance on entry-level courses, which can clearly function as filters and may overly emphasize procedural competence, but do not necessarily represent what concepts and skills lead to excellence and success in the field.

These tentative patterns of findings indicate that at the high school level, it is necessary to conduct individual evaluations that examine the transition to college carefully in order to gauge the level of success in preparing students for college entry and the successful negotiation of majors. Equally, it is imperative to examine the impact of high school curricula on other possible student trajectories, such as obtaining high school diplomas, moving into worlds of work or through transitional programs leading to technical training, two-year colleges, and so on.

These two analyses of programs by grade-level band, content strand, and equity represent a methodological innovation that could strengthen the empirical database on curricula significantly and provide the level of detail really needed by curriculum designers to improve their programs. In addition, it appears that one could characterize the NSF programs (and not the commercial programs as a group) as representing a particular approach to curriculum, as discussed in Chapter 3 . It is an approach that integrates content strands; relies heavily on the use of situations, applications, and modeling; encourages the use of technology; and has a significant dose of mathematical inquiry. One could ask the question of whether this approach as a whole is “effective.” It is beyond the charge and scope of this report, but is a worthy target of investigation if one uses proper care in design, execution, and analysis. Likewise other approaches to curricular change should be investigated at the aggregate level, using careful and rigorous design.

The committee believes that a diversity of curricular approaches is a strength in an educational system that maintains local and state control of curricular decision making. While “scientifically established as effective” should be an increasingly important consideration in curricular choice, local cultural differences, needs, values, and goals will also properly influence curricular choice. A diverse set of effective curricula would be ideal. Finally, the committee emphasizes once again the importance of basing the studies on measures with established curricular validity and avoiding cor-

ruption of indicators as a result of inappropriate amounts of teaching to the test, so as to be certain that the outcomes are the product of genuine student learning.

CONCLUSIONS FROM THE COMPARATIVE STUDIES

In summary, the committee reviewed a total of 95 comparative studies. There were more NSF-supported program evaluations than commercial ones, and the commercial ones were primarily on Saxon or UCSMP materials. Of the 19 curricular programs reviewed, 23 percent of the NSF-supported and 33 percent of the commercially generated materials selected had programs with no comparative reviews. This finding is particularly disturbing in light of the legislative mandate in No Child Left Behind (U.S. Department of Education, 2001) for scientifically based curricular programs and materials to be used in the schools. It suggests that more explicit protocols for the conduct of evaluation of programs that include comparative studies need to be required and utilized.

Sixty-nine percent of NSF-supported and 61 percent of commercially generated program evaluations met basic conditions to be classified as at least minimally methodologically adequate studies for the evaluation of effectiveness. These studies were ones that met the criteria of including measures of student outcomes on mathematical achievement, reporting a method of establishing comparability among samples and reporting on implementation elements, disaggregating by content strand, or using precise, theoretical analyses of the construct or multiple measures.

Most of these studies had both strengths and weaknesses in their quasi-experimental designs. The committee reviewed the studies and found that evaluators had developed a number of features that merit inclusions in future work. At the same time, many had internal threats to validity that suggest a need for clearer guidelines for the conduct of comparative evaluations.

Many of the strengths and innovations came from the evaluators’ understanding of the program theories behind the curricula, their knowledge of the complexity of practice, and their commitment to measuring valid and significant mathematical ideas. Many of the weaknesses came from inadequate attention to experimental design, insufficient evidence of the independence of evaluators in some studies, and instability and lack of cooperation in interfacing with the conditions of everyday practice.

The committee identified 10 elements of comparative studies needed to establish a basis for determining the effectiveness of a curriculum. We recognize that not all studies will be able to implement successfully all elements, and those experimental design variations will be based largely on study size and location. The list of elements begins with the seven elements

corresponding to the seven critical decisions and adds three additional elements that emerged as a result of our review:

A better balance needs to be achieved between experimental and quasi-experimental studies. The virtual absence of large-scale experimental studies does not provide a way to determine whether the use of quasi-experimental approaches is being systematically biased in unseen ways.

If a quasi-experimental design is selected, it is necessary to establish comparability. When quasi-experimentation is used, it “pertains to studies in which the model to describe effects of secondary variables is not known but assumed” (NRC, 1992, p. 18). This will lead to weaker and potentially suspect causal claims, which should be acknowledged in the evaluation report, but may be necessary in relation to feasibility (Joint Committee on Standards for Educational Evaluation, 1994). In general, to date, studies have assumed prior achievement measures, ethnicity, gender, and SES, are acceptable variables on which to match samples or on which to make statistical adjustments. But there are often other variables in need of such control in such evaluations including opportunity to learn, teacher effectiveness, and implementation (see #4 below).

The selection of a unit of analysis is of critical importance to the design. To the extent possible, it is useful to randomly assign the unit for the different curricula. The number of units of analysis necessary for the study to establish statistical significance depends not on the number of students, but on this unit of analysis. It appears that classrooms and schools are the most likely units of analysis. In addition, the development of increasingly sophisticated means of conducting studies that recognize that the level of the educational system in which experimentation occurs affects research designs.

It is essential to examine the implementation components through a set of variables that include the extent to which the materials are implemented, teaching methods, the use of supplemental materials, professional development resources, teacher background variables, and teacher effects. Gathering these data to gauge the level of implementation fidelity is essential for evaluators to ensure adequate implementation. Studies could also include nested designs to support analysis of variation by implementation components.

Outcome data should include a variety of measures of the highest quality. These measures should vary by question type (open ended, multiple choice), by type of test (international, national, local) and by relation of testing to everyday practice (formative, summative, high stakes), and ensure curricular validity of measures and assess curricular alignment with systemic factors. The use of comparisons among total tests, fair tests, and

conservative tests, as done in the evaluations of UCSMP, permits one to gain insight into teacher effects and to contrast test results by items included. Tests should also include content strands to aid disaggregation, at a level of major content strands (see Figure 5-11 ) and content-specific items relevant to the experimental curricula.

Statistical analysis should be conducted on the appropriate unit of analysis and should include more sophisticated methods of analysis such as ANOVA, ANCOVA, MACOVA, linear regression, and multiple regression analysis as appropriate.

Reports should include clear statements of the limitations to generalization of the study. These should include indications of limitations in populations sampled, sample size, unique population inclusions or exclusions, and levels of use or attrition. Data should also be disaggregated by gender, race/ethnicity, SES, and performance levels to permit readers to see comparative gains across subgroups both between and within studies.

It is useful to report effect sizes. It is also useful to present item-level data across treatment program and show when performances between the two groups are within the 10 percent confidence interval of each other. These two extremes document how crucial it is for curricula developers to garner both precise and generalizable information to inform their revisions.

Careful attention should also be given to the selection of samples of populations for participation. These samples should be representative of the populations to whom one wants to generalize the results. Studies should be clear if they are generalizing to groups who have already selected the materials (prior users) or to populations who might be interested in using the materials (demographically representative).

The control group should use an identified comparative curriculum or curricula to avoid comparisons to unstructured instruction.

In addition to these prototypical decisions to be made in the conduct of comparative studies, the committee suggests that it would be ideal for future studies to consider some of the overall effects of these curricula and to test more directly and rigorously some of the findings and alternative hypotheses. Toward this end, the committee reported the tentative findings of these studies by program type. Although these results are subject to revision, based on the potential weaknesses in design of many of the studies summarized, the form of analysis demonstrated in this chapter provides clear guidance about the kinds of knowledge claims and the level of detail that we need to be able to judge effectiveness. Until we are able to achieve an array of comparative studies that provide valid and reliable information on these issues, we will be vulnerable to decision making based excessively on opinion, limited experience, and preconceptions.

This book reviews the evaluation research literature that has accumulated around 19 K-12 mathematics curricula and breaks new ground in framing an ambitious and rigorous approach to curriculum evaluation that has relevance beyond mathematics. The committee that produced this book consisted of mathematicians, mathematics educators, and methodologists who began with the following charge:

  • Evaluate the quality of the evaluations of the thirteen National Science Foundation (NSF)-supported and six commercially generated mathematics curriculum materials;
  • Determine whether the available data are sufficient for evaluating the efficacy of these materials, and if not;
  • Develop recommendations about the design of a project that could result in the generation of more reliable and valid data for evaluating such materials.

The committee collected, reviewed, and classified almost 700 studies, solicited expert testimony during two workshops, developed an evaluation framework, established dimensions/criteria for three methodologies (content analyses, comparative studies, and case studies), drew conclusions on the corpus of studies, and made recommendations for future research.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

Examples

Comparative Research

comparative research titles examples for highschool students

Although not everyone would agree, comparing is not always bad. Comparing things can also give you a handful of benefits. For instance, there are times in our life where we feel lost. You may not be getting the job that you want or have the sexy body that you have been aiming for a long time now. Then, you happen to cross path with an old friend of yours, who happened to get the job that you always wanted. This scenario may put your self-esteem down, knowing that this friend got what you want, while you didn’t. Or you can choose to look at your friend as an example that your desire is actually attainable. Come up with a plan to achieve your  personal development goal . Perhaps, ask for tips from this person or from the people who inspire you. According to the article posted in  brit.co , licensed master social worker and therapist Kimberly Hershenson said that comparing yourself to someone successful can be an excellent self-motivation to work on your goals.

Aside from self-improvement, as a researcher, you should know that comparison is an essential method in scientific studies, such as experimental research and descriptive research . Through this method, you can uncover the relationship between two or more variables of your project in the form of comparative analysis .

What is Comparative Research?

Aiming to compare two or more variables of an experiment project, experts usually apply comparative research examples in social sciences to compare countries and cultures across a particular area or the entire world. Despite its proven effectiveness, you should keep it in mind that some states have different disciplines in sharing data. Thus, it would help if you consider the affecting factors in gathering specific information.

Quantitative and Qualitative Research Methods in Comparative Studies

In comparing variables, the statistical and mathematical data collection, and analysis that quantitative research methodology naturally uses to uncover the correlational connection of the variables, can be essential. Additionally, since quantitative research requires a specific research question, this method can help you can quickly come up with one particular comparative research question.

The goal of comparative research is drawing a solution out of the similarities and differences between the focused variables. Through non-experimental or qualitative research , you can include this type of research method in your comparative research design.

13+ Comparative Research Examples

Know more about comparative research by going over the following examples. You can download these zipped documents in PDF and MS Word formats.

1. Comparative Research Report Template

Comparative Research Report Template

  • Google Docs

Size: 113 KB

2. Business Comparative Research Template

Business Comparative Research Template

Size: 69 KB

3. Comparative Market Research Template

Comparative Market Research Template

Size: 172 KB

4. Comparative Research Strategies Example

Comparative Research Strategies Example

5. Comparative Research in Anthropology Example

Comparative Research in Anthropology Example

Size: 192 KB

6. Sample Comparative Research Example

Sample Comparative Research Example

Size: 516 KB

7. Comparative Area Research Example

Comparative Area Research Example

8. Comparative Research on Women’s Emplyment Example

Comparative Research on Womens Emplyment

Size: 290 KB

9. Basic Comparative Research Example

Basic Comparative Research Example

Size: 19 KB

10. Comparative Research in Medical Treatments Example

Comparative Research in Medical Treatments

11. Comparative Research in Education Example

Comparative Research in Education

Size: 455 KB

12. Formal Comparative Research Example

Formal Comparative Research Example

Size: 244 KB

13. Comparative Research Designs Example

Comparing Comparative Research Designs

Size: 259 KB

14. Casual Comparative Research in DOC

Caasual Comparative Research in DOC

Best Practices in Writing an Essay for Comparative Research in Visual Arts

If you are going to write an essay for a comparative research examples paper, this section is for you. You must know that there are inevitable mistakes that students do in essay writing . To avoid those mistakes, follow the following pointers.

1. Compare the Artworks Not the Artists

One of the mistakes that students do when writing a comparative essay is comparing the artists instead of artworks. Unless your instructor asked you to write a biographical essay, focus your writing on the works of the artists that you choose.

2. Consult to Your Instructor

There is broad coverage of information that you can find on the internet for your project. Some students, however, prefer choosing the images randomly. In doing so, you may not create a successful comparative study. Therefore, we recommend you to discuss your selections with your teacher.

3. Avoid Redundancy

It is common for the students to repeat the ideas that they have listed in the comparison part. Keep it in mind that the spaces for this activity have limitations. Thus, it is crucial to reserve each space for more thoroughly debated ideas.

4. Be Minimal

Unless instructed, it would be practical if you only include a few items(artworks). In this way, you can focus on developing well-argued information for your study.

5. Master the Assessment Method and the Goals of the Project

We get it. You are doing this project because your instructor told you so. However, you can make your study more valuable by understanding the goals of doing the project. Know how you can apply this new learning. You should also know the criteria that your teachers use to assess your output. It will give you a chance to maximize the grade that you can get from this project.

Comparing things is one way to know what to improve in various aspects. Whether you are aiming to attain a personal goal or attempting to find a solution to a certain task, you can accomplish it by knowing how to conduct a comparative study. Use this content as a tool to expand your knowledge about this research methodology .

Twitter

AI Generator

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Calculate for all schools

Your chance of acceptance, your chancing factors, extracurriculars, research title examples for students—need inspiration.

I'm finalizing my research project for a class, and I'm really struggling to come up with a good, catchy title that's also informative. Is there a place I can go to browse examples of other students' research titles, or can you guys offer some inspiration or guidance on making mine stand out?

Coming up with a catchy and informative title can definitely be challenging. While it's important for the title to engage the reader, it should also provide a clear idea of what your research project is about. Here are some general tips and examples to help inspire you:

1. Start with a working title while you're researching and drafting, and refine it once your project is complete.

2. Make sure your title is specific, focused, and relevant to your research.

3. Use clear and straightforward language, avoiding jargon and acronyms.

4. Consider using a two-part title, with a catchy or creative part followed by a more descriptive explanation.

Here are some example research titles to give you an idea of what could work for different subjects:

- For a psychology paper: "Digital Detox: Evaluating the Effects of Social Media Abstinence on Mental Health"

- For a biology study: "Unearthing the Secrets: Investigating Soil Microbes and Their Influence on Plant Growth"

- For an economics research: "Trading Places: A Comparative Analysis of Online Retail vs. Brick-and-Mortar Storefronts"

- For a history project: "Stories Behind the Statues: Decoding the Hidden Narratives of Public Monuments"

Remember that every research topic and discipline may call for a slightly different approach. It's a good idea to look at published research articles in your field to get a sense of how others have crafted their titles. Often, academic journals have online archives, providing an excellent source of examples.

Ultimately, allow yourself some flexibility and creative freedom as you craft your research title. Keep it concise, informative, and engaging, and you'll be well on your way to a great title. Good luck!

About CollegeVine’s Expert FAQ

CollegeVine’s Q&A seeks to offer informed perspectives on commonly asked admissions questions. Every answer is refined and validated by our team of admissions experts to ensure it resonates with trusted knowledge in the field.

  • Reference Manager
  • Simple TEXT file

People also looked at

Original research article, a comparative analysis of student performance in an online vs. face-to-face environmental science course from 2009 to 2016.

comparative research titles examples for highschool students

  • Department of Biology, Fort Valley State University, Fort Valley, GA, United States

A growing number of students are now opting for online classes. They find the traditional classroom modality restrictive, inflexible, and impractical. In this age of technological advancement, schools can now provide effective classroom teaching via the Web. This shift in pedagogical medium is forcing academic institutions to rethink how they want to deliver their course content. The overarching purpose of this research was to determine which teaching method proved more effective over the 8-year period. The scores of 548 students, 401 traditional students and 147 online students, in an environmental science class were used to determine which instructional modality generated better student performance. In addition to the overarching objective, we also examined score variabilities between genders and classifications to determine if teaching modality had a greater impact on specific groups. No significant difference in student performance between online and face-to-face (F2F) learners overall, with respect to gender, or with respect to class rank were found. These data demonstrate the ability to similarly translate environmental science concepts for non-STEM majors in both traditional and online platforms irrespective of gender or class rank. A potential exists for increasing the number of non-STEM majors engaged in citizen science using the flexibility of online learning to teach environmental science core concepts.

Introduction

The advent of online education has made it possible for students with busy lives and limited flexibility to obtain a quality education. As opposed to traditional classroom teaching, Web-based instruction has made it possible to offer classes worldwide through a single Internet connection. Although it boasts several advantages over traditional education, online instruction still has its drawbacks, including limited communal synergies. Still, online education seems to be the path many students are taking to secure a degree.

This study compared the effectiveness of online vs. traditional instruction in an environmental studies class. Using a single indicator, we attempted to see if student performance was effected by instructional medium. This study sought to compare online and F2F teaching on three levels—pure modality, gender, and class rank. Through these comparisons, we investigated whether one teaching modality was significantly more effective than the other. Although there were limitations to the study, this examination was conducted to provide us with additional measures to determine if students performed better in one environment over another ( Mozes-Carmel and Gold, 2009 ).

The methods, procedures, and operationalization tools used in this assessment can be expanded upon in future quantitative, qualitative, and mixed method designs to further analyze this topic. Moreover, the results of this study serve as a backbone for future meta-analytical studies.

Origins of Online Education

Computer-assisted instruction is changing the pedagogical landscape as an increasing number of students are seeking online education. Colleges and universities are now touting the efficiencies of Web-based education and are rapidly implementing online classes to meet student needs worldwide. One study reported “increases in the number of online courses given by universities have been quite dramatic over the last couple of years” ( Lundberg et al., 2008 ). Think tanks are also disseminating statistics on Web-based instruction. “In 2010, the Sloan Consortium found a 17% increase in online students from the years before, beating the 12% increase from the previous year” ( Keramidas, 2012 ).

Contrary to popular belief, online education is not a new phenomenon. The first correspondence and distance learning educational programs were initiated in the mid-1800s by the University of London. This model of educational learning was dependent on the postal service and therefore wasn't seen in American until the later Nineteenth century. It was in 1873 when what is considered the first official correspondence educational program was established in Boston, Massachusetts known as the “Society to Encourage Home Studies.” Since then, non-traditional study has grown into what it is today considered a more viable online instructional modality. Technological advancement indubitably helped improve the speed and accessibility of distance learning courses; now students worldwide could attend classes from the comfort of their own homes.

Qualities of Online and Traditional Face to Face (F2F) Classroom Education

Online and traditional education share many qualities. Students are still required to attend class, learn the material, submit assignments, and complete group projects. While teachers, still have to design curriculums, maximize instructional quality, answer class questions, motivate students to learn, and grade assignments. Despite these basic similarities, there are many differences between the two modalities. Traditionally, classroom instruction is known to be teacher-centered and requires passive learning by the student, while online instruction is often student-centered and requires active learning.

In teacher-centered, or passive learning, the instructor usually controls classroom dynamics. The teacher lectures and comments, while students listen, take notes, and ask questions. In student-centered, or active learning, the students usually determine classroom dynamics as they independently analyze the information, construct questions, and ask the instructor for clarification. In this scenario, the teacher, not the student, is listening, formulating, and responding ( Salcedo, 2010 ).

In education, change comes with questions. Despite all current reports championing online education, researchers are still questioning its efficacy. Research is still being conducted on the effectiveness of computer-assisted teaching. Cost-benefit analysis, student experience, and student performance are now being carefully considered when determining whether online education is a viable substitute for classroom teaching. This decision process will most probably carry into the future as technology improves and as students demand better learning experiences.

Thus far, “literature on the efficacy of online courses is expansive and divided” ( Driscoll et al., 2012 ). Some studies favor traditional classroom instruction, stating “online learners will quit more easily” and “online learning can lack feedback for both students and instructors” ( Atchley et al., 2013 ). Because of these shortcomings, student retention, satisfaction, and performance can be compromised. Like traditional teaching, distance learning also has its apologists who aver online education produces students who perform as well or better than their traditional classroom counterparts ( Westhuis et al., 2006 ).

The advantages and disadvantages of both instructional modalities need to be fully fleshed out and examined to truly determine which medium generates better student performance. Both modalities have been proven to be relatively effective, but, as mentioned earlier, the question to be asked is if one is truly better than the other.

Student Need for Online Education

With technological advancement, learners now want quality programs they can access from anywhere and at any time. Because of these demands, online education has become a viable, alluring option to business professionals, stay-at home-parents, and other similar populations. In addition to flexibility and access, multiple other face value benefits, including program choice and time efficiency, have increased the attractiveness of distance learning ( Wladis et al., 2015 ).

First, prospective students want to be able to receive a quality education without having to sacrifice work time, family time, and travel expense. Instead of having to be at a specific location at a specific time, online educational students have the freedom to communicate with instructors, address classmates, study materials, and complete assignments from any Internet-accessible point ( Richardson and Swan, 2003 ). This type of flexibility grants students much-needed mobility and, in turn, helps make the educational process more enticing. According to Lundberg et al. (2008) “the student may prefer to take an online course or a complete online-based degree program as online courses offer more flexible study hours; for example, a student who has a job could attend the virtual class watching instructional film and streaming videos of lectures after working hours.”

Moreover, more study time can lead to better class performance—more chapters read, better quality papers, and more group project time. Studies on the relationship between study time and performance are limited; however, it is often assumed the online student will use any surplus time to improve grades ( Bigelow, 2009 ). It is crucial to mention the link between flexibility and student performance as grades are the lone performance indicator of this research.

Second, online education also offers more program choices. With traditional classroom study, students are forced to take courses only at universities within feasible driving distance or move. Web-based instruction, on the other hand, grants students electronic access to multiple universities and course offerings ( Salcedo, 2010 ). Therefore, students who were once limited to a few colleges within their immediate area can now access several colleges worldwide from a single convenient location.

Third, with online teaching, students who usually don't participate in class may now voice their opinions and concerns. As they are not in a classroom setting, quieter students may feel more comfortable partaking in class dialogue without being recognized or judged. This, in turn, may increase average class scores ( Driscoll et al., 2012 ).

Benefits of Face-to-Face (F2F) Education via Traditional Classroom Instruction

The other modality, classroom teaching, is a well-established instructional medium in which teaching style and structure have been refined over several centuries. Face-to-face instruction has numerous benefits not found in its online counterpart ( Xu and Jaggars, 2016 ).

First and, perhaps most importantly, classroom instruction is extremely dynamic. Traditional classroom teaching provides real-time face-to-face instruction and sparks innovative questions. It also allows for immediate teacher response and more flexible content delivery. Online instruction dampens the learning process because students must limit their questions to blurbs, then grant the teacher and fellow classmates time to respond ( Salcedo, 2010 ). Over time, however, online teaching will probably improve, enhancing classroom dynamics and bringing students face-to face with their peers/instructors. However, for now, face-to-face instruction provides dynamic learning attributes not found in Web-based teaching ( Kemp and Grieve, 2014 ).

Second, traditional classroom learning is a well-established modality. Some students are opposed to change and view online instruction negatively. These students may be technophobes, more comfortable with sitting in a classroom taking notes than sitting at a computer absorbing data. Other students may value face-to-face interaction, pre and post-class discussions, communal learning, and organic student-teacher bonding ( Roval and Jordan, 2004 ). They may see the Internet as an impediment to learning. If not comfortable with the instructional medium, some students may shun classroom activities; their grades might slip and their educational interest might vanish. Students, however, may eventually adapt to online education. With more universities employing computer-based training, students may be forced to take only Web-based courses. Albeit true, this doesn't eliminate the fact some students prefer classroom intimacy.

Third, face-to-face instruction doesn't rely upon networked systems. In online learning, the student is dependent upon access to an unimpeded Internet connection. If technical problems occur, online students may not be able to communicate, submit assignments, or access study material. This problem, in turn, may frustrate the student, hinder performance, and discourage learning.

Fourth, campus education provides students with both accredited staff and research libraries. Students can rely upon administrators to aid in course selection and provide professorial recommendations. Library technicians can help learners edit their papers, locate valuable study material, and improve study habits. Research libraries may provide materials not accessible by computer. In all, the traditional classroom experience gives students important auxiliary tools to maximize classroom performance.

Fifth, traditional classroom degrees trump online educational degrees in terms of hiring preferences. Many academic and professional organizations do not consider online degrees on par with campus-based degrees ( Columbaro and Monaghan, 2009 ). Often, prospective hiring bodies think Web-based education is a watered-down, simpler means of attaining a degree, often citing poor curriculums, unsupervised exams, and lenient homework assignments as detriments to the learning process.

Finally, research shows online students are more likely to quit class if they do not like the instructor, the format, or the feedback. Because they work independently, relying almost wholly upon self-motivation and self-direction, online learners may be more inclined to withdraw from class if they do not get immediate results.

The classroom setting provides more motivation, encouragement, and direction. Even if a student wanted to quit during the first few weeks of class, he/she may be deterred by the instructor and fellow students. F2F instructors may be able to adjust the structure and teaching style of the class to improve student retention ( Kemp and Grieve, 2014 ). With online teaching, instructors are limited to electronic correspondence and may not pick-up on verbal and non-verbal cues.

Both F2F and online teaching have their pros and cons. More studies comparing the two modalities to achieve specific learning outcomes in participating learner populations are required before well-informed decisions can be made. This study examined the two modalities over eight (8) years on three different levels. Based on the aforementioned information, the following research questions resulted.

RQ1: Are there significant differences in academic performance between online and F2F students enrolled in an environmental science course?

RQ2: Are there gender differences between online and F2F student performance in an environmental science course?

RQ3: Are there significant differences between the performance of online and F2F students in an environmental science course with respect to class rank?

The results of this study are intended to edify teachers, administrators, and policymakers on which medium may work best.

Methodology

Participants.

The study sample consisted of 548 FVSU students who completed the Environmental Science class between 2009 and 2016. The final course grades of the participants served as the primary comparative factor in assessing performance differences between online and F2F instruction. Of the 548 total participants, 147 were online students while 401 were traditional students. This disparity was considered a limitation of the study. Of the 548 total students, 246 were male, while 302 were female. The study also used students from all four class ranks. There were 187 freshmen, 184 sophomores, 76 juniors, and 101 seniors. This was a convenience, non-probability sample so the composition of the study set was left to the discretion of the instructor. No special preferences or weights were given to students based upon gender or rank. Each student was considered a single, discrete entity or statistic.

All sections of the course were taught by a full-time biology professor at FVSU. The professor had over 10 years teaching experience in both classroom and F2F modalities. The professor was considered an outstanding tenured instructor with strong communication and management skills.

The F2F class met twice weekly in an on-campus classroom. Each class lasted 1 h and 15 min. The online class covered the same material as the F2F class, but was done wholly on-line using the Desire to Learn (D2L) e-learning system. Online students were expected to spend as much time studying as their F2F counterparts; however, no tracking measure was implemented to gauge e-learning study time. The professor combined textbook learning, lecture and class discussion, collaborative projects, and assessment tasks to engage students in the learning process.

This study did not differentiate between part-time and full-time students. Therefore, many part-time students may have been included in this study. This study also did not differentiate between students registered primarily at FVSU or at another institution. Therefore, many students included in this study may have used FVSU as an auxiliary institution to complete their environmental science class requirement.

Test Instruments

In this study, student performance was operationalized by final course grades. The final course grade was derived from test, homework, class participation, and research project scores. The four aforementioned assessments were valid and relevant; they were useful in gauging student ability and generating objective performance measurements. The final grades were converted from numerical scores to traditional GPA letters.

Data Collection Procedures

The sample 548 student grades were obtained from FVSU's Office of Institutional Research Planning and Effectiveness (OIRPE). The OIRPE released the grades to the instructor with the expectation the instructor would maintain confidentiality and not disclose said information to third parties. After the data was obtained, the instructor analyzed and processed the data though SPSS software to calculate specific values. These converted values were subsequently used to draw conclusions and validate the hypothesis.

Summary of the Results: The chi-square analysis showed no significant difference in student performance between online and face-to-face (F2F) learners [χ 2 (4, N = 548) = 6.531, p > 0.05]. The independent sample t -test showed no significant difference in student performance between online and F2F learners with respect to gender [ t (145) = 1.42, p = 0.122]. The 2-way ANOVA showed no significant difference in student performance between online and F2F learners with respect to class rank ( Girard et al., 2016 ).

Research question #1 was to determine if there was a statistically significant difference between the academic performance of online and F2F students.

Research Question 1

The first research question investigated if there was a difference in student performance between F2F and online learners.

To investigate the first research question, we used a traditional chi-square method to analyze the data. The chi-square analysis is particularly useful for this type of comparison because it allows us to determine if the relationship between teaching modality and performance in our sample set can be extended to the larger population. The chi-square method provides us with a numerical result which can be used to determine if there is a statistically significant difference between the two groups.

Table 1 shows us the mean and SD for modality and for gender. It is a general breakdown of numbers to visually elucidate any differences between scores and deviations. The mean GPA for both modalities is similar with F2F learners scoring a 69.35 and online learners scoring a 68.64. Both groups had fairly similar SDs. A stronger difference can be seen between the GPAs earned by men and women. Men had a 3.23 mean GPA while women had a 2.9 mean GPA. The SDs for both groups were almost identical. Even though the 0.33 numerical difference may look fairly insignificant, it must be noted that a 3.23 is approximately a B+ while a 2.9 is approximately a B. Given a categorical range of only A to F, a plus differential can be considered significant.

www.frontiersin.org

Table 1 . Means and standard deviations for 8 semester- “Environmental Science data set.”

The mean grade for men in the environmental online classes ( M = 3.23, N = 246, SD = 1.19) was higher than the mean grade for women in the classes ( M = 2.9, N = 302, SD = 1.20) (see Table 1 ).

First, a chi-square analysis was performed using SPSS to determine if there was a statistically significant difference in grade distribution between online and F2F students. Students enrolled in the F2F class had the highest percentage of A's (63.60%) as compared to online students (36.40%). Table 2 displays grade distribution by course delivery modality. The difference in student performance was statistically significant, χ 2 (4, N = 548) = 6.531, p > 0.05. Table 3 shows the gender difference on student performance between online and F2F students.

www.frontiersin.org

Table 2 . Contingency table for student's academic performance ( N = 548).

www.frontiersin.org

Table 3 . Gender * performance crosstabulation.

Table 2 shows us the performance measures of online and F2F students by grade category. As can be seen, F2F students generated the highest performance numbers for each grade category. However, this disparity was mostly due to a higher number of F2F students in the study. There were 401 F2F students as opposed to just 147 online students. When viewing grades with respect to modality, there are smaller percentage differences between respective learners ( Tanyel and Griffin, 2014 ). For example, F2F learners earned 28 As (63.60% of total A's earned) while online learners earned 16 As (36.40% of total A's earned). However, when viewing the A grade with respect to total learners in each modality, it can be seen that 28 of the 401 F2F students (6.9%) earned As as compared to 16 of 147 (10.9%) online learners. In this case, online learners scored relatively higher in this grade category. The latter measure (grade total as a percent of modality total) is a better reflection of respective performance levels.

Given a critical value of 7.7 and a d.f. of 4, we were able to generate a chi-squared measure of 6.531. The correlating p -value of 0.163 was greater than our p -value significance level of 0.05. We, therefore, had to accept the null hypothesis and reject the alternative hypothesis. There is no statistically significant difference between the two groups in terms of performance scores.

Research Question 2

The second research question was posed to evaluate if there was a difference between online and F2F varied with gender. Does online and F2F student performance vary with respect to gender? Table 3 shows the gender difference on student performance between online and face to face students. We used chi-square test to determine if there were differences in online and F2F student performance with respect to gender. The chi-square test with alpha equal to 0.05 as criterion for significance. The chi-square result shows that there is no statistically significant difference between men and women in terms of performance.

Research Question 3

The third research question tried to determine if there was a difference between online and F2F varied with respect to class rank. Does online and F2F student performance vary with respect to class rank?

Table 4 shows the mean scores and standard deviations of freshman, sophomore, and junior and senior students for both online and F2F student performance. To test the third hypothesis, we used a two-way ANOVA. The ANOVA is a useful appraisal tool for this particular hypothesis as it tests the differences between multiple means. Instead of testing specific differences, the ANOVA generates a much broader picture of average differences. As can be seen in Table 4 , the ANOVA test for this particular hypothesis states there is no significant difference between online and F2F learners with respect to class rank. Therefore, we must accept the null hypothesis and reject the alternative hypothesis.

www.frontiersin.org

Table 4 . Descriptive analysis of student performance by class rankings gender.

The results of the ANOVA show there is no significant difference in performance between online and F2F students with respect to class rank. Results of ANOVA is presented in Table 5 .

www.frontiersin.org

Table 5 . Analysis of variance (ANOVA) for online and F2F of class rankings.

As can be seen in Table 4 , the ANOVA test for this particular hypothesis states there is no significant difference between online and F2F learners with respect to class rank. Therefore, we must accept the null hypothesis and reject the alternative hypothesis.

Discussion and Social Implications

The results of the study show there is no significant difference in performance between online and traditional classroom students with respect to modality, gender, or class rank in a science concepts course for non-STEM majors. Although there were sample size issues and study limitations, this assessment shows both online learners and classroom learners perform at the same level. This conclusion indicates teaching modality may not matter as much as other factors. Given the relatively sparse data on pedagogical modality comparison given specific student population characteristics, this study could be considered innovative. In the current literature, we have not found a study of this nature comparing online and F2F non-STEM majors with respect to three separate factors—medium, gender, and class rank—and the ability to learn science concepts and achieve learning outcomes. Previous studies have compared traditional classroom learning vs. F2F learning for other factors (including specific courses, costs, qualitative analysis, etcetera, but rarely regarding outcomes relevant to population characteristics of learning for a specific science concepts course over many years) ( Liu, 2005 ).

In a study evaluating the transformation of a graduate level course for teachers, academic quality of the online course and learning outcomes were evaluated. The study evaluated the ability of course instructors to design the course for online delivery and develop various interactive multimedia models at a cost-savings to the respective university. The online learning platform proved effective in translating information where tested students successfully achieved learning outcomes comparable to students taking the F2F course ( Herman and Banister, 2007 ).

Another study evaluated the similarities and differences in F2F and online learning in a non-STEM course, “Foundations of American Education” and overall course satisfaction by students enrolled in either of the two modalities. F2F and online course satisfaction was qualitatively and quantitative analyzed. However, in analyzing online and F2F course feedback using quantitative feedback, online course satisfaction was less than F2F satisfaction. When qualitative data was used, course satisfaction was similar between modalities ( Werhner, 2010 ). The course satisfaction data and feedback was used to suggest a number of posits for effective online learning in the specific course. The researcher concluded that there was no difference in the learning success of students enrolled in the online vs. F2F course, stating that “in terms of learning, students who apply themselves diligently should be successful in either format” ( Dell et al., 2010 ). The author's conclusion presumes that the “issues surrounding class size are under control and that the instructor has a course load that makes the intensity of the online course workload feasible” where the authors conclude that the workload for online courses is more than for F2F courses ( Stern, 2004 ).

In “A Meta-Analysis of Three Types of Interaction Treatments in Distance Education,” Bernard et al. (2009) conducted a meta-analysis evaluating three types of instructional and/or media conditions designed into distance education (DE) courses known as interaction treatments (ITs)—student–student (SS), student–teacher (ST), or student–content (SC) interactions—to other DE instructional/interaction treatments. The researchers found that a strong association existed between the integration of these ITs into distance education courses and achievement compared with blended or F2F modalities of learning. The authors speculated that this was due to increased cognitive engagement based in these three interaction treatments ( Larson and Sung, 2009 ).

Other studies evaluating students' preferences (but not efficacy) for online vs. F2F learning found that students prefer online learning when it was offered, depending on course topic, and online course technology platform ( Ary and Brune, 2011 ). F2F learning was preferred when courses were offered late morning or early afternoon 2–3 days/week. A significant preference for online learning resulted across all undergraduate course topics (American history and government, humanities, natural sciences, social, and behavioral sciences, diversity, and international dimension) except English composition and oral communication. A preference for analytical and quantitative thought courses was also expressed by students, though not with statistically significant results ( Mann and Henneberry, 2014 ). In this research study, we looked at three hypothesis comparing online and F2F learning. In each case, the null hypothesis was accepted. Therefore, at no level of examination did we find a significant difference between online and F2F learners. This finding is important because it tells us traditional-style teaching with its heavy emphasis on interpersonal classroom dynamics may 1 day be replaced by online instruction. According to Daymont and Blau (2008) online learners, regardless of gender or class rank, learn as much from electronic interaction as they do from personal interaction. Kemp and Grieve (2014) also found that both online and F2F learning for psychology students led to similar academic performance. Given the cost efficiencies and flexibility of online education, Web-based instructional systems may rapidly rise.

A number of studies support the economic benefits of online vs. F2F learning, despite differences in social constructs and educational support provided by governments. In a study by Li and Chen (2012) higher education institutions benefit the most from two of four outputs—research outputs and distance education—with teaching via distance education at both the undergraduate and graduate levels more profitable than F2F teaching at higher education institutions in China. Zhang and Worthington (2017) reported an increasing cost benefit for the use of distance education over F2F instruction as seen at 37 Australian public universities over 9 years from 2003 to 2012. Maloney et al. (2015) and Kemp and Grieve (2014) also found significant savings in higher education when using online learning platforms vs. F2F learning. In the West, the cost efficiency of online learning has been demonstrated by several research studies ( Craig, 2015 ). Studies by Agasisti and Johnes (2015) and Bartley and Golek (2004) both found the cost benefits of online learning significantly greater than that of F2F learning at U.S. institutions.

Knowing there is no significant difference in student performance between the two mediums, institutions of higher education may make the gradual shift away from traditional instruction; they may implement Web-based teaching to capture a larger worldwide audience. If administered correctly, this shift to Web-based teaching could lead to a larger buyer population, more cost efficiencies, and more university revenue.

The social implications of this study should be touted; however, several concerns regarding generalizability need to be taken into account. First, this study focused solely on students from an environmental studies class for non-STEM majors. The ability to effectively prepare students for scientific professions without hands-on experimentation has been contended. As a course that functions to communicate scientific concepts, but does not require a laboratory based component, these results may not translate into similar performance of students in an online STEM course for STEM majors or an online course that has an online laboratory based co-requisite when compared to students taking traditional STEM courses for STEM majors. There are few studies that suggest the landscape may be changing with the ability to effectively train students in STEM core concepts via online learning. Biel and Brame (2016) reported successfully translating the academic success of F2F undergraduate biology courses to online biology courses. However, researchers reported that of the large-scale courses analyzed, two F2F sections outperformed students in online sections, and three found no significant difference. A study by Beale et al. (2014) comparing F2F learning with hybrid learning in an embryology course found no difference in overall student performance. Additionally, the bottom quartile of students showed no differential effect of the delivery method on examination scores. Further, a study from Lorenzo-Alvarez et al. (2019) found that radiology education in an online learning platform resulted in similar academic outcomes as F2F learning. Larger scale research is needed to determine the effectiveness of STEM online learning and outcomes assessments, including workforce development results.

In our research study, it is possible the study participants may have been more knowledgeable about environmental science than about other subjects. Therefore, it should be noted this study focused solely on students taking this one particular class. Given the results, this course presents a unique potential for increasing the number of non-STEM majors engaged in citizen science using the flexibility of online learning to teach environmental science core concepts.

Second, the operationalization measure of “grade” or “score” to determine performance level may be lacking in scope and depth. The grades received in a class may not necessarily show actual ability, especially if the weights were adjusted to heavily favor group tasks and writing projects. Other performance indicators may be better suited to properly access student performance. A single exam containing both multiple choice and essay questions may be a better operationalization indicator of student performance. This type of indicator will provide both a quantitative and qualitative measure of subject matter comprehension.

Third, the nature of the student sample must be further dissected. It is possible the online students in this study may have had more time than their counterparts to learn the material and generate better grades ( Summers et al., 2005 ). The inverse holds true, as well. Because this was a convenience non-probability sampling, the chances of actually getting a fair cross section of the student population were limited. In future studies, greater emphasis must be placed on selecting proper study participants, those who truly reflect proportions, types, and skill levels.

This study was relevant because it addressed an important educational topic; it compared two student groups on multiple levels using a single operationalized performance measure. More studies, however, of this nature need to be conducted before truly positing that online and F2F teaching generate the same results. Future studies need to eliminate spurious causal relationships and increase generalizability. This will maximize the chances of generating a definitive, untainted results. This scientific inquiry and comparison into online and traditional teaching will undoubtedly garner more attention in the coming years.

Our study compared learning via F2F vs. online learning modalities in teaching an environmental science course additionally evaluating factors of gender and class rank. These data demonstrate the ability to similarly translate environmental science concepts for non-STEM majors in both traditional and online platforms irrespective of gender or class rank. The social implications of this finding are important for advancing access to and learning of scientific concepts by the general population, as many institutions of higher education allow an online course to be taken without enrolling in a degree program. Thus, the potential exists for increasing the number of non-STEM majors engaged in citizen science using the flexibility of online learning to teach environmental science core concepts.

Limitations of the Study

The limitations of the study centered around the nature of the sample group, student skills/abilities, and student familiarity with online instruction. First, because this was a convenience, non-probability sample, the independent variables were not adjusted for real-world accuracy. Second, student intelligence and skill level were not taken into consideration when separating out comparison groups. There exists the possibility that the F2F learners in this study may have been more capable than the online students and vice versa. This limitation also applies to gender and class rank differences ( Friday et al., 2006 ). Finally, there may have been ease of familiarity issues between the two sets of learners. Experienced traditional classroom students now taking Web-based courses may be daunted by the technical aspect of the modality. They may not have had the necessary preparation or experience to efficiently e-learn, thus leading to lowered scores ( Helms, 2014 ). In addition to comparing online and F2F instructional efficacy, future research should also analyze blended teaching methods for the effectiveness of courses for non-STEM majors to impart basic STEM concepts and see if the blended style is more effective than any one pure style.

Data Availability Statement

The datasets generated for this study are available on request to the corresponding author.

Ethics Statement

The studies involving human participants were reviewed and approved by Fort Valley State University Human Subjects Institutional Review Board. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

Author Contributions

JP provided substantial contributions to the conception of the work, acquisition and analysis of data for the work, and is the corresponding author on this paper who agrees to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. FJ provided substantial contributions to the design of the work, interpretation of the data for the work, and revised it critically for intellectual content.

This research was supported in part by funding from the National Science Foundation, Awards #1649717, 1842510, Ñ900572, and 1939739 to FJ.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

The authors would like to thank the reviewers for their detailed comments and feedback that assisted in the revising of our original manuscript.

Agasisti, T., and Johnes, G. (2015). Efficiency, costs, rankings and heterogeneity: the case of US higher education. Stud. High. Educ. 40, 60–82. doi: 10.1080/03075079.2013.818644

CrossRef Full Text | Google Scholar

Ary, E. J., and Brune, C. W. (2011). A comparison of student learning outcomes in traditional and online personal finance courses. MERLOT J. Online Learn. Teach. 7, 465–474.

Google Scholar

Atchley, W., Wingenbach, G., and Akers, C. (2013). Comparison of course completion and student performance through online and traditional courses. Int. Rev. Res. Open Dist. Learn. 14, 104–116. doi: 10.19173/irrodl.v14i4.1461

Bartley, S. J., and Golek, J. H. (2004). Evaluating the cost effectiveness of online and face-to-face instruction. Educ. Technol. Soc. 7, 167–175.

Beale, E. G., Tarwater, P. M., and Lee, V. H. (2014). A retrospective look at replacing face-to-face embryology instruction with online lectures in a human anatomy course. Am. Assoc. Anat. 7, 234–241. doi: 10.1002/ase.1396

PubMed Abstract | CrossRef Full Text | Google Scholar

Bernard, R. M., Abrami, P. C., Borokhovski, E., Wade, C. A., Tamim, R. M., Surkesh, M. A., et al. (2009). A meta-analysis of three types of interaction treatments in distance education. Rev. Educ. Res. 79, 1243–1289. doi: 10.3102/0034654309333844

Biel, R., and Brame, C. J. (2016). Traditional versus online biology courses: connecting course design and student learning in an online setting. J. Microbiol. Biol. Educ. 17, 417–422. doi: 10.1128/jmbe.v17i3.1157

Bigelow, C. A. (2009). Comparing student performance in an online versus a face to face introductory turfgrass science course-a case study. NACTA J. 53, 1–7.

Columbaro, N. L., and Monaghan, C. H. (2009). Employer perceptions of online degrees: a literature review. Online J. Dist. Learn. Administr. 12.

Craig, R. (2015). A Brief History (and Future) of Online Degrees. Forbes/Education . Available online at: https://www.forbes.com/sites/ryancraig/2015/06/23/a-brief-history-and-future-of-online-degrees/#e41a4448d9a8

Daymont, T., and Blau, G. (2008). Student performance in online and traditional sections of an undergraduate management course. J. Behav. Appl. Manag. 9, 275–294.

Dell, C. A., Low, C., and Wilker, J. F. (2010). Comparing student achievement in online and face-to-face class formats. J. Online Learn. Teach. Long Beach 6, 30–42.

Driscoll, A., Jicha, K., Hunt, A. N., Tichavsky, L., and Thompson, G. (2012). Can online courses deliver in-class results? A comparison of student performance and satisfaction in an online versus a face-to-face introductory sociology course. Am. Sociol. Assoc . 40, 312–313. doi: 10.1177/0092055X12446624

Friday, E., Shawnta, S., Green, A. L., and Hill, A. Y. (2006). A multi-semester comparison of student performance between multiple traditional and online sections of two management courses. J. Behav. Appl. Manag. 8, 66–81.

Girard, J. P., Yerby, J., and Floyd, K. (2016). Knowledge retention in capstone experiences: an analysis of online and face-to-face courses. Knowl. Manag. ELearn. 8, 528–539. doi: 10.34105/j.kmel.2016.08.033

Helms, J. L. (2014). Comparing student performance in online and face-to-face delivery modalities. J. Asynchr. Learn. Netw. 18, 1–14. doi: 10.24059/olj.v18i1.348

Herman, T., and Banister, S. (2007). Face-to-face versus online coursework: a comparison of costs and learning outcomes. Contemp. Issues Technol. Teach. Educ. 7, 318–326.

Kemp, N., and Grieve, R. (2014). Face-to-Face or face-to-screen? Undergraduates' opinions and test performance in classroom vs. online learning. Front. Psychol. 5:1278. doi: 10.3389/fpsyg.2014.01278

Keramidas, C. G. (2012). Are undergraduate students ready for online learning? A comparison of online and face-to-face sections of a course. Rural Special Educ. Q . 31, 25–39. doi: 10.1177/875687051203100405

Larson, D.K., and Sung, C. (2009). Comparing student performance: online versus blended versus face-to-face. J. Asynchr. Learn. Netw. 13, 31–42. doi: 10.24059/olj.v13i1.1675

Li, F., and Chen, X. (2012). Economies of scope in distance education: the case of Chinese Research Universities. Int. Rev. Res. Open Distrib. Learn. 13, 117–131.

Liu, Y. (2005). Effects of online instruction vs. traditional instruction on student's learning. Int. J. Instruct. Technol. Dist. Learn. 2, 57–64.

Lorenzo-Alvarez, R., Rudolphi-Solero, T., Ruiz-Gomez, M. J., and Sendra-Portero, F. (2019). Medical student education for abdominal radiographs in a 3D virtual classroom versus traditional classroom: a randomized controlled trial. Am. J. Roentgenol. 213, 644–650. doi: 10.2214/AJR.19.21131

Lundberg, J., Castillo-Merino, D., and Dahmani, M. (2008). Do online students perform better than face-to-face students? Reflections and a short review of some Empirical Findings. Rev. Univ. Soc. Conocim . 5, 35–44. doi: 10.7238/rusc.v5i1.326

Maloney, S., Nicklen, P., Rivers, G., Foo, J., Ooi, Y. Y., Reeves, S., et al. (2015). Cost-effectiveness analysis of blended versus face-to-face delivery of evidence-based medicine to medical students. J. Med. Internet Res. 17:e182. doi: 10.2196/jmir.4346

Mann, J. T., and Henneberry, S. R. (2014). Online versus face-to-face: students' preferences for college course attributes. J. Agric. Appl. Econ . 46, 1–19. doi: 10.1017/S1074070800000602

Mozes-Carmel, A., and Gold, S. S. (2009). A comparison of online vs proctored final exams in online classes. Imanagers J. Educ. Technol. 6, 76–81. doi: 10.26634/jet.6.1.212

Richardson, J. C., and Swan, K. (2003). Examining social presence in online courses in relation to student's perceived learning and satisfaction. J. Asynchr. Learn. 7, 68–88.

Roval, A. P., and Jordan, H. M. (2004). Blended learning and sense of community: a comparative analysis with traditional and fully online graduate courses. Int. Rev. Res. Open Dist. Learn. 5. doi: 10.19173/irrodl.v5i2.192

Salcedo, C. S. (2010). Comparative analysis of learning outcomes in face-to-face foreign language classes vs. language lab and online. J. Coll. Teach. Learn. 7, 43–54. doi: 10.19030/tlc.v7i2.88

Stern, B. S. (2004). A comparison of online and face-to-face instruction in an undergraduate foundations of american education course. Contemp. Issues Technol. Teach. Educ. J. 4, 196–213.

Summers, J. J., Waigandt, A., and Whittaker, T. A. (2005). A comparison of student achievement and satisfaction in an online versus a traditional face-to-face statistics class. Innov. High. Educ. 29, 233–250. doi: 10.1007/s10755-005-1938-x

Tanyel, F., and Griffin, J. (2014). A Ten-Year Comparison of Outcomes and Persistence Rates in Online versus Face-to-Face Courses . Retrieved from: https://www.westga.edu/~bquest/2014/onlinecourses2014.pdf

Werhner, M. J. (2010). A comparison of the performance of online versus traditional on-campus earth science students on identical exams. J. Geosci. Educ. 58, 310–312. doi: 10.5408/1.3559697

Westhuis, D., Ouellette, P. M., and Pfahler, C. L. (2006). A comparative analysis of on-line and classroom-based instructional formats for teaching social work research. Adv. Soc. Work 7, 74–88. doi: 10.18060/184

Wladis, C., Conway, K. M., and Hachey, A. C. (2015). The online STEM classroom-who succeeds? An exploration of the impact of ethnicity, gender, and non-traditional student characteristics in the community college context. Commun. Coll. Rev. 43, 142–164. doi: 10.1177/0091552115571729

Xu, D., and Jaggars, S. S. (2016). Performance gaps between online and face-to-face courses: differences across types of students and academic subject areas. J. Higher Educ. 85, 633–659. doi: 10.1353/jhe.2014.0028

Zhang, L.-C., and Worthington, A. C. (2017). Scale and scope economies of distance education in Australian universities. Stud. High. Educ. 42, 1785–1799. doi: 10.1080/03075079.2015.1126817

Keywords: face-to-face (F2F), traditional classroom teaching, web-based instructions, information and communication technology (ICT), online learning, desire to learn (D2L), passive learning, active learning

Citation: Paul J and Jefferson F (2019) A Comparative Analysis of Student Performance in an Online vs. Face-to-Face Environmental Science Course From 2009 to 2016. Front. Comput. Sci. 1:7. doi: 10.3389/fcomp.2019.00007

Received: 15 May 2019; Accepted: 15 October 2019; Published: 12 November 2019.

Reviewed by:

Copyright © 2019 Paul and Jefferson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Jasmine Paul, paulj@fvsu.edu

Scholars Crossing

  • Liberty University
  • Jerry Falwell Library
  • Special Collections
  • < Previous

Home > ETD > Doctoral > 2124

Doctoral Dissertations and Projects

Causal-comparative study of reading self-efficacy of senior high school students based on english course placement.

Carrie Marie Deel Follow

School of Education

Doctor of Education in Curriculum & Instruction (EdD)

Meredith Park

Self-efficacy, Reading, English, Dual Enrollment, General Education, Gender

Disciplines

Curriculum and Instruction | Education

Recommended Citation

Deel, Carrie Marie, "Causal-Comparative Study of Reading Self-Efficacy of Senior High School Students Based on English Course Placement" (2019). Doctoral Dissertations and Projects . 2124. https://digitalcommons.liberty.edu/doctoral/2124

In addition to requisite knowledge and skills in the area of reading, self-efficacy is imperative for students’ success in academic tasks. While a considerable amount of research has been conducted on self-efficacy, there is a dearth of research with high school students’ reading self-efficacy. Moreover, there is virtually no research investigating the potential differences in reading self-efficacy for students enrolled in different kinds of senior English courses. This non-experimental quantitative causal-comparative study sought to examine whether there was a difference between the reading self-efficacy for male and female students enrolled in general education English classes and students enrolled in dual enrollment English classes. A convenience sample of 190 students in two school districts in southwest Virginia was administered the Self-Efficacy for Reading scale developed by Prat-Sala and Redford (2010). A two-way ANOVA was used to determine the differences in means scores for the two groups. There was a statistically significant difference in the reading self-efficacy based on course placement, with dual enrollment students reporting higher levels of self-efficacy than students enrolled in general education English classes. There was not a statistical significance in reading self-efficacy based on gender, nor was there a significant interaction between gender and course placement.

Since June 20, 2019

Included in

Curriculum and Instruction Commons

  • Collections
  • Faculty Expert Gallery
  • Theses and Dissertations
  • Conferences and Events
  • Open Educational Resources (OER)
  • Explore Disciplines

Advanced Search

  • Notify me via email or RSS .

Faculty Authors

  • Submit Research
  • Expert Gallery Login

Student Authors

  • Undergraduate Submissions
  • Graduate Submissions
  • Honors Submissions

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

150+ Life Science Research Topics for High School Students: From Cells to Ecosystems

Life Science Research Topics for High School Students

  • Post author By admin
  • September 26, 2023

Explore a wide range of life science research topics for high school students. Enhance your knowledge and skills with our comprehensive guide.

Ever wondered what makes our world tick? The answer lies in the magic of life science, and guess what? You’re about to dive headfirst into this enchanting world.

No need for complicated jargon or boring textbooks. We’re talking about cool stuff like animals, plants, genes, and mysteries waiting to be unraveled. Imagine being a real-life detective of the natural world!

So, what’s the deal? In this article, we’ve got a bunch of mind-blowing life science research topics designed just for you. They’re not like your usual school assignments. They’re more like a journey into the unknown, a chance to discover things no one else has.

Ready to have a blast and become a science superstar? Awesome, because we’re about to kickstart this amazing adventure together. Let’s roll! 

Table of Contents

Why Choose Life Science Research?

You might be wondering why on Earth you should consider diving into the world of life science research, right? Well, let’s unravel the mystery.

It’s Relevant

Life science research is all about the stuff that affects us every day. We’re talking about diseases, ecosystems, genetics – things you encounter in your life.

Problem-Solving Playground

Think of it as a puzzle-solving adventure. Life science research hones your critical thinking skills and turns you into a real-life Sherlock Holmes for all things natural.

Unleash Your Inner Scientist

Ever wanted to be a scientist in a lab coat, conducting experiments and making groundbreaking discoveries? Life science research gives you a taste of that action, letting you form hypotheses and conduct cool experiments.

Career Exploration

Not sure what you want to be when you grow up? Exploring life sciences might help you discover your passion. Whether it’s medicine, ecology, genetics, or something else entirely, the possibilities are endless.

You Can Make a Difference

Believe it or not, your research could contribute to the big book of scientific knowledge. Your discoveries might even change the world!

So, why choose life science research? Because it’s like a thrilling adventure where you’re both the explorer and the discoverer. It’s where your questions lead to answers, and your curiosity shapes the future. Ready to take that first step? Let’s go! 

Getting Started: Research Methodology

Getting started with life science research is like gearing up for a fantastic adventure. We’re talking about your very own treasure map, and it’s not as complicated as it might seem. Here’s your basic toolkit to kickstart your research journey:

1. The Scientific Method – Your Detective Kit

Think of this as your secret code for solving mysteries. You start with a question, make a guess (that’s your hypothesis), do some experiments, gather clues (data), and finally, you put it all together to uncover the truth. You’re basically a scientific detective!

2. Data Collection – Gathering Clues

Imagine you’re on a scavenger hunt, but instead of hunting for hidden items, you’re collecting information. This info comes from experiments, observations, or surveys – like puzzle pieces waiting to be put together.

3. Analysis – Piecing It Together

Now, it’s time to play detective again. You take those puzzle pieces (data) and use special tools to fit them together. It’s like solving a jigsaw puzzle, but the picture you reveal is a scientific discovery!

4. Drawing Conclusions – Telling Your Story

You’re not just a detective; you’re also a storyteller. After analyzing your clues, you get to share your findings with the world. It’s like revealing the thrilling ending of a mystery novel – except this time, it’s your discovery.

5. Replicability – Sharing the Adventure

In the world of science, it’s all about teamwork. You’ll document your journey so well that others can follow your steps and have the same adventure. It’s like sharing your treasure map with friends so they can find the same hidden gems.

So, think of research methodology as your trusty guide through the jungle of science. It’s your way of making sure your adventure is both exciting and trustworthy. Get ready, young explorers! Your scientific journey is about to take off, and it’s going to be a blast.

Life Science Research Topics for High School Students

Have a close look at life science research topics for high school students:-

Microbiology and Disease

  • Investigating the Antibacterial Properties of Natural Substances.
  • Analyzing the Impact of Hand Hygiene on Reducing the Spread of Diseases.
  • The Role of Microbes in Decomposition Processes.
  • A Comparative Study of Antibiotic Sensitivity in Bacterial Strains.
  • Exploring the Microbiome of Different Ecosystems: Soil, Water, and Air.
  • Investigating the Effects of Temperature on Microbial Growth.
  • The Emergence and Spread of Antibiotic Resistance Genes.
  • Microbes in Food: Fermentation and Preservation.
  • Analyzing the Microbiome of Human Skin and Its Role in Health.
  • Studying the Microbial Diversity in Extreme Environments: Hot Springs and Deep-Sea Vents.

Genetics and Heredity

  • Mapping the Inheritance of Genetic Traits in Families.
  • Investigating the Genetics of Taste Perception: Bitter Taste Receptors.
  • A Study on the Genetic Basis of Rare Genetic Disorders.
  • Genetic Variation in Plant Populations: A Local Species Study.
  • The Impact of Genetic Mutations on Disease Susceptibility.
  • Exploring the Use of CRISPR-Cas9 for Gene Editing in Model Organisms.
  • The Genetics of Flower Color Variation in a Plant Species.
  • A Comparative Study of Gene Expression in Different Tissues.
  • Studying the Inheritance Patterns of Blood Types in Human Populations.
  • Investigating the Genetics of Cancer Predisposition in Families.

Ecology and Environmental Studies

  • Monitoring the Impact of Pollution on Local Water Bodies.
  • Biodiversity Assessment in Urban Parks and Natural Reserves.
  • Studying the Effects of Climate Change on Local Flora and Fauna.
  • Soil Health Assessment in Agricultural and Natural Ecosystems.
  • Investigating the Impact of Invasive Species on Native Biodiversity.
  • Analyzing the Role of Wetlands in Flood Control and Water Purification.
  • Ecosystem Services Assessment in Urban Environments.
  • Urban Heat Island Effect: Mapping and Mitigation Strategies.
  • The Impact of Deforestation on Local Bird Populations.
  • Restoration of Native Plant Communities in Degraded Ecosystems.

Human Anatomy and Physiology

  • The Effect of Different Diets on Gut Microbiota Composition.
  • Investigating the Relationship Between Physical Activity and Heart Health.
  • Brain Plasticity: How Learning and Experience Change the Brain.
  • A Study on the Impact of Sleep Patterns on Cognitive Function.
  • The Influence of Age on Muscle Strength and Endurance.
  • Hormonal Changes During Puberty: A Comparative Study.
  • The Role of Antioxidants in Cellular Aging.
  • Investigating the Effects of Stress on Immune System Function.
  • Analyzing the Physiology of Human Senses: Vision, Hearing, Taste, and Smell.
  • The Role of Gut-Brain Communication in Mood and Mental Health.

Botany and Plant Science

  • The Effect of Different Light Conditions on Plant Growth.
  • Investigating the Role of Plant Hormones in Growth and Development.
  • Studying the Impact of Soil pH on Plant Nutrient Uptake.
  • The Relationship Between Mycorrhizal Fungi and Plant Health.
  • Analyzing the Adaptations of Desert Plants to Water Scarcity.
  • The Influence of Plant Root Exudates on Soil Microbes.
  • Investigating the Role of Plant Volatile Compounds in Insect Attraction and Repulsion.
  • The Effect of Different Fertilizers on Crop Yield and Soil Health.
  • Plant-Microbe Interactions: Beneficial and Pathogenic Relationships.
  • Exploring the Nutritional Content of Edible Wild Plants in a Local Area.

Zoology and Animal Behavior

  • Investigating Social Hierarchies in Animal Groups: A Study on Dominance.
  • The Effect of Environmental Enrichment on Zoo Animal Behavior.
  • Studying the Impact of Noise Pollution on Bird Song Patterns.
  • Migration Patterns of Local Bird Species: Tracking and Analysis.
  • The Influence of Predation Risk on Prey Behavior.
  • Investigating Animal Camouflage Strategies in Different Habitats.
  • A Comparative Study of Parental Care in Amphibians and Reptiles.
  • The Impact of Human Disturbance on Wildlife Behavior in Urban Parks.
  • Analyzing the Feeding Behavior of Insectivorous Bats.
  • Predator-Prey Coevolution: A Study on Adaptations in Predator and Prey Species.

Environmental Conservation

  • Sustainable Agriculture Practices: Soil Health and Crop Yield.
  • Ecological Restoration of a Local Wetland Ecosystem.
  • Investigating Plastic Recycling Methods for Environmental Impact.
  • The Role of Urban Green Spaces in Mitigating Heat Islands.
  • Promoting Renewable Energy Sources in a Community: Challenges and Solutions.
  • Analyzing the Impact of Conservation Policies on Endangered Species.
  • Assessing the Effectiveness of Wildlife Corridors in Reducing Habitat Fragmentation.
  • E-Waste Management: Recycling and Environmental Consequences.
  • Sustainable Fisheries Management and the Preservation of Marine Ecosystems.
  • Promoting Green Roof Adoption in Urban Areas: Benefits and Barriers.

Biotechnology and Genetic Engineering

  • CRISPR-Cas9 Gene Editing: Applications in Disease Treatment.
  • Investigating the Use of GMOs in Increasing Crop Resilience.
  • Cloning as a Tool for Preserving Endangered Species.
  • Gene Therapy: Advances and Ethical Considerations.
  • Bioremediation Strategies: Cleaning Up Contaminated Sites.
  • Analyzing the Potential of Genetically Modified Microbes for Environmental Cleanup.
  • Investigating the Use of Biotechnology in Medicine: Vaccines and Therapeutics.
  • The Impact of Genetic Engineering on the Pharmaceutical Industry.
  • Genome Editing in Microorganisms: Applications in Industry and Medicine.
  • Ethical Considerations in Biotechnology: Balancing Progress and Responsibility.

Health and Medicine

  • The Effects of Various Diets on Blood Sugar Levels and Diabetes Risk.
  • Mental Health Interventions for Adolescents: Efficacy and Accessibility.
  • Investigating the Impact of Exercise on Cardiovascular Health in Different Age Groups.
  • Analyzing the Microbiome-Gut-Brain Axis and Its Influence on Mental Health.
  • The Role of Stress Management Techniques in Improving Overall Health.
  • A Comparative Study of Herbal Remedies for Common Ailments.
  • The Effects of Different Sleeping Patterns on Cognitive Function.
  • Analyzing the Impact of Screen Time on Eye Health in Children.
  • The Relationship Between Diet and Skin Health: Acne and Beyond.
  • Investigating the Influence of Environmental Factors on Allergies and Asthma.

These research project ideas offer a wide range of opportunities for high school students to explore the fascinating world of life sciences and make meaningful contributions to scientific knowledge.

What are some good research topics for high school students?

Check out some good research topics for high school students:-

Science and Biology

  • The Effects of Different Fertilizers on Plant Growth.
  • Investigating the Impact of Pollution on Local Water Bodies.
  • Analyzing the Efficiency of Various Sunscreens in UV Protection.
  • The Role of Microorganisms in Food Spoilage.
  • Investigating the Effect of Music on Human Concentration.
  • The Influence of Temperature on the Rate of Chemical Reactions.
  • A Study on the Behavior of Ants in Response to Different Food Types.
  • Investigating the Relationship Between Sleep Patterns and Academic Performance.
  • The Effect of Light Exposure on Circadian Rhythms.
  • The Impact of Exercise on Heart Rate and Physical Fitness.

Environmental Science

  • Analyzing the Impact of Deforestation on Local Climate.
  • The Role of Wetlands in Water Purification and Flood Control.
  • Investigating the Presence of Microplastics in Local Water Sources.
  • Urban Heat Island Effect: Causes and Mitigation Strategies.
  • The Effects of Different Soil Types on Plant Growth.
  • Renewable Energy Sources: Feasibility and Implementation.
  • Analyzing the Environmental Impact of Single-Use Plastics.
  • Investigating the Effects of Climate Change on Local Bird Migration Patterns.
  • Promoting Recycling and Waste Reduction in Schools.
  • Biodiversity Assessment in a Local Ecosystem.

Social Sciences and Psychology

  • Investigating the Impact of Bullying on Mental Health.
  • Analyzing the Relationship Between Parental Involvement and Academic Success.
  • A Study on the Effects of Peer Pressure on Decision-Making.
  • The Role of Gender Stereotypes in Career Choices.
  • Investigating the Impact of Video Games on Aggressive Behavior.
  • The Effect of Music on Mood and Emotions.
  • Analyzing the Factors Influencing Voting Behavior in Young Adults.
  • The Influence of Advertising on Consumer Choices.
  • A Study on the Effects of Stress on Cognitive Performance.
  • The Influence of Social Media on Teenagers’ Self-Esteem.

Technology and Engineering

  • Investigating the Efficiency of Different Insulation Materials.
  • Designing and Testing a Wind-Powered Water Pump.
  • Analyzing the Impact of Smartphone Usage on Productivity.
  • The Development of a Simple Home Automation System.
  • Investigating the Use of Drones in Environmental Monitoring.
  • Building a Simple Electric Vehicle Model.
  • A Study on Internet Security: Protecting Personal Data.
  • Analyzing the Energy Consumption of Household Appliances.
  • Designing an Eco-Friendly and Cost-Effective Home.
  • Building a Solar-Powered Charger for Mobile Devices.

History and Social Studies

  • A Study on the Contributions of a Local Historical Figure.
  • Investigating the Causes and Consequences of a Historical Conflict.
  • The Role of Women in a Specific Historical Period.
  • Analyzing the Impact of Immigration on Local Communities.
  • Investigating the Evolution of a Local Cultural Tradition.
  • A Comparative Study of Political Systems in Different Countries.
  • The Role of Propaganda in Shaping Public Opinion.
  • Analyzing the Impact of Social Movements on Policy Change.
  • Investigating the History and Cultural Significance of a Local Landmark.
  • Analyzing the Impact of Historical Events on Contemporary Society.

These research topics provide a diverse range of opportunities for high school students to explore their interests, develop critical thinking skills, and contribute to their academic and scientific communities.

Students can select topics that align with their passions and curriculum requirements to make their research projects both engaging and meaningful.

What are the possible topics of life science?

Have a close look at the possible topics for life science:-

Microbiology

  • Bacterial growth and antibiotic resistance.
  • The role of viruses in diseases.
  • Microbial diversity in different environments.
  • Fermentation processes and their applications.

Genetics and Genomics

  • Genetic inheritance patterns in humans and other organisms.
  • The impact of genetic mutations on health.
  • Genomic sequencing and personalized medicine.
  • Gene editing technologies like CRISPR-Cas9.

Ecology and Environmental Science

  • Biodiversity and conservation.
  • Ecosystem dynamics and food webs.
  • Climate change and its effects on ecosystems.
  • Environmental pollution and its impact on wildlife.
  • Photosynthesis and plant growth.
  • Plant adaptations to different environments.
  • Plant genetics and breeding for improved crops.
  • The role of plants in carbon sequestration.
  • Animal migration patterns and navigation.
  • Predator-prey interactions in ecosystems.
  • Social behavior in animal communities.
  • Animal adaptations to extreme environments.

Physiology and Anatomy

  • Human organ systems and their functions.
  • Cellular processes like respiration and metabolism .
  • Comparative anatomy of different species.
  • Neurobiology and the workings of the human brain.

Evolutionary Biology

  • The theory of evolution by natural selection.
  • Fossil evidence of evolution.
  • Comparative genomics and evolutionary relationships.
  • Human evolution and our closest relatives.

Marine Biology

  • Ocean ecosystems and marine biodiversity.
  • Coral reef conservation and threats.
  • Deep-sea exploration and the discovery of new species.
  • The role of marine organisms in biotechnology.
  • The immune system’s response to infections.
  • Vaccination and herd immunity.
  • Autoimmune diseases and allergies.
  • Immunotherapy for cancer treatment.

Epidemiology

  • Disease outbreaks and epidemiological investigations. 
  • Public health interventions to control infectious diseases. 
  • Tracking and modeling the spread of diseases. 
  • Global health challenges and pandemics.
  • Conservation strategies for endangered species. 
  • Sustainable agriculture and forestry practices. 
  • Habitat restoration and rebuilding efforts. 
  • Conservation genetics and preserving genetic diversity.
  • CRISPR technology and gene editing. 
  • Biopharmaceuticals and the production of biofuels. 
  • Genetically modified organisms (GMOs) in agriculture. 
  • Bioremediation and environmental cleanup.

These topics within life science provide a rich and diverse array of opportunities for research, study, and exploration. 

Whether you’re interested in understanding the natural world, human health, or the environment, life science offers a wide range of fascinating avenues to explore.

What are the interesting research topics about science?

Certainly, science offers a wide range of interesting research topics across various disciplines. Here are some captivating research topics in science:

Artificial Intelligence and Machine Learning

  • Developing advanced AI algorithms for medical diagnosis.
  • Natural language processing and understanding for chatbots.
  • Reinforcement learning in robotics and autonomous systems.
  • Ethical considerations in AI development.

Space Exploration and Astronomy

  • The search for exoplanets and habitable zones.
  • Understanding dark matter and dark energy.
  • Space colonization: Challenges and possibilities.
  • The future of space telescopes and observatories.

Environmental Science and Climate Change

  • Climate modeling and predictions.
  • Impacts of climate change on ecosystems and biodiversity.
  • Sustainable agriculture and food security in a changing climate.
  • Innovative approaches to renewable energy production.

Nanotechnology

  • Nanomedicine and its applications in disease treatment.
  • Nanomaterials for clean water and pollution control.
  • Nanoelectronics and the future of computing.
  • Ethical and safety concerns in nanotechnology.
  • Personalized medicine and genomics-based treatments.
  • The role of epigenetics in health and disease.
  • Human genetic diversity and its implications.

Earth and Geosciences

  • Natural disaster prediction and mitigation strategies.
  • Plate tectonics and the movement of continents.
  • The geology of other planets in our solar system.
  • Climate history and the study of ice cores.

Biomedical Research

  • Stem cell therapy and regenerative medicine.
  • Neurobiology and the quest to understand the brain.
  • Vaccine development and immunotherapy for cancer.
  • Genetic factors in aging and longevity.

Robotics and Automation

  • Advances in humanoid and bio-inspired robotics.
  • Applications of robotics in healthcare and surgery.
  • Autonomous vehicles and their impact on transportation.
  • Human-robot interaction and social robots.

Energy and Sustainable Technology

  • Energy-efficient building materials and design.
  • The potential of fusion energy as a clean power source.
  • Battery technology for renewable energy storage.
  • Smart grids and the future of energy distribution.

Particle Physics

  • The search for the Higgs boson and beyond.
  • The nature of dark matter and its properties.
  • Particle accelerators and their role in high-energy physics.
  • The Standard Model and its limitations.

Oceanography and Marine Sciences

  • Ocean acidification and its effects on marine life.
  • Coral reef conservation and restoration efforts.
  • Studying the impact of climate change on ocean currents.

Archaeology and Anthropology

  • Uncovering ancient civilizations through archaeology.
  • Genetic studies to trace human migration and evolution.
  • Anthropological research on cultural diversity and adaptation.
  • Ethical considerations in the study of indigenous cultures.

These research topics span a wide spectrum of scientific disciplines, offering countless opportunities for exploration, discovery, and innovation in the ever-evolving world of science.

Depending on your interests, you can delve into any of these areas to contribute to our understanding of the natural world and its many complexities.

How do I choose a research topic for high school?

Absolutely, let’s make the process of choosing a research topic for high school more natural, simple, and engaging:

Follow Your Passions

Start by thinking about what really fires you up. What subjects or topics make you curious and excited? Whether it’s space, animals, or history, your interests are a great place to begin.

Zoom In on Your Interests

Now, let’s narrow it down a bit. If you’re into science, do you prefer biology, chemistry, or something else? If you’re leaning towards history, is there a particular time period that fascinates you?

Know Your Strengths

Think about what you’re good at in school. If you’re acing math, maybe a research topic related to mathematics could be your jam.

Real-World Relevance

Look around you. Are there any current issues or events that pique your interest? High school research is a chance to tackle real-world problems you care about.

Seek Advice

Chat with your teachers or mentors. They’re like your research spirit guides and can help you find exciting topics that match your skills and passions.

Use Available Resources

Consider what tools and resources you have access to. Maybe there’s a cool experiment you can do right at home.

Think Long-Term

Imagine where you see yourself in the future. Is there a subject that connects to your dream job or college major?

Reflect on Past Fun

Remember any school projects you actually enjoyed? These can be a goldmine for research inspiration.

Let Your Imagination Run Wild

Brainstorm like you’re dreaming up your favorite adventure. Write down all the questions you’d love to answer.

Share and Chat

Tell your friends, family, or mentors about your ideas and get them in on the excitement. They might have amazing suggestions!

Passion is the Key

Above all, pick a topic that makes your heart race with enthusiasm. If you’re truly passionate, your research journey will feel like an awesome quest, not a chore.

Choosing your high school research topic should be like picking the theme for your grand adventure.

When you’re motivated and captivated, you’ll make incredible discoveries along the way. Ready to embark on this research journey?

We have covered some of the best life science research topics for high school students. These life science research topics are quite simple and engaging for the students.

There are a lot of opportunities associated with these project ideas that can help you to explore a lot more about life science. 

So pick the project as per your interest. You can also take the help of your fellows and mentors. Through the work on these projects you would enjoy and explore new things. So let’s have a try on these project ideas.

  • What is the importance of life science research for high school students? Life science research enhances critical thinking, problem-solving, and scientific inquiry skills, preparing students for future academic and career opportunities.
  • How can I choose the right life science topic for my research project? Choose a topic that genuinely interests you and aligns with your goals. Consider seeking guidance from teachers or mentors.
  • Are there any online resources for high school students interested in life science research? Yes, numerous online platforms offer educational resources and research opportunities for aspiring young scientists.
  • Can I collaborate with a mentor or scientist for my research project? Collaboration with mentors or scientists can be highly beneficial and is encouraged in the field of life sciences.
  • What are some potential career paths for those passionate about life sciences? Careers in medicine, ecology, genetics, microbiology, and environmental science are among the many options for those passionate about life sciences.
  • australia (2)
  • duolingo (13)
  • Education (272)
  • General (75)
  • How To (16)
  • IELTS (127)
  • Latest Updates (162)
  • Malta Visa (6)
  • Permanent residency (1)
  • Programming (31)
  • Scholarship (1)
  • Sponsored (4)
  • Study Abroad (187)
  • Technology (12)
  • work permit (8)

Recent Posts

Hospitality Research Topics

StatAnalytica

301+ Research Topic Examples For Students [Updated 2024]

research topic examples for students

Embarking on a research journey is a crucial aspect of academic growth for students. Selecting the right research topic is like choosing the key that unlocks the door to a world of academic exploration and discovery. In this blog, we will delve into the importance of choosing a relevant research topic for students, explore various considerations for topic selection, and provide research topic examples for students across different academic domains.

General Considerations for Selecting Research Topics

Table of Contents

Personal Interest

Identifying and pursuing personal interests is a fundamental aspect of selecting a research topic. When students choose a subject they are passionate about, the research process becomes an exciting journey rather than a mundane task. This can involve reflecting on hobbies, current events, or personal experiences that spark curiosity.

For example, a student interested in technology might explore the impact of artificial intelligence on society, delving into its implications for employment, ethics, and social dynamics.

Academic Relevance

Aligning the research topic with academic goals is essential for maximizing the learning experience. Students should consider how their chosen topic relates to their coursework and future career aspirations.

For instance, a psychology student might explore the effects of social media on mental health, connecting the research to their academic background and potential career path.

301+ Research Topic Examples for Students

Science and technology.

  • Quantum computing and its potential applications
  • Cybersecurity threats in the age of digital transformation
  • The role of nanotechnology in medicine
  • Impacts of 5G technology on communication networks
  • Sustainable practices in IT: Green computing
  • Robotics in healthcare: Current trends and future prospects
  • Ethical considerations in genetic engineering
  • Augmented reality and its applications in education
  • The future of space exploration: Mars colonization
  • Big data analytics for predicting disease outbreaks

Social Sciences

  • Impact of social media on political activism
  • Cultural appropriation in the fashion industry
  • Influence of family structure on child development
  • The psychology of decision-making in consumer behavior
  • Social implications of virtual reality experiences
  • Intersectionality and its role in social justice
  • Effects of climate change on migration patterns
  • Social perceptions of mental health disorders
  • Online communities and their impact on social isolation
  • Gender roles in contemporary society: Breaking stereotypes

Health and Medicine

  • The microbiome and its role in human health
  • Investigating alternative therapies for chronic pain management
  • Impact of sleep deprivation on cognitive function
  • Precision medicine: Tailoring treatments based on genetics
  • The role of gut health in immune system function
  • Telemedicine: Accessibility and effectiveness
  • Public health interventions for reducing obesity rates
  • Challenges in mental health care for marginalized communities
  • Exploring the link between diet and mental health
  • Vaccine hesitancy and its implications for public health
  • The effectiveness of project-based learning in STEM education
  • Assessing the impact of standardized testing on student stress
  • Inclusive education for children with learning disabilities
  • The role of teacher-student relationships in academic success
  • Gamification in education: Engaging students through games
  • Evaluating the effectiveness of online education platforms
  • School policies and their impact on LGBTQ+ students
  • Benefits and challenges of bilingual education
  • The role of arts education in fostering creativity
  • Technology integration in the classroom: Enhancing learning experiences

Business and Economics

  • The gig economy: Implications for workers and businesses
  • Corporate social responsibility and consumer behavior
  • Impact of e-commerce on traditional retail businesses
  • Cryptocurrency: Risks and opportunities in the financial market
  • Strategies for sustainable business practices
  • Workplace diversity and its impact on organizational performance
  • The role of emotional intelligence in leadership
  • Global economic disparities and their consequences
  • Challenges and opportunities for small businesses in a digital era
  • Consumer trust in online reviews and its influence on purchasing decisions

Environmental Science

  • The role of forests in carbon sequestration
  • Impact of plastic pollution on marine ecosystems
  • Sustainable agriculture practices for food security
  • Biodiversity conservation in urban environments
  • The effects of climate change on migratory patterns of animals
  • Renewable energy policies and their effectiveness
  • Pollution in urban areas: Assessing air and water quality
  • The role of wetlands in flood control and water purification
  • Conservation strategies for endangered species
  • Environmental education and its impact on eco-friendly behaviors

Political Science

  • The role of social media in shaping political opinions
  • Electoral systems and their impact on representation
  • International relations: Diplomacy and conflict resolution
  • Political polarization and its consequences for democracy
  • Human rights violations in conflict zones
  • The influence of lobbying on public policy decisions
  • Immigration policies and their societal implications
  • The role of women in politics: Breaking the glass ceiling
  • Cyber warfare and its impact on national security
  • Political ideologies and their evolution over time
  • The impact of childhood trauma on adult mental health
  • Cross-cultural differences in perception and cognition
  • Exploring the link between personality traits and career choices
  • Cognitive biases and decision-making errors
  • Psychosocial factors influencing addiction recovery
  • The role of positive psychology in promoting well-being
  • Effects of social media on body image and self-esteem
  • Sleep disorders and their impact on mental health
  • Stereotype threat in academic settings
  • The psychology of forgiveness and its therapeutic benefits
  • Social mobility and its relation to economic inequality
  • Social networks and their influence on career opportunities
  • The impact of incarceration on families and communities
  • Youth subcultures and their role in identity formation
  • The digital divide: Access to technology and social inequality
  • Social movements: Causes, dynamics, and outcomes
  • The role of religion in shaping social attitudes
  • Aging populations: Challenges and opportunities
  • Urbanization and its effects on community dynamics
  • Social stratification and its consequences for societal cohesion
  • Reevaluating historical events from multiple perspectives
  • The impact of colonialism on indigenous cultures
  • Women’s suffrage movements around the world
  • Historical analysis of economic recessions and recoveries
  • Revolutionary movements and their effects on society
  • The role of propaganda in shaping historical narratives
  • Cultural exchange and influence in ancient civilizations
  • Historical roots of current geopolitical conflicts
  • Technological advancements and their impact on historical eras
  • The legacy of historical figures in shaping modern ideologies

Literature and Language

  • The portrayal of gender roles in classic literature
  • The influence of folklore on contemporary literature
  • Linguistic diversity in multicultural societies
  • The evolution of language: Impact of technology and globalization
  • Analysis of dystopian literature and its reflection on society
  • Comparative study of literary movements across cultures
  • The role of literature in fostering empathy and understanding
  • The representation of mental health in literature
  • Translation challenges in preserving cultural nuances
  • Language acquisition in multilingual environments

Anthropology

  • Cultural practices surrounding death and mourning rituals
  • Studying indigenous communities and cultural preservation
  • Human adaptation to environmental changes throughout history
  • Impact of globalization on traditional cultural practices
  • Evolutionary perspectives on human behavior
  • Cultural relativism and its role in anthropological research
  • Ethnographic study of modern subcultures
  • Rituals and ceremonies in different world cultures
  • Social organization and kinship systems in tribal societies
  • Ethical considerations in anthropological fieldwork

Art and Design

  • The role of art therapy in mental health treatment
  • Influences of cultural movements on contemporary art
  • Exploring the intersection of technology and visual arts
  • Impact of public art installations on urban environments
  • Analysis of symbolism in Renaissance art
  • The evolution of graphic design in the digital age
  • Environmental art: Conveying messages about sustainability
  • Fashion trends and their cultural implications
  • The psychology of color in design and marketing
  • The relationship between art and political activism
  • Ethical implications of emerging technologies
  • Existentialist perspectives on human freedom and responsibility
  • Metaethics: Exploring the nature of ethical statements
  • Epistemological analysis of artificial intelligence
  • Philosophical perspectives on the concept of time
  • The relationship between mind and body: Dualism vs. monism
  • The philosophy of education: Examining different approaches
  • Environmental ethics and responsibilities
  • Political philosophy: The concept of justice
  • Comparative analysis of Eastern and Western philosophical traditions

Music and Performing Arts

  • Impact of technology on the music industry
  • Cultural influences on musical genres
  • The role of music in film: Emotional impact and storytelling
  • The evolution of dance as a cultural expression
  • Representation of social issues in theater productions
  • Music therapy for mental health and well-being
  • The intersection of music and activism
  • Cultural appropriation in the performing arts
  • Influences of globalization on traditional music styles
  • Experimental approaches in contemporary performing arts

Communications and Media Studies

  • The impact of fake news on public opinion
  • Representation of diversity in the media
  • Social media influencers and their influence on consumer behavior
  • The role of media in shaping political narratives
  • Online privacy concerns in the era of digital communication
  • The evolution of advertising in the age of streaming services
  • Investigating media bias in news reporting
  • Ethical considerations in photojournalism
  • Media literacy education: Promoting critical thinking skills
  • The future of journalism in the digital age

Criminal Justice and Law

  • The effectiveness of restorative justice programs
  • Police-community relations: Building trust and accountability
  • Cybercrime and the challenges of law enforcement
  • Juvenile justice reform: Balancing punishment and rehabilitation
  • Police Brutality and Accountability
  • Cybercrime and Digital Forensics
  • Bail Reform and Pretrial Detention
  • Human rights violations in prisons: Challenges and solutions
  • Legal implications of emerging surveillance technologies
  • The impact of criminalization on marginalized communities

Linguistics

  • The evolution of language: From ancient to modern times
  • Sociolinguistics: Language variation in different social contexts
  • Bilingualism and its cognitive effects on language processing
  • Analyzing language change through historical linguistics
  • Phonetics and phonology: Exploring sound patterns in languages
  • Syntax and sentence structure across diverse languages
  • The role of language in shaping cultural identities
  • Linguistic relativity: The influence of language on thought
  • Computational linguistics: Applications in natural language processing

Geography and Urban Studies

  • Urbanization and its impact on local ecosystems
  • Geopolitical implications of natural resource distribution
  • Sustainable urban planning for future cities
  • Environmental justice in urban areas
  • Exploring the dynamics of rural-urban migration
  • Geographic Information Systems (GIS) applications in urban studies
  • Impact of climate change on coastal communities
  • Urban transportation systems: Challenges and innovations
  • Cultural geography: Understanding the relationship between people and place
  • Historical analysis of urban development in different regions
  • The economic impact of global pandemics
  • Income inequality and its effects on economic growth
  • The role of central banks in monetary policy
  • Economic consequences of automation and artificial intelligence
  • Behavioral economics: Understanding decision-making processes
  • The economics of healthcare systems around the world
  • The gig economy and its implications for labor markets
  • Trade policies and their impact on international relations
  • Economic development in emerging markets
  • The role of entrepreneurship in economic growth
  • Impact of social media on political engagement
  • Effects of social isolation on mental health
  • Cultural influences on parenting styles
  • Social consequences of income inequality
  • Social dynamics in online communities
  • Gender roles in contemporary society
  • Impact of technology on interpersonal relationships
  • Immigration and its effects on social integration
  • Social movements: Causes and outcomes
  • The psychology of resilience in the face of adversity
  • Cross-cultural perspectives on emotional intelligence
  • The impact of childhood experiences on adult relationships
  • The impact of social media on political polarization
  • Electoral systems and their influence on representation
  • International relations: Power dynamics and conflict resolution
  • Global governance: Challenges and opportunities
  • The role of diplomacy in international relations
  • The portrayal of gender roles in contemporary literature
  • The influence of folklore on modern storytelling
  • The evolution of language in the digital age
  • Analysis of post-colonial literature and its impact
  • The role of literature in fostering empathy
  • The impact of art therapy on mental health
  • Cultural influences on contemporary art
  • Analysis of symbolism in contemporary art movements
  • Existentialist perspectives on human freedom
  • Metaethics: Examining the nature of ethical statements
  • The philosophy of education: Different approaches

Media Studies

  • Fake News and its Impact on Public Perception
  • The Evolution of Journalism in the Digital Age
  • Media Representation of Minorities: Challenges and Solutions
  • The Role of Satire in Political Commentary
  • Influencer Marketing: Consumer Trust and Ethical Considerations
  • Podcasting as a Medium for Alternative Narratives
  • Media Literacy Education: Navigating Information in the Digital Era
  • Virtual Reality and Immersive Storytelling in Media
  • The Relationship Between Media Consumption and Political Beliefs
  • Media Censorship: Balancing Freedom of Speech and Social Responsibility

Sociology of Religion

  • Interfaith Dialogue and Social Harmony
  • Religion and Environmental Stewardship
  • The Role of Religion in Shaping Gender Norms
  • Religious Pluralism in Diverse Societies
  • Faith-Based Initiatives in Social Welfare
  • Religious Fundamentalism and Its Impact on Society
  • Sacred Spaces: Architecture and Symbolism in Religious Buildings
  • Spirituality and Mental Health: Exploring Connections
  • The Influence of Religion on Political Movements
  • Secularism in Modern Societies: Trends and Debates

Computer Science

  • Explainable Artificial Intelligence: Bridging the Gap between Technology and Understanding
  • Quantum Computing Algorithms: Potential Applications and Limitations
  • Cybersecurity Threats in Internet of Things (IoT) Devices
  • Natural Language Processing for Multilingual Information Retrieval
  • Machine Learning for Predictive Maintenance in Manufacturing
  • Blockchain Technology in Supply Chain Management
  • Human-Computer Interaction: Enhancing User Experience
  • Edge Computing: Distributing Processing Power for Efficiency
  • Ethical Considerations in Autonomous Systems and Robotics
  • Augmented Reality Applications in Education and Training

Public Policy

  • Immigration Policies and Social Integration
  • Universal Basic Income: Economic and Social Implications
  • Public Health Policies for Disease Prevention
  • Education Policies: Assessing Impact on Student Outcomes
  • Climate Change Policy: International Cooperation and Challenges
  • Criminal Justice Reforms and Recidivism Rates
  • Social Welfare Programs: Effectiveness and Challenges
  • Affordable Housing Policies and Urban Development
  • The Role of Government in Addressing Income Inequality
  • Policy Responses to Global Health Crises

Tips for Narrowing Down Research Topics

  • Define Specific Research Questions

Once a general topic is identified, students should narrow down their focus by defining specific research questions. This helps clarify the scope of the research and ensures a more targeted and manageable investigation.

  • Consider Feasibility and Resources

Practical considerations, such as available resources and feasibility, play a crucial role in topic selection. Students should assess whether they have access to the necessary data, tools, and support to carry out their research effectively.

  • Evaluate Available Literature

Conducting a literature review is an essential step in refining research topics. By reviewing existing literature, students can identify gaps in knowledge, refine their research questions, and build on the work of previous scholars.

  • Seek Guidance from Mentors and Instructors

Engaging with mentors and instructors can provide valuable insights and guidance. They can offer feedback on proposed topics, suggest relevant literature, and provide support throughout the research process.

In conclusion, choosing a research topic (from research topic examples for students) is a pivotal step in a student’s academic journey. By considering personal interests, aligning with academic goals, and exploring examples across different domains, students can unlock the potential for meaningful and impactful research.

The outlined tips for narrowing down research topics serve as practical guidance, ensuring that students embark on a research journey that is both enriching and rewarding.

As students embrace the challenge of research, they contribute not only to their academic growth but also to the broader body of knowledge that shapes our understanding of the world. So, let the exploration begin!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

The Complete Guide to Independent Research Projects for High School Students

 alt=

Indigo Research Team

comparative research titles examples for highschool students

If you want to get into top universities, an independent research project will give your application the competitive edge it needs.

Writing and publishing independent research during high school lets you demonstrate to top colleges and universities that you can deeply inquire into a topic, think critically, and produce original analysis. In fact, MIT features "Research" and "Maker" portfolio sections in its application, highlighting the value it places on self-driven projects.

Moreover, successfully executing high-quality research shows potential employers that you can rise to challenges, manage your time, contribute new ideas, and work independently. 

This comprehensive guide will walk you through everything you need to know to take on independent study ideas and succeed. You’ll learn how to develop a compelling topic, conduct rigorous research, and ultimately publish your findings.

comparative research titles examples for highschool students

What is an Independent Research Project?

An independent research project is a self-directed investigation into an academic question or topic that interests you. Unlike projects assigned by teachers in class, independent research will allow you to explore your curiosity and passions.

These types of projects can vary widely between academic disciplines and scientific fields, but what connects them is a step-by-step approach to answering a research question. Specifically, you will have to collect and analyze data and draw conclusions from your analysis.

For a high school student, carrying out quality research may still require some mentorship from a teacher or other qualified scholar. But the project research ideas should come from you, the student. The end goal is producing original research and analysis around a topic you care about.

Some key features that define an independent study project include:

● Formulating your own research question

● Designing the methodology

● Conducting a literature review of existing research

● Gathering and analyzing data, and

● Communicating your findings.

The topic and scope may be smaller than a professional college academic project, but the process and skills learned have similar benefits.

Why Should High School Students Do Independent Research?

High school students who engage in independent study projects gain valuable skills and experiences that benefit and serve them well in their college and career pursuits. Here's a breakdown of what you will typically acquire:

Develop Critical Thinking and Problem-Solving Skills

Research and critical thinking are among the top 10 soft skills in demand in 2024 . They help you solve new challenges quickly and come up with alternative solutions

An independent project will give you firsthand experience with essential research skills like forming hypotheses, designing studies, collecting and analyzing data, and interpreting results. These skills will serve you well in college and when employed in any industry.

Stand Out for College Applications

With many applicants having similar GPAs and test scores, an Independent research study offer a chance to stand out from the crowd. Completing a research study in high school signals colleges that you are self-motivated and capable of high-level work. Showcasing your research process, findings, and contributions in your application essays or interviews can boost your application's strengths in top-level colleges and universities.

Earn Scholarship Opportunities

Completing an independent research project makes you a more preferred candidate for merit-based scholarships, especially in STEM fields. Many scholarships reward students who show initiative by pursuing projects outside of class requirements. Your research project ideas will demonstrate your skills and motivation to impress scholarship committees. For example, the Siemens Competition in Math, Science & Technology rewards students with original independent research projects in STEM fields. Others include the Garcia Summer Program and the BioGENEius challenge for life sciences.

comparative research titles examples for highschool students

Gain Subject Area Knowledge

Independent projects allow you to immerse yourself in a topic you genuinely care about beyond what is covered in the classroom. It's a chance to become an expert in something you're passionate about . You will build deep knowledge in the topic area you choose to research, which can complement what you're learning in related classes. This expertise can even help inform your career interests and goals.

Develop Time Management Skills

Time Management is the skill that lets you effectively plan and prioritize tasks and avoid procrastination. With no teacher guiding you step-by-step, independent study projects require strong time management, self-discipline, and personal responsibility – skills critical in college and adulthood.

Types of Independent Research Projects for High School Students

Understanding the different types and categories can spark inspiration if you need help finding an idea for an independent study. Topics for independent research generally fall into a few main buckets:

Science Experiments

For students interested in STEM fields, designing and carrying out science experiments is a great option. Test a hypothesis, collect data, and draw conclusions. Experiments in physics, chemistry, biology, engineering, and psychology are common choices. Science experiment is best for self-motivated students with access to lab equipment.

Science Experiments Independent Research Projects

Social Science Surveys and Studies  

Use research methods from sociology, political science, anthropology, economics, and psychology to craft a survey study or field observation around a high school research project idea that interests you. Collect data from peers, your community, and online sources, and compile findings. Strong fit for students interested in social studies.

Literary Analysis Paper

This research category involves analyzing existing research papers, books, and articles on a specific topic. Imagine exploring the history of robots, examining the impact of social media on mental health, or comparing different interpretations of a classic novel. If you are an English enthusiast, this is an easy chance to showcase your analytical writing skills.

Programming or Engineering Project

For aspiring programmers or engineers, you can take on practical student projects that develop software programs, apps, websites, robots, electronic gadgets, or other hands-on engineering projects. This type of project will easily highlight your technical skills and interest in computer science or engineering fields in your college applications

Historical Research

History research projects will allow you to travel back and uncover the past to inform the future. This research involves analyzing historical documents, artifacts, and records to shed light on a specific event or period. For example, you can conduct independent research on the impact of a local historical figure or the evolution of fashion throughout the decades. Check to explore even more history project ideas for high school students .

Artistic and Creative Works

If you are artistic and love creating art,  you can explore ideas for independent study to produce an original film, musical composition, sculpture, painting series, fashion line, or other creative work. Alongside the tangible output, document your creative process and inspirations.

Bonus Tip: Feel free to mix different ideas for your project. For example, you could conduct a literature review on a specific historical event and follow it up with field research that interviewed people who experienced the event firsthand.

How To Conduct an Independent Research Project

Now that you have ideas for project topics that match your interests and strengths, here are the critical steps you must follow to move from mere concept to completed study.

1. Get Expert Guidance and Mentorship

As a high school student just starting out in research, it is advised to collaborate with more experienced mentors who will help you learn the ropes of research projects easily. Mentors are usually professors, post-doctoral researchers, or graduate students with significant experience in conducting independent project research and can guide you through the process. 

Specifically, your mentor will advise you on formulating research questions, designing methodologies, analyzing data, and communicating findings effectively. To quickly find mentors in your research project area of interest, enroll in an online academic research mentorship program that targets high school students. You’d be exposed to one-on-one sessions with professors and graduate students that will help you develop your research and publish your findings.

The right mentor can also help transform your independent project ideas into a study suitable for publication in relevant research journals. With their experience, mentors will guide you to follow the proper research methods and best practices. This ensures your work meets the standards required, avoiding rejection from journals. 

2. Develop a Compelling Research Question

Once you are familiar with the type of independent research best suited to your strengths and interests, as explained in the previous section, the next step is to develop a question you want to answer in that field. This is called a research question and will serve as the foundation for your entire project.

The research question will drive your entire project, so it needs to be complex enough to merit investigation but clear enough to study. Here are some ts for crafting your research question:

●  Align your research question(s) with topics you are passionate about and have some background knowledge. You will spend a significant amount of time on this question.

●  Consult with your mentor teacher or professor to get feedback and guidance on developing a feasible, meaningful question

●  Avoid overly broad questions better suited for doctoral dissertations. Narrow your focus to something manageable, but that still intrigues you.

●  Pose your research question as an actual question, like "How does social media usage affect teen mental health?" The question should lay out the key variables you'll be investigating.

●  Ensure your question and desired approach are ethically sound. You may need permission to study human subjects.

●  Conduct preliminary research to ensure your question hasn't already been answered. You want to contribute something new to your field.

With a compelling research question as your compass, you're ready to start your independent study project. Remember to stay flexible; you may need to refine the question further as your research develops.

3. Set a Timeline and Write a Proposal

After defining your research question, the next step is to map out a timeline for completing your research project. This will keep you organized and help you develop strong time management skills.

Start by creating a schedule that outlines all major milestones from start to finish. In your schedule, allow plenty of time for research, experimentation, data analysis, and compiling your report. Always remember to build in some cushion for unexpected delays.

Moreover, you can use tools like Gantt charts to design a timeline for an independent research project . Gantt charts help you visualize your research project timeline at a glance. See the video below for a tutorial on designing a Gantt chart to plan your project schedule:

[YouTube Video on How to Make a Gantt Chart: https://youtu.be/un8j6QqpYa0?si=C2_I0C_ZBXS73kZy ]

Research Proposal

To have a clear direction of the step-by-step process for your independent study, write a 1-2 page research proposal to outline your question, goals, methodology, timeline, resources, and desired outcomes. Get feedback from your mentor to improve the proposal before starting your research. 

Sticking to your timeline requires self-discipline. But strive to meet your goals and deadlines; it will build invaluable real-world skills in time and project management. With a plan in place, it's time to move forward with your research.

4. Do Your Research

This is the active phase where a student is conducting a research project. The specific method you will follow varies enormously based on your project type and field. You should have your methodology outlined in your approved research proposal already. However, most independent research has a similar basic process:

  • Review existing studies : Perform a literature review to understand current knowledge on your topic and inform your own hypothesis/framework. Read relevant studies, articles, and papers.
  • Create methodology materials : Design your independent research methodology for gathering data. This may involve experiments, surveys, interviews, field observations, or analysis of existing artifacts like texts or datasets.
  • Permissions and Equipment :  Secure any necessary equipment and permissions. For example, if doing interviews, you'll need a recording device and consent from participants.
  • Collect your data : For science projects, perform experiments and record results. For surveys, recruit respondents and compile responses. Gather enough data to draw valid conclusions.
  • Analyze the data using appropriate techniques : Quantitative data may involve statistical analysis, while qualitative data requires coding for themes. Consult your mentor for direction.
  • Interpret the findings : Take care not to overstate conclusions. Look for patterns and relationships that shed light on your research question. Always maintain rigorous objectivity.

While a student's project methodology and its execution are unique, ensure you follow the standard practices in your field of interest to ensure high-quality acceptable results. You can always refer to the plan in your research proposal as you diligently carry out the steps required to execute your study. Ensure you have detailed records that document all your processes.  

comparative research titles examples for highschool students

5. Write Your Final Paper and Presentation

Once you've completed your research, it's time to summarize and share your findings with the world by writing the final paper and designing its presentation. This involves synthesizing your work into clear, compelling reporting.

Drafting the paper will likely involve extensive writing and editing. Be prepared to go through multiple revisions to get the paper polished. Follow the standard format used in academic papers in your field;  your mentor can provide you with examples of independent study related to yours. The final product should include: 

  • Abstract : A short summary of your project and conclusions.
  • Introduction : Background on your topic, goals, and research questions.
  • Literature Review : Summary of relevant existing research in your field.
  • Methods : Detailed explanation of the methodology and process of your study.
  • Results : Presentation of the data and main findings from your research. Using visual representations like charts was helpful.
  • Discussion : Objective interpretation and analysis of the results and their significance.
  • Conclusion : Summary of your research contributions, limitations, and suggestions for future work.
  • References/Bibliography : Full citations for all sources referenced.

Adhere to clear academic writing principles to keep your writing objective and straightforward. Generally, stick to a 10-15 page length limit appropriate for student work. However, you may need to write more depending on your project type.

6. Research Presentation

After writing your research project report, you should prepare a presentation to share your research orally. Moreover, a research presentation is a tangible opportunity to practice public speaking and visual communication skills. Your presentation will include slides, handouts, demonstrations, or other aids to engage your audience and highlight key points in your independent study project.

Once you have written your final paper, you will likely want to publish it in relevant journals and publications. For detailed tips see our guide on how to publish your student research paper . Some options you have to formally publish your high school-level independent research include:

  • Submitting your paper to academic journals and competitions
  • Presenting at symposiums and science fairs
  • Sharing on online research databases
  • Adding your work to college applications

Publishing your independent project allows you to share your findings with broader scholarly and student audiences. It also helps amplify the impact of all your hard work.

Independent Research Project Examples

To spark creative ideas for independent research projects, it can be helpful to read through and examine examples of successful projects completed by other high school students in recent years. Here are some inspiring examples:

●  Using machine learning to diagnose cancer based on blood markers (bioinformatics)

●  Applying feature engineering and natural language processing to analyze Twitter data (data science)

●  Investigating connections between stress levels and HIV/AIDS progression (health science)

●  The Relationship between Color and Human Experience

These published i ndependent research project examples demonstrate the impressive research high schoolers take on using the Indigo research service with mentors from different fields. Let these case studies motivate your creative investigation and analysis of the best ideas for your project.

Need Mentorship for Your Independent Research Project?

As outlined in this guide, conducting a rigorous independent research study can be challenging without proper guidance from experts, especially for high school students. This is why partnering with an experienced research mentor is so crucial if your goal is to produce publishable research work.

With Indigo's structured research programs and ongoing expert feedback, you can elevate your high school independent study to a professional level. To get matched with the perfect research mentor aligned with your academic interests and passions, apply to Indigo Research now.

Indigo Research connects high school students with PhD-level researchers and professors who provide one-on-one mentorship through the entire research process - from refining your initial topic idea all the way through analyzing data, writing up results, and finalizing your findings.

comparative research titles examples for highschool students

Grad Coach

Research Topics & Ideas: Education

170+ Research Ideas To Fast-Track Your Project

Topic Kickstarter: Research topics in education

If you’re just starting out exploring education-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas , including examples from actual dissertations and theses..

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . To develop a suitable education-related research topic, you’ll need to identify a clear and convincing research gap , and a viable plan of action to fill that gap.

If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, if you’d like hands-on help, consider our 1-on-1 coaching service .

Overview: Education Research Topics

  • How to find a research topic (video)
  • List of 50+ education-related research topics/ideas
  • List of 120+ level-specific research topics 
  • Examples of actual dissertation topics in education
  • Tips to fast-track your topic ideation (video)
  • Free Webinar : Topic Ideation 101
  • Where to get extra help

Education-Related Research Topics & Ideas

Below you’ll find a list of education-related research topics and idea kickstarters. These are fairly broad and flexible to various contexts, so keep in mind that you will need to refine them a little. Nevertheless, they should inspire some ideas for your project.

  • The impact of school funding on student achievement
  • The effects of social and emotional learning on student well-being
  • The effects of parental involvement on student behaviour
  • The impact of teacher training on student learning
  • The impact of classroom design on student learning
  • The impact of poverty on education
  • The use of student data to inform instruction
  • The role of parental involvement in education
  • The effects of mindfulness practices in the classroom
  • The use of technology in the classroom
  • The role of critical thinking in education
  • The use of formative and summative assessments in the classroom
  • The use of differentiated instruction in the classroom
  • The use of gamification in education
  • The effects of teacher burnout on student learning
  • The impact of school leadership on student achievement
  • The effects of teacher diversity on student outcomes
  • The role of teacher collaboration in improving student outcomes
  • The implementation of blended and online learning
  • The effects of teacher accountability on student achievement
  • The effects of standardized testing on student learning
  • The effects of classroom management on student behaviour
  • The effects of school culture on student achievement
  • The use of student-centred learning in the classroom
  • The impact of teacher-student relationships on student outcomes
  • The achievement gap in minority and low-income students
  • The use of culturally responsive teaching in the classroom
  • The impact of teacher professional development on student learning
  • The use of project-based learning in the classroom
  • The effects of teacher expectations on student achievement
  • The use of adaptive learning technology in the classroom
  • The impact of teacher turnover on student learning
  • The effects of teacher recruitment and retention on student learning
  • The impact of early childhood education on later academic success
  • The impact of parental involvement on student engagement
  • The use of positive reinforcement in education
  • The impact of school climate on student engagement
  • The role of STEM education in preparing students for the workforce
  • The effects of school choice on student achievement
  • The use of technology in the form of online tutoring

Level-Specific Research Topics

Looking for research topics for a specific level of education? We’ve got you covered. Below you can find research topic ideas for primary, secondary and tertiary-level education contexts. Click the relevant level to view the respective list.

Research Topics: Pick An Education Level

Primary education.

  • Investigating the effects of peer tutoring on academic achievement in primary school
  • Exploring the benefits of mindfulness practices in primary school classrooms
  • Examining the effects of different teaching strategies on primary school students’ problem-solving skills
  • The use of storytelling as a teaching strategy in primary school literacy instruction
  • The role of cultural diversity in promoting tolerance and understanding in primary schools
  • The impact of character education programs on moral development in primary school students
  • Investigating the use of technology in enhancing primary school mathematics education
  • The impact of inclusive curriculum on promoting equity and diversity in primary schools
  • The impact of outdoor education programs on environmental awareness in primary school students
  • The influence of school climate on student motivation and engagement in primary schools
  • Investigating the effects of early literacy interventions on reading comprehension in primary school students
  • The impact of parental involvement in school decision-making processes on student achievement in primary schools
  • Exploring the benefits of inclusive education for students with special needs in primary schools
  • Investigating the effects of teacher-student feedback on academic motivation in primary schools
  • The role of technology in developing digital literacy skills in primary school students
  • Effective strategies for fostering a growth mindset in primary school students
  • Investigating the role of parental support in reducing academic stress in primary school children
  • The role of arts education in fostering creativity and self-expression in primary school students
  • Examining the effects of early childhood education programs on primary school readiness
  • Examining the effects of homework on primary school students’ academic performance
  • The role of formative assessment in improving learning outcomes in primary school classrooms
  • The impact of teacher-student relationships on academic outcomes in primary school
  • Investigating the effects of classroom environment on student behavior and learning outcomes in primary schools
  • Investigating the role of creativity and imagination in primary school curriculum
  • The impact of nutrition and healthy eating programs on academic performance in primary schools
  • The impact of social-emotional learning programs on primary school students’ well-being and academic performance
  • The role of parental involvement in academic achievement of primary school children
  • Examining the effects of classroom management strategies on student behavior in primary school
  • The role of school leadership in creating a positive school climate Exploring the benefits of bilingual education in primary schools
  • The effectiveness of project-based learning in developing critical thinking skills in primary school students
  • The role of inquiry-based learning in fostering curiosity and critical thinking in primary school students
  • The effects of class size on student engagement and achievement in primary schools
  • Investigating the effects of recess and physical activity breaks on attention and learning in primary school
  • Exploring the benefits of outdoor play in developing gross motor skills in primary school children
  • The effects of educational field trips on knowledge retention in primary school students
  • Examining the effects of inclusive classroom practices on students’ attitudes towards diversity in primary schools
  • The impact of parental involvement in homework on primary school students’ academic achievement
  • Investigating the effectiveness of different assessment methods in primary school classrooms
  • The influence of physical activity and exercise on cognitive development in primary school children
  • Exploring the benefits of cooperative learning in promoting social skills in primary school students

Secondary Education

  • Investigating the effects of school discipline policies on student behavior and academic success in secondary education
  • The role of social media in enhancing communication and collaboration among secondary school students
  • The impact of school leadership on teacher effectiveness and student outcomes in secondary schools
  • Investigating the effects of technology integration on teaching and learning in secondary education
  • Exploring the benefits of interdisciplinary instruction in promoting critical thinking skills in secondary schools
  • The impact of arts education on creativity and self-expression in secondary school students
  • The effectiveness of flipped classrooms in promoting student learning in secondary education
  • The role of career guidance programs in preparing secondary school students for future employment
  • Investigating the effects of student-centered learning approaches on student autonomy and academic success in secondary schools
  • The impact of socio-economic factors on educational attainment in secondary education
  • Investigating the impact of project-based learning on student engagement and academic achievement in secondary schools
  • Investigating the effects of multicultural education on cultural understanding and tolerance in secondary schools
  • The influence of standardized testing on teaching practices and student learning in secondary education
  • Investigating the effects of classroom management strategies on student behavior and academic engagement in secondary education
  • The influence of teacher professional development on instructional practices and student outcomes in secondary schools
  • The role of extracurricular activities in promoting holistic development and well-roundedness in secondary school students
  • Investigating the effects of blended learning models on student engagement and achievement in secondary education
  • The role of physical education in promoting physical health and well-being among secondary school students
  • Investigating the effects of gender on academic achievement and career aspirations in secondary education
  • Exploring the benefits of multicultural literature in promoting cultural awareness and empathy among secondary school students
  • The impact of school counseling services on student mental health and well-being in secondary schools
  • Exploring the benefits of vocational education and training in preparing secondary school students for the workforce
  • The role of digital literacy in preparing secondary school students for the digital age
  • The influence of parental involvement on academic success and well-being of secondary school students
  • The impact of social-emotional learning programs on secondary school students’ well-being and academic success
  • The role of character education in fostering ethical and responsible behavior in secondary school students
  • Examining the effects of digital citizenship education on responsible and ethical technology use among secondary school students
  • The impact of parental involvement in school decision-making processes on student outcomes in secondary schools
  • The role of educational technology in promoting personalized learning experiences in secondary schools
  • The impact of inclusive education on the social and academic outcomes of students with disabilities in secondary schools
  • The influence of parental support on academic motivation and achievement in secondary education
  • The role of school climate in promoting positive behavior and well-being among secondary school students
  • Examining the effects of peer mentoring programs on academic achievement and social-emotional development in secondary schools
  • Examining the effects of teacher-student relationships on student motivation and achievement in secondary schools
  • Exploring the benefits of service-learning programs in promoting civic engagement among secondary school students
  • The impact of educational policies on educational equity and access in secondary education
  • Examining the effects of homework on academic achievement and student well-being in secondary education
  • Investigating the effects of different assessment methods on student performance in secondary schools
  • Examining the effects of single-sex education on academic performance and gender stereotypes in secondary schools
  • The role of mentoring programs in supporting the transition from secondary to post-secondary education

Tertiary Education

  • The role of student support services in promoting academic success and well-being in higher education
  • The impact of internationalization initiatives on students’ intercultural competence and global perspectives in tertiary education
  • Investigating the effects of active learning classrooms and learning spaces on student engagement and learning outcomes in tertiary education
  • Exploring the benefits of service-learning experiences in fostering civic engagement and social responsibility in higher education
  • The influence of learning communities and collaborative learning environments on student academic and social integration in higher education
  • Exploring the benefits of undergraduate research experiences in fostering critical thinking and scientific inquiry skills
  • Investigating the effects of academic advising and mentoring on student retention and degree completion in higher education
  • The role of student engagement and involvement in co-curricular activities on holistic student development in higher education
  • The impact of multicultural education on fostering cultural competence and diversity appreciation in higher education
  • The role of internships and work-integrated learning experiences in enhancing students’ employability and career outcomes
  • Examining the effects of assessment and feedback practices on student learning and academic achievement in tertiary education
  • The influence of faculty professional development on instructional practices and student outcomes in tertiary education
  • The influence of faculty-student relationships on student success and well-being in tertiary education
  • The impact of college transition programs on students’ academic and social adjustment to higher education
  • The impact of online learning platforms on student learning outcomes in higher education
  • The impact of financial aid and scholarships on access and persistence in higher education
  • The influence of student leadership and involvement in extracurricular activities on personal development and campus engagement
  • Exploring the benefits of competency-based education in developing job-specific skills in tertiary students
  • Examining the effects of flipped classroom models on student learning and retention in higher education
  • Exploring the benefits of online collaboration and virtual team projects in developing teamwork skills in tertiary students
  • Investigating the effects of diversity and inclusion initiatives on campus climate and student experiences in tertiary education
  • The influence of study abroad programs on intercultural competence and global perspectives of college students
  • Investigating the effects of peer mentoring and tutoring programs on student retention and academic performance in tertiary education
  • Investigating the effectiveness of active learning strategies in promoting student engagement and achievement in tertiary education
  • Investigating the effects of blended learning models and hybrid courses on student learning and satisfaction in higher education
  • The role of digital literacy and information literacy skills in supporting student success in the digital age
  • Investigating the effects of experiential learning opportunities on career readiness and employability of college students
  • The impact of e-portfolios on student reflection, self-assessment, and showcasing of learning in higher education
  • The role of technology in enhancing collaborative learning experiences in tertiary classrooms
  • The impact of research opportunities on undergraduate student engagement and pursuit of advanced degrees
  • Examining the effects of competency-based assessment on measuring student learning and achievement in tertiary education
  • Examining the effects of interdisciplinary programs and courses on critical thinking and problem-solving skills in college students
  • The role of inclusive education and accessibility in promoting equitable learning experiences for diverse student populations
  • The role of career counseling and guidance in supporting students’ career decision-making in tertiary education
  • The influence of faculty diversity and representation on student success and inclusive learning environments in higher education

Research topic idea mega list

Education-Related Dissertations & Theses

While the ideas we’ve presented above are a decent starting point for finding a research topic in education, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses in the education space to see how this all comes together in practice.

Below, we’ve included a selection of education-related research projects to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • From Rural to Urban: Education Conditions of Migrant Children in China (Wang, 2019)
  • Energy Renovation While Learning English: A Guidebook for Elementary ESL Teachers (Yang, 2019)
  • A Reanalyses of Intercorrelational Matrices of Visual and Verbal Learners’ Abilities, Cognitive Styles, and Learning Preferences (Fox, 2020)
  • A study of the elementary math program utilized by a mid-Missouri school district (Barabas, 2020)
  • Instructor formative assessment practices in virtual learning environments : a posthumanist sociomaterial perspective (Burcks, 2019)
  • Higher education students services: a qualitative study of two mid-size universities’ direct exchange programs (Kinde, 2020)
  • Exploring editorial leadership : a qualitative study of scholastic journalism advisers teaching leadership in Missouri secondary schools (Lewis, 2020)
  • Selling the virtual university: a multimodal discourse analysis of marketing for online learning (Ludwig, 2020)
  • Advocacy and accountability in school counselling: assessing the use of data as related to professional self-efficacy (Matthews, 2020)
  • The use of an application screening assessment as a predictor of teaching retention at a midwestern, K-12, public school district (Scarbrough, 2020)
  • Core values driving sustained elite performance cultures (Beiner, 2020)
  • Educative features of upper elementary Eureka math curriculum (Dwiggins, 2020)
  • How female principals nurture adult learning opportunities in successful high schools with challenging student demographics (Woodward, 2020)
  • The disproportionality of Black Males in Special Education: A Case Study Analysis of Educator Perceptions in a Southeastern Urban High School (McCrae, 2021)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, in order for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic within education, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Research topics and ideas in psychology

61 Comments

Watson Kabwe

This is an helpful tool 🙏

Musarrat Parveen

Special education

Akbar khan

Really appreciated by this . It is the best platform for research related items

Trishna Roy

Research title related to school of students

Oyebanji Khadijat Anike

I think this platform is actually good enough.

Angel taña

Research title related to students

My field is research measurement and evaluation. Need dissertation topics in the field

Ngirumuvugizi Jaccques

Good idea I’m going to teach my colleagues

Anangnerisia@gmail.com

You can find our list of nursing-related research topic ideas here: https://gradcoach.com/research-topics-nursing/

FOSU DORIS

Write on action research topic, using guidance and counseling to address unwanted teenage pregnancy in school

Samson ochuodho

Thanks a lot

Johaima

I learned a lot from this site, thank you so much!

Rhod Tuyan

Thank you for the information.. I would like to request a topic based on school major in social studies

Mercedes Bunsie

parental involvement and students academic performance

Abshir Mustafe Cali

Science education topics?

alina

plz tell me if you got some good topics, im here for finding research topic for masters degree

Karen Joy Andrade

How about School management and supervision pls.?

JOHANNES SERAME MONYATSI

Hi i am an Deputy Principal in a primary school. My wish is to srudy foe Master’s degree in Education.Please advice me on which topic can be relevant for me. Thanks.

NKWAIN Chia Charles

Every topic proposed above on primary education is a starting point for me. I appreciate immensely the team that has sat down to make a detail of these selected topics just for beginners like us. Be blessed.

Nkwain Chia Charles

Kindly help me with the research questions on the topic” Effects of workplace conflict on the employees’ job performance”. The effects can be applicable in every institution,enterprise or organisation.

Kelvin Kells Grant

Greetings, I am a student majoring in Sociology and minoring in Public Administration. I’m considering any recommended research topic in the field of Sociology.

Sulemana Alhassan

I’m a student pursuing Mphil in Basic education and I’m considering any recommended research proposal topic in my field of study

Kupoluyi Regina

Kindly help me with a research topic in educational psychology. Ph.D level. Thank you.

Project-based learning is a teaching/learning type,if well applied in a classroom setting will yield serious positive impact. What can a teacher do to implement this in a disadvantaged zone like “North West Region of Cameroon ( hinterland) where war has brought about prolonged and untold sufferings on the indegins?

Damaris Nzoka

I wish to get help on topics of research on educational administration

I wish to get help on topics of research on educational administration PhD level

Sadaf

I am also looking for such type of title

Afriyie Saviour

I am a student of undergraduate, doing research on how to use guidance and counseling to address unwanted teenage pregnancy in school

wysax

the topics are very good regarding research & education .

William AU Mill

Can i request your suggestion topic for my Thesis about Teachers as an OFW. thanx you

ChRISTINE

Would like to request for suggestions on a topic in Economics of education,PhD level

Aza Hans

Would like to request for suggestions on a topic in Economics of education

George

Hi 👋 I request that you help me with a written research proposal about education the format

Cynthia abuabire

Am offering degree in education senior high School Accounting. I want a topic for my project work

Sarah Moyambo

l would like to request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

Ernest Gyabaah

I would to inquire on research topics on Educational psychology, Masters degree

Aron kirui

I am PhD student, I am searching my Research topic, It should be innovative,my area of interest is online education,use of technology in education

revathy a/p letchumanan

request suggestion on topic in masters in medical education .

D.Newlands PhD.

Look at British Library as they keep a copy of all PhDs in the UK Core.ac.uk to access Open University and 6 other university e-archives, pdf downloads mostly available, all free.

Monica

May I also ask for a topic based on mathematics education for college teaching, please?

Aman

Please I am a masters student of the department of Teacher Education, Faculty of Education Please I am in need of proposed project topics to help with my final year thesis

Ellyjoy

Am a PhD student in Educational Foundations would like a sociological topic. Thank

muhammad sani

please i need a proposed thesis project regardging computer science

also916

Greetings and Regards I am a doctoral student in the field of philosophy of education. I am looking for a new topic for my thesis. Because of my work in the elementary school, I am looking for a topic that is from the field of elementary education and is related to the philosophy of education.

shantel orox

Masters student in the field of curriculum, any ideas of a research topic on low achiever students

Rey

In the field of curriculum any ideas of a research topic on deconalization in contextualization of digital teaching and learning through in higher education

Omada Victoria Enyojo

Amazing guidelines

JAMES MALUKI MUTIA

I am a graduate with two masters. 1) Master of arts in religious studies and 2) Master in education in foundations of education. I intend to do a Ph.D. on my second master’s, however, I need to bring both masters together through my Ph.D. research. can I do something like, ” The contribution of Philosophy of education for a quality religion education in Kenya”? kindly, assist and be free to suggest a similar topic that will bring together the two masters. thanks in advance

betiel

Hi, I am an Early childhood trainer as well as a researcher, I need more support on this topic: The impact of early childhood education on later academic success.

TURIKUMWE JEAN BOSCO

I’m a student in upper level secondary school and I need your support in this research topics: “Impact of incorporating project -based learning in teaching English language skills in secondary schools”.

Fitsum Ayele

Although research activities and topics should stem from reflection on one’s practice, I found this site valuable as it effectively addressed many issues we have been experiencing as practitioners.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

101 Compare and Contrast Essay Topics

Great Ideas for Essays

  • Teaching Resources
  • An Introduction to Teaching
  • Tips & Strategies
  • Policies & Discipline
  • Community Involvement
  • School Administration
  • Technology in the Classroom
  • Teaching Adult Learners
  • Issues In Education
  • Becoming A Teacher
  • Assessments & Tests
  • Elementary Education
  • Secondary Education
  • Special Education
  • Homeschooling
  • M.Ed., Curriculum and Instruction, University of Florida
  • B.A., History, University of Florida

Compare and contrast essays are taught in school for many reasons. For one thing, they are relatively easy to teach, understand, and format. Students can typically understand the structure with just a short amount of instruction. In addition, these essays allow students develop critical thinking skills to approach a variety of topics.

Brainstorming Tip

One fun way to get students started brainstorming their compare and contrast essays is to create a Venn diagram , where the overlapping sections of the circle contain similarities and the non-overlapping areas contain the differing traits.

Following is a list of 101 topics for compare and contrast essays that you are welcome to use in your classroom. As you look through the list you will see that some items are academic in nature while others are included for interest-building and fun writing activities.

  • Apple vs. Microsoft
  • Coke vs. Pepsi
  • Renaissance Art vs. Baroque Art
  • Antebellum Era vs. Reconstruction Era in American History
  • Childhood vs. Adulthood
  • Star Wars vs. Star Trek
  • Biology vs. Chemistry
  • Astrology vs. Astronomy
  • American Government vs. British Government (or any world government)
  • Fruits vs. Vegetables
  • Dogs vs. Cats
  • Ego vs. Superego
  • Christianity vs. Judaism (or any world religion )
  • Republican vs. Democrat
  • Monarchy vs. Presidency
  • US President vs. UK Prime Minister
  • Jazz vs. Classical Music
  • Red vs. White (or any two colors)
  • Soccer vs. Football
  • North vs. South Before the Civil War
  • New England Colonies vs. Middle Colonies OR vs. Southern Colonies
  • Cash vs. Credit Cards
  • Sam vs. Frodo Baggins
  • Gandalf vs. Dumbledore
  • Fred vs. Shaggy
  • Rap vs. Pop
  • Articles of Confederation vs. U.S. Constitution
  • Henry VIII vs. King Louis XIV
  • Stocks vs. Bonds
  • Monopolies vs. Oligopolies
  • Communism vs. Capitalism
  • Socialism vs. Capitalism
  • Diesel vs. Petroleum
  • Nuclear Power vs. Solar Power
  • Saltwater Fish vs. Freshwater Fish
  • Squids vs. Octopus
  • Mammals vs. Reptiles
  • Baleen vs. Toothed Whales
  • Seals vs. Sea Lions
  • Crocodiles vs. Alligators
  • Bats vs. Birds
  • Oven vs. Microwave
  • Greek vs. Roman Mythology
  • Chinese vs. Japanese
  • Comedy vs. Drama
  • Renting vs. Owning
  • Mozart vs. Beethoven
  • Online vs. Traditional Education
  • North vs. South Pole
  • Watercolor vs. Oil
  • 1984 vs. Fahrenheit 451
  • Emily Dickinson vs. Samuel Taylor Coleridge
  • W.E.B. DuBois vs. Booker T. Washington
  • Strawberries vs. Apples
  • Airplanes vs. Helicopters
  • Hitler vs. Napoleon
  • Roman Empire vs. British Empire
  • Paper vs. Plastic
  • Italy vs. Spain
  • Baseball vs. Cricket
  • Jefferson vs. Adams
  • Thoroughbreds vs. Clydesdales
  • Spiders vs. Scorpions
  • Northern Hemisphere vs. Southern Hemisphere
  • Hobbes vs. Locke
  • Friends vs. Family
  • Dried Fruit vs. Fresh
  • Porcelain vs. Glass
  • Modern Dance vs. Ballroom Dancing
  • American Idol vs. The Voice
  • Reality TV vs. Sitcoms
  • Picard vs. Kirk
  • Books vs. Movies
  • Magazines vs. Comic Books
  • Antique vs. New
  • Public vs. Private Transportation
  • Email vs. Letters
  • Facebook vs. Twitter
  • Coffee vs. an Energy Drink
  • Toads vs. Frogs
  • Profit vs. Non-Profit
  • Boys vs. Girls
  • Birds vs. Dinosaurs
  • High School vs. College
  • Chamberlain vs. Churchill
  • Offense vs. Defense
  • Jordan vs. Bryant
  • Harry vs. Draco
  • Roses vs. Carnations
  • Poetry vs. Prose
  • Fiction vs. Nonfiction
  • Lions vs. Tigers
  • Vampires vs. Werewolves
  • Lollipops vs. popsicles
  • Summer vs. Winter
  • Recycling vs. Landfill
  • Motorcycle vs. Bicycle
  • Halogen vs. Incandescent
  • Newton vs. Einstein
  • . Go on vacation vs. Staycation
  • Rock vs. Scissors
  • Write a Compare and Contrast Essay
  • Beef Up Critical Thinking and Writing Skills: Comparison Essays
  • How to Teach the Compare and Contrast Essay
  • Venn Diagrams to Plan Essays and More
  • Topical Organization Essay
  • 501 Topic Suggestions for Writing Essays and Speeches
  • Writing About Literature: Ten Sample Topics for Comparison & Contrast Essays
  • Comparing and Contrasting in English
  • Organizing Compare-Contrast Paragraphs
  • 25 Essay Topics for American Government Classes
  • Compare-Contrast Prewriting Chart
  • Expository Essay Genre With Suggested Prompts
  • Comparison in Composition
  • Teaching Comparative and Superlative Forms to ESL Students
  • Binary Fission vs. Mitosis
  • Cause and Effect Essay Topics
  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

80+ Great Research Titles Examples in Various Academic Fields

Research titles examples

Coming up with a research title for an academic paper is one of the most challenging parts of the writing process. Even though there is an unlimited quantity of research titles to write about, knowing which one is best for you can be hard. We have done the research for you and compiled eighty examples of research titles to write on. Additionally, we have divided the research titles examples into sections to make them easier to choose.

Research Study Examples of Current Events

Examples of research topics on ethics, title of research study examples on health, research paper title examples on social concerns, examples of research title on art and culture, example of research interest in religion, samples of research study topics on technology, research examples of environmental studies, good research title examples on history, specific topic examples regarding education, research title examples for students on family, food, and nutrition, research problems examples computer science, samples of research title about business marketing and communications, sample of research study topics in women’s studies, research problem example on politics, what are some examples of research paper topics on law, final words about research titles.

When it comes to choosing a good sample research title, research is one of the best tips you can get. By reading widely, including your school notes and scholarly articles, you will have a problem/line of interest examples in research. Then, you can derive any question from areas that appear to have a knowledge gap and proceed with researching the answer. As promised, below are eighty research title examples categorized into different areas, including social media research topics .

  • Discuss the peculiar policies of a named country – for example, discuss the impacts of the one-child policy of China.
  • Research on the influence of a named political leader, say a president, on the country they governed and other countries around. For instance, you can talk about how Trump’s presidency has changed international relations.
  • Conduct an analysis of a particular aspect of two named countries – for example, the history of the relationship between the U.S. and North Korea.
  • Compare the immigration laws in two or more named countries – for example, discuss how the immigration laws in the U.S. compares with other countries.
  • Discuss how the Black Lives Matter movement has affected the view and discussions about racism in the United States.
  • Enumerate the different ways the government of the United States can reduce deaths arising from the unregulated use of guns.
  • Analyze the place of ethics in medicine or of medical practitioners. For instance, you can discuss the prevalence of physician-assisted suicides in a named country. You may also talk about the ethicality of such a practice and whether it should be legal.
  • Explain how recent research breakthroughs have affected that particular field – for instance, how stem cell research has impacted the medical field.
  • Explain if and why people should be able to donate organs in exchange for money.
  • Discuss ethical behaviors in the workplace and (or) the educational sector. For example, talk about whether or not affirmative action is still important or necessary in education or the workplace.
  • Weigh the benefits and risks of vaccinating children and decide which one outweighs the other. Here, you might want to consider the different types of vaccinations and the nature and frequency of associated complications.
  • Investigate at least one of the health issues that currently pose a threat to humanity and which are under investigation. These issues can include Alzheimer’s, cancer, depression, autism, and HIV/AIDS. Research how these issues affect individuals and society and recommend solutions to alleviate cost and suffering.
  • Study some individuals suffering from and under treatment for depression. Then, investigate the common predictors of the disease and how this information can help prevent the issue.

Tip : To make this example of a research title more comprehensive, you can focus on a certain age range – say, teenagers.

  • Discuss whether or not free healthcare and medication should be available to people and the likely implications.
  • Identify and elucidate different methods or programs that have been most effective in preventing or reducing teen pregnancy.
  • Analyze different reasons and circumstances for genetic manipulation and the different perspectives of people on this matter. Then, discuss whether or not parents should be allowed to engineer designer babies.
  • Identify the types of immigration benefits, including financial, medical, and education, your country provides for refugees and immigrants. Then, discuss how these benefits have helped them in settling down and whether more or less should be provided.
  • Discuss the acceptance rate of the gay community in your country or a specific community. For example, consider whether or not gay marriage is permitted if they can adopt children, and if they are welcome in religious gatherings.
  • Explore and discuss if terrorism truly creates a fear culture that can become a society’s unintended terrorist.
  • Consider and discuss the different techniques one can use to identify pedophiles on social media.

Tip : Social issues research topics are interesting, but ensure you write formally and professionally.

  • Investigate the importance or lack of importance of art in primary or secondary education. You can also recommend whether or not it should be included in the curriculum and why.

Tip : You can write on this possible research title based on your experiences, whether positive or negative.

  • Discuss the role of illustration in children’s books and how it facilitates easy understanding in children. You may focus on one particular book or select a few examples and compare and contrast.
  • Should the use of art in books for adults be considered, and what are the likely benefits?
  • Compare and contrast the differences in art from two named cultural Renaissance – for instance, the Northern Renaissance and the Italian Renaissance.
  • Investigate how sexism is portrayed in different types of media, including video games, music, and film. You can also talk about whether or not the amount of sexism portrayed has reduced or increased over the years.
  • Explore different perspectives and views on dreams; are they meaningful or simply a game of the sleeping mind? You can also discuss the functions and causes of dreams, like sleeping with anxiety, eating before bed, and prophecies.
  • Investigate the main reasons why religious cults are powerful and appealing to the masses, referring to individual cases.
  • Investigate the impact of religion on the crime rate in a particular region.

Tip : Narrow down this research title by choosing to focus on a particular age group, say children or teenagers, or family. Alternatively, you can focus on a particular crime in the research to make the paper more extensive.

  • Explore reasons why Martin Luther decided to split with the Catholic church.
  • Discuss the circumstances in Siddhartha’s life that led to him becoming the Buddha.

Tip : It is important to remove sentiments from your research and base your points instead on clear evidence from a sound study. This ensures your title of research does not lead to unsubstantiated value judgments, which reduces the quality of the paper.

  • Discuss how the steel sword, gunpowder, biological warfare, longbow, or atomic bomb has changed the nature of warfare.

Tip : For this example of the research problem, choose only one of these technological developments or compare two or more to have a rich research paper.

  • Explore the changes computers, tablets, and smartphones have brought to human behaviors and culture, using published information and personal experience.

Tip : Approach each research study example in a research paper context or buy research paper online , giving a formal but objective view of the subject.

  • Are railroads and trains primary forces in the industrialization, exploitation, and settlement of your homeland or continent?
  • Discuss how the use of fossil fuels has changed or shaped the world.

Tip : Narrow down this title of the research study to focus on a local or particular area or one effect of fossil fuels, like oil spill pollution.

  • Discuss what progress countries have made with artificial intelligence. You can focus on one named country or compare the progress of one country with another.
  • Investigate the factual status of global warming – that is, is it a reality or a hoax? If it is a reality, explore the primary causes and how humanity can make a difference.
  • Conduct in-depth research on endangered wildlife species in your community and discuss why they have become endangered. You can also enumerate what steps the community can take to prevent these species from going extinct and increase their chances of survival.
  • Investigate the environmental soundness of the power sources in your country or community. Then, recommend alternative energy sources that might be best suited for the area and why.
  • Consider an area close to wildlife reserves and national parks, and see whether oil and mineral exploration has occurred there. Discuss whether this action should be allowed or not, with fact-backed reasons.
  • Investigate how the use and abolishment of DDT have affected the population of birds in your country.

Tip : Each example research title requires that you consult authoritative scientific reports to improve the quality of your paper. Furthermore, specificity and preciseness are required in each example of research title and problem, which only an authority source can provide.

  • Discuss the importance of a major historical event and why it was so important in the day. These events can include the assassination of John F. Kennedy or some revolutionary document like the Magna Carta.
  • Consider voyagers such as the Vikings, Chinese, as well as native populations and investigate whether Columbus discovered America first.
  • Choose a named historical group, family, or individual through their biographies, examining them for reader responses.
  • Research people of different cultural orientations and their responses to the acts of others who live around them.
  • Investigate natural disasters in a named country and how the government has responded to them. For example, explore how the response of the New Orleans government to natural disasters has changed since Hurricane Katrina.

Tip : Focus this research title sample on one particular country or natural disaster or compare the responses of two countries with each other.

  • Explore the educational policy, “no child left behind,” investigating its benefits and drawbacks.
  • Investigate the concept of plagiarism in the twenty-first century, its consequences, and its prevalence in modern universities. Take a step further to investigate how and why many students don’t understand the gravity of their errors.
  • Do in-depth research on bullying in schools, explaining the seriousness of the problem in your area in particular. Also, recommend actions schools, teachers, and parents can take to improve the situation if anything.
  • Explore the place of religion in public schools; if it has a place, explain why, and if it does not, explain why not.
  • Does a student’s financial background have any effect on his or her academic performance? In this sample research title, you can compare students from different financial backgrounds, from wealthy to average, and their scores on standardized tests.
  • Is spanking one’s child considered child abuse; if so, why? In this research problem example for students, consider whether or not parents should be able to spank their children.
  • Investigate the relationship between family health and nutrition, focusing on particular nutrition. This example of the title of the research study, for instance, can focus on the relationship between breastfeeding and baby health.
  • Elucidate on, if any, the benefits of having a home-cooked meal and sitting down as a family to eat together.
  • Explore the effect of fast-food restaurants on family health and nutrition, and whether or not they should be regulated.
  • Research local food producers and farms in your community, pinpointing how much of your diet is acquired from them.

Tip : These are great research titles from which you can coin research topics for STEM students .

  • Compare and contrast the two major operating systems: Mac and Windows, and discuss which one is better.

Tip : This title of the research study example can lead to strong uninformed opinions on the matter. However, it is important to investigate and discuss facts about the two operating systems, basing your conclusions on these.

  • Explain the effect of spell checkers, autocorrect functions, and grammar checkers on the writing skills of computer users. Have these tools improved users’ writing skills or weakened them?

Tip : For this example of title research, it is better to consider more than one of these tools to write a comprehensive paper.

  • Discuss the role(s) artificial intelligence is playing now or will likely play in the future as regards human evolution.
  • Identify and investigate the next groundbreaking development in computer science (like the metaverse), explaining why you believe it will be important.
  • Discuss a particular trendsetting technological tool, like blockchain technology, and how it has benefited different sectors.

Tip : For this research title example, you may want to focus on the effect of one tool on one particular sector. This way, you can investigate this example of research and thesis statement about social media more thoroughly and give as many details as possible.

  • Consider your personal experiences as well as close friends’ and families experiences. Then, determine how marketing has invaded your lives and whether these impersonal communications are more positive than negative or vice versa.
  • Investigate the regulations (or lack thereof) that apply to marketing items to children in your region. Do you think these regulations are unfounded, right, or inadequate?
  • Investigate the merits and demerits of outsourcing customer services; you can compare the views of businesses with those of their customers.
  • How has the communication we do through blog sites, messaging, social media, email, and other online platforms improved interpersonal communications if it has?
  • Can understanding culture change the way you do business? Discuss how.

Tip : Ensure you share your reasoning on this title of the research study example and provide evidence-backed information to support your points.

  • Learn everything you can about eating disorders like bulimia and anorexia, as well as their causes, and symptoms. Then, investigate and discuss the impact of its significance and recommend actions that might improve the situation.
  • Research a major development in women’s history, like the admission of women to higher institutions and the legalization of abortion. Discuss the short-term and (or) long-term implications of the named event or development.
  • Discuss gender inequality in the workplace – for instance, the fact that women tend to earn less than men for doing the same job. Provide specific real-life examples as you explain the reasons for this and recommend solutions to the problem.
  • How have beauty contests helped women: have they empowered them in society or objectified them?

Tip : You may shift the focus of this topic research example to female strippers or women who act in pornographic movies.

  • Investigate exceptional businesswomen in the 21st century; you can focus on one or compare two or more.

Tip : When writing on the title of a research example related to women, avoid using persuasion tactics; instead, be tactful and professional in presenting your points.

  • Discuss the unique nature and implications of Donald Trump’s presidency on the United States and the world.
  • Investigate the conditions and forces related to the advent and rise of Nazi Germany. Shift the focus of this title research example on major wars like WWI or the American Civil War.
  • Is the enormous amount of money spent during election campaigns a legitimate expense?
  • Investigate a named major political scandal that recently occurred in your region or country. Discuss how it started, how its news spread, and its impacts on individuals in that area.
  • Discuss the impacts British rule had on India.
  • Investigate the rate of incarceration in your region and compare it with that of other countries or other regions.
  • Is incarcerating criminals an effective solution in promoting the rehabilitation of criminals and controlling crime rates?
  • Consider various perspectives on the issue of gun control and coin several argumentative essay topics on the matter.
  • Why do drivers continue to text while driving despite legal implications and dire consequences?
  • Discuss the legality of people taking their own lives due to suffering from a debilitating terminal disease.

Each example of the research title provided in this article will make for a rich, information-dense research paper. However, you have a part to play in researching thoroughly on the example of the research study. To simplify the entire process for you, hiring our writing services is key as you wouldn’t have to worry about choosing topics. Our team of skilled writers knows the right subject that suits your research and how to readily get materials on them.

Leave a Reply Cancel reply

  • Privacy Policy

Research Method

Home » 500+ Qualitative Research Titles and Topics

500+ Qualitative Research Titles and Topics

Table of Contents

Qualitative Research Topics

Qualitative research is a methodological approach that involves gathering and analyzing non-numerical data to understand and interpret social phenomena. Unlike quantitative research , which emphasizes the collection of numerical data through surveys and experiments, qualitative research is concerned with exploring the subjective experiences, perspectives, and meanings of individuals and groups. As such, qualitative research topics can be diverse and encompass a wide range of social issues and phenomena. From exploring the impact of culture on identity formation to examining the experiences of marginalized communities, qualitative research offers a rich and nuanced perspective on complex social issues. In this post, we will explore some of the most compelling qualitative research topics and provide some tips on how to conduct effective qualitative research.

Qualitative Research Titles

Qualitative research titles often reflect the study’s focus on understanding the depth and complexity of human behavior, experiences, or social phenomena. Here are some examples across various fields:

  • “Understanding the Impact of Project-Based Learning on Student Engagement in High School Classrooms: A Qualitative Study”
  • “Navigating the Transition: Experiences of International Students in American Universities”
  • “The Role of Parental Involvement in Early Childhood Education: Perspectives from Teachers and Parents”
  • “Exploring the Effects of Teacher Feedback on Student Motivation and Self-Efficacy in Middle Schools”
  • “Digital Literacy in the Classroom: Teacher Strategies for Integrating Technology in Elementary Education”
  • “Culturally Responsive Teaching Practices: A Case Study in Diverse Urban Schools”
  • “The Influence of Extracurricular Activities on Academic Achievement: Student Perspectives”
  • “Barriers to Implementing Inclusive Education in Public Schools: A Qualitative Inquiry”
  • “Teacher Professional Development and Its Impact on Classroom Practice: A Qualitative Exploration”
  • “Student-Centered Learning Environments: A Qualitative Study of Classroom Dynamics and Outcomes”
  • “The Experience of First-Year Teachers: Challenges, Support Systems, and Professional Growth”
  • “Exploring the Role of School Leadership in Fostering a Positive School Culture”
  • “Peer Relationships and Learning Outcomes in Cooperative Learning Settings: A Qualitative Analysis”
  • “The Impact of Social Media on Student Learning and Engagement: Teacher and Student Perspectives”
  • “Understanding Special Education Needs: Parent and Teacher Perceptions of Support Services in Schools

Health Science

  • “Living with Chronic Pain: Patient Narratives and Coping Strategies in Managing Daily Life”
  • “Healthcare Professionals’ Perspectives on the Challenges of Rural Healthcare Delivery”
  • “Exploring the Mental Health Impacts of COVID-19 on Frontline Healthcare Workers: A Qualitative Study”
  • “Patient and Family Experiences of Palliative Care: Understanding Needs and Preferences”
  • “The Role of Community Health Workers in Improving Access to Maternal Healthcare in Rural Areas”
  • “Barriers to Mental Health Services Among Ethnic Minorities: A Qualitative Exploration”
  • “Understanding Patient Satisfaction in Telemedicine Services: A Qualitative Study of User Experiences”
  • “The Impact of Cultural Competence Training on Healthcare Provider-Patient Communication”
  • “Navigating the Transition to Adult Healthcare Services: Experiences of Adolescents with Chronic Conditions”
  • “Exploring the Use of Alternative Medicine Among Patients with Chronic Diseases: A Qualitative Inquiry”
  • “The Role of Social Support in the Rehabilitation Process of Stroke Survivors”
  • “Healthcare Decision-Making Among Elderly Patients: A Qualitative Study of Preferences and Influences”
  • “Nurse Perceptions of Patient Safety Culture in Hospital Settings: A Qualitative Analysis”
  • “Experiences of Women with Postpartum Depression: Barriers to Seeking Help”
  • “The Impact of Nutrition Education on Eating Behaviors Among College Students: A Qualitative Approach”
  • “Understanding Resilience in Survivors of Childhood Trauma: A Narrative Inquiry”
  • “The Role of Mindfulness in Managing Work-Related Stress Among Corporate Employees: A Qualitative Study”
  • “Coping Mechanisms Among Parents of Children with Autism Spectrum Disorder”
  • “Exploring the Psychological Impact of Social Isolation in the Elderly: A Phenomenological Study”
  • “Identity Formation in Adolescence: The Influence of Social Media and Peer Groups”
  • “The Experience of Forgiveness in Interpersonal Relationships: A Qualitative Exploration”
  • “Perceptions of Happiness and Well-Being Among University Students: A Cultural Perspective”
  • “The Impact of Art Therapy on Anxiety and Depression in Adult Cancer Patients”
  • “Narratives of Recovery: A Qualitative Study on the Journey Through Addiction Rehabilitation”
  • “Exploring the Psychological Effects of Long-Term Unemployment: A Grounded Theory Approach”
  • “Attachment Styles and Their Influence on Adult Romantic Relationships: A Qualitative Analysis”
  • “The Role of Personal Values in Career Decision-Making Among Young Adults”
  • “Understanding the Stigma of Mental Illness in Rural Communities: A Qualitative Inquiry”
  • “Exploring the Use of Digital Mental Health Interventions Among Adolescents: A Qualitative Study”
  • “The Psychological Impact of Climate Change on Young Adults: An Exploration of Anxiety and Action”
  • “Navigating Identity: The Role of Social Media in Shaping Youth Culture and Self-Perception”
  • “Community Resilience in the Face of Urban Gentrification: A Case Study of Neighborhood Change”
  • “The Dynamics of Intergenerational Relationships in Immigrant Families: A Qualitative Analysis”
  • “Social Capital and Economic Mobility in Low-Income Neighborhoods: An Ethnographic Approach”
  • “Gender Roles and Career Aspirations Among Young Adults in Conservative Societies”
  • “The Stigma of Mental Health in the Workplace: Employee Narratives and Organizational Culture”
  • “Exploring the Intersection of Race, Class, and Education in Urban School Systems”
  • “The Impact of Digital Divide on Access to Healthcare Information in Rural Communities”
  • “Social Movements and Political Engagement Among Millennials: A Qualitative Study”
  • “Cultural Adaptation and Identity Among Second-Generation Immigrants: A Phenomenological Inquiry”
  • “The Role of Religious Institutions in Providing Community Support and Social Services”
  • “Negotiating Public Space: Experiences of LGBTQ+ Individuals in Urban Environments”
  • “The Sociology of Food: Exploring Eating Habits and Food Practices Across Cultures”
  • “Work-Life Balance Challenges Among Dual-Career Couples: A Qualitative Exploration”
  • “The Influence of Peer Networks on Substance Use Among Adolescents: A Community Study”

Business and Management

  • “Navigating Organizational Change: Employee Perceptions and Adaptation Strategies in Mergers and Acquisitions”
  • “Corporate Social Responsibility: Consumer Perceptions and Brand Loyalty in the Retail Sector”
  • “Leadership Styles and Organizational Culture: A Comparative Study of Tech Startups”
  • “Workplace Diversity and Inclusion: Best Practices and Challenges in Multinational Corporations”
  • “Consumer Trust in E-commerce: A Qualitative Study of Online Shopping Behaviors”
  • “The Gig Economy and Worker Satisfaction: Exploring the Experiences of Freelance Professionals”
  • “Entrepreneurial Resilience: Success Stories and Lessons Learned from Failed Startups”
  • “Employee Engagement and Productivity in Remote Work Settings: A Post-Pandemic Analysis”
  • “Brand Storytelling: How Narrative Strategies Influence Consumer Engagement”
  • “Sustainable Business Practices: Stakeholder Perspectives in the Fashion Industry”
  • “Cross-Cultural Communication Challenges in Global Teams: Strategies for Effective Collaboration”
  • “Innovative Workspaces: The Impact of Office Design on Creativity and Collaboration”
  • “Consumer Perceptions of Artificial Intelligence in Customer Service: A Qualitative Exploration”
  • “The Role of Mentoring in Career Development: Insights from Women in Leadership Positions”
  • “Agile Management Practices: Adoption and Impact in Traditional Industries”

Environmental Studies

  • “Community-Based Conservation Efforts in Tropical Rainforests: A Qualitative Study of Local Perspectives and Practices”
  • “Urban Sustainability Initiatives: Exploring Resident Participation and Impact in Green City Projects”
  • “Perceptions of Climate Change Among Indigenous Populations: Insights from Traditional Ecological Knowledge”
  • “Environmental Justice and Industrial Pollution: A Case Study of Community Advocacy and Response”
  • “The Role of Eco-Tourism in Promoting Conservation Awareness: Perspectives from Tour Operators and Visitors”
  • “Sustainable Agriculture Practices Among Smallholder Farmers: Challenges and Opportunities”
  • “Youth Engagement in Climate Action Movements: Motivations, Perceptions, and Outcomes”
  • “Corporate Environmental Responsibility: A Qualitative Analysis of Stakeholder Expectations and Company Practices”
  • “The Impact of Plastic Pollution on Marine Ecosystems: Community Awareness and Behavioral Change”
  • “Renewable Energy Adoption in Rural Communities: Barriers, Facilitators, and Social Implications”
  • “Water Scarcity and Community Adaptation Strategies in Arid Regions: A Grounded Theory Approach”
  • “Urban Green Spaces: Public Perceptions and Use Patterns in Megacities”
  • “Environmental Education in Schools: Teachers’ Perspectives on Integrating Sustainability into Curricula”
  • “The Influence of Environmental Activism on Policy Change: Case Studies of Grassroots Campaigns”
  • “Cultural Practices and Natural Resource Management: A Qualitative Study of Indigenous Stewardship Models”

Anthropology

  • “Kinship and Social Organization in Matrilineal Societies: An Ethnographic Study”
  • “Rituals and Beliefs Surrounding Death and Mourning in Diverse Cultures: A Comparative Analysis”
  • “The Impact of Globalization on Indigenous Languages and Cultural Identity”
  • “Food Sovereignty and Traditional Agricultural Practices Among Indigenous Communities”
  • “Navigating Modernity: The Integration of Traditional Healing Practices in Contemporary Healthcare Systems”
  • “Gender Roles and Equality in Hunter-Gatherer Societies: An Anthropological Perspective”
  • “Sacred Spaces and Religious Practices: An Ethnographic Study of Pilgrimage Sites”
  • “Youth Subcultures and Resistance: An Exploration of Identity and Expression in Urban Environments”
  • “Cultural Constructions of Disability and Inclusion: A Cross-Cultural Analysis”
  • “Interethnic Marriages and Cultural Syncretism: Case Studies from Multicultural Societies”
  • “The Role of Folklore and Storytelling in Preserving Cultural Heritage”
  • “Economic Anthropology of Gift-Giving and Reciprocity in Tribal Communities”
  • “Digital Anthropology: The Role of Social Media in Shaping Political Movements”
  • “Migration and Diaspora: Maintaining Cultural Identity in Transnational Communities”
  • “Cultural Adaptations to Climate Change Among Coastal Fishing Communities”

Communication Studies

  • “The Dynamics of Family Communication in the Digital Age: A Qualitative Inquiry”
  • “Narratives of Identity and Belonging in Diaspora Communities Through Social Media”
  • “Organizational Communication and Employee Engagement: A Case Study in the Non-Profit Sector”
  • “Cultural Influences on Communication Styles in Multinational Teams: An Ethnographic Approach”
  • “Media Representation of Women in Politics: A Content Analysis and Audience Perception Study”
  • “The Role of Communication in Building Sustainable Community Development Projects”
  • “Interpersonal Communication in Online Dating: Strategies, Challenges, and Outcomes”
  • “Public Health Messaging During Pandemics: A Qualitative Study of Community Responses”
  • “The Impact of Mobile Technology on Parent-Child Communication in the Digital Era”
  • “Crisis Communication Strategies in the Hospitality Industry: A Case Study of Reputation Management”
  • “Narrative Analysis of Personal Stories Shared on Mental Health Blogs”
  • “The Influence of Podcasts on Political Engagement Among Young Adults”
  • “Visual Communication and Brand Identity: A Qualitative Study of Consumer Interpretations”
  • “Communication Barriers in Cross-Cultural Healthcare Settings: Patient and Provider Perspectives”
  • “The Role of Internal Communication in Managing Organizational Change: Employee Experiences”

Information Technology

  • “User Experience Design in Augmented Reality Applications: A Qualitative Study of Best Practices”
  • “The Human Factor in Cybersecurity: Understanding Employee Behaviors and Attitudes Towards Phishing”
  • “Adoption of Cloud Computing in Small and Medium Enterprises: Challenges and Success Factors”
  • “Blockchain Technology in Supply Chain Management: A Qualitative Exploration of Potential Impacts”
  • “The Role of Artificial Intelligence in Personalizing User Experiences on E-commerce Platforms”
  • “Digital Transformation in Traditional Industries: A Case Study of Technology Adoption Challenges”
  • “Ethical Considerations in the Development of Smart Home Technologies: A Stakeholder Analysis”
  • “The Impact of Social Media Algorithms on News Consumption and Public Opinion”
  • “Collaborative Software Development: Practices and Challenges in Open Source Projects”
  • “Understanding the Digital Divide: Access to Information Technology in Rural Communities”
  • “Data Privacy Concerns and User Trust in Internet of Things (IoT) Devices”
  • “The Effectiveness of Gamification in Educational Software: A Qualitative Study of Engagement and Motivation”
  • “Virtual Teams and Remote Work: Communication Strategies and Tools for Effectiveness”
  • “User-Centered Design in Mobile Health Applications: Evaluating Usability and Accessibility”
  • “The Influence of Technology on Work-Life Balance: Perspectives from IT Professionals”

Tourism and Hospitality

  • “Exploring the Authenticity of Cultural Heritage Tourism in Indigenous Communities”
  • “Sustainable Tourism Practices: Perceptions and Implementations in Small Island Destinations”
  • “The Impact of Social Media Influencers on Destination Choice Among Millennials”
  • “Gastronomy Tourism: Exploring the Culinary Experiences of International Visitors in Rural Regions”
  • “Eco-Tourism and Conservation: Stakeholder Perspectives on Balancing Tourism and Environmental Protection”
  • “The Role of Hospitality in Enhancing the Cultural Exchange Experience of Exchange Students”
  • “Dark Tourism: Visitor Motivations and Experiences at Historical Conflict Sites”
  • “Customer Satisfaction in Luxury Hotels: A Qualitative Study of Service Excellence and Personalization”
  • “Adventure Tourism: Understanding the Risk Perception and Safety Measures Among Thrill-Seekers”
  • “The Influence of Local Communities on Tourist Experiences in Ecotourism Sites”
  • “Event Tourism: Economic Impacts and Community Perspectives on Large-Scale Music Festivals”
  • “Heritage Tourism and Identity: Exploring the Connections Between Historic Sites and National Identity”
  • “Tourist Perceptions of Sustainable Accommodation Practices: A Study of Green Hotels”
  • “The Role of Language in Shaping the Tourist Experience in Multilingual Destinations”
  • “Health and Wellness Tourism: Motivations and Experiences of Visitors to Spa and Retreat Centers”

Qualitative Research Topics

Qualitative Research Topics are as follows:

  • Understanding the lived experiences of first-generation college students
  • Exploring the impact of social media on self-esteem among adolescents
  • Investigating the effects of mindfulness meditation on stress reduction
  • Analyzing the perceptions of employees regarding organizational culture
  • Examining the impact of parental involvement on academic achievement of elementary school students
  • Investigating the role of music therapy in managing symptoms of depression
  • Understanding the experience of women in male-dominated industries
  • Exploring the factors that contribute to successful leadership in non-profit organizations
  • Analyzing the effects of peer pressure on substance abuse among adolescents
  • Investigating the experiences of individuals with disabilities in the workplace
  • Understanding the factors that contribute to burnout among healthcare professionals
  • Examining the impact of social support on mental health outcomes
  • Analyzing the perceptions of parents regarding sex education in schools
  • Investigating the experiences of immigrant families in the education system
  • Understanding the impact of trauma on mental health outcomes
  • Exploring the effectiveness of animal-assisted therapy for individuals with anxiety
  • Analyzing the factors that contribute to successful intergenerational relationships
  • Investigating the experiences of LGBTQ+ individuals in the workplace
  • Understanding the impact of online gaming on social skills development among adolescents
  • Examining the perceptions of teachers regarding technology integration in the classroom
  • Analyzing the experiences of women in leadership positions
  • Investigating the factors that contribute to successful marriage and long-term relationships
  • Understanding the impact of social media on political participation
  • Exploring the experiences of individuals with mental health disorders in the criminal justice system
  • Analyzing the factors that contribute to successful community-based programs for youth development
  • Investigating the experiences of veterans in accessing mental health services
  • Understanding the impact of the COVID-19 pandemic on mental health outcomes
  • Examining the perceptions of parents regarding childhood obesity prevention
  • Analyzing the factors that contribute to successful multicultural education programs
  • Investigating the experiences of individuals with chronic illnesses in the workplace
  • Understanding the impact of poverty on academic achievement
  • Exploring the experiences of individuals with autism spectrum disorder in the workplace
  • Analyzing the factors that contribute to successful employee retention strategies
  • Investigating the experiences of caregivers of individuals with Alzheimer’s disease
  • Understanding the impact of parent-child communication on adolescent sexual behavior
  • Examining the perceptions of college students regarding mental health services on campus
  • Analyzing the factors that contribute to successful team building in the workplace
  • Investigating the experiences of individuals with eating disorders in treatment programs
  • Understanding the impact of mentorship on career success
  • Exploring the experiences of individuals with physical disabilities in the workplace
  • Analyzing the factors that contribute to successful community-based programs for mental health
  • Investigating the experiences of individuals with substance use disorders in treatment programs
  • Understanding the impact of social media on romantic relationships
  • Examining the perceptions of parents regarding child discipline strategies
  • Analyzing the factors that contribute to successful cross-cultural communication in the workplace
  • Investigating the experiences of individuals with anxiety disorders in treatment programs
  • Understanding the impact of cultural differences on healthcare delivery
  • Exploring the experiences of individuals with hearing loss in the workplace
  • Analyzing the factors that contribute to successful parent-teacher communication
  • Investigating the experiences of individuals with depression in treatment programs
  • Understanding the impact of childhood trauma on adult mental health outcomes
  • Examining the perceptions of college students regarding alcohol and drug use on campus
  • Analyzing the factors that contribute to successful mentor-mentee relationships
  • Investigating the experiences of individuals with intellectual disabilities in the workplace
  • Understanding the impact of work-family balance on employee satisfaction and well-being
  • Exploring the experiences of individuals with autism spectrum disorder in vocational rehabilitation programs
  • Analyzing the factors that contribute to successful project management in the construction industry
  • Investigating the experiences of individuals with substance use disorders in peer support groups
  • Understanding the impact of mindfulness meditation on stress reduction and mental health
  • Examining the perceptions of parents regarding childhood nutrition
  • Analyzing the factors that contribute to successful environmental sustainability initiatives in organizations
  • Investigating the experiences of individuals with bipolar disorder in treatment programs
  • Understanding the impact of job stress on employee burnout and turnover
  • Exploring the experiences of individuals with physical disabilities in recreational activities
  • Analyzing the factors that contribute to successful strategic planning in nonprofit organizations
  • Investigating the experiences of individuals with hoarding disorder in treatment programs
  • Understanding the impact of culture on leadership styles and effectiveness
  • Examining the perceptions of college students regarding sexual health education on campus
  • Analyzing the factors that contribute to successful supply chain management in the retail industry
  • Investigating the experiences of individuals with personality disorders in treatment programs
  • Understanding the impact of multiculturalism on group dynamics in the workplace
  • Exploring the experiences of individuals with chronic pain in mindfulness-based pain management programs
  • Analyzing the factors that contribute to successful employee engagement strategies in organizations
  • Investigating the experiences of individuals with internet addiction disorder in treatment programs
  • Understanding the impact of social comparison on body dissatisfaction and self-esteem
  • Examining the perceptions of parents regarding childhood sleep habits
  • Analyzing the factors that contribute to successful diversity and inclusion initiatives in organizations
  • Investigating the experiences of individuals with schizophrenia in treatment programs
  • Understanding the impact of job crafting on employee motivation and job satisfaction
  • Exploring the experiences of individuals with vision impairments in navigating public spaces
  • Analyzing the factors that contribute to successful customer relationship management strategies in the service industry
  • Investigating the experiences of individuals with dissociative amnesia in treatment programs
  • Understanding the impact of cultural intelligence on intercultural communication and collaboration
  • Examining the perceptions of college students regarding campus diversity and inclusion efforts
  • Analyzing the factors that contribute to successful supply chain sustainability initiatives in organizations
  • Investigating the experiences of individuals with obsessive-compulsive disorder in treatment programs
  • Understanding the impact of transformational leadership on organizational performance and employee well-being
  • Exploring the experiences of individuals with mobility impairments in public transportation
  • Analyzing the factors that contribute to successful talent management strategies in organizations
  • Investigating the experiences of individuals with substance use disorders in harm reduction programs
  • Understanding the impact of gratitude practices on well-being and resilience
  • Examining the perceptions of parents regarding childhood mental health and well-being
  • Analyzing the factors that contribute to successful corporate social responsibility initiatives in organizations
  • Investigating the experiences of individuals with borderline personality disorder in treatment programs
  • Understanding the impact of emotional labor on job stress and burnout
  • Exploring the experiences of individuals with hearing impairments in healthcare settings
  • Analyzing the factors that contribute to successful customer experience strategies in the hospitality industry
  • Investigating the experiences of individuals with gender dysphoria in gender-affirming healthcare
  • Understanding the impact of cultural differences on cross-cultural negotiation in the global marketplace
  • Examining the perceptions of college students regarding academic stress and mental health
  • Analyzing the factors that contribute to successful supply chain agility in organizations
  • Understanding the impact of music therapy on mental health and well-being
  • Exploring the experiences of individuals with dyslexia in educational settings
  • Analyzing the factors that contribute to successful leadership in nonprofit organizations
  • Investigating the experiences of individuals with chronic illnesses in online support groups
  • Understanding the impact of exercise on mental health and well-being
  • Examining the perceptions of parents regarding childhood screen time
  • Analyzing the factors that contribute to successful change management strategies in organizations
  • Understanding the impact of cultural differences on international business negotiations
  • Exploring the experiences of individuals with hearing impairments in the workplace
  • Analyzing the factors that contribute to successful team building in corporate settings
  • Understanding the impact of technology on communication in romantic relationships
  • Analyzing the factors that contribute to successful community engagement strategies for local governments
  • Investigating the experiences of individuals with attention deficit hyperactivity disorder (ADHD) in treatment programs
  • Understanding the impact of financial stress on mental health and well-being
  • Analyzing the factors that contribute to successful mentorship programs in organizations
  • Investigating the experiences of individuals with gambling addictions in treatment programs
  • Understanding the impact of social media on body image and self-esteem
  • Examining the perceptions of parents regarding childhood education
  • Analyzing the factors that contribute to successful virtual team management strategies
  • Investigating the experiences of individuals with dissociative identity disorder in treatment programs
  • Understanding the impact of cultural differences on cross-cultural communication in healthcare settings
  • Exploring the experiences of individuals with chronic pain in cognitive-behavioral therapy programs
  • Analyzing the factors that contribute to successful community-building strategies in urban neighborhoods
  • Investigating the experiences of individuals with alcohol use disorders in treatment programs
  • Understanding the impact of personality traits on romantic relationships
  • Examining the perceptions of college students regarding mental health stigma on campus
  • Analyzing the factors that contribute to successful fundraising strategies for political campaigns
  • Investigating the experiences of individuals with traumatic brain injuries in rehabilitation programs
  • Understanding the impact of social support on mental health and well-being among the elderly
  • Exploring the experiences of individuals with chronic illnesses in medical treatment decision-making processes
  • Analyzing the factors that contribute to successful innovation strategies in organizations
  • Investigating the experiences of individuals with dissociative disorders in treatment programs
  • Understanding the impact of cultural differences on cross-cultural communication in education settings
  • Examining the perceptions of parents regarding childhood physical activity
  • Analyzing the factors that contribute to successful conflict resolution in family relationships
  • Investigating the experiences of individuals with opioid use disorders in treatment programs
  • Understanding the impact of emotional intelligence on leadership effectiveness
  • Exploring the experiences of individuals with learning disabilities in the workplace
  • Analyzing the factors that contribute to successful change management in educational institutions
  • Investigating the experiences of individuals with eating disorders in recovery support groups
  • Understanding the impact of self-compassion on mental health and well-being
  • Examining the perceptions of college students regarding campus safety and security measures
  • Analyzing the factors that contribute to successful marketing strategies for nonprofit organizations
  • Investigating the experiences of individuals with postpartum depression in treatment programs
  • Understanding the impact of ageism in the workplace
  • Exploring the experiences of individuals with dyslexia in the education system
  • Investigating the experiences of individuals with anxiety disorders in cognitive-behavioral therapy programs
  • Understanding the impact of socioeconomic status on access to healthcare
  • Examining the perceptions of parents regarding childhood screen time usage
  • Analyzing the factors that contribute to successful supply chain management strategies
  • Understanding the impact of parenting styles on child development
  • Exploring the experiences of individuals with addiction in harm reduction programs
  • Analyzing the factors that contribute to successful crisis management strategies in organizations
  • Investigating the experiences of individuals with trauma in trauma-focused therapy programs
  • Examining the perceptions of healthcare providers regarding patient-centered care
  • Analyzing the factors that contribute to successful product development strategies
  • Investigating the experiences of individuals with autism spectrum disorder in employment programs
  • Understanding the impact of cultural competence on healthcare outcomes
  • Exploring the experiences of individuals with chronic illnesses in healthcare navigation
  • Analyzing the factors that contribute to successful community engagement strategies for non-profit organizations
  • Investigating the experiences of individuals with physical disabilities in the workplace
  • Understanding the impact of childhood trauma on adult mental health
  • Analyzing the factors that contribute to successful supply chain sustainability strategies
  • Investigating the experiences of individuals with personality disorders in dialectical behavior therapy programs
  • Understanding the impact of gender identity on mental health treatment seeking behaviors
  • Exploring the experiences of individuals with schizophrenia in community-based treatment programs
  • Analyzing the factors that contribute to successful project team management strategies
  • Investigating the experiences of individuals with obsessive-compulsive disorder in exposure and response prevention therapy programs
  • Understanding the impact of cultural competence on academic achievement and success
  • Examining the perceptions of college students regarding academic integrity
  • Analyzing the factors that contribute to successful social media marketing strategies
  • Investigating the experiences of individuals with bipolar disorder in community-based treatment programs
  • Understanding the impact of mindfulness on academic achievement and success
  • Exploring the experiences of individuals with substance use disorders in medication-assisted treatment programs
  • Investigating the experiences of individuals with anxiety disorders in exposure therapy programs
  • Understanding the impact of healthcare disparities on health outcomes
  • Analyzing the factors that contribute to successful supply chain optimization strategies
  • Investigating the experiences of individuals with borderline personality disorder in schema therapy programs
  • Understanding the impact of culture on perceptions of mental health stigma
  • Exploring the experiences of individuals with trauma in art therapy programs
  • Analyzing the factors that contribute to successful digital marketing strategies
  • Investigating the experiences of individuals with eating disorders in online support groups
  • Understanding the impact of workplace bullying on job satisfaction and performance
  • Examining the perceptions of college students regarding mental health resources on campus
  • Analyzing the factors that contribute to successful supply chain risk management strategies
  • Investigating the experiences of individuals with chronic pain in mindfulness-based pain management programs
  • Understanding the impact of cognitive-behavioral therapy on social anxiety disorder
  • Understanding the impact of COVID-19 on mental health and well-being
  • Exploring the experiences of individuals with eating disorders in treatment programs
  • Analyzing the factors that contribute to successful leadership in business organizations
  • Investigating the experiences of individuals with chronic pain in cognitive-behavioral therapy programs
  • Understanding the impact of cultural differences on intercultural communication
  • Examining the perceptions of teachers regarding inclusive education for students with disabilities
  • Investigating the experiences of individuals with depression in therapy programs
  • Understanding the impact of workplace culture on employee retention and turnover
  • Exploring the experiences of individuals with traumatic brain injuries in rehabilitation programs
  • Analyzing the factors that contribute to successful crisis communication strategies in organizations
  • Investigating the experiences of individuals with anxiety disorders in mindfulness-based interventions
  • Investigating the experiences of individuals with chronic illnesses in healthcare settings
  • Understanding the impact of technology on work-life balance
  • Exploring the experiences of individuals with learning disabilities in academic settings
  • Analyzing the factors that contribute to successful entrepreneurship in small businesses
  • Understanding the impact of gender identity on mental health and well-being
  • Examining the perceptions of individuals with disabilities regarding accessibility in public spaces
  • Understanding the impact of religion on coping strategies for stress and anxiety
  • Exploring the experiences of individuals with chronic illnesses in complementary and alternative medicine treatments
  • Analyzing the factors that contribute to successful customer retention strategies in business organizations
  • Investigating the experiences of individuals with postpartum depression in therapy programs
  • Understanding the impact of ageism on older adults in healthcare settings
  • Examining the perceptions of students regarding online learning during the COVID-19 pandemic
  • Analyzing the factors that contribute to successful team building in virtual work environments
  • Investigating the experiences of individuals with gambling disorders in treatment programs
  • Exploring the experiences of individuals with chronic illnesses in peer support groups
  • Analyzing the factors that contribute to successful social media marketing strategies for businesses
  • Investigating the experiences of individuals with ADHD in treatment programs
  • Understanding the impact of sleep on cognitive and emotional functioning
  • Examining the perceptions of individuals with chronic illnesses regarding healthcare access and affordability
  • Investigating the experiences of individuals with borderline personality disorder in dialectical behavior therapy programs
  • Understanding the impact of social support on caregiver well-being
  • Exploring the experiences of individuals with chronic illnesses in disability activism
  • Analyzing the factors that contribute to successful cultural competency training programs in healthcare settings
  • Understanding the impact of personality disorders on interpersonal relationships
  • Examining the perceptions of healthcare providers regarding the use of telehealth services
  • Investigating the experiences of individuals with dissociative disorders in therapy programs
  • Understanding the impact of gender bias in hiring practices
  • Exploring the experiences of individuals with visual impairments in the workplace
  • Analyzing the factors that contribute to successful diversity and inclusion programs in the workplace
  • Understanding the impact of online dating on romantic relationships
  • Examining the perceptions of parents regarding childhood vaccination
  • Analyzing the factors that contribute to successful communication in healthcare settings
  • Understanding the impact of cultural stereotypes on academic achievement
  • Exploring the experiences of individuals with substance use disorders in sober living programs
  • Analyzing the factors that contribute to successful classroom management strategies
  • Understanding the impact of social support on addiction recovery
  • Examining the perceptions of college students regarding mental health stigma
  • Analyzing the factors that contribute to successful conflict resolution in the workplace
  • Understanding the impact of race and ethnicity on healthcare access and outcomes
  • Exploring the experiences of individuals with post-traumatic stress disorder in treatment programs
  • Analyzing the factors that contribute to successful project management strategies
  • Understanding the impact of teacher-student relationships on academic achievement
  • Analyzing the factors that contribute to successful customer service strategies
  • Investigating the experiences of individuals with social anxiety disorder in treatment programs
  • Understanding the impact of workplace stress on job satisfaction and performance
  • Exploring the experiences of individuals with disabilities in sports and recreation
  • Analyzing the factors that contribute to successful marketing strategies for small businesses
  • Investigating the experiences of individuals with phobias in treatment programs
  • Understanding the impact of culture on attitudes towards mental health and illness
  • Examining the perceptions of college students regarding sexual assault prevention
  • Analyzing the factors that contribute to successful time management strategies
  • Investigating the experiences of individuals with addiction in recovery support groups
  • Understanding the impact of mindfulness on emotional regulation and well-being
  • Exploring the experiences of individuals with chronic pain in treatment programs
  • Analyzing the factors that contribute to successful conflict resolution in romantic relationships
  • Investigating the experiences of individuals with autism spectrum disorder in social skills training programs
  • Understanding the impact of parent-child communication on adolescent substance use
  • Examining the perceptions of parents regarding childhood mental health services
  • Analyzing the factors that contribute to successful fundraising strategies for non-profit organizations
  • Investigating the experiences of individuals with chronic illnesses in support groups
  • Understanding the impact of personality traits on career success and satisfaction
  • Exploring the experiences of individuals with disabilities in accessing public transportation
  • Analyzing the factors that contribute to successful team building in sports teams
  • Investigating the experiences of individuals with chronic pain in alternative medicine treatments
  • Understanding the impact of stigma on mental health treatment seeking behaviors
  • Examining the perceptions of college students regarding diversity and inclusion on campus.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Funny Research Topics

200+ Funny Research Topics

Sports Research Topics

500+ Sports Research Topics

American History Research Paper Topics

300+ American History Research Paper Topics

Cyber Security Research Topics

500+ Cyber Security Research Topics

Environmental Research Topics

500+ Environmental Research Topics

Economics Research Topics

500+ Economics Research Topics

IMAGES

  1. Comparative Essay

    comparative research titles examples for highschool students

  2. FREE 9+ Comparative Research Templates in PDF

    comparative research titles examples for highschool students

  3. Comparative Essay

    comparative research titles examples for highschool students

  4. Comparative Research

    comparative research titles examples for highschool students

  5. Comparative Research

    comparative research titles examples for highschool students

  6. (PDF) Comparative Study between Words in Titles and Keywords of Some

    comparative research titles examples for highschool students

VIDEO

  1. Sample Qualitative and Quantitative Research Titles

  2. QUALITATIVE RESEARCH TITLES FOR STEM STUDENTS #researchtitle #qualitativeresearch #stem

  3. Casual Comparative Research Design (MPC-005)

  4. Types of Kids in High School (2023)

  5. Case study, causal comparative or ex-post-facto research, prospective, retrospective research

  6. Differences Between Comparative Research and Evaluation Research

COMMENTS

  1. 100 Research Topic Ideas for High School Students

    Here are five specific high school sociology research topics and how you can approach them: 61. Investigate the impact of social media algorithms on echo chambers and polarization in online communities. Social media shapes public discourse.

  2. 100 Interesting Research Paper Topics for High Schoolers

    For example, last year over 4000 students applied for 500 spots in the Lumiere Research Scholar Program, a rigorous research program founded by Harvard researchers. The program pairs high-school students with Ph.D. mentors to work 1-on-1 on an independent research project. The program actually does not require you to have a research topic in ...

  3. 5 Comparative Studies

    An item-level analysis permitted the researchers to evaluate the actual strategies used by the students. They reported, for example, that 82 percent of CMP students used a "strategy focused on package price, unit price, or a combination of the two; those effective strategies were used by only 56 of 91 control students (62 percent)" (p. 264).

  4. Comparative Research

    Best Practices in Writing an Essay for Comparative Research in Visual Arts. If you are going to write an essay for a comparative research examples paper, this section is for you. You must know that there are inevitable mistakes that students do in essay writing. To avoid those mistakes, follow the following pointers. 1.

  5. 1000+ Research Topics & Research Title Examples For Students

    1000+ FREE Research Topics & Title Ideas. If you're at the start of your research journey and are trying to figure out which research topic you want to focus on, you've come to the right place. Select your area of interest below to view a comprehensive collection of potential research ideas. AI & Machine Learning. Blockchain & Cryptocurrency.

  6. causal comparative study: Topics by Science.gov

    2013-01-01. The purpose of this quantitative causal-comparative study was to investigate the relationship between the instructional effects of the interactive whiteboard and students' proficiency levels in eighth-grade science as evidenced by the state FCAT scores. A total of 46 eighth-grade science teachers in a South Florida public school ...

  7. Research title examples for students—need inspiration!

    Here are some general tips and examples to help inspire you: 1. Start with a working title while you're researching and drafting, and refine it once your project is complete. 2. Make sure your title is specific, focused, and relevant to your research. 3. Use clear and straightforward language, avoiding jargon and acronyms.

  8. Good Research Topics for High School Students

    10 More Good Research Topics to Adapt and Use. The origin and purpose of standardized tests in elementary school. Animal welfare within the scientific research industry. The use of rabbits in cosmetic research. Description and definition of the pro-life political movement in European countries.

  9. Frontiers

    The mean grade for men in the environmental online classes (M = 3.23, N = 246, SD = 1.19) was higher than the mean grade for women in the classes (M = 2.9, N = 302, SD = 1.20) (see Table 1).First, a chi-square analysis was performed using SPSS to determine if there was a statistically significant difference in grade distribution between online and F2F students.

  10. Causal-Comparative Study of Reading Self-Efficacy of Senior High School

    In addition to requisite knowledge and skills in the area of reading, self-efficacy is imperative for students' success in academic tasks. While a considerable amount of research has been conducted on self-efficacy, there is a dearth of research with high school students' reading self-efficacy. Moreover, there is virtually no research investigating the potential differences in reading self ...

  11. 150+ Life Science Research Topics for High School Students: From Cells

    2. Data Collection - Gathering Clues. Imagine you're on a scavenger hunt, but instead of hunting for hidden items, you're collecting information. This info comes from experiments, observations, or surveys - like puzzle pieces waiting to be put together. 3. Analysis - Piecing It Together.

  12. 301+ Research Topic Examples For Students [Updated 2024]

    301+ Research Topic Examples For Students [Updated 2024] Embarking on a research journey is a crucial aspect of academic growth for students. Selecting the right research topic is like choosing the key that unlocks the door to a world of academic exploration and discovery. In this blog, we will delve into the importance of choosing a relevant ...

  13. Independent Research Projects for High School Students

    March 13, 2024. If you want to get into top universities, an independent research project will give your application the competitive edge it needs. Writing and publishing independent research during high school lets you demonstrate to top colleges and universities that you can deeply inquire into a topic, think critically, and produce original ...

  14. 170+ Research Topics In Education (+ Free Webinar)

    The impact of poverty on education. The use of student data to inform instruction. The role of parental involvement in education. The effects of mindfulness practices in the classroom. The use of technology in the classroom. The role of critical thinking in education.

  15. 101 Compare and Contrast Essay Ideas for Students

    Recycling vs. Landfill. Motorcycle vs. Bicycle. Halogen vs. Incandescent. Newton vs. Einstein. Go on vacation vs. Staycation. Rock vs. Scissors. Cite this Article. These compare and contrast essay topics provide teachers and students with great and fun ideas for home and class work.

  16. 55 Brilliant Research Topics For STEM Students

    There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students. A study of protease inhibitor and how it operates. A study of how men's exercise impacts DNA traits passed to children. A study of the future of commercial space flight.

  17. PDF The Impact of Covid-19 on Student Experiences and Expectations ...

    discussion surrounding students' demands for tuition cuts. 2In some cases, instead of asking students for the outcomes in both states of the world, we directly ask for the di erence. For example, the survey asked how the pandemic had a ected the student's graduation date. 2

  18. 100 Qualitative Research Titles For High School Students

    Qualitative research papers are written by gathering and analyzing non-numerical data. Generally, teachers allot a list of topics that you can choose from. However, if you aren't given the list, you need to search for a topic for yourself. Qualitative research topics mostly deal with the happenings in society and nature.

  19. 80+ Exceptional Research Titles Examples in Different Areas

    Examples of Research Topics on Ethics. Enumerate the different ways the government of the United States can reduce deaths arising from the unregulated use of guns. Analyze the place of ethics in medicine or of medical practitioners. For instance, you can discuss the prevalence of physician-assisted suicides in a named country.

  20. 500+ Quantitative Research Titles and Topics

    Quantitative Research Topics. Quantitative Research Topics are as follows: The effects of social media on self-esteem among teenagers. A comparative study of academic achievement among students of single-sex and co-educational schools. The impact of gender on leadership styles in the workplace.

  21. 500+ Qualitative Research Titles and Topics

    Qualitative Research Titles. Qualitative research titles often reflect the study's focus on understanding the depth and complexity of human behavior, experiences, or social phenomena. Here are some examples across various fields: Education "Understanding the Impact of Project-Based Learning on Student Engagement in High School Classrooms: A ...