hvac systems Recently Published Documents

Total documents.

  • Latest Documents
  • Most Cited Documents
  • Contributed Authors
  • Related Sources
  • Related Keywords

Examining the awareness and usage of cyber physical systems for construction projects in Nigeria

Purpose In recent times, the construction industry is being influenced by technological innovations when delivering a better, more effective and efficient desired project, cyber-physical systems (CPSs) offer a coupling of the physical and engineered systems by monitoring, coordinating, controlling and integrating their operations. This study aims to examine the level of awareness of professionals and usage of CPSs for construction projects in Nigerian construction industry. Design/methodology/approach The target population for this study was the professionals in the construction industry consisting Architects, Quantity Surveyors, Engineers and Builders. Data collection was through the use of a structured questionnaire administered to the target population. The data was analyzed by using statistical tools. Findings This study concluded that the construction professionals in the Nigerian construction industry are mostly aware about the heating, ventilation and air conditioning (HVAC) systems, global positioning system, microphone, speakers and camera as the most widely used CPSs in construction industry. HVAC systems was also found to be the mostly adopted technologies in the construction industry. Originality/value This study recommended that platforms that increase the awareness and encourage the usage of CPSs in construction industry should be encouraged by stakeholders concerned with management of construction projects. Such include electronic construction and adoption of blockchain technology.

Fault Detection and Efficiency Assessment for HVAC Systems Using Non-Intrusive Load Monitoring: A Review

Heat, ventilation, and air conditioning (HVAC) systems are some of the most energy-intensive equipment in buildings and their faulty or inefficient operation can significantly increase energy waste. Non-Intrusive Load Monitoring (NILM), which is a software-based tool, has been a popular research area over the last few decades. NILM can play an important role in providing future energy efficiency feedback and developing fault detection and diagnosis (FDD) tools in smart buildings. Therefore, the review of NILM-based methods for FDD and the energy efficiency (EE) assessment of HVACs can be beneficial for users as well as buildings and facilities operators. To the best of the authors’ knowledge, this paper is the first review paper on the application of NILM techniques in these areas and highlights their effectiveness and limitations. This review shows that even though NILM could be successfully implemented for FDD and the EE evaluation of HVACs, and enhance the performance of these techniques, there are many research opportunities to improve or develop NILM-based FDD methods to deal with real-world challenges. These challenges and future research works are also discussed in-depth.

The Empirical Assessment of Vibration in HVAC Systems

Background and purpose: Vibration caused by ventilation systems in buildings is one of the harmful physical factors that can cause harm to residents. Therefore, measuring and controlling vibration is important. Materials and Methods: In the first step of the study, the vibration accelerometer was placed on the base of a fan where the vibrations were sent toward the duct wall. A vibration assessment of the building was conducted in the other steps to compare with guidelines. In the next step, isolation method was used to control vibration. By placing the isolator on the duct wall, the accelerometer was located on the body of the duct wall and the value of vibration was measured in a millimeter per second. All stages of the experiment were performed in the Faculty of Health of Isfahan University of Medical Sciences in 2018. Results: The maximum vibration velocity reduction in the building was related to the frequency of 68 Hz, which reached 33 mm/s after isolation. In addition, the fan vibration at 485 Hz was equal to 2.1 m /s, which decreased to 2 mm /s after isolation. Conclusion: Comparison of vibration after fan isolation with standard showed that this method has been effective in reducing the fan vibration resulting in the vibration to reach below the standard.

Energy-Optimal Structures of HVAC System for Cleanrooms as a Function of Key Constant Parameters and External Climate

This article presents approximating relations defining energy-optimal structures of the HVAC (Heating, Ventilation, Air Conditioning) system for cleanrooms as a function of key constant parameters and energy-optimal control algorithms for various options of heat recovery and external climates. The annual unit primary energy demand of the HVAC system for thermodynamic air treatment was adopted as the objective function. Research was performed for wide representative variability ranges of key constant parameters: cleanliness class—Cs (ISO5÷ISO8), unit cooling loads —q˙j (100 ÷ 500) W/m2 and percentage of outdoor air—αo (5 ÷ 100)%. HVAC systems are described with vectors x¯ with coordinates defined by constant parameters and decision variables, and the results are presented in the form of approximating functions illustrating zones of energy-optimal structures of the HVAC system x¯* = f (Cs, q˙j, αo). In the optimization procedure, the type of heat recovery as an element of optimal structures of the HVAC system and algorithms of energy-optimal control were defined based on an objective function and simulation models. It was proven that using heat recovery is profitable only for HVAC systems without recirculation and with internal recirculation (savings of 5 ÷ 66%, depending on the type of heat recovery and the climate), while it is not profitable (or generates losses) for HVAC systems with external recirculation or external and internal recirculation at the same time.

Impacts of data preprocessing and selection on energy consumption prediction model of HVAC systems based on deep learning

False ceiling deterioration detection and mapping using a deep learning framework and the teleoperated reconfigurable ‘falcon’ robot.

Periodic inspection of false ceilings is mandatory to ensure building and human safety. Generally, false ceiling inspection includes identifying structural defects, degradation in Heating, Ventilation, and Air Conditioning (HVAC) systems, electrical wire damage, and pest infestation. Human-assisted false ceiling inspection is a laborious and risky task. This work presents a false ceiling deterioration detection and mapping framework using a deep-neural-network-based object detection algorithm and the teleoperated `Falcon’ robot. The object detection algorithm was trained with our custom false ceiling deterioration image dataset composed of four classes: structural defects (spalling, cracks, pitted surfaces, and water damage), degradation in HVAC systems (corrosion, molding, and pipe damage), electrical damage (frayed wires), and infestation (termites and rodents). The efficiency of the trained CNN algorithm and deterioration mapping was evaluated through various experiments and real-time field trials. The experimental results indicate that the deterioration detection and mapping results were accurate in a real false-ceiling environment and achieved an 89.53% detection accuracy.

Data science to investigate temperature profiles of large networks of food refrigeration systems

The electrical generation and transmission infrastructures of many countries are under increased pressure. This partially reflects the move towards low carbon economies and the increased reliance on renewable power generation systems. There has been a reduction in the use of traditional fossil fuel generation systems, which provide a stable base load, and this has been replaced with more unpredictable renewable generation. As a consequence, the available load on the grid is becoming more unstable. To cope with this variability, the UK National Grid has placed emphasis on the investigation of various technical mechanisms (e.g. implementation of smart grids, energy storage technologies, auxiliary power sources, Demand Side Response (DSR)), which may be able to prevent critical situations, when the grid may become sometimes unstable. The successful implementation of these mechanisms may require large numbers of electrical consumers (e.g. HVAC systems, food refrigeration systems) for example to make additional investments in energy storage technologies (i.e. food refrigeration systems) or to integrate their electrical demand from industrial processes into the National Grid (i.e. HVAC systems). However, for food refrigeration systems, during these critical situations, even if the thermal inertia within refrigeration systems may maintain effective performance of the device for a short period of time (e.g. under 1 minute) when the electrical input load into the system is reduced, this still carries the paramount risk of food safety even for very short periods of time (e.g. 1 under minute). Therefore before considering any future actions (e.g. investing in energy storage technologies) to prevent the critical situations when grid becomes unstable, it is also needed to understand during the normal use how the temperature profiles evolve along the time inside these massive networks of food refrigeration systems during either shorter (i.e. minutes) or longer periods of time (i.e. days, months) and this paper presents this.

A systematic review and meta-analysis of indoor bioaerosols in hospitals: The influence of heating, ventilation, and air conditioning

Objectives To evaluate (1) the relationship between heating, ventilation, and air conditioning (HVAC) systems and bioaerosol concentrations in hospital rooms, and (2) the effectiveness of laminar air flow (LAF) and high efficiency particulate air (HEPA) according to the indoor bioaerosol concentrations. Methods Databases of Embase, PubMed, Cochrane Library, MEDLINE, and Web of Science were searched from 1st January 2000 to 31st December 2020. Two reviewers independently extracted data and assessed the quality of the studies. The samples obtained from different areas of hospitals were grouped and described statistically. Furthermore, the meta-analysis of LAF and HEPA were performed using random-effects models. The methodological quality of the studies included in the meta-analysis was assessed using the checklist recommended by the Agency for Healthcare Research and Quality. Results The mean CFU/m3 of the conventional HVAC rooms and enhanced HVAC rooms was lower than that of rooms without HVAC systems. Furthermore, the use of the HEPA filter reduced bacteria by 113.13 (95% CI: -197.89, -28.38) CFU/m3 and fungi by 6.53 (95% CI: -10.50, -2.55) CFU/m3. Meanwhile, the indoor bacterial concentration of LAF systems decreased by 40.05 (95% CI: -55.52, -24.58) CFU/m3 compared to that of conventional HVAC systems. Conclusions The HVAC systems in hospitals can effectively remove bioaerosols. Further, the use of HEPA filters is an effective option for areas that are under-ventilated and require additional protection. However, other components of the LAF system other than the HEPA filter are not conducive to removing airborne bacteria and fungi. Limitation of study Although our study analysed the overall trend of indoor bioaerosols, the conclusions cannot be extrapolated to rare, hard-to-culture, and highly pathogenic species, as well as species complexes. These species require specific culture conditions or different sampling requirements. Investigating the effects of HVAC systems on these species via conventional culture counting methods is challenging and further analysis that includes combining molecular identification methods is necessary. Strength of the study Our study was the first meta-analysis to evaluate the effect of HVAC systems on indoor bioaerosols through microbial incubation count. Our study demonstrated that HVAC systems could effectively reduce overall bioaerosol concentrations to maintain better indoor air quality. Moreover, our study provided further evidence that other components of the LAF system other than the HEPA filter are not conducive to removing airborne bacteria and fungi. Practical implication Our research showed that HEPA filters are more effective at removing bioaerosols in HVAC systems than the current LAF system. Therefore, instead of opting for the more costly LAF system, a filter with a higher filtration rate would be a better choice for indoor environments that require higher air quality; this is valuable for operating room construction and maintenance budget allocation.

Multivariate fault detection for residential HVAC systems using cloud-based thermostat data, part II: Case studies

Multivariate fault detection for residential hvac systems using cloud-based thermostat data, part i: methodology, export citation format, share document.

Advertisement

Advertisement

Recent Developments in HVAC System Control and Building Demand Management

  • Building Sustainability (N Nord, Section Editor)
  • Published: 17 January 2017
  • Volume 4 , pages 15–21, ( 2017 )

Cite this article

research paper on hvac system

  • Yongjun Sun 1 &
  • Gongsheng Huang 2  

706 Accesses

6 Citations

Explore all metrics

Purpose of review

Heating, ventilation, and air-conditioning (HVAC) system control and building demand management play important roles in building energy efficiency and sustainability, and thus motivate numerous studies in recent decades. In this article, we provide a review of the developments in both HVAC control and demand management in recent 5 years, helping readers to understand the new significant trends and achievements in these both areas.

Recent findings

We collected and analyzed a number of representative publications and found that the developments of HVAC system control have two significant trends: to improve the robustness of control and to improve the efficiency of system level real-time optimization; while demand management emphasizes the coordinated control in building-group-level other than single-building-level.

The improvement of the robustness of the HVAC systems control can guarantee the control performance under uncertainties; the improvement of the efficiency of the system level real-time optimization can significantly enhance the building energy efficiency, while the coordinated demand management can optimize the aggregated load profile for better serving the actual needs of a grid. Because buildings are integrating more and more advanced systems with complex dynamics, continuous efforts are needed to deal with the challenges in both HVAC system control and demand management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

research paper on hvac system

Do commercial buildings become less efficient when they provide grid ancillary services?

research paper on hvac system

Applications of MPC to Building HVAC Systems

research paper on hvac system

Occupant-behavior driven appliance scheduling for residential buildings

Papers of particular interest, published recently, have been highlighted as: • of importance •• of major importance.

ASHRAE. ASHRAE handbook-HVAC applications (SI). Atlanta: ASHRAE Inc.; 2011.

Google Scholar  

Dounis AI, Caraiscos C. Advanced control systems engineering for energy and comfort management in a building environment—a review. Renew Sust Energ Rev. 2009;13:1246–61.

Article   Google Scholar  

Strbac G. Demand side management: benefits and challenges. Energy Policy. 2008;36:4419–26.

Salsbury T. A survey of control technologies in the building automation industry. In: Proc. of the 16th IFACWorld Congress. Prague, Czech Republic; 2005. p. 331–341.

Underwood CP. HVAC control systems: modeling, analysis and design. E & FN Spon: London & New York; 1999.

Book   Google Scholar  

Wang SW, Ma ZJ. Supervisory and optimal control of building HVAC systems: a review. HVAC&R Research. 2008;14:3–32.

Kim SH, Augenbroe G. Uncertainty in developing supervisory demand-side controls in buildings: a framework and guidance. Autom Constr. 2013;35:28–43.

IEA Statistics: World energy statistics and balances, international energy agency (IEA), 2014.

•• Larsen GKH, Foreest NDV, Scherpen JMA. Power supply–demand balance in a smart grid: an information sharing model for a market mechanism. Appl Math Model. 2014;38(13):3350–60. Different from existing network models with hierarchical structures, a novel network model was developed to describe how the information of power imbalance of individual agents can be more effectively exchanged.

Yoon JH, Bladick R, Novoselac A. Demand response for residential buildings based on dynamic price of electricity. Energy and Buildings. 2014;80:531–41.

Bartusch C, Alvehag K. Further exploring the potential of residential demand response programs in electricity distribution. Appl Energy. 2014;125(15):39–59.

Wang SW. Intelligent buildings and building automation. Abingdon, Oxon: Spon Press; 2009.

Kochenderfer MJ. Decision making under uncertainty—theory and application. Cambridge: The MIT Press; 2015.

MATH   Google Scholar  

Zhou K, Doyle CJ. Essentials of robust control. USA: Prentice Hall; 1999.

Underwood CP. Robust control of HVAC plant I: modeling; II: controller design. Building Serv Eng Res Technol. 2000;21(1):53–71.

• Huang GS, Ling KV, Xu XL, Liao YD. Generalized eigenvalue minimization for uncertain first order plus time delay processes. ISA Trans. 2014;53:141–9. The study proposed a complete design of a robust controller when the process suffers from the uncertainties associated with the process gain, time constant and time delay. The proposed design can be applied to many HVAC process for robustness enhancement.

Huang GS, Jordán F. Model-based robust temperature control for VAV air-conditioning system. HVAC&R Research. 2012;18(3):432–45.

Moradi H, Setayesh H, Alasty A. PID-fuzzy control of air handling units in the presence of uncertainty. Int J Therm Sci. 2016;109:123–35.

Liao YD, Huang GS, Sun YJ, Zhang LF. Uncertainty analysis for chiller sequencing control. Energy and Buildings. 2014;85:187–98.

Liao YD, Sun YJ, Huang GS. Robustness analysis of chiller sequencing control. Energy Convers Manag. 2015;103:180–90.

Oldewurtel F, Parisio A, Jones CN, Gyalistras D, Gwerder M, Stauch V, Lehmann B, Morari M. Use of model predictive control and weather forecasts for energy efficient building climate control. Energ Buildings. 2012;45:15–27.

Zhang X, Schildbach G, Sturzenegger D, Morari M. Scenario-based MPC for energy-efficient building climate control under weather and occupancy uncertainty. European Control Conference (ECC), July 17–19, Zürich, Switzerland; 2013

Schirrer A, Brandstetter M, Leobner I, Hauer S, Kozek M. Nonlinear model predictive control for a heating and cooling systemof a low-energy office building. Energy and Buildings. 2016;125:86–98.

Kao JY. Control strategies and building energy consumption. ASHRAE Trans. 1985;91(2B):510–817.

Afram A, Janabi-Sharifi F. Theory and applications of HVAC control systems—a review of model predictive control (MPC). Build Environ. 2014;72:343–55.

Killian M, Kozek M. Ten questions concerning model predictive control for energy efficient buildings. Build Environ. 2016;105:403–12.

• Bengea SC, Li P, Sarkar S, Vichik S, Adetola V, Kang K, Lovett T, Leonardi F, Kelman AD. Fault-tolerant optimal control of a building HVAC system. Science and Technology for the Built Environment. 2015;21:734–51. Good study to provide a comprehensive and systematic analysis on the application of model predictive control on HVAC systems.

Ferreira PM, Silva S, Ruano AE. Model based predictive control of HVAC systems for human thermal comfort and energy consumption minimization. IFAC Proceedings Volumes (IFAC-PapersOnline) ; 2012. p. 236–241.

Goyal S, Barooah P, Middelkoop T. Experimental study of occupancy-based control of HVAC zones. Appl Energy. 2015;140:75–84.

Sun YJ, Huang GS, Li ZW, Wang SW. Multiplexed optimization of complex AC systems. Build Environ. 2013;65:99–108.

Wang JQ, Huang GS, Sun YJ. Optimal control of complex HVAC systems: event-driven or time-driven optimization? CLIMA, may 22–25. Denmark: Aalborg; 2016.

• Wang JQ, Huang GS, Sun YJ, Liu XP. Event-driven optimization of complex HVAC systems. Energy and Buildings. 2016;133:79–87. A good study which firstly proposed a new optimization mechanism (event-driven optimization other than conventional time-driven optimization) that can deal with the stochastic behaviours in the operation of complex HVAC systems.

•• Rotger-Griful S, Jacobsen RH, Nguyen D, Sørensen G. Demand response potential of ventilation systems in residential buildings. Energy and Buildings. 2016;121(1):1–10. The study performed reliable experimental and simulation tests to demonstrate the significant demand response potential of fan control aggregation.

Kato T, Takahashi H, Sasai K, Kitagata G, Kim H, Kinoshita T. Priority-based hierarchical operational management for multiagent-based microgrids. Energies. 2014;7:2051–78.

Seem JE. Adaptive demand limiting control using load shedding. HVAC&R Research. 1995;1(1):21–34.

Patteeuw D, Henze GP, Helsen L. Comparison of load shifting incentives for low-energy buildings with heat pumps to attain grid flexibility benefits. Appl Energy. 2016;167(1):80–92.

• Sun YJ, Wang SW, Xiao F, Gao DC. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: a review. Energy Convers Manag. 2013;71:101–14. The study conducted a comprehensive literature review on the peak load shifting controls using different types of thermal storage facilities.

Favre B, Peuportier B. Application of dynamic programming to study load shifting in buildings. Energy and Buildings. 2014;82:57–64.

Li XW, Malkawi A. Multi-objective optimization for thermal mass model predictive control in small and medium size commercial buildings under summer weather conditions. Energy. 2016;112(1):1194–206.

Kim SH. An evaluation of robust controls for passive building thermal mass and mechanical thermal energy storage under uncertainty. Appl Energy. 2013;111:602–23.

Yin RX, Karaa EC, Li YP, DeForest N, Wang K, Yong TY, Stadler M. Quantifying flexibility of commercial and residential loads for demand response using setpoint changes. Appl Energy. 2016;177:149–64.

•• Yalcintas M, Hagen WT, Kaya A. An analysis of load reduction and load shifting techniques in commercial and industrial buildings under dynamic electricity pricing schedules. Energy and Buildings. 2015;88(1):15–24. Excellent study, by investigating potential cost conservation measures that focus on reducing energy at times of higher energy costs, the study demonstrated that even simple shifting work schedules in office buildings can reduce significant monthly electricity bill.

Molavi H, Ardehali MM. Utility demand response operation considering day-of-use tariff and optimal operation of thermal energy storage system for an industrial building based on particle swarm optimization algorithm. Energy and Buildings. 2016;127(1):920–9.

Patteeuw D, Bruninx K, Arteconi A, Delarue E, D’haeseleer W, Helsen L. Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems. Appl Energy. 2015;151(1):306–19.

Arteconi A, Xu J, Ciarrocchi E, Paciello L, Comodi G, Polonara F, Wang RZ. Demand side management of a building summer cooling load by means of a thermal energy storage. Energy Procedia. 2015;75:3277–83.

Henzea GP, Felsmannb C, Knabeb G. Evaluation of optimal control for active and passive building thermal storage. Int J Therm Sci. 2004;43(2):173–83.

Hajiah A, Krarti M. Optimal control of building storage systems using both ice storage and thermal mass—part I: simulation environment. Energy Convers Manag. 2012;64:499–508.

Chernousov AA, Chan BYB. Numerical simulation of thermal mass enhanced envelopes for office buildings in subtropical climate zones. Energy and Buildings. 2016;118(15):214–25.

Barzin R, Chen JJJ, Young BR, Farid MM. Peak load shifting with energy storage and price-based control system. Energy. 2015;92:505–14.

•• Stathopoulos N, MEL M, Issoglio R, Michel P, Haghighat F. Air–PCM heat exchanger for peak load management: experimental and simulation. Sol Energy. 2016;132:453–66. Excellent study: the study presented a simple and reliable air-PCM heat exchanger model which can be used as a tool for the development of advanced control strategies taking into account various factors.

Rathod MK, Banerjee J. Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew Sust Energ Rev. 2013;18:246–58.

Porteiro J, Míguez JL, Crespo B, González LML, Lara JD. Experimental investigation of the thermal response of a thermal storage tank partially filled with different PCMs (phase change materials) to a steep demand. Energy. 2015;91:202–14.

Muratori M, Schuelke-Leech B-A, Rizzoni G. Role of residential demand response in modern electricity markets. Renew Sust Energ Rev. 2014;33:546–53.

Shen LM, Li ZW, Sun YJ. Performance evaluation of conventional demand response at building-group-level under different electricity pricings. Energy and Buildings. 2016;128:143–54.

• Gao DC, Sun YJ. A GA-based coordinated demand response control for building group level peak demand limiting with benefits to grid power balance. Energy and Buildings. 2016;110(1):31–40. Unlike conventional demand response controls focusing on individual-building-level, a novel coordinated demand response control with benefits to grid power balance was proposed to more effectively and efficiently limiting the overall peak demand of building groups.

Li XW, Wen J, Malkawi A. An operation optimization and decision framework for a building cluster with distributed energy systems. Appl Energy. 2016;178(15):98–109.

Ma L, Liu N, Wang LF, Zhang JH, Lei JY, Zeng Z, Wang C, Cheng MY. Multi-party energy management for smart building cluster with PV systems using automatic demand response. Energy and Buildings. 2016;121(1):11–21.

Xue X, Wang SW, Sun YJ, Xiao F. An interactive building power demand management strategy for facilitating smart grid optimization. Appl Energy. 2014;116(1):297–310.

Download references

Author information

Authors and affiliations.

Division of Building Science and Technology, City University of Hong Kong, Kowloon, Hong Kong

Yongjun Sun

Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong

Gongsheng Huang

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Gongsheng Huang .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Building Sustainability

Rights and permissions

Reprints and permissions

About this article

Sun, Y., Huang, G. Recent Developments in HVAC System Control and Building Demand Management. Curr Sustainable Renewable Energy Rep 4 , 15–21 (2017). https://doi.org/10.1007/s40518-017-0064-6

Download citation

Published : 17 January 2017

Issue Date : March 2017

DOI : https://doi.org/10.1007/s40518-017-0064-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Building energy efficiency
  • Demand management
  • Uncertainty
  • Real-time optimization
  • Coordinated control
  • Find a journal
  • Publish with us
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of springeropen

Challenges of using air conditioning in an increasingly hot climate

Karin lundgren-kownacki.

1 Department of Design Sciences, Lund University, 221 00 Lund, Sweden

Elisabeth Dalholm Hornyanszky

Tuan anh chu.

2 Department of Architecture, Lund University, Lund, Sweden

Johanna Alkan Olsson

3 Centre for Environment and Climate Research, Lund University, Lund, Sweden

4 Division of Risk Management and Societal Safety, Lund University, Lund, Sweden

At present, air conditioning (AC) is the most effective means for the cooling of indoor space. However, its increased global use is problematic for various reasons. This paper explores the challenges linked to increased AC use and discusses more sustainable alternatives. A literature review was conducted applying a transdisciplinary approach. It was further complemented by examples from cities in hot climates. To analyse the findings, an analytical framework was developed which considers four societal levels—individual, community, city, and national. The main challenges identified from the literature review are as follows: environmental, organisational, socio-economical, biophysical and behavioural. The paper also identifies several measures that could be taken to reduce the fast growth of AC use. However, due to the complex nature of the problem, there is no single solution to provide sustainable cooling. Alternative solutions were categorised in three broad categories: climate-sensitive urban planning and building design, alternative cooling technologies, and climate-sensitive attitudes and behaviour. The main findings concern the problems arising from leaving the responsibility to come up with cooling solutions entirely to the individual, and how different societal levels can work towards more sustainable cooling options. It is concluded that there is a need for a more holistic view both when it comes to combining various solutions as well as involving various levels in society.

Introduction

Increasing heat exposure levels are one of the most certain effects of climate change (IPCC 2014 ) and there is strong evidence of negative health impacts of environmental heat (e.g. Forzieri et al. ( 2017 ), Gasparrini et al. ( 2015 ), Aström et al. ( 2015 ), and Canouï-Poitrine et al. ( 2005 )). Heat exposure is particularly problematic in tropical and subtropical climates (Kjellstrom et al. 2009 ), although there is a significant heatwave-related mortality risk in warmer temperate climates as well (e.g. Poumadère et al. ( 2005 ), Patz et al. ( 2005 ), and Kaiser et al. ( 2007 )). Heat exposure is particularly problematic in large cities due to what is referred to as the urban heat island (UHI) effect (Oke 1982 ; Patz et al. 2005 ). In addition, areas with already and increasingly hot climates are the areas with high urbanisation rates and population growth (United Nations 2015 ). This puts escalating numbers of people at risk.

Air conditioning (AC) is promoted as an effective solution to reduce heat stress and protect from heat exposure by providing indoor thermal comfort to avoid heat-related health problems (e.g. Whitman et al. ( 1997 ), Chestnut et al. ( 1998 ), Davis et al. ( 2003 ), Barnett ( 2007 ), Bouchama et al. 2007 , and Anderson and Bell ( 2009 )). Although there are several good reasons for increased AC use, it is important to question the material, discursive and social aspects of AC. O’Neill ( 2003 ) described problems related to the widespread adoption of AC more than a decade ago, and argues against the non-critical approach found in some of the public health and epidemiological research fields that promote AC as the most effective solution (e.g. Whitman et al. ( 1997 ), Chestnut et al. ( 1998 ), Davis et al. ( 2003 ), Barnett ( 2007 ), Bouchama et al. ( 2007 ), and Anderson and Bell ( 2009 )).

This review paper rests on the premise that there are additional perspectives available than that of solely adopting a technological solution such as AC. Such an updated and expanded overview is particularly pertinent in the light of our increasing cognisance of climate change and the current escalation of AC use. Dahl ( 2013 ) anticipates a tenfold increase in energy demand for cooling by 2050 if the use of AC continues to follow current trends. This increase is expected to be concentrated to the fast growing and dense cities in areas with tropical and subtropical climates (e.g. Parkpoom and Harrison ( 2008 )).

The purpose of this review paper is to explore challenges linked to increased AC use as well as more sustainable cooling options in order to inform future approaches to handling urban heat. To meet this purpose, the paper sets out to answer the following two research questions:

  • What are the challenges of increased AC use found in the scientific literature?
  • What are the possible alternative solutions to AC use found in the scientific literature?

We also illustrate the findings from the literature review with examples from urban areas in hot climates.

Analytical framework and methodology

An analytical framework consisting of four parts guided the literature review (see Fig.  1 ). Inspired by studies on climate vulnerability, we recognised that society is influenced by a set of global processes of change, such as climate change, population growth, urbanisation, increasing inequality, globalisation, and increasing complexity (Becker 2014 ). We also recognised that society adapts proactively or reactively to the resulting challenges (Adger 2006 ; Anderson and Woodrow 1989 ; Kelly and Adger 2000 ; O’Brien et al. 2007 ). Inspired by multi-level governance methodology, we assumed that challenges as well as solutions may be produced or addressed at different levels in society. Consequently, we added a spatial dimension to the challenges and structured the discussion according to the level of societal organisation the solution addresses (Fig. ​ (Fig.1). 1 ). Particular attention was given to identifying circular relationships, in which one challenge is reinforced through the feedback from another.

An external file that holds a picture, illustration, etc.
Object name is 484_2017_1493_Fig1_HTML.jpg

Analytical framework visualising the relation between global processes of change, challenges related to AC use, solutions, and societal levels where solutions are identified

A literature review of peer-reviewed papers explored the challenges of AC use. A literature review is a suitable methodology for the purpose of this paper because it can be used to create an overview of what is known in a specific area, and can add detail and depth to a specific problem (Bryman 2008 ). The development of search terms for the literature search was carried out in a transdisciplinary setting to ensure a broad identification of challenges and alternative solutions, including environment and sustainability science, architecture and urban planning, social sciences, health, risk management, and thermal environment research. The literature review involved a three-step process:

Step one included the following: (i) the identification of search terms and alternatives to increased AC use, (ii) database searches, (iii) identification of challenges, and (iv) categorisation of challenges in the framework. Step two comprised the use of the search terms and categorisations to investigate what the current literature says about the five identified challenges of increased AC use to handle urban heat: environmental, organisational, socioeconomic, biophysical, and behavioural. In step three, alternative solutions were identified through a second literature search, also of peer-reviewed papers. Solutions were categorised into three broad categories: urban planning and building design, alternative cooling technologies, and attitudes and behaviour. These categories relate to the different societal levels where solutions can be implemented (Fig. ​ (Fig.1). 1 ). This is a novel approach to discussing the role of cooling in a hot climate compared to those provided by the narrower-scope literature currently available.

Challenges with air conditioning

This part of the literature review is structured according to the five categories of challenges (Fig. ​ (Fig.1). 1 ). The first three categories—environmental, organisational, and socioeconomic—are systemic. The last two—biophysical and behavioural—are individual but intimately related to the societal context and socioeconomic situation of individuals.

Environmental challenges

The adoption of AC increases the use of electricity or energy. It is currently estimated that the world consumes about one trillion kilowatt hours (kWh) of electricity for AC annually, more than twice the total energy usage of Africa for all purposes (Dahl 2013 ). The modelling results of Isaac and van Vuuren ( 2009 ) show that world energy demand for AC will increase rapidly in the twenty-first century. The increase in the median scenario for AC-induced growth in electricity use is from close to 300 TWh in year 2000, to about 4000 TWh in 2050 and more than 10,000 TWh in 2100 (Isaac and van Vuuren 2009 ). Widespread AC use places a heavy burden on the electricity distribution system and increases the risk for electricity power cuts (Parkpoom and Harrison 2008 ). IIASA's Global Energy Assessment report ( 2012 ) identifies that the choices of cooling technology will prove increasingly important for the development of energy use. These choices are already causing problems in many parts of the world due to increased electricity use (IIASA 2012 ).

As the use of AC is resource and energy intensive, it has consequently a potential negative impact on both climate change and the environment in general (Brager et al. 2015 ). Its impacts on climate change depend on the type of energy source used to produce the cooling. AC significantly increases electricity use (Valor et al. 2001 ; Crowley and Joutz 2003 ; Parkpoom and Harrison 2008 ; Izquierdo et al. 2011 ; Liu et al. 2011 ; Rosenthal 2012 ; Lundgren and Kjellstrom 2013 ). AC also contributes to the UHI effect and directly affects outdoor thermal comfort on streets through heat ejection (Yahia and Johansson 2013 ). Elevated urban temperatures, including UHIs, can increase the magnitude and duration of heat waves and cause additional night-time electricity consumption from AC (Kovats and Akhtar 2008 ). Climate change will create higher outdoor heat exposure levels (IPCC 2014 ) and if developments follow the current trajectory both in relation to expected temperature rises and the speed of AC adoption, there will be an increased use of AC in urban areas especially in the tropics and subtropics. This will create a negative feedback loop related to energy use and to the UHI effect.

One example where the use of AC is growing rapidly is in South and Southeast Asia (Isaac and van Vuuren 2009 ). In 2010, the Vietnamese building sector accounted for 20 to 24% of the total national energy use, which is expected to increase significantly, especially due to increased AC use (Nguyen et al. 2011 ; Le Phan and Yoshino 2010 ). From 1998 to 2008, the nationwide electricity consumption increased by 400%, in which the electricity consumption for administration and household accounts made up the largest proportion (Nam et al. 2015 ). This development is mostly driven by income growth and poor building design, but also by increasing heat exposure due to urban growth. It is expected that Hanoians will continue to rely solely on AC for cooling, since it is among the fastest growing AC markets globally and the general level of awareness fails to address problems associated with AC usage (Pham et al. 2014 ). Furthermore, the current situation with rising temperatures in Hanoi has undermined all attempts to reduce energy consumption, especially for cooling purposes. In fact, a heatwave in 2015 showed a record high 30% increase in maximum use of electricity in Hanoi (Lao Dong News 2015 ). A number of official statements from Vietnam Electricity have indicated that the need for cooling accounted for the largest part of the increase.

Organisational challenges

The organisational challenges are related to how we chose and organise supportive services and how we organise and design the development of our cities. When people grow increasingly dependent on AC for cooling their homes, they are not only contributing to increased urban temperatures due to outlet of hot air, but they are also increasing their vulnerability. Building houses and communities that are dependent on AC for coping with heat places them at the mercy of electric power cuts, which may become more common when the use of AC intensifies the stress on the electric distribution system (Parkpoom and Harrison 2008 ). Increasing dependencies between societal systems, such as systems for electricity production and distribution and ones that provide thermal comfort, are well-known contributors to increased risk and vulnerability, as the growing complexity increases the likelihood that two or more failures interact in ways that are difficult to anticipate (Perrow 2008 ). A consequence of such dependencies is that it becomes gradually more difficult to overview and manage the multiple layers of risk, as well as the consequences of actual events and decisions to handle them, since effects can spread across these chains of dependencies throughout society (Rasmussen and Svedung 2000 ).

Being dependent on electricity for cooling is, in other words, making people dependent not only on the functioning of the electricity distribution system as such, but also on all other connected systems. For instance, an increased need for electricity also creates a dependency on global oil and coal prices or on political decisions regarding water resource management, since fossil fuels and hydropower stations are the main energy sources in many countries. In addition, such a society becomes more vulnerable to cyclones and other hazards that may cause major destruction and prolonged power cuts (e.g. Han et al. ( 2009 )). Becoming more dependent on electricity for cooling homes thus locks people into a web of dependencies that ultimately increase their vulnerability to heat.

At the heart of this problem lay, in other words, dependencies through which interconnected effects can cascade and reinforce each other in society (Rinaldi et al. 2001 ; Little 2002 ). Such dependencies and slowly evolving increases in societal complexity have been referred to as “creeping dependencies” (Hills 2005 ), which accumulate and eventually reach a threshold where we lose the oversight and much of our ability to manage risks in our societies.

There are many reasons why societies have developed into highly complex structures but they will not be discussed in this paper. However, according to the literature review, it is obvious that current and previous trends in urban development and design are influencing and worsening the dependency on AC. One of them is the globalisation of urban development and housing ideals/trends, resulting in urban designs and buildings that abandon vernacular building tradition and lack the knowledge of how to adapt to the local climate that has developed over centuries.

This is the case in Hanoi where the “new urban areas” (NUAs) is an urban planning model that has been promoted since the turn of the century to meet the increasing demand for housing (Tran 2008 ). These master-planned developments at the city’s peripheries are more spread out, which creates a different urban space from the very dense and compact older parts of Hanoi’s inner city. The high-rise apartment blocks and detached houses are built to rely entirely on AC and little attention is paid to build in an energy-efficient manner (Le Phan and Yoshino 2010 ). The connection between design and the escalation of energy consumption for cooling has been shown to be significant, especially when considering the effects of urbanisation and rising urban temperatures (Nam et al. 2015 ). The increasing use of AC combined with global trends in urban and building design enforces a growing urban heat vulnerability as well as increased emission of greenhouse gases.

Socioeconomic challenges

At present, AC is mainly an investment made by individuals and enterprises. Its costs comprise the initial investment, maintenance, and running electricity expenditures. In a household context, AC is generally a local solution addressing the heat problem in one room at a time, which in practice means that a house or apartment without a central cooling system needs several AC systems to be able to cool the whole living area. Central cooling systems exist and are mainly used in office buildings or in the upper range private homes. As the economic burden to install a cooling system lies on the individual household, it is causing heat inequities between richer and poorer segments of society. O’Neill ( 2003 ) has shown that improvements of social conditions can reduce the inequalities of heat mortality.

With the improvement of living standards, electrical household appliances become more popular and the household energy consumption increases (Le Phan and Yoshino 2010 ). This situation can be illustrated by the case of Hanoi, where Le Phan and Yoshino ( 2010 ) show that the number and frequency of use of AC units are related to the households’ monthly income and have greater effects on the annual energy consumption than the use of any other household appliance. The electricity consumption of households using AC was 4 GJ higher than of those without (Le Phan and Yoshino 2010 ). This illustrates that the improvement of living conditions results in lifestyle changes, such as increased AC dependency and thus increased energy consumption. For a high-income family, the investment in one or two AC systems or a central cooling system and the payment of the electricity bill are lesser problems. For a poorer family, buying an AC and paying for the electricity may be impossible.

In addition to economic inequality, there is also a gender aspect to AC use. In Hanoi, for example, AC systems are rarely used in the kitchen where it is particularly warm from cooking activities (Phan and Yoshino 2010 ). There are also other studies showing gender biases related to the adoption of new technology (e.g. Gasper and van Staveren ( 2003 ), Iversen ( 2003 ), and Fernandez et al. ( 2013 )). Moreover, males and females do not spend an equal amount of time in each room of the house, and women generally are more engaged in domestic activities than men (Carswell 2012 ) and spend more time at home. The location of the AC units may, in other words, strengthen inequality both within and between families.

Furthermore, urban residents, especially the urban poor, are vulnerable to heat waves due to sub-standard housing, such as poor roofing and less green surroundings (Harlan et al. 2006 ). Evidence also indicates that the poorest, often living and working in the urban core, are more susceptible to UHI effects (O’Neill 2003 ). Hence, being unable to afford the purchase or running costs of AC causes several inequities and human rights challenges including social, economic, and gender-related inequalities.

Moreover, the poorer segments of society are less likely to work in an AC environment, which in a hotter climate exposes this societal group to more heat. Several studies show how heat exposure impacts workers in India (Venugopal et al. 2016 ; Lundgren et al. 2014 ; Balakrishnan et al. 2010 ; Ayyappan et al. 2009 ). The workplaces studied by Venugopal et al. ( 2016 ) had very high heat exposure in the hot season, often reaching the international standard safe work values (ISO 7243: 1989 , see example in the next section) impacting worker’s health and productivity. AC is commonly not used in these workplaces; however, due to the increasing adoption of AC (BIS Research 2015 ) together with the expected increases in temperature as the result of climate change in the region (IPCC 2013 ), further impacts on workers’ productivity are expected in addition to adverse health impacts.

Biophysical challenges

The physiological basis for the effects of heat on humans is well understood (e.g. Burton ( 1937 ), Ladell ( 1955 ), Budd ( 1974 ), Hales and Richard ( 1987 ), and Parsons ( 2003 )). Humans are born with a highly specialised complex of thermoregulatory sweat glands and a sensitive control system. However, factors, such as pre-existing disease, clothing, age, gender, heat acclimatisation ability, level of physical activity, and body size, can influence this system. When the ambient temperature reaches or exceeds the human core temperature of 37 °C, there are well-documented physiological effects on the human body, posing risks to some organ systems (Bennett and McMichael 2010 ). As the core temperature begins to rise, skin blood flow increases and sweating is initiated. At core temperatures beyond 38–39 °C, there is an increased risk of heat exhaustion and beyond these temperatures, heat stroke can occur with a consequent failure of the thermoregulatory system (Jay and Kenny 2010 ). Health consequences range from dehydration, injuries, and heat fatigue to a higher burden of respiratory and cardiovascular diseases, kidney failure, weakening of the immune system, and finally death (Parsons 2003 ).

One way of measuring heat is by using one of the heat stress indices. The importance of these indices is that the heat stress experienced is related to many environmental factors. One of these indices is the Wet Bulb Globe Temperature (WBGT) widely used in assessments of occupational heat stress (Bernard et al. 2005; Gao et al. 2017 this issue). The ISO standard for WBGT (ISO 7243: 1989 ) incorporates environmental temperature, humidity, and solar radiation (Kleim et al. 2002 ; Gao et al. 2017 this issue). A WBGT of 27 °C is seen as a threshold for the need for actions to protect workers, depending on the intensity of the work and clothing worn (ISO 1989 ). Assuming that the indoor temperature is similar to outdoor temperatures without AC, the contribution of solar radiation to WBGT needs to be discounted. Using Hanoi as an example for a future potential heat exposures in residential buildings, Fig.  2 shows such an average calculated WBGT heat stress index for the month of May in Hanoi over time based on the IPCC’s representative concentration pathway (RCP) of 8.5 (Climate CHIP 2016 ; IPCC 2013 ) using modelling data from the University of East Anglia. All simulations reach the threshold WBGTs of 27 °C or more before 2050, even without the contribution of the UHI effect. This indicates a challenging future for Hanoi. It strongly suggests an increased need to reduce indoor temperatures and if AC is the main available technology, it is likely to be increasingly used.

An external file that holds a picture, illustration, etc.
Object name is 484_2017_1493_Fig2_HTML.jpg

Future heat stress simulations during the month of May in Hanoi, without taking solar radiation into account. Produced by HOTHAPS soft (Kjellstrom et al. 2013 ; Lemke and Kjellström 2012 ). The different colours represent the different climate models’ datasets of RCP 8.5 (red—HadGem, violet—NORES, blue—GFDL, green—IPCM, and brown—MIROC+)

Humans are able to acclimatise to heat (Parsons 2003 ). Acclimatisation to a hot environment commonly occurs after 7–14 days of at least 2 hours daily heat exposure (NIOSH 2013 ). However, physiologically, it is possible for people to lose their heat acclimatisation when spending a majority of their time in AC environments, although the evidence is unclear (Kovats and Hajat 2008 ). A substantial amount of time spent indoors is required to lose heat acclimatisation (Garrett et al. 2009 ). Generally, acclimatisation effects are considered to be lost if the heat load has not been experienced for over 2 weeks. Re-acclimatisation depends on individual factors and the extent of time unexposed to heat (Ashley et al. 2015 ; Cheung and McLellan 1998 ; Pandolf 1998 ). Several scholars point out that more research is needed concerning acclimatisation (Pandolf 1998 ; Aoyagi et al. 1997 ; Garrett et al. 2009 ; Lim et al. 1997 ; Gill et al. 2001 ; Weller et al. 2007 ; Wyndham and Jacobs 1957 ).

Behavioural challenges

Culturally, AC has brought with it what can be called an encapsulation of the home in warm regions and has led to significant changes in the social geography of the home, as well as the neighbourhood (Wilhite 2009 ). The adoption of AC is globalised and is occurring at a rapid pace, fostered by the spread of modern building practices and faith in modern technical solutions to achieve indoor thermal comfort. Local knowledge about how to develop a comfortable climate, both indoor and in the neighbourhood, is lost in this process and cooling solutions are increasingly left to technical experts (Wilhite 2009 ). Wilhite ( 2009 ) goes on to argue that the current high demand for AC is socially and technically constructed, originating in the USA, and a part of the global discourse of how a modern house should be built—a development favoured by powerful commercial actors.

Some researchers argue that with increased AC use, people are becoming both physically and mentally dependent and accustomed to cooling, making them more vulnerable to increased urban heat (Nicol and Roaf 2012 ). As a consequence, traditional vernacular building styles found comfortable by past generations cannot meet current thermal comfort standards (Nicol and Roaf 2012 ). Moreover, de Dear and Brager ( 2002 ) argue that households living year-round with AC are likely to develop high expectations for a cool environment and become dependent on thermal homogeneity within a narrow range of temperatures. Brager et al. ( 2015 ) even suggest that as people gradually become reliant on cooling, they will become liable to over-cooling.

Due to a global discourse on the ideal human body, there is also an increasing fixation on eliminating sweat and body odour (Wilhite 2009 ). Humphreys et al. ( 2007 ) discuss a growing global lifestyle and global fashion industry promoting clothing/dress codes that are not in line with global indoor climate requirements, including no sweating (Humphreys et al. 2007 ). The literature in this research field thus suggests that the globalised perceptions of a modern life is encouraging an increased use of AC. Behavioural and cultural mechanisms are still of dominant importance for daily survival in hot environments (Lundgren et al. 2013 ), which makes changing individual norms and attitudes vital factors in the escalating demand for cooling technology.

Alternative or supplementary solutions to air conditioning

This section of the literature review focuses on alternative or supplementary solutions to AC use. The section is structured in three broad categories: climate-sensitive urban planning and building design, alternative cooling technologies, and climate-sensitive attitudes and behaviours.

Climate-sensitive urban planning and building design

Urban planning is important to address the effects of climate change (UN-Habitat 2007 ). An unfavourable outdoor and indoor climate can be prevented or mitigated through the application of climate-sensitive urban and building design, which refers to measures that adapt the urban landscape to the site, the region, and the climate (Keitsch 2012 ). With appropriate urban design, the urban microclimate can be improved and the UHI effect considerably reduced. Urban morphology, in particular the height-to-width ratio of urban street canyons, has a significant influence on air temperature, solar radiation, and wind speed (Johansson 2006 ). In addition, the orientation of streets and buildings in relation to the prevailing wind directions has a large impact on both outdoor and indoor ventilation (Givoni 1992 ; Ng 2009 ). A compact urban design results in considerably less radiation at street level and consequently lower daytime temperatures, which reduces thermal stress compared to a dispersed urban design (Johansson and Emmanuel 2006 ; Yahia and Johansson 2013 , 2014 ). However, since buildings cannot provide shading at high solar elevations (around noon), overhead shading—either through vegetation or shading devices—is crucial to creating a good microclimate (Emmanuel et al. 2007 ; Johansson et al. 2013 ; Yahia and Johansson 2014 ). Climate-sensitive building design also includes various strategies to maximise ventilation and to minimise solar heat gain, such as proper orientation of the building, adequate design of windows, and use of shading devices and of reflective surface materials (Givoni 1998 ).

The amount of vegetation affects both air temperatures and radiation in the urban outdoors. In hot and humid climates, plentiful vegetation in the form of large urban parks and gardens reduces urban temperatures considerably (Jusuf et al. 2007 ; Yahia et al. 2017 this issue). Vegetation can provide multiple positive functions at both building and urban scales, including a reduction of energy use in buildings during cooling periods (Pérez et al. 2014 ) and improved storm water management (Susca et al. 2011 ). Street trees, pergolas, etc., are beneficial to create shade in the urban outdoors. A combination of horizontal and vertical green structures is highly recommended to enhance the outdoor thermal environment (Yahia and Johansson 2014 ; Yahia et al. 2017 this issue). Such green structures have not been considered as an urban feature in the current Hanoi master plan, which does not include enough green areas to mitigate the UHI (Trihamdani et al. 2014 ). Until the beginning of the 1990s, Hanoi was known as a green city with tree-lined streets and avenues and a good number of public parks, gardens, and small rivulets and lakes (Matsumuto and Almec 2015 ). During the construction boom in the 1990s, many of the water surfaces were paved or built over and urban green decreased significantly in the city centre (JICA 2007 ). However, the NUAs have relatively high green space coverage. A UHI simulation study conducted in 2012 (Nam et al. 2015 ) investigated the cooling effects of the green space network proposed in the Hanoi master plan. The simulated weather data included air temperature, relative humidity, wind speed, wind direction, solar radiation and air pressure. The results showed that high air temperature areas, with temperature of 40–41 °C in the summer, would expand substantially in the planned NUAs. Simulated nocturnal air temperature would increase by up to 3–4 °C and wind speed was weaker than over green spaces. The results also showed that the green strategies proposed in the master plan were able to reduced night-time air temperature within the green areas but could not be expected to cool all of the built areas (Nam et al. 2015 ). Finally, traditional urban forms and building designs have proven to effectively manage local climate conditions in many countries. Therefore, sustainable and climate-sensitive design requires learning from vernacular ways of building in combination with modern design solutions and technology (Yahia 2014 ).

Alternative cooling technologies

At present, there is ongoing research and development of innovative cooling technologies and strategies that could potentially lower energy consumption (Chua et al. 2013 ; Desideri et al. 2009 ; Ghazali et al. 2012 ). District cooling systems and renewable energy AC are potential alternatives to conventional AC (Gang et al. 2015 ). Examples of district cooling are available, for instance in Singapore, but not very common around the world (Jusuf et al. 2007 ). Solar cooling and absorption chillers (referring to any conditioning system using passive solar ), solar thermal energy conversion, or photovoltaic conversion, are new technologies which have a high potential to replace conventional cooling technology based on electricity (ESTIF 2010 ). The advantage with solar cooling is that the energy production is renewable and also local which is good for the regional energy supply and for the energy user. Local energy production makes each region more self-sustaining and resilient to power failures (Lundgren and Kjellstrom 2013 ).

Novel cooling technologies also include personal cooling, such as cooling vests with phase change materials (Gao et al. 2012 ). Such systems have potential to cool the person’s micro-environment. However, they are often expensive and thus not accessible or seen as a priority by the poor. At an individual level, many people who cannot afford AC are using homemade cooling devices with a similar effect, but built with simple and inexpensive materials, such as fans, ice, and foam boxes. In Hanoi, some of these types of solutions have been commercialised to meet the demands of low-income households. Although such systems are available for the less affluent in society, they have their own environmental impact, as energy and water is needed to produce ice.

Climate-sensitive attitudes and behaviour

Studies indicate that behavioural changes may be more efficient than physical changes when it comes to reducing energy consumption (Vale and Vale 2009 ). Thus, a more sustainable urban development with less AC use and less energy consumption does not only require technical solutions or expert knowledge, but also the involvement of civil society (Larsen and Gunnarsson-Östling 2009 ). It requires efforts from urban citizens to contribute with an adaptive use of the built environment and an adaptive lifestyle, which for instance could mean staying in the shade, having a siesta during the hottest time of the day, or using climate smart clothing.

Mechanical cooling—providing thermal comfort by creating a steady, monotonous environment—has been proven not to be ideal in several cases (Brager et al. 2015 ). Instead, an adaptive environment with elements of individual control has the potential to provide a superior thermal environment, as it is adapted to the outside heat as well as to the person. Research has shown that when a cool stimulus is applied to a local body part (e.g. hand, head), it serves to reduce whole-body thermal stress (Zhang et al. 2010 ).

However, many parts of the paradigm of how to build and provide thermal comfort need to change in order for an adaptive environment to become a reality (Chappells and Shove 2005 ). Several researchers suggest that by actively scrutinising what is perceived as an ideal indoor environment and the associated ways of life, it is possible to develop an understanding of how we can design more sustainable future housing in different climatic conditions (Chappells and Shove 2005 ). In addition, one has to keep in mind that thermal comfort is individual and can only be understood through a perspective that accounts for the context of historical, technical, and social change (Wilhite 2009 ).

Suggested solutions and responsibility at different societal levels

In this final section, we relate the identified solutions to different societal levels. Solutions at the individual level include changes in behaviour, awareness, the deployment of micro-cooling, and personal adaptive strategies. At the community level, there are solutions that can help the most vulnerable, including shared cooled spaces, sharing work and other responsibilities, and investing together in, for example, gardens, houses, and cooling technology. City authorities are responsible for the development of urban space that can handle increasing urban heat, for developing initiatives, and for ensuring that the processes are participatory. The national level is responsible for providing infrastructure (large-, medium-, and small-scale) along with initiatives such as subsidies for sustainable cooling solutions. In addition to these solutions, participation between the actors of one level and the collaboration of actors between levels has been forwarded as being a central means to facilitate learning and increase the implementation and dissemination of new technologies as well as decrease vulnerability (Ahmad and Abu 2015 ; Bal et al. 2016 ). Participation can be seen as a cross-cutting solution that is usually used in combination with one or two of the other solutions, either to enhance the uptake of a solution at one level or to create uptake and learning between levels by creating a learning process. Table ​ Table1 1 provides an overview of alternative or supplementary solutions on the different levels.

Suggested solutions through a division of measures and the societal levels responsible

It is clear that AC has its advantages but if we chose to completely rely on it for cooling, it can lead us to a situation with escalating energy consumption, heat stress inequalities, and uncontrollable chains of risks. To address these challenges, a range of actions is required and there is no single solution to provide cooling in a sustainable way due to the complex nature of the problem.

From the analysis, it became clear that there are several challenges related to AC use and all need to be considered in order to gain a more holistic perspective when considering AC adoption. However, the identified challenges and suggested solutions are by no means exhaustive and there is an urgent need for a better and more holistic approach for how to handle our growing urban heat challenge. Different parts and levels of society need to cooperate and new ways of involving civil society must be developed.

A circular learning process between different levels in society is necessary. Instead of leaving all the responsibility for handling heat to the single citizen or household, the responsibility should be more clearly shared. Here, the local and national authorities have to take the lead and at the same time promote engagement and suggestions from civil society. For example, to handle challenges linked to culture and behaviour, civil society can play a role to foster climate-sensitive attitudes. Apart from the individual’s choice to live in a more climate-sensitive way, the community can play an important role in the process of changing citizens’ attitudes and behaviour. Such communities include official and unofficial unions, organisations, and local people. According to Geertman and Le ( 2008 ), the involvement and participation of communities also has a positive impact on households’ income and the living environment. This co-operation on the community level could also be the basis for joint investments for cooling systems or energy production. The challenges of unequal access to AC are present and need to be tackled by looking at alternative solutions and ensuring that either the community or the city level is able to protect the more vulnerable segments of society.

When contemplating future directions of thermal comfort, it is also important to reflect on historical ways of handling heat, as centuries of developing vernacular ways of coping and adapting to heat are being lost in a matter of decades or even years. Behavioural and cultural mechanisms are important for everyday coping in hot environments, but the increased use of AC combined with global trends in urban and building design generates increased urban heat vulnerability as well as increased emission of greenhouse gases.

Conclusions

The purpose of the research presented in this paper was to explore the challenges linked to increased AC use, and to discuss possible alternative or supplementary solutions that could be more sustainable based on a literature review. The results show that there are multiple challenges in relation to AC use that have to be considered. The challenges are not only related to an increase in energy consumption and the associated adverse environmental effects, but to individuals and societies becoming more dependent on AC. This is because frequent use of AC can lead to humans losing the capacity to handle heat both physically and mentally, and thus make them more vulnerable to increasing urban heat. Moreover, increased heat affects people unequally as different socioeconomic segments of society have different capacities for responding to the escalating challenges.

This paper identified several measures to take into consideration to reduce the fast growth of AC use: the implementation of more climate-sensitive building and urban design, the development of more energy-efficient cooling devices that rely on renewable energy and are also affordable for poor people, the promotion of a change towards more climate-sensitive life styles, and the support of co-operative cooling solutions on community and city levels that include active participation in the development of such structures by local communities. In conclusion, there is a need for a more holistic view both when it comes to combining various solutions as well as involving various levels in society.

Acknowledgements

We are grateful to the Pufendorf Institute at Lund University for initiating and funding the HEAT Theme Project and all the researchers involved.

  • Adger WN. Vulnerability. Glob Environ Chang. 2006; 16 (3):268–281. doi: 10.1016/j.gloenvcha.2006.02.006. [ CrossRef ] [ Google Scholar ]
  • Ahmad M, Abu TN. Empowering local communities: decentralization, empowerment and community driven development. Qual Quant. 2015; 49 (2):827–838. doi: 10.1007/s11135-014-0025-8. [ CrossRef ] [ Google Scholar ]
  • Anderson BG, Bell ML. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology. 2009; 20 (2):205–213. doi: 10.1097/EDE.0b013e318190ee08. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Anderson MB, Woodrow PJ (1989) Rising from the ashes: development strategies in times of disaster. Lynne Rienner Publishers, Boulder
  • Ashley CD, Ferron J, Bernard TE. Loss of heat acclimation and time to re-establish acclimation. J Occup Environ Hyg. 2015; 12 (5):302–308. doi: 10.1080/15459624.2014.987387. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Aström DO, Schifano P, Asta F, Lallo A, Michelozzi P, Rocklöv J et al (2015) The effect of heat waves on mortality in susceptible groups: a cohort study of a mediterranean and a northern European City. Environ Health 14(1). 10.1186/s12940-015-0012-0 [ PMC free article ] [ PubMed ]
  • Aoyagi Y, McLellan T, Shephard R. Interactions of physical training and heat acclimation: the thermophysiology of exercising in a hot climate. Sports Med. 1997; 23 (3):173–201. doi: 10.2165/00007256-199723030-00004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ayyappan R, Sankar S, Paramasivan R, Balakrishnan K. Work-related heat stress concerns in automotive industries: a case study from Chennai, India. Glob Health Action. 2009; 2 (1):2060. doi: 10.3402/gha.v2i0.2060. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bal A, Schrader EM, Afacan K, Mawene D. Using learning labs for culturally responsive positive behavioral interventions and supports. Interv Sch Clin. 2016; 52 (2):122–128. doi: 10.1177/1053451216636057. [ CrossRef ] [ Google Scholar ]
  • Balakrishnan K, Ramalingam A, Dasu V, Stephen JC, Sivaperumal MR, Kumarasamy D, et al. Case studies on heat stress related perceptions in different industrial sectors in southern India. Glob Health Action. 2010; 3 (1):5635. doi: 10.3402/gha.v3i0.5635. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Barnett AG. Temperature and cardiovascular deaths in the US elderly: changes over time. Epidemiology. 2007; 18 (3):369–372. doi: 10.1097/01.ede.0000257515.34445.a0. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Becker P (2014) Sustainability Science: Managing risk and resilience for sustainable developent. Elsevier, Amsterdam
  • Bennett CM, McMichael AJ. Non-heat related impacts of climate change on working populations. Glob Health Action. 2010; 23 (1):5640. doi: 10.3402/gha.v3i0.5640. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bernard TE, Luecke CL, Schwartz SW, Kirkland KS, Ashley CD. WBGT clothing adjustments for four clothing ensembles under three relative humidity levels. J Occup Environ Hyg. 2005; 2 (5):251–256. doi: 10.1080/15459620590934224. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • BIS Research (2015) Global Air Conditioner market, focus on types (including geothermal, renewable), application and regionEstimation & Forecast through 2015 to 2025. Available at: http://www.slideshare.net/slideshareprasoon/global-air-conditioner-ac-market-estimation-and-forecast-through-2015-to-2020 Accessed 21 of December 2016
  • Bouchama A, Dehbi M, Mohamed G, Matthies F, Shoukri M, Menne B. Prognostic factors in heat wave-related deaths: a meta-analysis. Arch Intern Med. 2007; 167 (20):2170–2176. doi: 10.1001/archinte.167.20.ira70009. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Brager G, Zhang H, Arens E. Evolving opportunities for providing thermal comfort. Build Res Inf. 2015; 43 (3):274–287. doi: 10.1080/09613218.2015.993536. [ CrossRef ] [ Google Scholar ]
  • Bryman A (2008) Social research methods. 3rd Edition ed. New York, United States: Oxford University Press
  • Budd GM. A field survey of thermal stress in New Guinea villagers. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences. 1974; 268 (893):393–400. doi: 10.1098/rstb.1974.0037. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Burton AC (1937) The application of the theory of heat flow to the study of energy metabolism. J Nutrition: 487–533
  • Canouï-Poitrine F, Cadot E, Spira A. Excess deaths during the August 2003 heat wave in Paris, France. Revue d’Epidemiologie et de Sante Publique. 2005; 54 :127–135. doi: 10.1016/S0398-7620(06)76706-2. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Carswell A (2012) The encyclopedia of housing, 2 nd Edition ed. United States: Sage Publications, DOI: 10.4135/9781452218380
  • Chappells H, Shove E. Debating the future of comfort: environmental sustainability, energy consumption and the indoor environment. Build Res Inf. 2005; 33 (1):32–40. doi: 10.1080/0961321042000322762. [ CrossRef ] [ Google Scholar ]
  • Chestnut LG, Brefflem WS, Smith JB. Analysis of differences in hot-weather-related mortality across 44 US metropolitan areas. Environ Sci Pol. 1998; 1 (1):59–70. doi: 10.1016/S1462-9011(98)00015-X. [ CrossRef ] [ Google Scholar ]
  • Cheung SS and McLellan TM (1998) Heat acclimation, aerobic fitness and hydration effects on tolerance during uncompensable heat stress. J. Appl Physiol. 84: 1731–1739 [ PubMed ]
  • Chua KJ, Chou SK, Yang WM, Yan J. Achieving better energy-efficient air conditioning—a review of technologies and strategies. Appl Energy. 2013; 104 :87–104. doi: 10.1016/j.apenergy.2012.10.037. [ CrossRef ] [ Google Scholar ]
  • Climate CHIP (2016) Climate change health impact and prevention—your area. Available at: http://www.climatechip.org/ Accessed 10 of January 2016
  • Crowley C and Joutz F (2003) Hourly electricity loads: temperature elasticities and climate change. 23rd US Association of Energy Economics North American Conference. Mexico City, October 19–21
  • Dahl R. Cooling concepts: alternatives to air conditioning for a warm world. Environ Health Perspect. 2013; 121 (1):a18–a25. doi: 10.1289/ehp.121-a18. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Davis RE, Knappenberger PC, Michaels PJ. Changing heat-related mortality in the United States. Environ Health Perspect. 2003; 111 (14):1712–1718. doi: 10.1289/ehp.6336. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • de Dear R and Brager G (2002) Thermal comfort in naturally ventilated buildings . Energy and Buildings 34: 549–561, 6, DOI: 10.1016/S0378-7788(02)00005-1
  • Desideri U, Proietti S, Sdringola P. Solar-powered cooling systems: technical and economic analysis on industrial refrigeration and air-conditioning applications. Appl Energy. 2009; 86 (9):1376–1386. doi: 10.1016/j.apenergy.2009.01.011. [ CrossRef ] [ Google Scholar ]
  • Emmanuel R, Rosenlund H, Johansson E (2007) Urban shading - a design option for the tropics? A study in Colombo, Sri Lanka. International Journal of Climatology. 27(14):1995–2004
  • European Solar Thermal Industry Federation (ESTIF) (2010) Solar Cooling - State of the art. Key Issues for Renewable Heat in Europe (K4RES-H). Available at: http://www.estif.org/fileadmin/estif/content/policies/downloads/D23-solar-assisted-cooling.pdf Accessed 20 of October 2015
  • Fernandez A, Boni A, Lillo P, Huesi A. Are technological projects reducing social inequalities and improving people’s well-being? A capability approach analysis of renewable energy-based electrification projects in Cajamarca, Peru. J Human Dev Capabilities. 2013; 15 (1):13–27. doi: 10.1080/19452829.2013.837035. [ CrossRef ] [ Google Scholar ]
  • Forzieri G, Cescatti A, Batista e Silva F, Feyen L (2017) Increasing risk over time of weather-related hazards to the European population: a data-driven prognostic study. The Lancet Planetary Health 1(5): e200 - e208, DOI: 10.1016/S2542-5196(17)30082-7 [ PubMed ]
  • Gang W, Wang S, Gao D, Xiao F. Performance assessment of district cooling systems for a new development district at planning stage. Appl Energy. 2015; 140 :33–43. doi: 10.1016/j.apenergy.2014.11.014. [ CrossRef ] [ Google Scholar ]
  • Gao C, Kuklane K, Wang F, Holmér I. Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective. Indoor Air. 2012; 22 (6):523–530. doi: 10.1111/j.1600-0668.2012.00778.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gao C, Kuklane K, Östergren P-O, Kjellström K (2017) Occupational heat stress assessment and protective strategies in the context of climate change. Int J Biometeorol. This issue . doi: 10.1007/s00484-017-1352-y [ PMC free article ] [ PubMed ]
  • Garrett AT, Goosens NG, Rehrer MJ, Patterson CJD. Induction and decay of short-term heat acclimation. Eur J Appl Physiol. 2009; 107 (6):659–670. doi: 10.1007/s00421-009-1182-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Rocklöv J, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet. 2015; 386 (9991):369–375. doi: 10.1016/S0140-6736(14)62114-0. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gasper D and van Staveren I (2003) Development as freedom—and as what else? Feminist Economist. 9 (2–3): 137–161
  • Ghazali AM, Malek A, Rahman A. The performance of three different solar panels for solar electricity applying solar tracking device under the Malaysian climate condition. Energy Environ Res. 2012; 2 (1):235–234. doi: 10.5539/eer.v2n1p235. [ CrossRef ] [ Google Scholar ]
  • Gill NB, Phed B, Sleivert G. Effect of daily vs. intermittent exposure to heat acclimation. Aviat Space Environ Med. 2001; 72 :385–390. [ PubMed ] [ Google Scholar ]
  • Givoni B. Climatic aspects of urban design in tropical regions. Atmos Environ. 1992; 26B :397–406. doi: 10.1016/0957-1272(92)90015-K. [ CrossRef ] [ Google Scholar ]
  • Givoni B. Climate considerations in building and urban design. New York: John Wiley and Sons; 1998. [ Google Scholar ]
  • Geertman S and Le C (2008) The globalization of urban forms in Hanoi. Available at: https://www2.unine.ch/files/content/sites/inst_geographie/files/shared/documents/hanoi_ouaga/2_The_Globalisation_Urban_Form_in_Hanoi_second_part.pdf Accessed 10 of January 2016
  • Hales JRS, Richard DAB. Heat stress—physical exertion and environment. Amsterdam, The Netherlands: Excerpta Medical; 1987. p. 525. [ Google Scholar ]
  • Han S, Guikema SD, Quiring SM, Lee K, Rosowsky D, Davidson RA. Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region. Reliab Eng Syst Saf. 2009; 94 (2):199–210. doi: 10.1016/j.ress.2008.02.018. [ CrossRef ] [ Google Scholar ]
  • Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L. Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med. 2006; 63 (11):2847–2863. doi: 10.1016/j.socscimed.2006.07.030. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hills A. Insidious environments: creeping dependencies and urban vulnerabilities. J Conting Crisis Manag. 2005; 13 (1):12–20. doi: 10.1111/j.0966-0879.2005.00450.x. [ CrossRef ] [ Google Scholar ]
  • Humphreys MA, Nicol JF, Raja IA. Field studies of indoor thermal comfort and the progress of the adaptive approach. Adv Build Energy Res. 2007; 1 (1):55–88. doi: 10.1080/17512549.2007.9687269. [ CrossRef ] [ Google Scholar ]
  • IIASA (2012) Global Energy Assessment, Ch.10 - Energy End-Use: Buildings 2012 . Available at: http://www.iiasa.ac.at/web/home/research/researchPrograms/Energy/Home-GEA.en.html Accessed 10 of January 2016
  • Intergovernmental Panel on Climate Change (IPCC) (2013) IPCC Fifth Assessment Report: Climate Change 2013: the physical science basis. Geneva, Switzerland
  • Intergovernmental Panel on Climate Change (IPCC) (2014). Climate change 2014: impacts, adaptation and vulnerability. Geneva, Switzerland, DOI: 10.1017/CBO9781107415416
  • International Standardization Organization (ISO) (1989) Hot environments—estimation of the heat stress on working man, based on the WBGT index (wet bulb globe temperature) ISO7243:1989. Geneva, Switzerland
  • Isaac M, van Vuuren DP. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy. 2009; 37 (2):507–521. doi: 10.1016/j.enpol.2008.09.051. [ CrossRef ] [ Google Scholar ]
  • Iversen V. Intra-household inequality: a challenge for the capability approach? Feminist Economist. 2003; 9 (2–3):93–115. doi: 10.1080/1354570032000080868. [ CrossRef ] [ Google Scholar ]
  • Izquierdo M, Moreno-Rodrguez A, Gonzlez-Gil A, Garca-Hernando N. Air conditioning in the region of Madrid, Spain: an approach to electricity consumption, economics and CO2 emissions. Energy. 2011; 36 (3):1630–1639. doi: 10.1016/j.energy.2010.12.068. [ CrossRef ] [ Google Scholar ]
  • Japan International Cooperation Agency (JICA) (2007) The Comprehensive Urban Development Programme in Hanoi Capital City of the Socialist Republic of Vietnam, ALMEC Corporation Nippon Koei Co., Ltd.
  • Jay O, Kenny GP. Heat exposure in the Canadian workplace. Am J Ind Med. 2010; 53 (8):842–853. [ PubMed ] [ Google Scholar ]
  • Johansson E (2006) Urban design and outdoor thermal comfort in warm climates—studies in Fez and Colombo. PhD thesis, Lund University, Sweden
  • Johansson E, Emmanuel R. The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo. Sri Lanka Int J of Biometeorology. 2006; 51 (2):119–133. doi: 10.1007/s00484-006-0047-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Johansson E, Spangenberg J, Lino Gouvêa M, Freitas ED. Scale-integrated atmospheric simulations to assess thermal comfort in six different urban tissues in the warm humid summer of São Paulo, Brazil. Urban Climate. 2013; 6 :24–43. doi: 10.1016/j.uclim.2013.08.003. [ CrossRef ] [ Google Scholar ]
  • Jusuf KS, Wong NH, Hagen E, Anggoro R, Hong Y. The influence of land use on the urban heat island in Singapore. Habitat Int. 2007; 31 (2):232–242. doi: 10.1016/j.habitatint.2007.02.006. [ CrossRef ] [ Google Scholar ]
  • Kaiser R, Le Tertre A, Schwartz J, Gotway CA, Daley WR, Rubin CH. The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality. Am J Public Health. 2007; 97 (S1):158–162. doi: 10.2105/AJPH.2006.100081. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kelly PM, Adger WN. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Clim Chang. 2000; 47 (4):325–352. doi: 10.1023/A:1005627828199. [ CrossRef ] [ Google Scholar ]
  • Keitsch M. Sustainable architecture, design and housing. Sust Dev. 2012; 20 :141–145. doi: 10.1002/sd.1530. [ CrossRef ] [ Google Scholar ]
  • Kjellstrom T, Holmer I, Lemke B. Workplace heat stress, health and productivity—an increasing challenge for low and middle-income countries during climate change. Glob Health Action. 2009; 2 (1):2047. doi: 10.3402/gha.v2i0.2047. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kjellstrom T, Lemke B, Otto M. Mapping occupational heat exposure and effects in South-East Asia: ongoing time trends 1980–2011 and future estimates to 2030 and 2050. Ind Health. 2013; 51 (1):56–67. doi: 10.2486/indhealth.2012-0174. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kleim SM, Guisto JA, Sullivan JB. Environmental thermal stress. Ann Agric Environ Med. 2002; 9 :1–15. [ PubMed ] [ Google Scholar ]
  • Kovats S, Akhtar R. Climate, climate change and human health in Asian cities. Environ Urban. 2008; 20 (1):165–175. doi: 10.1177/0956247808089154. [ CrossRef ] [ Google Scholar ]
  • Ladell WSS. The effects of water and salt intake upon the performance of men working in hot and humid environments. J Physiol. 1955; 127 (1):11–46. doi: 10.1113/jphysiol.1955.sp005235. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lao Dong News (2015) Households struck with over the roof electricity bill. Available at: http://www.tienphong.vn/nhip-song-thu-do/dan-lai-keu-troi-vi-hoa-don-tien-dien-tang-vot-875419.tpo Accessed 10 of January 2016
  • Larsen K, Gunnarsson-Östling U. Climate change scenarios and citizen-participation: mitigation and adaptation perspectives in constructing sustainable futures. Habitat Int. 2009; 33 (3):260–266. doi: 10.1016/j.habitatint.2008.10.007. [ CrossRef ] [ Google Scholar ]
  • Lemke B, Kjellström K. Calculating workplace WBGT from meterological data: a tool for climate change assessment. Ind Health. 2012; 50 (4):267–278. doi: 10.2486/indhealth.MS1352. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lim CL, Chung KKC, Hock LLK. The effects of prolonged passive heat exposure and basic military training on thermoregulatory and cardiovascular responses in recruits from a tropical country. Mil Med. 1997; 162 (9):623–627. doi: 10.1093/milmed/162.9.623. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Little RG. Controlling cascading failure: understanding the vulnerabilities of interconnected infrastructures. J Urban Technol. 2002; 9 (1):109–123. doi: 10.1080/106307302317379855. [ CrossRef ] [ Google Scholar ]
  • Liu J, Ma F, Li Y. The effect of anthropogenic heat on local heat island intensity and the performance of air conditioning systems. Adv Mater Res. 2011; 250-253 :2975–2978. doi: 10.4028/www.scientific.net/AMR.250-253.2975. [ CrossRef ] [ Google Scholar ]
  • Lundgren K, Kjellstrom T. Sustainability challenges from climate change and air conditioning use in urban areas. Sustainability. 2013; 5 (7):3116–3128. doi: 10.3390/su5073116. [ CrossRef ] [ Google Scholar ]
  • Lundgren K, Kuklane K, Venugopal V. Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933): a case study from workplaces in Chennai, India. Glob Health Action. 2014; 7 (1):25283. doi: 10.3402/gha.v7.25283. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lundgren K, Kuklane K, Gao G, Holmér I. Effects of heat stress on working populations when facing climate change. Ind Health. 2013; 51 (1):3–15. doi: 10.2486/indhealth.2012-0089. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Matsumoto S and Omata Y (2015) Consumer valuations of energy efficiency investments: the case of Vietnam’s air conditioner market. The Research Institute of Economy, Trade and Industry
  • Nam THH, Kubota T, Trihamdani AR. Impact of urban heat island under the Hanoi Master Plan 2030 on cooling loads in residential buildings. Int J Built Environ Sustain. 2015; 2 (1):48–61. doi: 10.11113/ijbes.v2.n1.56. [ CrossRef ] [ Google Scholar ]
  • National Institute for Occupational Safety and Health (NIOSH) (2013) Criteria for a recommended standard: Occupational Exposure to Hot Environments Revised Criteria. DHHS (NIOSH)
  • Nguyen AT, Tran QB, Tran DQ, Reiter S (2011) An investigation on climate responsive design strategies of vernacular housing in Vietnam. Build Environ 46(10):2088–2106
  • Nicol JF, Roaf S. Adaptive thermal comfort and passive architecture. In: Santamouris M, editor. Advances in passive cooling. London: Routledge; 2012. [ Google Scholar ]
  • Ng E. Policies and technical guidelines for urban planning of high-density cities—air ventilation assessment (AVA) of Hong Kong. Build Environ. 2009; 44 (7):1478–1488. doi: 10.1016/j.buildenv.2008.06.013. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • O’Brien K, Eriksen S, Nygaard LP, Schjolden A. Why different interpretations of vulnerability matter in climate change discourses. Clim Pol. 2007; 7 (1):73–88. doi: 10.1080/14693062.2007.9685639. [ CrossRef ] [ Google Scholar ]
  • Oke TR. The energetic basis of the urban heat island. Q J R Meteorol Soc. 1982; 108 (455):1–24. [ Google Scholar ]
  • O’Neill MS (2003) Air conditioning and heat related health effects. Applied Environmental Science and Public Health. 1(1): 9–12
  • Pandolf KB. Time course of heat acclimation and its decay. Int J Sports Med. 1998; 19 (S 2):S157–S160. doi: 10.1055/s-2007-971985. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Parkpoom S, Harrison G. Analyzing the impact of climate change on future electricity demand in Thailand. IEEE Trans Power Syst. 2008; 23 (3):1441–1448. doi: 10.1109/TPWRS.2008.922254. [ CrossRef ] [ Google Scholar ]
  • Parsons K (2003) Human thermal environments, Second edn. Taylor and Francis, New York
  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human health. Nature. 2005; 438 (7066):310–317. doi: 10.1038/nature04188. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pérez G, Coma J, Martorell I, Cabeza LF. Vertical Greenery Systems (VGS) for energy saving in buildings: a review. Renew Sust Energ Rev. 2014; 39 :139–165. doi: 10.1016/j.rser.2014.07.055. [ CrossRef ] [ Google Scholar ]
  • Perrow CB. Complexity, catastrophe, and modularity. Sociol Inq. 2008; 78 (1):162–173. doi: 10.1111/j.1475-682X.2008.00231.x. [ CrossRef ] [ Google Scholar ]
  • Phan TV and Yoshino H (2010). Survey on energy consumption and environment of urban residential buildings in Vietnam. Paper for 11 th International Conference on Sustainable Environmental Architecture 2010
  • Pham HL, Nguyen VD, Nguyen NA, Lai NA (2014) Labeling and studying on heat pump and air conditioner in Vietnam. Hanoi University of Science and Technology
  • Poumadère M, Mays C, Le Mer S, Blong R. The 2003 heat wave in France: dangerous climate change here and now. Risk Anal. 2005; 25 (6):1483–1494. doi: 10.1111/j.1539-6924.2005.00694.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rasmussen J, Svedung I. Proactive risk management in a dynamic society. Karlstad: SRSA; 2000. [ Google Scholar ]
  • Rinaldi SM, Peerenboom JP, Kelly TK. Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst Mag. 2001; 21 (6):11–25. doi: 10.1109/37.969131. [ CrossRef ] [ Google Scholar ]
  • Rosenthal E (2012) The cost of cool. Available at: http://www.nytimes.com/2012/08/19/sunday-review/air-conditioning-is-an-environmental-quandary.html?_r=1&ref=airconditioning Accessed 10 of January 2016
  • Susca T, Gaffin SR, Dell’Osso GR. Positive effects of vegetation: urban heat island and green roofs. Environ Pollut. 2011; 159 (8–9):2119–2126. doi: 10.1016/j.envpol.2011.03.007. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tran HA. Urban housing reform and state capacity in Vietnam. Pac Rev. 2008; 21 (2):189–210. doi: 10.1080/09512740801990253. [ CrossRef ] [ Google Scholar ]
  • Trihamdani AR, Lee HS, Phuong TTT, Kubota T, Tanaka T, Matsuo K (2014). Effect of green strategy in Hanoi master plan on its urban climate. In International Conference of Grand Renewable Energy 2014, Tokyo, Japan, 27 Jul–1 Aug.
  • UN-Habitat (2007) UN-HABITAT pitches for urban planning, Bonn. Available at: http://www.unhabitat.org/content.asp?cid=4836&catid=550&typeid=6&subMenuId=0 Accessed 24 of January 2016
  • United Nations (2015) World Urbanization Prospects: The 2014 Revision, New York: United Nations
  • Vale R, Vale B. Footprinting urban form and behaviour in New Zealand. Archit Sci Rev. 2009; 52 :254–260. doi: 10.3763/asre.2009.0071. [ CrossRef ] [ Google Scholar ]
  • Valor E, Meneu V, Caselles V (2001) Daily air temperature and electricity load in Spain. American Meterological Society. 40: 1413–1421
  • Venugopal V, Chinnadurai J, Lucas R, Kjellström K (2016) Occupational heat stress profiles in selected workplaces in India. Int. J. of Environmental Research and Public Health. 13(1). Doi: 10.3390/ijerph13010089 [ PMC free article ] [ PubMed ]
  • Weller AS, Linnane DM, Jonkman AG, Daanen HAM. Quantification of the decay and re-induction of heat acclimation in dry-heat following 12 and 26 days with exposure to heat stress. Eur J Appl Physiol. 2007; 102 (1):57–66. doi: 10.1007/s00421-007-0563-z. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Whitman S, Good G, Dodoghue ER, Benbow N, Shou W, Mou S. Public health briefs: mortality in Chicago attributed to the July 1995 heat wave. Am J Public Health. 1997; 87 (9):1515–1518. doi: 10.2105/AJPH.87.9.1515. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wilhite H. The conditioning of comfort. Build Res Inf. 2009; 37 (1):84–88. doi: 10.1080/09613210802559943. [ CrossRef ] [ Google Scholar ]
  • Wyndham CH, Jacobs GE. Loss of acclimatization after six days of work in cool conditions on the surface of a mine. J Appl Physiol. 1957; 11 :197–198. doi: 10.1152/jappl.1957.11.2.197. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Yahia MW, Johansson E. Influence of urban planning regulations on the microclimate in a hot dry climate—the example of Damascus, Syria. J Housing Built Environ. 2013; 28 (1):51–65. doi: 10.1007/s10901-012-9280-y. [ CrossRef ] [ Google Scholar ]
  • Yahia MW, Johansson E. Landscape interventions in improving thermal comfort in the hot dry city of Damascus, Syria—the example of residential spaces with detached buildings. Landsc Urban Plan. 2014; 125 :1–16. doi: 10.1016/j.landurbplan.2014.01.014. [ CrossRef ] [ Google Scholar ]
  • Yahia MW (2014) Towards better urban spaces in harmony with microclimate—urban design and planning regulations in hot dry Damascus, Syria. Doctoral Thesis. Lund University, Sweden. ISSN 1652-7666
  • Yahia MW, Johansson E, Thorsson S, Lindberg F, Rasmussen M (2017) Effect of urban design on microclimate and thermal comfort in warm humid Dar es Salaam. Tanzania Int J Biometerology. This Issue . 10.1007/s00484-017-1380-7 [ PMC free article ] [ PubMed ]
  • Zhang H, Arens E, Huizenga C, Han T. Thermal sensation and comfort models for non-uniform and transient environments, part II: local comfort of individual body parts. Build Environ. 2010; 45 (2):389–398. doi: 10.1016/j.buildenv.2009.06.015. [ CrossRef ] [ Google Scholar ]

research paper on hvac system

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

  •  We're Hiring!
  •  Help Center

Hvac System

  • Most Cited Papers
  • Most Downloaded Papers
  • Newest Papers
  • Save to Library
  • Last »
  • Battery management system Follow Following
  • energy efficient HVAC design Follow Following
  • Mechanical Engineering-HVAC Follow Following
  • Fire Detecting System Follow Following
  • HVAC and Sustainability Follow Following
  • Elektrik Elektronik Follow Following
  • Intelligent Control Follow Following
  • HVAC equipment Follow Following
  • HVAC / Building Services Follow Following
  • Lighting Follow Following

Enter the email address you signed up with and we'll email you a reset link.

  • Academia.edu Publishing
  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

IMAGES

  1. (PDF) Developing and Testing Dynamic Models for HVAC Systems Using

    research paper on hvac system

  2. Understanding the HVAC Systems Basics, Work & Types in 2022

    research paper on hvac system

  3. HVAC SYSTEM & TEST FOR HVAC QUALIFICATION

    research paper on hvac system

  4. Hvac research papers

    research paper on hvac system

  5. (PDF) Supervisory and Optimal Control of Building HVAC Systems: A Review

    research paper on hvac system

  6. How Does A HVAC System Work?

    research paper on hvac system

VIDEO

  1. HVAC: Hospitals and health care facilities

  2. Temp hvac system. #hvac

  3. HVAC: Labs and research facilities

  4. [WEBINAR] Mastering the HVAC System : Design, Installation, Operation and Maintenance

  5. HVAC system works

  6. HVAC system chiller dickinig Kuwait job wark fawaz company

COMMENTS

  1. (PDF) Review of HVAC Systems History and Future Applications

    With the proper data, development of artificial intelligence models can, in theory, improve the overall optimization and reduce energy consumption This paper will provide a review of HVAC history ...

  2. Recent developments trends in HVAC (heating ...

    The heating, ventilation, and air conditioning system (HVAC) controls the air quality, humidity, and airflow in a building. ... The most noteworthy discovery from this research is that the "adaptive ... However, the information on actual working conditions that is necessary today is mostly inaccessible. This paper presents methods and ...

  3. Sustainability of Heating, Ventilation and Air-Conditioning (HVAC

    The assessment of measurement and modeling techniques and their performance are important in planning to achieve sustainable HVAC systems considering occupancy, comfort, and building type [].Despite the availability of various methods that can be used in building design and retrofitting to improve the HVAC system performance [5,6], this paper only studies the parameters that directly deal with ...

  4. hvac systems Latest Research Papers

    Results The mean CFU/m3 of the conventional HVAC rooms and enhanced HVAC rooms was lower than that of rooms without HVAC systems. Furthermore, the use of the HEPA filter reduced bacteria by 113.13 (95% CI: -197.89, -28.38) CFU/m3 and fungi by 6.53 (95% CI: -10.50, -2.55) CFU/m3.

  5. Review of HVAC Systems History and Future Applications

    Today, HVAC (heating, ventilation, and air conditioning) systems have become an integral part of modern buildings and are designed to provide comfortable indoor environments while conserving energy and reducing carbon emissions. With advancement in technology, HVAC systems have a variety of sensors that are used to detect the occupants within a controlled environment. Advancements in computer ...

  6. Recent Developments in HVAC System Control and Building ...

    Purpose of review Heating, ventilation, and air-conditioning (HVAC) system control and building demand management play important roles in building energy efficiency and sustainability, and thus motivate numerous studies in recent decades. In this article, we provide a review of the developments in both HVAC control and demand management in recent 5 years, helping readers to understand the new ...

  7. Research on optimal control of HVAC system using swarm intelligence

    Abstract. Energy conservation in buildings is of vital importance for solving the problem of global warming and energy scarcity in today's world. In this paper, we discuss the optimal control methods of the heating, ventilation, and air-conditioning (HVAC) system using swarm intelligence algorithms to reduce energy consumption of buildings.

  8. Buildings

    Heating, Ventilation, and Air-Conditioning (HVAC) systems are critical components of maintaining an indoor air quality that ensures the thermal comfort of occupants in diverse building types. However, HVAC systems are also responsible for a substantial portion of the total energy consumption of commercial and industrial office buildings. This paper presents an integrated approach of two ...

  9. PDF Energy Modeling and Model Predictive Control for HVAC in Buildings: A

    To operate HVAC systems more efficiently, the appropriate control and operation of the energy-related systems are key techniques. Since HVAC-related systems of modern buildings consist of many different types of subsystem configurations with a dynamic operation [14], controlling HVAC systems in an effective way between multiple goals (e.g.,

  10. Sustainability

    The heating, ventilation, and air-conditioning (HVAC) system in a building accounts for about 70% of energy consumption, and a decision to reduce energy consumption may impact the indoor environmental quality (IEQ) of the building. ... Feature papers represent the most advanced research with significant potential for high impact in the field. A ...

  11. A review on solar-powered cooling and air-conditioning systems for

    1. Introduction. Building sector is the major consumer of final energy use worldwide by up to 40%. Statistics of responsible organisations and parties evident that most of this percentage is consumed for cooling and air-conditioning purposes (IEA, 2013, IEA and UN Environment Programme, 2019).It is commonly known that most of the electric energy is spent on heating, ventilating and air ...

  12. PDF Residential HVAC Installation Practices

    Duct leakage is the most common source of performance degradation of HVAC systems, with most studies finding 90-100% of systems tested needing sealing or repairs to the supply or return air ducts. Low airflow is found more than 50% of the time in all regions studied, while high airflow is a problem in 8-15% of systems.

  13. 4. The role of HVAC systems in the spread of COVID-19

    The results of the research announced that with the query with the specified keyword of "COVID-19 + HVAC", there were 26 research works in 2020 that dealt with the relationship of COVID-19 to HVAC systems, while during the year 2021 a few research articles boosted and reached up to 40 research papers as displayed in Fig. 5 c.

  14. Research on building energy management in HVAC control system for

    This paper mainly discusses the application of electrical automation in intelligent buildings. As advanced intelligent network control and room load change, the design of HVAC control system is based on FCS to realize remote automatic adjustment of air conditioning system operation in university library.

  15. Sensors

    Heating, ventilation, and air conditioning (HVAC) systems are a popular research topic because buildings' energy is mostly used for heating and/or cooling. These systems heavily rely on sensory measurements and typically make an integral part of the smart building concept. As such, they require the implementation of fault detection and diagnosis (FDD) methodologies, which should assist users ...

  16. Challenges of using air conditioning in an increasingly hot climate

    A literature review of peer-reviewed papers explored the challenges of AC use. A literature review is a suitable methodology for the purpose of this paper because it can be used to create an overview of what is known in a specific area, and can add detail and depth to a specific problem (Bryman 2008).The development of search terms for the literature search was carried out in a ...

  17. PDF Sustainable HVAC Systems in Commercial And Residential Buildings

    calls for a sustainable solutions for HVAC systems. We discuss many of such techniques used around the globe in this paper. The main objective is to minimise the energy consumption by shifting towards natural renewable sources while maintaining the required comfort level of a building. Index Terms- HVAC, Radiant systems, Solar AC, Trombe wall. I.

  18. Hvac System Research Papers

    In heating, ventilation and air conditioning field, the rise of the variable refrigerant flow systems have made big progress. This study focuses on cost analysis to evaluate the economic feasibility of conventional air conditioning system, VRF air conditioning system as well as the VRF duct type air conditioning system.

  19. Review of research on air-conditioning systems and indoor air quality

    In this paper, recent research is reviewed on air-conditioning systems and indoor air quality control for human health. The problems in the existing research are summarized. ... Air-conditioning systems have been used in many parts of the world. The purpose of most systems is to provide thermal comfort and an acceptable indoor air quality (IAQ ...

  20. PDF Long-term Care Around the World National Bureau of Economic Research

    States, long-term care systems differ across states in eligibility and types of sItaly also upport. displays substantial variation in eligibility for public support across regions. Lastly, in Canada, formal longterm care systems are largely decentralized, with large differences across provinces -