Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science ⋅
  • Nature ⋅
  • Plants & Mushrooms

Role of Water in Photosynthesis

Role of Water in Photosynthesis

Why Do Plants Need the Sun?

When you feel low on energy and need a snack, you probably just open the refrigerator or rifle through a kitchen drawer. When plants get the urge for an energy bump, their process is a bit more complex and also more direct because they go straight to the source: the sun.

TL;DR (Too Long; Didn't Read)

Plants rely on the process of photosynthesis to capture, convert and store energy directly from the sun. To do this, they require carbon dioxide (CO 2 ) and water (H 2 O). In the presence of sunlight, these molecules break apart and form glucose (C 6 H 12 O 6 ) and oxygen (O 2 ). The chemical formula for this reaction is 6CO 2 + 6H 2 O ------> C 6 H 12 O 6 + 6O 2.

What Is photosynthesis?

In order to produce energy, plants undergo a process called photosynthesis. The chemical formula for photosynthesis is 6CO 2 + 6H 2 O ------> C 6 H 12 O 6 + 6O 2. If you look at the left side of the equation, you see the ingredients that plants require for photosynthesis: six molecules of carbon dioxide (CO 2 ) and six molecules of water (H 2 O).

Specialized Plant Anatomy

While plants take in carbon dioxide through tiny pores located on their leaves, stems and flowers, they need specialized structures to gather water and move it up through their stems. Most plants use roots to pull water from the earth. To do this, they rely on long, thin root hairs dispersed through the soil. Since the cytoplasm of the root hair cells has lower water potential than the water in the soil, osmosis pulls the water from the root hairs through the root cortex and into the xylem.

The xylem is a system of tubelike vascular bundles that transports water up the plant’s stem and into its leaves. It might be helpful to imagine the xylem as blood vessels stretching through the plant’s body. The process of moving water through the plant is called transpiration.

Water and Photosynthesis

Plants with enough water and carbon dioxide harness the power of photons gathered from sunlight to complete photosynthesis. The six molecules of carbon dioxide and six molecules of water on the left side of the photosynthesis equation break apart and reconfigure into glucose and six molecules of oxygen. The sugar (glucose) can be used for energy immediately or stored for later use while the oxygen releases through the plant’s pores as a waste product.

Since humans can’t perform photosynthesis, they rely on the energy produced and stored by plants. This means that when you make a snack in your kitchen, a plant was responsible for producing all the energy that you consume. Even if the snack is meat-based, plants were the initial energy source for the animal. It’s hard to imagine that the energy that sustains your life and allows you to move started out as carbon dioxide, water and sunlight – but it’s true!

Related Articles

Why is photosynthesis so important to plants, importance of aerobic cellular respiration, what is the waste product of photosynthesis, how do plant cells obtain energy, what happens to carbon dioxide during photosynthesis, what do plants need to carry out photosynthesis, solar energy facts for kids, what are the functions of photosynthesis, the greenhouse effect & photosynthesis, when does respiration occur in plants, how do plants make oxygen, how does a fern plant transport water & nutrients, how do plants store excess sugar, the difference between desert plants & rainforest plants, the three stages of photosynthesis, chemical ingredients of photosynthesis, what is reduced & oxidized in photosynthesis, how does water enter the earth's atmosphere, what are the functions of plant parts for kids.

  • BBC GCSE Bitesize: Xylem and Phloem

About the Author

Melissa Mayer is an eclectic science writer with experience in the fields of molecular biology, proteomics, genomics, microbiology, biobanking and food science. In the niche of science and medical writing, her work includes five years with Thermo Scientific (Accelerating Science blogs), SomaLogic, Mental Floss, the Society for Neuroscience and Healthline. She has also served as interim associate editor for a glossy trade magazine read by pathologists, Clinical Lab Products, and wrote a non-fiction YA book (Coping with Date Rape and Acquaintance Rape). She has two books forthcoming covering the neuroscience of mental health.

Find Your Next Great Science Fair Project! GO

How Plants Use Water

Monday, March 01, 2021

A person waters flowers.

Water is an essential nutrient for plants and comprises up to 9 5% of a plant’s tissue. It is required for a seed to sprout, and as the plant grows, water carries nutrients throughout the plant. Water is responsible for several important functions within plant tissues. 

Water is necessary for photosynthesis, which is how plants use energy from the sun to create their own food. During this process, plants use carbon dioxide from the air and hydrogen from the water absorbed through their roots and release oxygen as a byproduct. This exchange occurs through pore-like stoma on the leaves.  

Water is evaporated on the leaves, as well, in a process called transpiration, which keeps plants from overheating. Warm temperatures, wind and dry air increase the rate of transpiration. As water evaporates through the leaves, more water is pulled up through the roots of the plant.  

Nutrients and sugars from photosynthesis are dissolved in water and move from areas of high concentration, like the roots, to areas of lower concentration, such as the blooms, stem and leaves, for growth and reproduction.  

Water is responsible for cell structural support in many plants, creating a constant pressure on cell walls called turgor, which makes the plant flexible yet strong and allows it to bend in the wind or move leaves toward the sun to maximize photosynthesis. 

Low moisture will cause browning of plant tissues and leaf curling, eventually leading to plant death.  When watering garden plants, it’s important to provide a thorough, deep watering rather than frequent, light watering to encourage deeper root growth.

  • March Garden Pest Control Recommendations
  • How Plants Take Up Water

By Jodi Richmond , WVU Extension Service Agent – Mercer County

ENCYCLOPEDIC ENTRY

Photosynthesis.

Photosynthesis is the process by which plants use sunlight, water, and carbon dioxide to create oxygen and energy in the form of sugar.

Loading ...

Learning materials, instructional links.

  • Photosynthesis (Google doc)

Most life on Earth depends on photosynthesis .The process is carried out by plants, algae, and some types of bacteria, which capture energy from sunlight to produce oxygen (O 2 ) and chemical energy stored in glucose (a sugar). Herbivores then obtain this energy by eating plants, and carnivores obtain it by eating herbivores.

The process

During photosynthesis, plants take in carbon dioxide (CO 2 ) and water (H 2 O) from the air and soil. Within the plant cell, the water is oxidized, meaning it loses electrons, while the carbon dioxide is reduced, meaning it gains electrons. This transforms the water into oxygen and the carbon dioxide into glucose. The plant then releases the oxygen back into the air, and stores energy within the glucose molecules.

Chlorophyll

Inside the plant cell are small organelles called chloroplasts , which store the energy of sunlight. Within the thylakoid membranes of the chloroplast is a light-absorbing pigment called chlorophyll , which is responsible for giving the plant its green color. During photosynthesis , chlorophyll absorbs energy from blue- and red-light waves, and reflects green-light waves, making the plant appear green.

Light-dependent Reactions vs. Light-independent Reactions

While there are many steps behind the process of photosynthesis, it can be broken down into two major stages: light-dependent reactions and light-independent reactions. The light-dependent reaction takes place within the thylakoid membrane and requires a steady stream of sunlight, hence the name light- dependent reaction. The chlorophyll absorbs energy from the light waves, which is converted into chemical energy in the form of the molecules ATP and NADPH . The light-independent stage, also known as the Calvin cycle , takes place in the stroma , the space between the thylakoid membranes and the chloroplast membranes, and does not require light, hence the name light- independent reaction. During this stage, energy from the ATP and NADPH molecules is used to assemble carbohydrate molecules, like glucose, from carbon dioxide.

C3 and C4 Photosynthesis

Not all forms of photosynthesis are created equal, however. There are different types of photosynthesis, including C3 photosynthesis and C4 photosynthesis. C3 photosynthesis is used by the majority of plants. It involves producing a three-carbon compound called 3-phosphoglyceric acid during the Calvin Cycle, which goes on to become glucose. C4 photosynthesis, on the other hand, produces a four-carbon intermediate compound, which splits into carbon dioxide and a three-carbon compound during the Calvin Cycle. A benefit of C4 photosynthesis is that by producing higher levels of carbon, it allows plants to thrive in environments without much light or water. The National Geographic Society is making this content available under a Creative Commons CC-BY-NC-SA license . The License excludes the National Geographic Logo (meaning the words National Geographic + the Yellow Border Logo) and any images that are included as part of each content piece. For clarity the Logo and images may not be removed, altered, or changed in any way.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

March 20, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

This page has been archived and is no longer updated

Photosynthetic Cells

Cells get nutrients from their environment, but where do those nutrients come from? Virtually all organic material on Earth has been produced by cells that convert energy from the Sun into energy-containing macromolecules. This process, called photosynthesis, is essential to the global carbon cycle and organisms that conduct photosynthesis represent the lowest level in most food chains (Figure 1).

View Terms of Use

What Is Photosynthesis? Why Is it Important?

Most living things depend on photosynthetic cells to manufacture the complex organic molecules they require as a source of energy. Photosynthetic cells are quite diverse and include cells found in green plants, phytoplankton, and cyanobacteria. During the process of photosynthesis, cells use carbon dioxide and energy from the Sun to make sugar molecules and oxygen. These sugar molecules are the basis for more complex molecules made by the photosynthetic cell, such as glucose. Then, via respiration processes, cells use oxygen and glucose to synthesize energy-rich carrier molecules, such as ATP, and carbon dioxide is produced as a waste product. Therefore, the synthesis of glucose and its breakdown by cells are opposing processes.

However, photosynthesis doesn't just drive the carbon cycle — it also creates the oxygen necessary for respiring organisms. Interestingly, although green plants contribute much of the oxygen in the air we breathe, phytoplankton and cyanobacteria in the world's oceans are thought to produce between one-third and one-half of atmospheric oxygen on Earth.

What Cells and Organelles Are Involved in Photosynthesis?

Chlorophyll A is the major pigment used in photosynthesis, but there are several types of chlorophyll and numerous other pigments that respond to light, including red, brown, and blue pigments. These other pigments may help channel light energy to chlorophyll A or protect the cell from photo-damage. For example, the photosynthetic protists called dinoflagellates, which are responsible for the "red tides" that often prompt warnings against eating shellfish, contain a variety of light-sensitive pigments, including both chlorophyll and the red pigments responsible for their dramatic coloration.

What Are the Steps of Photosynthesis?

Photosynthesis consists of both light-dependent reactions and light-independent reactions . In plants, the so-called "light" reactions occur within the chloroplast thylakoids, where the aforementioned chlorophyll pigments reside. When light energy reaches the pigment molecules, it energizes the electrons within them, and these electrons are shunted to an electron transport chain in the thylakoid membrane. Every step in the electron transport chain then brings each electron to a lower energy state and harnesses its energy by producing ATP and NADPH. Meanwhile, each chlorophyll molecule replaces its lost electron with an electron from water; this process essentially splits water molecules to produce oxygen (Figure 5).

Once the light reactions have occurred, the light-independent or "dark" reactions take place in the chloroplast stroma. During this process, also known as carbon fixation, energy from the ATP and NADPH molecules generated by the light reactions drives a chemical pathway that uses the carbon in carbon dioxide (from the atmosphere) to build a three-carbon sugar called glyceraldehyde-3-phosphate (G3P). Cells then use G3P to build a wide variety of other sugars (such as glucose) and organic molecules. Many of these interconversions occur outside the chloroplast, following the transport of G3P from the stroma. The products of these reactions are then transported to other parts of the cell, including the mitochondria, where they are broken down to make more energy carrier molecules to satisfy the metabolic demands of the cell. In plants, some sugar molecules are stored as sucrose or starch.

This page appears in the following eBook

Topic rooms within Cell Biology

Topic Rooms

Within this Subject (25)

  • Basic (25)

Other Topic Rooms

  • Gene Inheritance and Transmission
  • Gene Expression and Regulation
  • Nucleic Acid Structure and Function
  • Chromosomes and Cytogenetics
  • Evolutionary Genetics
  • Population and Quantitative Genetics
  • Genes and Disease
  • Genetics and Society
  • Cell Origins and Metabolism
  • Proteins and Gene Expression
  • Subcellular Compartments
  • Cell Communication
  • Cell Cycle and Cell Division

ScholarCast

© 2014 Nature Education

  • Press Room |
  • Terms of Use |
  • Privacy Notice |

Send

Visual Browse

It’s a wonderful world — and universe — out there.

Come explore with us!  

Science News Explores

Explainer: how photosynthesis works.

Plants make sugar and oxygen with the power of water, carbon dioxide and sunlight

green leaves lit up from behind with sunlight

Green plants take in light from the sun and turn water and carbon dioxide into the oxygen we breathe and the sugars we eat.

Jeja/E+/Getty Images

Share this:

  • Google Classroom

By Bethany Brookshire

October 28, 2020 at 6:30 am

Take a deep breath. Then thank a plant. If you eat fruit, vegetables, grains or potatoes, thank a plant too.  Plants and algae provide us with the oxygen we need to survive, as well as the carbohydrates we use for energy. They do it all through photosynthesis.

Photosynthesis is the process of creating sugar and oxygen from carbon dioxide, water and sunlight. It happens through a long series of chemical reactions. But it can be summarized like this: Carbon dioxide, water and light go in. Glucose, water and oxygen come out. (Glucose is a simple sugar.)

Photosynthesis can be split into two processes. The “photo” part refers to reactions triggered by light. “Synthesis” — the making of the sugar — is a separate process called the Calvin cycle.

Both processes happen inside a chloroplast. This is a specialized structure, or organelle, in a plant cell. The structure contains stacks of membranes called thylakoid membranes. That’s where the light reaction begins.

a diagram showing the inside of a chloroplast

Let the light shine in

When light hits a plant’s leaves, it shines on chloroplasts and into their thylakoid membranes. Those membranes are filled with chlorophyll , a green pigment. This pigment absorbs light energy. Light travels as electromagnetic waves . The wavelength — distance between waves — determines energy level. Some of those wavelengths are visible to us as the colors we see . If a molecule, such as chlorophyll, has the right shape, it can absorb the energy from some wavelengths of light.

Chlorophyll can absorb light we see as blue and red. That’s why we see plants as green. Green is the wavelength plants reflect, not the color they absorb.

While light travels as a wave, it also can be a particle called a photon . Photons have no mass. They do, however, have a small amount of light energy.

When a photon of light from the sun bounces into a leaf, its energy excites a chlorophyll molecule. That photon starts a process that splits a molecule of water. The oxygen atom that splits off from the water instantly bonds with another, creating a molecule of oxygen, or O 2 . The chemical reaction also produces a molecule called ATP and another molecule called NADPH. Both of these allow a cell to store energy. The ATP and NADPH also will take part in the synthesis part of photosynthesis.

Notice that the light reaction makes no sugar. Instead, it supplies energy — stored in the ATP and NADPH — that gets plugged into the Calvin cycle. This is where sugar is made.

But the light reaction does produce something we use: oxygen. All the oxygen we breathe is the result of this step in photosynthesis, carried out by plants and algae (which are not plants ) the world over.

Give me some sugar

The next step takes the energy from the light reaction and applies it to a process called the Calvin cycle. The cycle is named for Melvin Calvin, the man who discovered it.

The Calvin cycle is sometimes also called the dark reaction because none of its steps require light. But it still happens during the day. That’s because it needs the energy produced by the light reaction that comes before it.

While the light reaction takes place in the thylakoid membranes, the ATP and NADPH it produces end up in the stroma. This is the space inside the chloroplast but outside the thylakoid membranes.

The Calvin cycle has four major steps:

  • carbon fixation : Here, the plant brings in CO 2 and attaches it to another carbon molecule, using rubisco. This is an enzyme , or chemical that makes reactions move faster. This step is so important that rubisco is the most common protein in a chloroplast — and on Earth. Rubisco attaches the carbon in CO 2 to a five-carbon molecule called ribulose 1,5-bisphosphate (or RuBP). This creates a six-carbon molecule, which immediately splits into two chemicals, each with three carbons.
  • reduction : The ATP and NADPH from the light reaction pop in and transform the two three-carbon molecules into two small sugar molecules. The sugar molecules are called G3P. That’s short for glyceraldehyde 3-phosphate (GLIH- sur-AAL-duh-hide 3-FOS-fayt).
  • carbohydrate formation : Some of that G3P leaves the cycle to be converted into bigger sugars such as glucose (C 6 H 12 O 6 ).
  • regeneration : With more ATP from the continuing light reaction, leftover G3P picks up two more carbons to become RuBP. This RuBP pairs up with rubisco again. They are now ready to start the Calvin cycle again when the next molecule of CO 2 arrives.

At the end of photosynthesis, a plant ends up with glucose (C 6 H 12 O 6 ), oxygen (O 2 ) and water (H 2 O). The glucose molecule goes on to bigger things. It can become part of a long-chain molecule, such as cellulose; that’s the chemical that makes up cell walls. Plants also can store the energy packed in a glucose molecule within larger starch molecules. They can even put the glucose into other sugars — such as fructose — to make a plant’s fruit sweet.

All of these molecules are carbohydrates — chemicals containing carbon, oxygen and hydrogen. (CarbOHydrate makes it easy to remember.) The plant uses the bonds in these chemicals to store energy. But we use the these chemicals too. Carbohydrates are an important part of the foods we eat, particularly grains, potatoes, fruits and vegetables.

More Stories from Science News Explores on Plants

a coastal landslide drags a river of water and soil down a hill from farmland to the beach

Experiment: Can plants stop soil erosion?

image of yellow thistle flower head

On hot summer days, this thistle stays cool to the touch

a photo of the base of a huge tree wrapped in multiple thick woody vines climbing up it and out of the image frame

Rampaging vines are slowly strangling tropical forests

A photo of Kwesi Joseph, a Black man with a big smile, short hair and a neatly trimmed beard. He's wearing a dress shirt with a sweater and a pink tie.

This urban gardener is mimicking nature to create healthier plants

A photograph of the palm Pinanga subterranea with its green palms sprouting out from brown leaf-strewn ground.

To spy this palm’s blooms and fruits, start digging underground

an image that is filled with nothing but blueberries

Here’s why blueberries aren’t blue — but appear to be

in a snow-covered forest, the frost-covered orange leaves of a beech tree cling to their branches

Scientists Say: Marcescence

A red Pikmin is standing on the ground. A single green leaf sprouting from a long thin stalk on its head. Garden plants and flowers stand behind a brick wall in the background.

Pikmin ’s plant-animal mashups don’t exist — but sun-powered animals do

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

8.2: The Light-Dependent Reactions of Photosynthesis

  • Last updated
  • Save as PDF
  • Page ID 1865

Skills to Develop

  • Explain how plants absorb energy from sunlight
  • Describe short and long wavelengths of light
  • Describe how and where photosynthesis takes place within a plant

How can light be used to make food? When a person turns on a lamp, electrical energy becomes light energy. Like all other forms of kinetic energy, light can travel, change form, and be harnessed to do work. In the case of photosynthesis, light energy is converted into chemical energy, which photoautotrophs use to build carbohydrate molecules (Figure \(\PageIndex{1}\)). However, autotrophs only use a few specific components of sunlight.

A photo shows the silhouette of a grassy plant against the sun at sunset.

What Is Light Energy?

The sun emits an enormous amount of electromagnetic radiation (solar energy). Humans can see only a fraction of this energy, which portion is therefore referred to as “visible light.” The manner in which solar energy travels is described as waves. Scientists can determine the amount of energy of a wave by measuring its wavelength , the distance between consecutive points of a wave. A single wave is measured from two consecutive points, such as from crest to crest or from trough to trough (Figure \(\PageIndex{2}\)).

The illustration shows two waves. The distance between the crests (or troughs) is the wavelength.

Visible light constitutes only one of many types of electromagnetic radiation emitted from the sun and other stars. Scientists differentiate the various types of radiant energy from the sun within the electromagnetic spectrum. The electromagnetic spectrum is the range of all possible frequencies of radiation (Figure \(\PageIndex{3}\)). The difference between wavelengths relates to the amount of energy carried by them.

The illustration lists the types of electromagnetic radiation in order of increasing wavelength. These include gamma rays, X-rays, ultraviolet, visible, infrared, and radio. Gamma rays have a very short wavelength, on the order of one thousandth of a nanometer. Radio waves have a very long wavelength, on the order of one kilometer. Visible light ranges from 380 nanometers at the violet end of the spectrum, to 750 nanometers at the red end of the spectrum.

Each type of electromagnetic radiation travels at a particular wavelength. The longer the wavelength (or the more stretched out it appears in the diagram), the less energy is carried. Short, tight waves carry the most energy. This may seem illogical, but think of it in terms of a piece of moving a heavy rope. It takes little effort by a person to move a rope in long, wide waves. To make a rope move in short, tight waves, a person would need to apply significantly more energy.

The electromagnetic spectrum (Figure \(\PageIndex{3}\)) shows several types of electromagnetic radiation originating from the sun, including X-rays and ultraviolet (UV) rays. The higher-energy waves can penetrate tissues and damage cells and DNA, explaining why both X-rays and UV rays can be harmful to living organisms.

Absorption of Light

Light energy initiates the process of photosynthesis when pigments absorb the light. Organic pigments, whether in the human retina or the chloroplast thylakoid, have a narrow range of energy levels that they can absorb. Energy levels lower than those represented by red light are insufficient to raise an orbital electron to a populatable, excited (quantum) state. Energy levels higher than those in blue light will physically tear the molecules apart, called bleaching. So retinal pigments can only “see” (absorb) 700 nm to 400 nm light, which is therefore called visible light. For the same reasons, plants pigment molecules absorb only light in the wavelength range of 700 nm to 400 nm; plant physiologists refer to this range for plants as photosynthetically active radiation.

The visible light seen by humans as white light actually exists in a rainbow of colors. Certain objects, such as a prism or a drop of water, disperse white light to reveal the colors to the human eye. The visible light portion of the electromagnetic spectrum shows the rainbow of colors, with violet and blue having shorter wavelengths, and therefore higher energy. At the other end of the spectrum toward red, the wavelengths are longer and have lower energy (Figure \(\PageIndex{4}\)).

The illustration shows the colors of visible light. In order of decreasing wavelength, from 700 nanometers to 400 nanometers, these are red, orange, yellow, green, blue, indigo, and violet. 500 nanometers is about the thickness of a soap bubble membrane. Infrared has longer wavelengths than red light, and uv and X-rays have shorter wavelengths than violet light.

Understanding Pigments

Different kinds of pigments exist, and each has evolved to absorb only certain wavelengths (colors) of visible light. Pigments reflect or transmit the wavelengths they cannot absorb, making them appear in the corresponding color.

Chlorophylls and carotenoids are the two major classes of photosynthetic pigments found in plants and algae; each class has multiple types of pigment molecules. There are five major chlorophylls: a , b , c and d and a related molecule found in prokaryotes called bacteriochlorophyll. Chlorophyll a and chlorophyll b are found in higher plant chloroplasts and will be the focus of the following discussion.

With dozens of different forms, carotenoids are a much larger group of pigments. The carotenoids found in fruit—such as the red of tomato (lycopene), the yellow of corn seeds (zeaxanthin), or the orange of an orange peel (β-carotene)—are used as advertisements to attract seed dispersers. In photosynthesis, carotenoids function as photosynthetic pigments that are very efficient molecules for the disposal of excess energy. When a leaf is exposed to full sun, the light-dependent reactions are required to process an enormous amount of energy; if that energy is not handled properly, it can do significant damage. Therefore, many carotenoids reside in the thylakoid membrane, absorb excess energy, and safely dissipate that energy as heat.

Each type of pigment can be identified by the specific pattern of wavelengths it absorbs from visible light, which is the absorption spectrum . The graph in Figure \(\PageIndex{5}\) shows the absorption spectra for chlorophyll a , chlorophyll b , and a type of carotenoid pigment called β-carotene (which absorbs blue and green light). Notice how each pigment has a distinct set of peaks and troughs, revealing a highly specific pattern of absorption. Chlorophyll a absorbs wavelengths from either end of the visible spectrum (blue and red), but not green. Because green is reflected or transmitted, chlorophyll appears green. Carotenoids absorb in the short-wavelength blue region, and reflect the longer yellow, red, and orange wavelengths.

Chlorophyll a and chlorophyll b are made up of a long hydrocarbon chain attached to a large, complex ring made up of nitrogen and carbon. Magnesium is associated with the center of the ring. Chlorophyll b differs from chlorophyll a in that it has a CHO group instead of a CH3 group associated with one part of the ring. Beta-carotene is a branched hydrocarbon with a six-membered carbon ring at each end. Each chart shows the absorbance spectra for chlorophyll a, chlorophyll b, and β-carotene. The three pigments absorb blue-green and orange-red wavelengths of light but have slightly different spectra.

Many photosynthetic organisms have a mixture of pigments; using them, the organism can absorb energy from a wider range of wavelengths. Not all photosynthetic organisms have full access to sunlight. Some organisms grow underwater where light intensity and quality decrease and change with depth. Other organisms grow in competition for light. Plants on the rainforest floor must be able to absorb any bit of light that comes through, because the taller trees absorb most of the sunlight and scatter the remaining solar radiation (Figure \(\PageIndex{6}\)).

The photo shows undergrowth in a forest.

When studying a photosynthetic organism, scientists can determine the types of pigments present by generating absorption spectra. An instrument called a spectrophotometer can differentiate which wavelengths of light a substance can absorb. Spectrophotometers measure transmitted light and compute from it the absorption. By extracting pigments from leaves and placing these samples into a spectrophotometer, scientists can identify which wavelengths of light an organism can absorb. Additional methods for the identification of plant pigments include various types of chromatography that separate the pigments by their relative affinities to solid and mobile phases.

How Light-Dependent Reactions Work

The overall function of light-dependent reactions is to convert solar energy into chemical energy in the form of NADPH and ATP. This chemical energy supports the light-independent reactions and fuels the assembly of sugar molecules. The light-dependent reactions are depicted in Figure \(\PageIndex{7}\). Protein complexes and pigment molecules work together to produce NADPH and ATP.

 Illustration a shows the structure of PSII, which is embedded in the thylakoid membrane. At the core of PSII is the reaction center. The reaction center is surrounded by the light-harvesting complex, which contains antenna pigment molecules that shunt light energy toward a pair of chlorophyll a molecules in the reaction center. As a result, an electron is excited and transferred to the primary electron acceptor. A water molecule is split, releasing two electrons which are used to replace excited electrons. Illustration b shows the structure of PSI, which is similar in structure to PSII. However, PSII uses an electron from the chloroplast electron transport chain also embedded in the thylakoid membrane to replace the excited electron.

The actual step that converts light energy into chemical energy takes place in a multiprotein complex called a photosystem , two types of which are found embedded in the thylakoid membrane, photosystem II (PSII) and photosystem I (PSI) (Figure \(\PageIndex{7}\)). The two complexes differ on the basis of what they oxidize (that is, the source of the low-energy electron supply) and what they reduce (the place to which they deliver their energized electrons).

Both photosystems have the same basic structure; a number of antenna proteins to which the chlorophyll molecules are bound surround the reaction center where the photochemistry takes place. Each photosystem is serviced by the light-harvesting complex , which passes energy from sunlight to the reaction center; it consists of multiple antenna proteins that contain a mixture of 300–400 chlorophyll a and b molecules as well as other pigments like carotenoids. The absorption of a single photon or distinct quantity or “packet” of light by any of the chlorophylls pushes that molecule into an excited state. In short, the light energy has now been captured by biological molecules but is not stored in any useful form yet. The energy is transferred from chlorophyll to chlorophyll until eventually (after about a millionth of a second), it is delivered to the reaction center. Up to this point, only energy has been transferred between molecules, not electrons.

Art Connection

This illustration shows the components involved in the light reactions, which are all embedded in the thylakoid membrane. Photosystem II uses light energy to strip electrons from water, producing half an oxygen molecule and two protons in the process. The excited electron is then passed through the chloroplast electron transport chain to photosystem I. Photosystem I passes the electron to NADP+ reductase, which uses it to convert NADP+ and a proton to NADPH. As the electron transport chain moves electrons, it pumps protons into the thylakoid lumen. The splitting of water also adds electrons to the lumen, and the reduction of NADPH removes protons from the stroma. The net result is a low pH inside the thylakoid lumen, and a high pH outside, in the stroma. ATP synthase embedded the thylakoid  membrane moves protons down their electrochemical gradient, from the lumen to the stroma, and uses the energy from this gradient to make ATP.

What is the initial source of electrons for the chloroplast electron transport chain?

  • carbon dioxide

The reaction center contains a pair of chlorophyll a molecules with a special property. Those two chlorophylls can undergo oxidation upon excitation; they can actually give up an electron in a process called a photoact . It is at this step in the reaction center, this step in photosynthesis, that light energy is converted into an excited electron. All of the subsequent steps involve getting that electron onto the energy carrier NADPH for delivery to the Calvin cycle where the electron is deposited onto carbon for long-term storage in the form of a carbohydrate.PSII and PSI are two major components of the photosynthetic electron transport chain , which also includes the cytochrome complex . The cytochrome complex, an enzyme composed of two protein complexes, transfers the electrons from the carrier molecule plastoquinone (Pq) to the protein plastocyanin (Pc), thus enabling both the transfer of protons across the thylakoid membrane and the transfer of electrons from PSII to PSI.

The reaction center of PSII (called P680 ) delivers its high-energy electrons, one at the time, to the primary electron acceptor , and through the electron transport chain (Pq to cytochrome complex to plastocyanine) to PSI. P680’s missing electron is replaced by extracting a low-energy electron from water; thus, water is split and PSII is re-reduced after every photoact. Splitting one H 2 O molecule releases two electrons, two hydrogen atoms, and one atom of oxygen. Splitting two molecules is required to form one molecule of diatomic O 2 gas. About 10 percent of the oxygen is used by mitochondria in the leaf to support oxidative phosphorylation. The remainder escapes to the atmosphere where it is used by aerobic organisms to support respiration.

As electrons move through the proteins that reside between PSII and PSI, they lose energy. That energy is used to move hydrogen atoms from the stromal side of the membrane to the thylakoid lumen. Those hydrogen atoms, plus the ones produced by splitting water, accumulate in the thylakoid lumen and will be used synthesize ATP in a later step. Because the electrons have lost energy prior to their arrival at PSI, they must be re-energized by PSI, hence, another photon is absorbed by the PSI antenna. That energy is relayed to the PSI reaction center (called P700 ). P700 is oxidized and sends a high-energy electron to NADP + to form NADPH. Thus, PSII captures the energy to create proton gradients to make ATP, and PSI captures the energy to reduce NADP + into NADPH. The two photosystems work in concert, in part, to guarantee that the production of NADPH will roughly equal the production of ATP. Other mechanisms exist to fine tune that ratio to exactly match the chloroplast’s constantly changing energy needs.

Generating an Energy Carrier: ATP

As in the intermembrane space of the mitochondria during cellular respiration, the buildup of hydrogen ions inside the thylakoid lumen creates a concentration gradient. The passive diffusion of hydrogen ions from high concentration (in the thylakoid lumen) to low concentration (in the stroma) is harnessed to create ATP, just as in the electron transport chain of cellular respiration. The ions build up energy because of diffusion and because they all have the same electrical charge, repelling each other.

To release this energy, hydrogen ions will rush through any opening, similar to water jetting through a hole in a dam. In the thylakoid, that opening is a passage through a specialized protein channel called the ATP synthase. The energy released by the hydrogen ion stream allows ATP synthase to attach a third phosphate group to ADP, which forms a molecule of ATP (Figure \(\PageIndex{8}\)). The flow of hydrogen ions through ATP synthase is called chemiosmosis because the ions move from an area of high to an area of low concentration through a semi-permeable structure.

Link to Learning

Visit this site to view the process of photosynthesis within a leaf.

The pigments of the first part of photosynthesis, the light-dependent reactions, absorb energy from sunlight. A photon strikes the antenna pigments of photosystem II to initiate photosynthesis. The energy travels to the reaction center that contains chlorophyll a to the electron transport chain, which pumps hydrogen ions into the thylakoid interior. This action builds up a high concentration of ions. The ions flow through ATP synthase via chemiosmosis to form molecules of ATP, which are used for the formation of sugar molecules in the second stage of photosynthesis. Photosystem I absorbs a second photon, which results in the formation of an NADPH molecule, another energy and reducing power carrier for the light-independent reactions.

Art Connections

Figure \(\PageIndex{8}\): What is the source of electrons for the chloroplast electron transport chain?

  • Carbon dioxide
  • Biology Article

Photosynthesis

Photosynthesis is a process by which phototrophs convert light energy into chemical energy, which is later used to fuel cellular activities. The chemical energy is stored in the form of sugars, which are created from water and carbon dioxide.

what is role of water in photosynthesis

Table of Contents

  • What is Photosynthesis?
  • Site of photosynthesis

Photosynthesis definition states that the process exclusively takes place in the chloroplasts through photosynthetic pigments such as chlorophyll a, chlorophyll b, carotene and xanthophyll. All green plants and a few other autotrophic organisms utilize photosynthesis to synthesize nutrients by using carbon dioxide, water and sunlight. The by-product of the photosynthesis process is oxygen.Let us have a detailed look at the process, reaction and importance of photosynthesis.

What Is Photosynthesis in Biology?

The word “ photosynthesis ” is derived from the Greek words  phōs  (pronounced: “fos”) and σύνθεσις (pronounced: “synthesis “) Phōs means “light” and σύνθεσις   means, “combining together.” This means “ combining together with the help of light .”

Photosynthesis also applies to other organisms besides green plants. These include several prokaryotes such as cyanobacteria, purple bacteria and green sulfur bacteria. These organisms exhibit photosynthesis just like green plants.The glucose produced during photosynthesis is then used to fuel various cellular activities. The by-product of this physio-chemical process is oxygen.

Photosynthesis Reaction

A visual representation of the photosynthesis reaction

  • Photosynthesis is also used by algae to convert solar energy into chemical energy. Oxygen is liberated as a by-product and light is considered as a major factor to complete the process of photosynthesis.
  • Photosynthesis occurs when plants use light energy to convert carbon dioxide and water into glucose and oxygen. Leaves contain microscopic cellular organelles known as chloroplasts.
  • Each chloroplast contains a green-coloured pigment called chlorophyll. Light energy is absorbed by chlorophyll molecules whereas carbon dioxide and oxygen enter through the tiny pores of stomata located in the epidermis of leaves.
  • Another by-product of photosynthesis is sugars such as glucose and fructose.
  • These sugars are then sent to the roots, stems, leaves, fruits, flowers and seeds. In other words, these sugars are used by the plants as an energy source, which helps them to grow. These sugar molecules then combine with each other to form more complex carbohydrates like cellulose and starch. The cellulose is considered as the structural material that is used in plant cell walls.

Where Does This Process Occur?

Chloroplasts are the sites of photosynthesis in plants and blue-green algae.  All green parts of a plant, including the green stems, green leaves,  and sepals – floral parts comprise of chloroplasts – green colour plastids. These cell organelles are present only in plant cells and are located within the mesophyll cells of leaves.

Also Read:  Photosynthesis Early Experiments

Photosynthesis Equation

Photosynthesis reaction involves two reactants, carbon dioxide and water. These two reactants yield two products, namely, oxygen and glucose. Hence, the photosynthesis reaction is considered to be an endothermic reaction. Following is the photosynthesis formula:

Unlike plants, certain bacteria that perform photosynthesis do not produce oxygen as the by-product of photosynthesis. Such bacteria are called anoxygenic photosynthetic bacteria. The bacteria that do produce oxygen as a by-product of photosynthesis are called oxygenic photosynthetic bacteria.

Structure Of Chlorophyll

Structure of chlorophyll

The structure of Chlorophyll consists of 4 nitrogen atoms that surround a magnesium atom. A hydrocarbon tail is also present. Pictured above is chlorophyll- f,  which is more effective in near-infrared light than chlorophyll- a

Chlorophyll is a green pigment found in the chloroplasts of the  plant cell   and in the mesosomes of cyanobacteria. This green colour pigment plays a vital role in the process of photosynthesis by permitting plants to absorb energy from sunlight. Chlorophyll is a mixture of chlorophyll- a  and chlorophyll- b .Besides green plants, other organisms that perform photosynthesis contain various other forms of chlorophyll such as chlorophyll- c1 ,  chlorophyll- c2 ,  chlorophyll- d and chlorophyll- f .

Also Read:   Biological Pigments

Process Of Photosynthesis

At the cellular level,  the photosynthesis process takes place in cell organelles called chloroplasts. These organelles contain a green-coloured pigment called chlorophyll, which is responsible for the characteristic green colouration of the leaves.

As already stated, photosynthesis occurs in the leaves and the specialized cell organelles responsible for this process is called the chloroplast. Structurally, a leaf comprises a petiole, epidermis and a lamina. The lamina is used for absorption of sunlight and carbon dioxide during photosynthesis.

Structure of Chloroplast

Structure of Chloroplast. Note the presence of the thylakoid

“Photosynthesis Steps:”

  • During the process of photosynthesis, carbon dioxide enters through the stomata, water is absorbed by the root hairs from the soil and is carried to the leaves through the xylem vessels. Chlorophyll absorbs the light energy from the sun to split water molecules into hydrogen and oxygen.
  • The hydrogen from water molecules and carbon dioxide absorbed from the air are used in the production of glucose. Furthermore, oxygen is liberated out into the atmosphere through the leaves as a waste product.
  • Glucose is a source of food for plants that provide energy for  growth and development , while the rest is stored in the roots, leaves and fruits, for their later use.
  • Pigments are other fundamental cellular components of photosynthesis. They are the molecules that impart colour and they absorb light at some specific wavelength and reflect back the unabsorbed light. All green plants mainly contain chlorophyll a, chlorophyll b and carotenoids which are present in the thylakoids of chloroplasts. It is primarily used to capture light energy. Chlorophyll-a is the main pigment.

The process of photosynthesis occurs in two stages:

  • Light-dependent reaction or light reaction
  • Light independent reaction or dark reaction

Stages of Photosynthesis

Stages of Photosynthesis in Plants depicting the two phases – Light reaction and Dark reaction

Light Reaction of Photosynthesis (or) Light-dependent Reaction

  • Photosynthesis begins with the light reaction which is carried out only during the day in the presence of sunlight. In plants, the light-dependent reaction takes place in the thylakoid membranes of chloroplasts.
  • The Grana, membrane-bound sacs like structures present inside the thylakoid functions by gathering light and is called photosystems.
  • These photosystems have large complexes of pigment and proteins molecules present within the plant cells, which play the primary role during the process of light reactions of photosynthesis.
  • There are two types of photosystems: photosystem I and photosystem II.
  • Under the light-dependent reactions, the light energy is converted to ATP and NADPH, which are used in the second phase of photosynthesis.
  • During the light reactions, ATP and NADPH are generated by two electron-transport chains, water is used and oxygen is produced.

The chemical equation in the light reaction of photosynthesis can be reduced to:

2H 2 O + 2NADP+ + 3ADP + 3Pi → O 2 + 2NADPH + 3ATP

Dark Reaction of Photosynthesis (or) Light-independent Reaction

  • Dark reaction is also called carbon-fixing reaction.
  • It is a light-independent process in which sugar molecules are formed from the water and carbon dioxide molecules.
  • The dark reaction occurs in the stroma of the chloroplast where they utilize the NADPH and ATP products of the light reaction.
  • Plants capture the carbon dioxide from the atmosphere through stomata and proceed to the Calvin photosynthesis cycle.
  • In the Calvin cycle , the ATP and NADPH formed during light reaction drive the reaction and convert 6 molecules of carbon dioxide into one sugar molecule or glucose.

The chemical equation for the dark reaction can be reduced to:

3CO 2 + 6 NADPH + 5H 2 O + 9ATP → G3P + 2H+ + 6 NADP+ + 9 ADP + 8 Pi

* G3P – glyceraldehyde-3-phosphate

Calvin cycle

Calvin photosynthesis Cycle (Dark Reaction)

Also Read:  Cyclic And Non-Cyclic Photophosphorylation

Importance of Photosynthesis

  • Photosynthesis is essential for the existence of all life on earth. It serves a crucial role in the food chain – the plants create their food using this process, thereby, forming the primary producers.
  • Photosynthesis is also responsible for the production of oxygen – which is needed by most organisms for their survival.

Frequently Asked Questions

1. what is photosynthesis explain the process of photosynthesis., 2. what is the significance of photosynthesis, 3. list out the factors influencing photosynthesis., 4. what are the different stages of photosynthesis, 5. what is the calvin cycle, 6. write down the photosynthesis equation..

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Biology related queries and study materials

Your result is as below

Request OTP on Voice Call

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

what is role of water in photosynthesis

very useful

It’s very helpful ☺️

Please What Is Meant By 300-400 PPM

PPM stands for Parts-Per-Million. It corresponds to saying that 300 PPM of carbon dioxide indicates that if one million gas molecules are counted, 300 out of them would be carbon dioxide. The remaining nine hundred ninety-nine thousand seven hundred are other gas molecules.

Thank you very much Byju’s! I couldn’t find the answer anywhere. But luckily I hit upon this website. Awesome explanation and illustration.

byjus = Wow!

It helps me a lot thank you

Thanks in a million I love Byjus!

Super Byjus

Thanks helped a lot

Very interesting and helpful site.

Nice it is very uesful

It’s very useful 👍 Thank you Byju’s

Thank you very much Byju’s! I couldn’t find the answer anywhere. But luckily I hit upon this website. Awesome explanation and illustration.

Thank you BYJU’S for helping me in further clarifying my concepts

Excellent material easy to understand

Indeed, it’s precise and understandable. I like it.

what is role of water in photosynthesis

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

  • Anatomy & Physiology
  • Astrophysics
  • Earth Science
  • Environmental Science
  • Organic Chemistry
  • Precalculus
  • Trigonometry
  • English Grammar
  • U.S. History
  • World History

... and beyond

  • Socratic Meta
  • Featured Answers

Search icon

What is the function of water in photosynthesis?

what is role of water in photosynthesis

Water and carbon dioxide enter the leaf through the stomata (small holes on the underside of the leaf that are controlled by gaurd cells) by diffusion .

what is role of water in photosynthesis

Hope this helps!

Related questions

  • Why does photosynthesis need light?
  • Why is photosynthesis referred to as a biochemical pathway?
  • Why is photosynthesis important for plants?
  • How does photosynthesis store energy?
  • How do photosystems 1 and 2 differ?
  • How does color affect light absorption?
  • How are pigments related to photosystems?
  • How do chloroplasts and mitochondria work together?
  • What are chloroplasts?
  • What is the visible spectrum?

Impact of this question

what is role of water in photosynthesis

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

AP®︎/College Biology

Course: ap®︎/college biology   >   unit 3.

  • Photosynthesis
  • Intro to photosynthesis
  • Breaking down photosynthesis stages
  • Conceptual overview of light dependent reactions
  • The light-dependent reactions

The Calvin cycle

  • Photosynthesis evolution
  • Photosynthesis review

Introduction

Overview of the calvin cycle, reactions of the calvin cycle.

  • Regeneration. One G3P molecule leaves the cycle and will go towards making glucose, while five G3Ps must be recycled to regenerate the RuBP acceptor. Regeneration involves a complex series of reactions and requires ATP.
  • Carbon fixation. A CO 2 ‍   molecule combines with a five-carbon acceptor molecule, ribulose-1,5-bisphosphate ( RuBP ). This step makes a six-carbon compound that splits into two molecules of a three-carbon compound, 3-phosphoglyceric acid (3-PGA). This reaction is catalyzed by the enzyme RuBP carboxylase/oxygenase, or rubisco . Details of this step The first stage of the Calvin cycle incorporates carbon from CO 2 ‍   into an organic molecule, a process called carbon fixation . In plants, atmospheric CO 2 ‍   enters the mesophyll layer of leaves by passing through pores on the leaf surface called stomata. It can then diffuse into mesophyll cells, and into the stroma of chloroplasts, where the Calvin cycle takes place. Simplified diagram (showing carbon atoms but not full molecular structures) illustrating the reaction catalyzed by rubisco. Rubisco attaches a carbon dioxide molecule to an RuBP molecule, and the six-carbon intermediate thus produced breaks down into two 3-phosphoglycerate (3-PGA) molecules. In the first step of the cycle, an enzyme nicknamed rubisco (RuBP carboxylase-oxygenase) catalyzes attachment of CO 2 ‍   to a five-carbon sugar called ribulose bisphosphate (RuBP ). The resulting 6-carbon molecule is unstable, however, and quickly splits into two molecules of a three-carbon compound called 3-phosphoglycerate (3-PGA). Thus, for each CO 2 ‍   that enters the cycle, two 3-PGA molecules are produced. The actual molecular structures are show below: Diagram showing the molecular structures of RuBP and carbon dioxide, the unstable six-carbon intermediate formed when they combine, and the two 3-PGA molecules produced by the intermediate's breakdown.
  • First, each molecule of 3-PGA receives a phosphate group from ATP, turning into a doubly phosphorylated molecule called 1,3-bisphosphoglycerate (and leaving behind ADP as a by-product).
  • Second, the 1,3-bisphosphoglycerate molecules are reduced (gain electrons). Each molecule receives two electrons from NADPH and loses one of its phosphate groups, turning into a three-carbon sugar called glyceraldehyde 3-phosphate (G3P) . This step produces NADP + ‍   and phosphate ( P i ‍   ) as by-products.
  • Regeneration. Some G3P molecules go to make glucose, while others must be recycled to regenerate the RuBP acceptor. Regeneration requires ATP and involves a complex network of reactions, which my college bio professor liked to call the "carbohydrate scramble." 1 ‍  

Summary of Calvin cycle reactants and products

  • 1 ‍   G3P molecule exits the cycle and goes towards making glucose.
  • 5 ‍   G3P molecules are recycled, regenerating 3 ‍   RuBP acceptor molecules.
  • ATP. 9 ‍   ATP are converted to 9 ‍   ADP ( 6 ‍   during the reduction step, 3 ‍   during the regeneration step).
  • NADPH . 6 ‍   NADPH are converted to 6 ‍   NADP + ‍   (during the reduction step).

Attribution:

  • " The Calvin cycle ," by OpenStax College, Concepts of Biology, CC BY 4.0 . Download the original article for free at http://cnx.org/contents/[email protected] .
  • " Using light energy to make organic molecules ," by OpenStax College, Biology, CC BY 4.0 . Download the original article for free at http://cnx.org/contents/[email protected] .

Works cited:

  • Koning, R. E. (1994). Calvin cycle. In Plant physiology information website . Retrieved from http://plantphys.info/plant_physiology/calvincycle.shtml .

References:

Want to join the conversation.

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Great Answer

IMAGES

  1. Photosynthesis and How Plants Use Water

    what is role of water in photosynthesis

  2. Photosynthesis

    what is role of water in photosynthesis

  3. Photosynthesis Explained

    what is role of water in photosynthesis

  4. Diagram showing process photosynthesis in plant Vector Image

    what is role of water in photosynthesis

  5. [Class 7] Photosynthesis

    what is role of water in photosynthesis

  6. Photosynthesis, the green engine of life on Earth

    what is role of water in photosynthesis

VIDEO

  1. Mechanism of photosynthesis and role of water in photosynthesis chapter bioenergetics by spsc Sindh

  2. What is Photosynthesis Intake Water & CO2 || Study Of Science || Info About Photosynthesis with 3054

  3. ROLE OF WATER IN PHOTOSYNTHESIS

  4. Class 11 Chapter 4

  5. CHAPTER 07! BIOENERGETICS! “PHOTOSYNTHESIS.”

  6. Photosynthesis for kids

COMMENTS

  1. Role of Water in Photosynthesis

    Plants rely on the process of photosynthesis to capture, convert and store energy directly from the sun. To do this, they require carbon dioxide (CO 2) and water (H 2 O). In the presence of sunlight, these molecules break apart and form glucose (C 6 H 12 O 6) and oxygen (O 2 ). The chemical formula for this reaction is 6CO 2 + 6H 2 O ------> C ...

  2. How Plants Use Water

    Water is an essential nutrient for plants and comprises up to 9 5% of a plant's tissue. It is required for a seed to sprout, and as the plant grows, water carries nutrients throughout the plant. Water is responsible for several important functions within plant tissues. Water is necessary for photosynthesis, which is how plants use energy from ...

  3. Photosynthesis

    The process. During photosynthesis, plants take in carbon dioxide (CO 2) and water (H 2 O) from the air and soil. Within the plant cell, the water is oxidized, meaning it loses electrons, while the carbon dioxide is reduced, meaning it gains electrons. This transforms the water into oxygen and the carbon dioxide into glucose.

  4. Intro to photosynthesis (article)

    Photosynthesis is the process in which light energy is converted to chemical energy in the form of sugars. In a process driven by light energy, glucose molecules (or other sugars) are constructed from water and carbon dioxide, and oxygen is released as a byproduct. The glucose molecules provide organisms with two crucial resources: energy and ...

  5. Photosynthesis

    In chemical terms, photosynthesis is a light-energized oxidation-reduction process. (Oxidation refers to the removal of electrons from a molecule; reduction refers to the gain of electrons by a molecule.) In plant photosynthesis, the energy of light is used to drive the oxidation of water (H 2 O), producing oxygen gas (O 2 ), hydrogen ions (H ...

  6. Photosynthesis, Chloroplast

    The chloroplast is involved in both stages of photosynthesis. The light reactions take place in the thylakoid. There, water (H 2 O) is oxidized, and oxygen (O 2) is released. The electrons that ...

  7. Light-dependent reactions (photosynthesis reaction) (article)

    In oxygenic photosynthesis, water molecules are split to provide a source of electrons for the electron transport chain, and oxygen gas is released as a byproduct. Plants organize their photosynthetic pigments into two separate complexes called photosystems (photosystems I and II), and they use chlorophylls as their reaction center pigments.

  8. Explainer: How photosynthesis works

    Photosynthesis is the process of creating sugar and oxygen from carbon dioxide, water and sunlight. It happens through a long series of chemical reactions. But it can be summarized like this: Carbon dioxide, water and light go in. Glucose, water and oxygen come out. (Glucose is a simple sugar.) Photosynthesis can be split into two processes.

  9. Photosynthesis in ecosystems (article)

    Photosynthesis is carried out by photosynthetic organisms. Photosynthesis drives the movement of matter, or atoms, between organisms and the environment. Photosynthetic organisms take in and use carbon dioxide and water from the air and soil. Photosynthetic organisms release oxygen into the air. Organisms throughout the ecosystem use this ...

  10. 8.1: Overview of Photosynthesis

    Main Structures and Summary of Photosynthesis. Photosynthesis is a multi-step process that requires sunlight, carbon dioxide (which is low in energy), and water as substrates (Figure 8.1.3 8.1. 3 ). After the process is complete, it releases oxygen and produces glyceraldehyde-3-phosphate (GA3P), simple carbohydrate molecules (which are high in ...

  11. 5.1: Overview of Photosynthesis

    The Two Parts of Photosynthesis. Photosynthesis takes place in two stages: the light-dependent reactions and the Calvin cycle. In the light-dependent reactions, which take place at the thylakoid membrane, chlorophyll absorbs energy from sunlight and then converts it into chemical energy with the use of water.

  12. Photosynthesis

    Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth. [2] Some bacteria also perform anoxygenic photosynthesis , which uses bacteriochlorophyll to split hydrogen sulfide as a reductant instead of water.

  13. Photosynthesis

    Water. The water needed for photosynthesis is absorbed through the roots and transported through tubes to the leaf.The roots have a type of cell called a root hair cell. These project out from the ...

  14. Photosynthesis in organisms (article)

    Photosynthesis is powered by energy from sunlight. This energy is used to rearrange atoms in carbon dioxide and water to make oxygen and sugars. Carbon dioxide and water are inputs of photosynthesis. These inputs come from the environment. Oxygen and sugars are outputs of photosynthesis. The oxygen is released into the environment.

  15. 8.2: The Light-Dependent Reactions of Photosynthesis

    The overall function of light-dependent reactions is to convert solar energy into chemical energy in the form of NADPH and ATP. This chemical energy supports the light-independent reactions and fuels the assembly of sugar molecules. The light-dependent reactions are depicted in Figure 8.2.7 8.2. 7.

  16. What is Photosynthesis

    By taking in water (H2O) through the roots, carbon dioxide (CO2) from the air, and light energy from the Sun, plants can perform photosynthesis to make glucose (sugars) and oxygen (O2). CREDIT: mapichai/Shutterstock.com. Just like you, plants need to take in gases in order to live. Animals take in gases through a process called respiration.

  17. Photosynthesis

    Photosynthesis. Photosynthesis is a process by which phototrophs convert light energy into chemical energy, which is later used to fuel cellular activities. The chemical energy is stored in the form of sugars, which are created from water and carbon dioxide. 3,12,343.

  18. What is the function of water in photosynthesis?

    Water is one of the reactants in photosynthesis, it provides the hydrogen needed to form glucose (a hydrocarbon). Water and carbon dioxide enter the leaf through the stomata (small holes on the underside of the leaf that are controlled by gaurd cells) by diffusion. The water is split during the light reaction to form oxygen gas and hydrogen ions.

  19. Photosynthesis Flashcards

    What role does water play in photosynthesis? Water provides the electrons and hydrogen ions needed to power the light-dependent and light-independent phases of photosynthesis. What is the difference between ADP and ATP? ATP contains an extra phosphate. In other words, ATP contains more energy.

  20. Light and photosynthetic pigments

    Plants, on the other hand, are experts at capturing light energy and using it to make sugars through a process called photosynthesis. This process begins with the absorption of light by specialized organic molecules, called pigments, that are found in the chloroplasts of plant cells.Here, we'll consider light as a form of energy, and we'll also see how pigments - such as the chlorophylls ...

  21. The interplay between light, arsenic and H2O2 controls ...

    The regulation of O2 production by cyanobacteria is critical to understanding the coevolution of oxygenic photosynthesis (OP) and Earth's redox landscape. This includes their response to electron donors for competitive anoxygenic photosynthesis, like arsenic. In this work, we assessed the effect of arsenic cycling on photosynthetic activity in a modern cyanobacterial mat thriving beneath an ...

  22. Rewiring Photosynthesis by Water‐Soluble Fullerene Derivatives for

    Natural photosynthesis holds great potential to generate clean electricity from solar energy. In order to utilize this process for power generation, it is necessary to rewire photosynthetic electron transport chains (PETCs) of living photosynthetic organisms to redirect more electron flux toward an extracellular electrode.

  23. The Calvin cycle (article)

    In the Calvin cycle, carbon atoms from CO 2 are fixed (incorporated into organic molecules) and used to build three-carbon sugars. This process is fueled by, and dependent on, ATP and NADPH from the light reactions. Unlike the light reactions, which take place in the thylakoid membrane, the reactions of the Calvin cycle take place in the stroma ...