• Privacy Policy

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Observational Research

Observational Research – Methods and Guide

Quantitative Research

Quantitative Research – Methods, Types and...

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

10 Real World Data Science Case Studies Projects with Example

Top 10 Data Science Case Studies Projects with Examples and Solutions in Python to inspire your data science learning in 2023.

10 Real World Data Science Case Studies Projects with Example

BelData science has been a trending buzzword in recent times. With wide applications in various sectors like healthcare , education, retail, transportation, media, and banking -data science applications are at the core of pretty much every industry out there. The possibilities are endless: analysis of frauds in the finance sector or the personalization of recommendations on eCommerce businesses.  We have developed ten exciting data science case studies to explain how data science is leveraged across various industries to make smarter decisions and develop innovative personalized products tailored to specific customers.

data_science_project

Walmart Sales Forecasting Data Science Project

Downloadable solution code | Explanatory videos | Tech Support

Table of Contents

Data science case studies in retail , data science case study examples in entertainment industry , data analytics case study examples in travel industry , case studies for data analytics in social media , real world data science projects in healthcare, data analytics case studies in oil and gas, what is a case study in data science, how do you prepare a data science case study, 10 most interesting data science case studies with examples.

data science case studies

So, without much ado, let's get started with data science business case studies !

With humble beginnings as a simple discount retailer, today, Walmart operates in 10,500 stores and clubs in 24 countries and eCommerce websites, employing around 2.2 million people around the globe. For the fiscal year ended January 31, 2021, Walmart's total revenue was $559 billion showing a growth of $35 billion with the expansion of the eCommerce sector. Walmart is a data-driven company that works on the principle of 'Everyday low cost' for its consumers. To achieve this goal, they heavily depend on the advances of their data science and analytics department for research and development, also known as Walmart Labs. Walmart is home to the world's largest private cloud, which can manage 2.5 petabytes of data every hour! To analyze this humongous amount of data, Walmart has created 'Data Café,' a state-of-the-art analytics hub located within its Bentonville, Arkansas headquarters. The Walmart Labs team heavily invests in building and managing technologies like cloud, data, DevOps , infrastructure, and security.

ProjectPro Free Projects on Big Data and Data Science

Walmart is experiencing massive digital growth as the world's largest retailer . Walmart has been leveraging Big data and advances in data science to build solutions to enhance, optimize and customize the shopping experience and serve their customers in a better way. At Walmart Labs, data scientists are focused on creating data-driven solutions that power the efficiency and effectiveness of complex supply chain management processes. Here are some of the applications of data science  at Walmart:

i) Personalized Customer Shopping Experience

Walmart analyses customer preferences and shopping patterns to optimize the stocking and displaying of merchandise in their stores. Analysis of Big data also helps them understand new item sales, make decisions on discontinuing products, and the performance of brands.

ii) Order Sourcing and On-Time Delivery Promise

Millions of customers view items on Walmart.com, and Walmart provides each customer a real-time estimated delivery date for the items purchased. Walmart runs a backend algorithm that estimates this based on the distance between the customer and the fulfillment center, inventory levels, and shipping methods available. The supply chain management system determines the optimum fulfillment center based on distance and inventory levels for every order. It also has to decide on the shipping method to minimize transportation costs while meeting the promised delivery date.

Here's what valued users are saying about ProjectPro

user profile

Abhinav Agarwal

Graduate Student at Northwestern University

user profile

Gautam Vermani

Data Consultant at Confidential

Not sure what you are looking for?

iii) Packing Optimization 

Also known as Box recommendation is a daily occurrence in the shipping of items in retail and eCommerce business. When items of an order or multiple orders for the same customer are ready for packing, Walmart has developed a recommender system that picks the best-sized box which holds all the ordered items with the least in-box space wastage within a fixed amount of time. This Bin Packing problem is a classic NP-Hard problem familiar to data scientists .

Whenever items of an order or multiple orders placed by the same customer are picked from the shelf and are ready for packing, the box recommendation system determines the best-sized box to hold all the ordered items with a minimum of in-box space wasted. This problem is known as the Bin Packing Problem, another classic NP-Hard problem familiar to data scientists.

Here is a link to a sales prediction data science case study to help you understand the applications of Data Science in the real world. Walmart Sales Forecasting Project uses historical sales data for 45 Walmart stores located in different regions. Each store contains many departments, and you must build a model to project the sales for each department in each store. This data science case study aims to create a predictive model to predict the sales of each product. You can also try your hands-on Inventory Demand Forecasting Data Science Project to develop a machine learning model to forecast inventory demand accurately based on historical sales data.

Get Closer To Your Dream of Becoming a Data Scientist with 70+ Solved End-to-End ML Projects

Amazon is an American multinational technology-based company based in Seattle, USA. It started as an online bookseller, but today it focuses on eCommerce, cloud computing , digital streaming, and artificial intelligence . It hosts an estimate of 1,000,000,000 gigabytes of data across more than 1,400,000 servers. Through its constant innovation in data science and big data Amazon is always ahead in understanding its customers. Here are a few data analytics case study examples at Amazon:

i) Recommendation Systems

Data science models help amazon understand the customers' needs and recommend them to them before the customer searches for a product; this model uses collaborative filtering. Amazon uses 152 million customer purchases data to help users to decide on products to be purchased. The company generates 35% of its annual sales using the Recommendation based systems (RBS) method.

Here is a Recommender System Project to help you build a recommendation system using collaborative filtering. 

ii) Retail Price Optimization

Amazon product prices are optimized based on a predictive model that determines the best price so that the users do not refuse to buy it based on price. The model carefully determines the optimal prices considering the customers' likelihood of purchasing the product and thinks the price will affect the customers' future buying patterns. Price for a product is determined according to your activity on the website, competitors' pricing, product availability, item preferences, order history, expected profit margin, and other factors.

Check Out this Retail Price Optimization Project to build a Dynamic Pricing Model.

iii) Fraud Detection

Being a significant eCommerce business, Amazon remains at high risk of retail fraud. As a preemptive measure, the company collects historical and real-time data for every order. It uses Machine learning algorithms to find transactions with a higher probability of being fraudulent. This proactive measure has helped the company restrict clients with an excessive number of returns of products.

You can look at this Credit Card Fraud Detection Project to implement a fraud detection model to classify fraudulent credit card transactions.

New Projects

Let us explore data analytics case study examples in the entertainment indusry.

Ace Your Next Job Interview with Mock Interviews from Experts to Improve Your Skills and Boost Confidence!

Data Science Interview Preparation

Netflix started as a DVD rental service in 1997 and then has expanded into the streaming business. Headquartered in Los Gatos, California, Netflix is the largest content streaming company in the world. Currently, Netflix has over 208 million paid subscribers worldwide, and with thousands of smart devices which are presently streaming supported, Netflix has around 3 billion hours watched every month. The secret to this massive growth and popularity of Netflix is its advanced use of data analytics and recommendation systems to provide personalized and relevant content recommendations to its users. The data is collected over 100 billion events every day. Here are a few examples of data analysis case studies applied at Netflix :

i) Personalized Recommendation System

Netflix uses over 1300 recommendation clusters based on consumer viewing preferences to provide a personalized experience. Some of the data that Netflix collects from its users include Viewing time, platform searches for keywords, Metadata related to content abandonment, such as content pause time, rewind, rewatched. Using this data, Netflix can predict what a viewer is likely to watch and give a personalized watchlist to a user. Some of the algorithms used by the Netflix recommendation system are Personalized video Ranking, Trending now ranker, and the Continue watching now ranker.

ii) Content Development using Data Analytics

Netflix uses data science to analyze the behavior and patterns of its user to recognize themes and categories that the masses prefer to watch. This data is used to produce shows like The umbrella academy, and Orange Is the New Black, and the Queen's Gambit. These shows seem like a huge risk but are significantly based on data analytics using parameters, which assured Netflix that they would succeed with its audience. Data analytics is helping Netflix come up with content that their viewers want to watch even before they know they want to watch it.

iii) Marketing Analytics for Campaigns

Netflix uses data analytics to find the right time to launch shows and ad campaigns to have maximum impact on the target audience. Marketing analytics helps come up with different trailers and thumbnails for other groups of viewers. For example, the House of Cards Season 5 trailer with a giant American flag was launched during the American presidential elections, as it would resonate well with the audience.

Here is a Customer Segmentation Project using association rule mining to understand the primary grouping of customers based on various parameters.

Get FREE Access to Machine Learning Example Codes for Data Cleaning , Data Munging, and Data Visualization

In a world where Purchasing music is a thing of the past and streaming music is a current trend, Spotify has emerged as one of the most popular streaming platforms. With 320 million monthly users, around 4 billion playlists, and approximately 2 million podcasts, Spotify leads the pack among well-known streaming platforms like Apple Music, Wynk, Songza, amazon music, etc. The success of Spotify has mainly depended on data analytics. By analyzing massive volumes of listener data, Spotify provides real-time and personalized services to its listeners. Most of Spotify's revenue comes from paid premium subscriptions. Here are some of the examples of case study on data analytics used by Spotify to provide enhanced services to its listeners:

i) Personalization of Content using Recommendation Systems

Spotify uses Bart or Bayesian Additive Regression Trees to generate music recommendations to its listeners in real-time. Bart ignores any song a user listens to for less than 30 seconds. The model is retrained every day to provide updated recommendations. A new Patent granted to Spotify for an AI application is used to identify a user's musical tastes based on audio signals, gender, age, accent to make better music recommendations.

Spotify creates daily playlists for its listeners, based on the taste profiles called 'Daily Mixes,' which have songs the user has added to their playlists or created by the artists that the user has included in their playlists. It also includes new artists and songs that the user might be unfamiliar with but might improve the playlist. Similar to it is the weekly 'Release Radar' playlists that have newly released artists' songs that the listener follows or has liked before.

ii) Targetted marketing through Customer Segmentation

With user data for enhancing personalized song recommendations, Spotify uses this massive dataset for targeted ad campaigns and personalized service recommendations for its users. Spotify uses ML models to analyze the listener's behavior and group them based on music preferences, age, gender, ethnicity, etc. These insights help them create ad campaigns for a specific target audience. One of their well-known ad campaigns was the meme-inspired ads for potential target customers, which was a huge success globally.

iii) CNN's for Classification of Songs and Audio Tracks

Spotify builds audio models to evaluate the songs and tracks, which helps develop better playlists and recommendations for its users. These allow Spotify to filter new tracks based on their lyrics and rhythms and recommend them to users like similar tracks ( collaborative filtering). Spotify also uses NLP ( Natural language processing) to scan articles and blogs to analyze the words used to describe songs and artists. These analytical insights can help group and identify similar artists and songs and leverage them to build playlists.

Here is a Music Recommender System Project for you to start learning. We have listed another music recommendations dataset for you to use for your projects: Dataset1 . You can use this dataset of Spotify metadata to classify songs based on artists, mood, liveliness. Plot histograms, heatmaps to get a better understanding of the dataset. Use classification algorithms like logistic regression, SVM, and Principal component analysis to generate valuable insights from the dataset.

Explore Categories

Below you will find case studies for data analytics in the travel and tourism industry.

Airbnb was born in 2007 in San Francisco and has since grown to 4 million Hosts and 5.6 million listings worldwide who have welcomed more than 1 billion guest arrivals in almost every country across the globe. Airbnb is active in every country on the planet except for Iran, Sudan, Syria, and North Korea. That is around 97.95% of the world. Using data as a voice of their customers, Airbnb uses the large volume of customer reviews, host inputs to understand trends across communities, rate user experiences, and uses these analytics to make informed decisions to build a better business model. The data scientists at Airbnb are developing exciting new solutions to boost the business and find the best mapping for its customers and hosts. Airbnb data servers serve approximately 10 million requests a day and process around one million search queries. Data is the voice of customers at AirBnB and offers personalized services by creating a perfect match between the guests and hosts for a supreme customer experience. 

i) Recommendation Systems and Search Ranking Algorithms

Airbnb helps people find 'local experiences' in a place with the help of search algorithms that make searches and listings precise. Airbnb uses a 'listing quality score' to find homes based on the proximity to the searched location and uses previous guest reviews. Airbnb uses deep neural networks to build models that take the guest's earlier stays into account and area information to find a perfect match. The search algorithms are optimized based on guest and host preferences, rankings, pricing, and availability to understand users’ needs and provide the best match possible.

ii) Natural Language Processing for Review Analysis

Airbnb characterizes data as the voice of its customers. The customer and host reviews give a direct insight into the experience. The star ratings alone cannot be an excellent way to understand it quantitatively. Hence Airbnb uses natural language processing to understand reviews and the sentiments behind them. The NLP models are developed using Convolutional neural networks .

Practice this Sentiment Analysis Project for analyzing product reviews to understand the basic concepts of natural language processing.

iii) Smart Pricing using Predictive Analytics

The Airbnb hosts community uses the service as a supplementary income. The vacation homes and guest houses rented to customers provide for rising local community earnings as Airbnb guests stay 2.4 times longer and spend approximately 2.3 times the money compared to a hotel guest. The profits are a significant positive impact on the local neighborhood community. Airbnb uses predictive analytics to predict the prices of the listings and help the hosts set a competitive and optimal price. The overall profitability of the Airbnb host depends on factors like the time invested by the host and responsiveness to changing demands for different seasons. The factors that impact the real-time smart pricing are the location of the listing, proximity to transport options, season, and amenities available in the neighborhood of the listing.

Here is a Price Prediction Project to help you understand the concept of predictive analysis which is widely common in case studies for data analytics. 

Uber is the biggest global taxi service provider. As of December 2018, Uber has 91 million monthly active consumers and 3.8 million drivers. Uber completes 14 million trips each day. Uber uses data analytics and big data-driven technologies to optimize their business processes and provide enhanced customer service. The Data Science team at uber has been exploring futuristic technologies to provide better service constantly. Machine learning and data analytics help Uber make data-driven decisions that enable benefits like ride-sharing, dynamic price surges, better customer support, and demand forecasting. Here are some of the real world data science projects used by uber:

i) Dynamic Pricing for Price Surges and Demand Forecasting

Uber prices change at peak hours based on demand. Uber uses surge pricing to encourage more cab drivers to sign up with the company, to meet the demand from the passengers. When the prices increase, the driver and the passenger are both informed about the surge in price. Uber uses a predictive model for price surging called the 'Geosurge' ( patented). It is based on the demand for the ride and the location.

ii) One-Click Chat

Uber has developed a Machine learning and natural language processing solution called one-click chat or OCC for coordination between drivers and users. This feature anticipates responses for commonly asked questions, making it easy for the drivers to respond to customer messages. Drivers can reply with the clock of just one button. One-Click chat is developed on Uber's machine learning platform Michelangelo to perform NLP on rider chat messages and generate appropriate responses to them.

iii) Customer Retention

Failure to meet the customer demand for cabs could lead to users opting for other services. Uber uses machine learning models to bridge this demand-supply gap. By using prediction models to predict the demand in any location, uber retains its customers. Uber also uses a tier-based reward system, which segments customers into different levels based on usage. The higher level the user achieves, the better are the perks. Uber also provides personalized destination suggestions based on the history of the user and their frequently traveled destinations.

You can take a look at this Python Chatbot Project and build a simple chatbot application to understand better the techniques used for natural language processing. You can also practice the working of a demand forecasting model with this project using time series analysis. You can look at this project which uses time series forecasting and clustering on a dataset containing geospatial data for forecasting customer demand for ola rides.

Explore More  Data Science and Machine Learning Projects for Practice. Fast-Track Your Career Transition with ProjectPro

7) LinkedIn 

LinkedIn is the largest professional social networking site with nearly 800 million members in more than 200 countries worldwide. Almost 40% of the users access LinkedIn daily, clocking around 1 billion interactions per month. The data science team at LinkedIn works with this massive pool of data to generate insights to build strategies, apply algorithms and statistical inferences to optimize engineering solutions, and help the company achieve its goals. Here are some of the real world data science projects at LinkedIn:

i) LinkedIn Recruiter Implement Search Algorithms and Recommendation Systems

LinkedIn Recruiter helps recruiters build and manage a talent pool to optimize the chances of hiring candidates successfully. This sophisticated product works on search and recommendation engines. The LinkedIn recruiter handles complex queries and filters on a constantly growing large dataset. The results delivered have to be relevant and specific. The initial search model was based on linear regression but was eventually upgraded to Gradient Boosted decision trees to include non-linear correlations in the dataset. In addition to these models, the LinkedIn recruiter also uses the Generalized Linear Mix model to improve the results of prediction problems to give personalized results.

ii) Recommendation Systems Personalized for News Feed

The LinkedIn news feed is the heart and soul of the professional community. A member's newsfeed is a place to discover conversations among connections, career news, posts, suggestions, photos, and videos. Every time a member visits LinkedIn, machine learning algorithms identify the best exchanges to be displayed on the feed by sorting through posts and ranking the most relevant results on top. The algorithms help LinkedIn understand member preferences and help provide personalized news feeds. The algorithms used include logistic regression, gradient boosted decision trees and neural networks for recommendation systems.

iii) CNN's to Detect Inappropriate Content

To provide a professional space where people can trust and express themselves professionally in a safe community has been a critical goal at LinkedIn. LinkedIn has heavily invested in building solutions to detect fake accounts and abusive behavior on their platform. Any form of spam, harassment, inappropriate content is immediately flagged and taken down. These can range from profanity to advertisements for illegal services. LinkedIn uses a Convolutional neural networks based machine learning model. This classifier trains on a training dataset containing accounts labeled as either "inappropriate" or "appropriate." The inappropriate list consists of accounts having content from "blocklisted" phrases or words and a small portion of manually reviewed accounts reported by the user community.

Here is a Text Classification Project to help you understand NLP basics for text classification. You can find a news recommendation system dataset to help you build a personalized news recommender system. You can also use this dataset to build a classifier using logistic regression, Naive Bayes, or Neural networks to classify toxic comments.

Get confident to build end-to-end projects

Access to a curated library of 250+ end-to-end industry projects with solution code, videos and tech support.

Pfizer is a multinational pharmaceutical company headquartered in New York, USA. One of the largest pharmaceutical companies globally known for developing a wide range of medicines and vaccines in disciplines like immunology, oncology, cardiology, and neurology. Pfizer became a household name in 2010 when it was the first to have a COVID-19 vaccine with FDA. In early November 2021, The CDC has approved the Pfizer vaccine for kids aged 5 to 11. Pfizer has been using machine learning and artificial intelligence to develop drugs and streamline trials, which played a massive role in developing and deploying the COVID-19 vaccine. Here are a few data analytics case studies by Pfizer :

i) Identifying Patients for Clinical Trials

Artificial intelligence and machine learning are used to streamline and optimize clinical trials to increase their efficiency. Natural language processing and exploratory data analysis of patient records can help identify suitable patients for clinical trials. These can help identify patients with distinct symptoms. These can help examine interactions of potential trial members' specific biomarkers, predict drug interactions and side effects which can help avoid complications. Pfizer's AI implementation helped rapidly identify signals within the noise of millions of data points across their 44,000-candidate COVID-19 clinical trial.

ii) Supply Chain and Manufacturing

Data science and machine learning techniques help pharmaceutical companies better forecast demand for vaccines and drugs and distribute them efficiently. Machine learning models can help identify efficient supply systems by automating and optimizing the production steps. These will help supply drugs customized to small pools of patients in specific gene pools. Pfizer uses Machine learning to predict the maintenance cost of equipment used. Predictive maintenance using AI is the next big step for Pharmaceutical companies to reduce costs.

iii) Drug Development

Computer simulations of proteins, and tests of their interactions, and yield analysis help researchers develop and test drugs more efficiently. In 2016 Watson Health and Pfizer announced a collaboration to utilize IBM Watson for Drug Discovery to help accelerate Pfizer's research in immuno-oncology, an approach to cancer treatment that uses the body's immune system to help fight cancer. Deep learning models have been used recently for bioactivity and synthesis prediction for drugs and vaccines in addition to molecular design. Deep learning has been a revolutionary technique for drug discovery as it factors everything from new applications of medications to possible toxic reactions which can save millions in drug trials.

You can create a Machine learning model to predict molecular activity to help design medicine using this dataset . You may build a CNN or a Deep neural network for this data analyst case study project.

Access Data Science and Machine Learning Project Code Examples

9) Shell Data Analyst Case Study Project

Shell is a global group of energy and petrochemical companies with over 80,000 employees in around 70 countries. Shell uses advanced technologies and innovations to help build a sustainable energy future. Shell is going through a significant transition as the world needs more and cleaner energy solutions to be a clean energy company by 2050. It requires substantial changes in the way in which energy is used. Digital technologies, including AI and Machine Learning, play an essential role in this transformation. These include efficient exploration and energy production, more reliable manufacturing, more nimble trading, and a personalized customer experience. Using AI in various phases of the organization will help achieve this goal and stay competitive in the market. Here are a few data analytics case studies in the petrochemical industry:

i) Precision Drilling

Shell is involved in the processing mining oil and gas supply, ranging from mining hydrocarbons to refining the fuel to retailing them to customers. Recently Shell has included reinforcement learning to control the drilling equipment used in mining. Reinforcement learning works on a reward-based system based on the outcome of the AI model. The algorithm is designed to guide the drills as they move through the surface, based on the historical data from drilling records. It includes information such as the size of drill bits, temperatures, pressures, and knowledge of the seismic activity. This model helps the human operator understand the environment better, leading to better and faster results will minor damage to machinery used. 

ii) Efficient Charging Terminals

Due to climate changes, governments have encouraged people to switch to electric vehicles to reduce carbon dioxide emissions. However, the lack of public charging terminals has deterred people from switching to electric cars. Shell uses AI to monitor and predict the demand for terminals to provide efficient supply. Multiple vehicles charging from a single terminal may create a considerable grid load, and predictions on demand can help make this process more efficient.

iii) Monitoring Service and Charging Stations

Another Shell initiative trialed in Thailand and Singapore is the use of computer vision cameras, which can think and understand to watch out for potentially hazardous activities like lighting cigarettes in the vicinity of the pumps while refueling. The model is built to process the content of the captured images and label and classify it. The algorithm can then alert the staff and hence reduce the risk of fires. You can further train the model to detect rash driving or thefts in the future.

Here is a project to help you understand multiclass image classification. You can use the Hourly Energy Consumption Dataset to build an energy consumption prediction model. You can use time series with XGBoost to develop your model.

10) Zomato Case Study on Data Analytics

Zomato was founded in 2010 and is currently one of the most well-known food tech companies. Zomato offers services like restaurant discovery, home delivery, online table reservation, online payments for dining, etc. Zomato partners with restaurants to provide tools to acquire more customers while also providing delivery services and easy procurement of ingredients and kitchen supplies. Currently, Zomato has over 2 lakh restaurant partners and around 1 lakh delivery partners. Zomato has closed over ten crore delivery orders as of date. Zomato uses ML and AI to boost their business growth, with the massive amount of data collected over the years from food orders and user consumption patterns. Here are a few examples of data analyst case study project developed by the data scientists at Zomato:

i) Personalized Recommendation System for Homepage

Zomato uses data analytics to create personalized homepages for its users. Zomato uses data science to provide order personalization, like giving recommendations to the customers for specific cuisines, locations, prices, brands, etc. Restaurant recommendations are made based on a customer's past purchases, browsing history, and what other similar customers in the vicinity are ordering. This personalized recommendation system has led to a 15% improvement in order conversions and click-through rates for Zomato. 

You can use the Restaurant Recommendation Dataset to build a restaurant recommendation system to predict what restaurants customers are most likely to order from, given the customer location, restaurant information, and customer order history.

ii) Analyzing Customer Sentiment

Zomato uses Natural language processing and Machine learning to understand customer sentiments using social media posts and customer reviews. These help the company gauge the inclination of its customer base towards the brand. Deep learning models analyze the sentiments of various brand mentions on social networking sites like Twitter, Instagram, Linked In, and Facebook. These analytics give insights to the company, which helps build the brand and understand the target audience.

iii) Predicting Food Preparation Time (FPT)

Food delivery time is an essential variable in the estimated delivery time of the order placed by the customer using Zomato. The food preparation time depends on numerous factors like the number of dishes ordered, time of the day, footfall in the restaurant, day of the week, etc. Accurate prediction of the food preparation time can help make a better prediction of the Estimated delivery time, which will help delivery partners less likely to breach it. Zomato uses a Bidirectional LSTM-based deep learning model that considers all these features and provides food preparation time for each order in real-time. 

Data scientists are companies' secret weapons when analyzing customer sentiments and behavior and leveraging it to drive conversion, loyalty, and profits. These 10 data science case studies projects with examples and solutions show you how various organizations use data science technologies to succeed and be at the top of their field! To summarize, Data Science has not only accelerated the performance of companies but has also made it possible to manage & sustain their performance with ease.

FAQs on Data Analysis Case Studies

A case study in data science is an in-depth analysis of a real-world problem using data-driven approaches. It involves collecting, cleaning, and analyzing data to extract insights and solve challenges, offering practical insights into how data science techniques can address complex issues across various industries.

To create a data science case study, identify a relevant problem, define objectives, and gather suitable data. Clean and preprocess data, perform exploratory data analysis, and apply appropriate algorithms for analysis. Summarize findings, visualize results, and provide actionable recommendations, showcasing the problem-solving potential of data science techniques.

Access Solved Big Data and Data Science Projects

About the Author

author profile

ProjectPro is the only online platform designed to help professionals gain practical, hands-on experience in big data, data engineering, data science, and machine learning related technologies. Having over 270+ reusable project templates in data science and big data with step-by-step walkthroughs,

arrow link

© 2024

© 2024 Iconiq Inc.

Privacy policy

User policy

Write for ProjectPro

Qualitative case study data analysis: an example from practice

Affiliation.

  • 1 School of Nursing and Midwifery, National University of Ireland, Galway, Republic of Ireland.
  • PMID: 25976531
  • DOI: 10.7748/nr.22.5.8.e1307

Aim: To illustrate an approach to data analysis in qualitative case study methodology.

Background: There is often little detail in case study research about how data were analysed. However, it is important that comprehensive analysis procedures are used because there are often large sets of data from multiple sources of evidence. Furthermore, the ability to describe in detail how the analysis was conducted ensures rigour in reporting qualitative research.

Data sources: The research example used is a multiple case study that explored the role of the clinical skills laboratory in preparing students for the real world of practice. Data analysis was conducted using a framework guided by the four stages of analysis outlined by Morse ( 1994 ): comprehending, synthesising, theorising and recontextualising. The specific strategies for analysis in these stages centred on the work of Miles and Huberman ( 1994 ), which has been successfully used in case study research. The data were managed using NVivo software.

Review methods: Literature examining qualitative data analysis was reviewed and strategies illustrated by the case study example provided. Discussion Each stage of the analysis framework is described with illustration from the research example for the purpose of highlighting the benefits of a systematic approach to handling large data sets from multiple sources.

Conclusion: By providing an example of how each stage of the analysis was conducted, it is hoped that researchers will be able to consider the benefits of such an approach to their own case study analysis.

Implications for research/practice: This paper illustrates specific strategies that can be employed when conducting data analysis in case study research and other qualitative research designs.

Keywords: Case study data analysis; case study research methodology; clinical skills research; qualitative case study methodology; qualitative data analysis; qualitative research.

  • Case-Control Studies*
  • Data Interpretation, Statistical*
  • Nursing Research / methods*
  • Qualitative Research*
  • Research Design

Case Study Research in Software Engineering: Guidelines and Examples by Per Runeson, Martin Höst, Austen Rainer, Björn Regnell

Get full access to Case Study Research in Software Engineering: Guidelines and Examples and 60K+ other titles, with a free 10-day trial of O'Reilly.

There are also live events, courses curated by job role, and more.

DATA ANALYSIS AND INTERPRETATION

5.1 introduction.

Once data has been collected the focus shifts to analysis of data. It can be said that in this phase, data is used to understand what actually has happened in the studied case, and where the researcher understands the details of the case and seeks patterns in the data. This means that there inevitably is some analysis going on also in the data collection phase where the data is studied, and for example when data from an interview is transcribed. The understandings in the earlier phases are of course also valid and important, but this chapter is more focusing on the separate phase that starts after the data has been collected.

Data analysis is conducted differently for quantitative and qualitative data. Sections 5.2 – 5.5 describe how to analyze qualitative data and how to assess the validity of this type of analysis. In Section 5.6 , a short introduction to quantitative analysis methods is given. Since quantitative analysis is covered extensively in textbooks on statistical analysis, and case study research to a large extent relies on qualitative data, this section is kept short.

5.2 ANALYSIS OF DATA IN FLEXIBLE RESEARCH

5.2.1 introduction.

As case study research is a flexible research method, qualitative data analysis methods are commonly used [176]. The basic objective of the analysis is, as in any other analysis, to derive conclusions from the data, keeping a clear chain of evidence. The chain of evidence means that a reader ...

Get Case Study Research in Software Engineering: Guidelines and Examples now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.

Don’t leave empty-handed

Get Mark Richards’s Software Architecture Patterns ebook to better understand how to design components—and how they should interact.

It’s yours, free.

Cover of Software Architecture Patterns

Check it out now on O’Reilly

Dive in for free with a 10-day trial of the O’Reilly learning platform—then explore all the other resources our members count on to build skills and solve problems every day.

data analysis techniques case study

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Case Study | Definition, Examples & Methods

Case Study | Definition, Examples & Methods

Published on 5 May 2022 by Shona McCombes . Revised on 30 January 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organisation, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating, and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyse the case.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Prevent plagiarism, run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

Unlike quantitative or experimental research, a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

If you find yourself aiming to simultaneously investigate and solve an issue, consider conducting action research . As its name suggests, action research conducts research and takes action at the same time, and is highly iterative and flexible. 

However, you can also choose a more common or representative case to exemplify a particular category, experience, or phenomenon.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data .

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis, with separate sections or chapters for the methods , results , and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyse its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, January 30). Case Study | Definition, Examples & Methods. Scribbr. Retrieved 22 April 2024, from https://www.scribbr.co.uk/research-methods/case-studies/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, correlational research | guide, design & examples, a quick guide to experimental design | 5 steps & examples, descriptive research design | definition, methods & examples.

Currently taking bookings for May >>

data analysis techniques case study

The Convergence Blog

The convergence - an online community space that's dedicated to empowering operators in the data industry by providing news and education about evergreen strategies, late-breaking data & ai developments, and free or low-cost upskilling resources that you need to thrive as a leader in the data & ai space., data analysis case study: learn from humana’s automated data analysis project.

Picture of Lillian Pierson, P.E.

Lillian Pierson, P.E.

Playback speed:

Got data? Great! Looking for that perfect data analysis case study to help you get started using it? You’re in the right place.

If you’ve ever struggled to decide what to do next with your data projects, to actually find meaning in the data, or even to decide what kind of data to collect, then KEEP READING…

Deep down, you know what needs to happen. You need to initiate and execute a data strategy that really moves the needle for your organization. One that produces seriously awesome business results.

But how you’re in the right place to find out..

As a data strategist who has worked with 10 percent of Fortune 100 companies, today I’m sharing with you a case study that demonstrates just how real businesses are making real wins with data analysis. 

In the post below, we’ll look at:

  • A shining data success story;
  • What went on ‘under-the-hood’ to support that successful data project; and
  • The exact data technologies used by the vendor, to take this project from pure strategy to pure success

If you prefer to watch this information rather than read it, it’s captured in the video below:

Here’s the url too: https://youtu.be/xMwZObIqvLQ

3 Action Items You Need To Take

To actually use the data analysis case study you’re about to get – you need to take 3 main steps. Those are:

  • Reflect upon your organization as it is today (I left you some prompts below – to help you get started)
  • Review winning data case collections (starting with the one I’m sharing here) and identify 5 that seem the most promising for your organization given it’s current set-up
  • Assess your organization AND those 5 winning case collections. Based on that assessment, select the “QUICK WIN” data use case that offers your organization the most bang for it’s buck

Step 1: Reflect Upon Your Organization

Whenever you evaluate data case collections to decide if they’re a good fit for your organization, the first thing you need to do is organize your thoughts with respect to your organization as it is today.

Before moving into the data analysis case study, STOP and ANSWER THE FOLLOWING QUESTIONS – just to remind yourself:

  • What is the business vision for our organization?
  • What industries do we primarily support?
  • What data technologies do we already have up and running, that we could use to generate even more value?
  • What team members do we have to support a new data project? And what are their data skillsets like?
  • What type of data are we mostly looking to generate value from? Structured? Semi-Structured? Un-structured? Real-time data? Huge data sets? What are our data resources like?

Jot down some notes while you’re here. Then keep them in mind as you read on to find out how one company, Humana, used its data to achieve a 28 percent increase in customer satisfaction. Also include its 63 percent increase in employee engagement! (That’s such a seriously impressive outcome, right?!)

Step 2: Review Data Case Studies

Here we are, already at step 2. It’s time for you to start reviewing data analysis case studies  (starting with the one I’m sharing below). I dentify 5 that seem the most promising for your organization given its current set-up.

Humana’s Automated Data Analysis Case Study

The key thing to note here is that the approach to creating a successful data program varies from industry to industry .

Let’s start with one to demonstrate the kind of value you can glean from these kinds of success stories.

Humana has provided health insurance to Americans for over 50 years. It is a service company focused on fulfilling the needs of its customers. A great deal of Humana’s success as a company rides on customer satisfaction, and the frontline of that battle for customers’ hearts and minds is Humana’s customer service center.

Call centers are hard to get right. A lot of emotions can arise during a customer service call, especially one relating to health and health insurance. Sometimes people are frustrated. At times, they’re upset. Also, there are times the customer service representative becomes aggravated, and the overall tone and progression of the phone call goes downhill. This is of course very bad for customer satisfaction.

Humana wanted to use artificial intelligence to improve customer satisfaction (and thus, customer retention rates & profits per customer).

Humana wanted to find a way to use artificial intelligence to monitor their phone calls and help their agents do a better job connecting with their customers in order to improve customer satisfaction (and thus, customer retention rates & profits per customer ).

In light of their business need, Humana worked with a company called Cogito, which specializes in voice analytics technology.

Cogito offers a piece of AI technology called Cogito Dialogue. It’s been trained to identify certain conversational cues as a way of helping call center representatives and supervisors stay actively engaged in a call with a customer.

The AI listens to cues like the customer’s voice pitch.

If it’s rising, or if the call representative and the customer talk over each other, then the dialogue tool will send out electronic alerts to the agent during the call.

Humana fed the dialogue tool customer service data from 10,000 calls and allowed it to analyze cues such as keywords, interruptions, and pauses, and these cues were then linked with specific outcomes. For example, if the representative is receiving a particular type of cues, they are likely to get a specific customer satisfaction result.

The Outcome

Customers were happier, and customer service representatives were more engaged..

This automated solution for data analysis has now been deployed in 200 Humana call centers and the company plans to roll it out to 100 percent of its centers in the future.

The initiative was so successful, Humana has been able to focus on next steps in its data program. The company now plans to begin predicting the type of calls that are likely to go unresolved, so they can send those calls over to management before they become frustrating to the customer and customer service representative alike.

What does this mean for you and your business?

Well, if you’re looking for new ways to generate value by improving the quantity and quality of the decision support that you’re providing to your customer service personnel, then this may be a perfect example of how you can do so.

Humana’s Business Use Cases

Humana’s data analysis case study includes two key business use cases:

  • Analyzing customer sentiment; and
  • Suggesting actions to customer service representatives.

Analyzing Customer Sentiment

First things first, before you go ahead and collect data, you need to ask yourself who and what is involved in making things happen within the business.

In the case of Humana, the actors were:

  • The health insurance system itself
  • The customer, and
  • The customer service representative

As you can see in the use case diagram above, the relational aspect is pretty simple. You have a customer service representative and a customer. They are both producing audio data, and that audio data is being fed into the system.

Humana focused on collecting the key data points, shown in the image below, from their customer service operations.

By collecting data about speech style, pitch, silence, stress in customers’ voices, length of call, speed of customers’ speech, intonation, articulation, silence, and representatives’  manner of speaking, Humana was able to analyze customer sentiment and introduce techniques for improved customer satisfaction.

Having strategically defined these data points, the Cogito technology was able to generate reports about customer sentiment during the calls.

Suggesting actions to customer service representatives.

The second use case for the Humana data program follows on from the data gathered in the first case.

In Humana’s case, Cogito generated a host of call analyses and reports about key call issues.

In the second business use case, Cogito was able to suggest actions to customer service representatives, in real-time , to make use of incoming data and help improve customer satisfaction on the spot.

The technology Humana used provided suggestions via text message to the customer service representative, offering the following types of feedback:

  • The tone of voice is too tense
  • The speed of speaking is high
  • The customer representative and customer are speaking at the same time

These alerts allowed the Humana customer service representatives to alter their approach immediately , improving the quality of the interaction and, subsequently, the customer satisfaction.

The preconditions for success in this use case were:

  • The call-related data must be collected and stored
  • The AI models must be in place to generate analysis on the data points that are recorded during the calls

Evidence of success can subsequently be found in a system that offers real-time suggestions for courses of action that the customer service representative can take to improve customer satisfaction.

Thanks to this data-intensive business use case, Humana was able to increase customer satisfaction, improve customer retention rates, and drive profits per customer.

The Technology That Supports This Data Analysis Case Study

I promised to dip into the tech side of things. This is especially for those of you who are interested in the ins and outs of how projects like this one are actually rolled out.

Here’s a little rundown of the main technologies we discovered when we investigated how Cogito runs in support of its clients like Humana.

  • For cloud data management Cogito uses AWS, specifically the Athena product
  • For on-premise big data management, the company used Apache HDFS – the distributed file system for storing big data
  • They utilize MapReduce, for processing their data
  • And Cogito also has traditional systems and relational database management systems such as PostgreSQL
  • In terms of analytics and data visualization tools, Cogito makes use of Tableau
  • And for its machine learning technology, these use cases required people with knowledge in Python, R, and SQL, as well as deep learning (Cogito uses the PyTorch library and the TensorFlow library)

These data science skill sets support the effective computing, deep learning , and natural language processing applications employed by Humana for this use case.

If you’re looking to hire people to help with your own data initiative, then people with those skills listed above, and with experience in these specific technologies, would be a huge help.

Step 3: S elect The “Quick Win” Data Use Case

Still there? Great!

It’s time to close the loop.

Remember those notes you took before you reviewed the study? I want you to STOP here and assess. Does this Humana case study seem applicable and promising as a solution, given your organization’s current set-up…

YES ▶ Excellent!

Earmark it and continue exploring other winning data use cases until you’ve identified 5 that seem like great fits for your businesses needs. Evaluate those against your organization’s needs, and select the very best fit to be your “quick win” data use case. Develop your data strategy around that.

NO , Lillian – It’s not applicable. ▶  No problem.

Discard the information and continue exploring the winning data use cases we’ve categorized for you according to business function and industry. Save time by dialing down into the business function you know your business really needs help with now. Identify 5 winning data use cases that seem like great fits for your businesses needs. Evaluate those against your organization’s needs, and select the very best fit to be your “quick win” data use case. Develop your data strategy around that data use case.

More resources to get ahead...

Get income-generating ideas for data professionals, are you tired of relying on one employer for your income are you dreaming of a side hustle that won’t put you at risk of getting fired or sued well, my friend, you’re in luck..

ideas for data analyst side jobs

This 48-page listing is here to rescue you from the drudgery of corporate slavery and set you on the path to start earning more money from your existing data expertise. Spend just 1 hour with this pdf and I can guarantee you’ll be bursting at the seams with practical, proven & profitable ideas for new income-streams you can create from your existing expertise. Learn more here!

Get the convergence newsletter.

data analysis techniques case study

Income-Generating Ideas For Data Professionals

A 48-page listing of income-generating product and service ideas for data professionals who want to earn additional money from their data expertise without relying on an employer to make it happen..

data analysis techniques case study

Data Strategy Action Plan

A step-by-step checklist & collaborative trello board planner for data professionals who want to get unstuck & up-leveled into their next promotion by delivering a fail-proof data strategy plan for their data projects..

data analysis techniques case study

Get more actionable advice by joining The Convergence Newsletter for free below.

how does blockchain support data privacy

How Does Blockchain Support Data Privacy and Storage Security?

data compliance

4 Top Data Compliance Tips and Tricks

4 steps to selecting an optimal analytics tool

4 steps to selecting an optimal analytics tool

Proven evergreen data migration strategy for data professionals who want to GET PROMOTED FAST

Proven Evergreen Data Migration Strategy for Data Professionals Who Want to GET PROMOTED FAST

Curious on what does a data product manager do?

What does a data product manager do? 3 types of work I do

learn what is gdpr compliace

What is GDPR compliance and what does it mean to your company’s bottom line?

data analysis techniques case study

Fractional CMO for deep tech B2B businesses. Specializing in go-to-market strategy, SaaS product growth, and consulting revenue growth. American expat serving clients worldwide since 2012.

Get connected, © data-mania, 2012 - 2024+, all rights reserved - terms & conditions  -  privacy policy | products protected by copyscape, privacy overview.

data analysis techniques case study

Get The Newsletter

A data analyst in side profile, looking at a laptop screen

The 7 Most Useful Data Analysis Methods and Techniques

data analysis techniques case study

Data analytics is the process of analyzing raw data to draw out meaningful insights. These insights are then used to determine the best course of action.

When is the best time to roll out that marketing campaign? Is the current team structure as effective as it could be? Which customer segments are most likely to purchase your new product?

Ultimately, data analytics is a crucial driver of any successful business strategy. But how do data analysts actually turn raw data into something useful? There are a range of methods and techniques that data analysts use depending on the type of data in question and the kinds of insights they want to uncover.

You can get a hands-on introduction to data analytics in this free short course .

In this post, we’ll explore some of the most useful data analysis techniques. By the end, you’ll have a much clearer idea of how you can transform meaningless data into business intelligence. We’ll cover:

  • What is data analysis and why is it important?
  • What is the difference between qualitative and quantitative data?
  • Regression analysis
  • Monte Carlo simulation
  • Factor analysis
  • Cohort analysis
  • Cluster analysis
  • Time series analysis
  • Sentiment analysis
  • The data analysis process
  • The best tools for data analysis
  •  Key takeaways

The first six methods listed are used for quantitative data , while the last technique applies to qualitative data. We briefly explain the difference between quantitative and qualitative data in section two, but if you want to skip straight to a particular analysis technique, just use the clickable menu.

1. What is data analysis and why is it important?

Data analysis is, put simply, the process of discovering useful information by evaluating data. This is done through a process of inspecting, cleaning, transforming, and modeling data using analytical and statistical tools, which we will explore in detail further along in this article.

Why is data analysis important? Analyzing data effectively helps organizations make business decisions. Nowadays, data is collected by businesses constantly: through surveys, online tracking, online marketing analytics, collected subscription and registration data (think newsletters), social media monitoring, among other methods.

These data will appear as different structures, including—but not limited to—the following:

The concept of big data —data that is so large, fast, or complex, that it is difficult or impossible to process using traditional methods—gained momentum in the early 2000s. Then, Doug Laney, an industry analyst, articulated what is now known as the mainstream definition of big data as the three Vs: volume, velocity, and variety. 

  • Volume: As mentioned earlier, organizations are collecting data constantly. In the not-too-distant past it would have been a real issue to store, but nowadays storage is cheap and takes up little space.
  • Velocity: Received data needs to be handled in a timely manner. With the growth of the Internet of Things, this can mean these data are coming in constantly, and at an unprecedented speed.
  • Variety: The data being collected and stored by organizations comes in many forms, ranging from structured data—that is, more traditional, numerical data—to unstructured data—think emails, videos, audio, and so on. We’ll cover structured and unstructured data a little further on.

This is a form of data that provides information about other data, such as an image. In everyday life you’ll find this by, for example, right-clicking on a file in a folder and selecting “Get Info”, which will show you information such as file size and kind, date of creation, and so on.

Real-time data

This is data that is presented as soon as it is acquired. A good example of this is a stock market ticket, which provides information on the most-active stocks in real time.

Machine data

This is data that is produced wholly by machines, without human instruction. An example of this could be call logs automatically generated by your smartphone.

Quantitative and qualitative data

Quantitative data—otherwise known as structured data— may appear as a “traditional” database—that is, with rows and columns. Qualitative data—otherwise known as unstructured data—are the other types of data that don’t fit into rows and columns, which can include text, images, videos and more. We’ll discuss this further in the next section.

2. What is the difference between quantitative and qualitative data?

How you analyze your data depends on the type of data you’re dealing with— quantitative or qualitative . So what’s the difference?

Quantitative data is anything measurable , comprising specific quantities and numbers. Some examples of quantitative data include sales figures, email click-through rates, number of website visitors, and percentage revenue increase. Quantitative data analysis techniques focus on the statistical, mathematical, or numerical analysis of (usually large) datasets. This includes the manipulation of statistical data using computational techniques and algorithms. Quantitative analysis techniques are often used to explain certain phenomena or to make predictions.

Qualitative data cannot be measured objectively , and is therefore open to more subjective interpretation. Some examples of qualitative data include comments left in response to a survey question, things people have said during interviews, tweets and other social media posts, and the text included in product reviews. With qualitative data analysis, the focus is on making sense of unstructured data (such as written text, or transcripts of spoken conversations). Often, qualitative analysis will organize the data into themes—a process which, fortunately, can be automated.

Data analysts work with both quantitative and qualitative data , so it’s important to be familiar with a variety of analysis methods. Let’s take a look at some of the most useful techniques now.

3. Data analysis techniques

Now we’re familiar with some of the different types of data, let’s focus on the topic at hand: different methods for analyzing data. 

a. Regression analysis

Regression analysis is used to estimate the relationship between a set of variables. When conducting any type of regression analysis , you’re looking to see if there’s a correlation between a dependent variable (that’s the variable or outcome you want to measure or predict) and any number of independent variables (factors which may have an impact on the dependent variable). The aim of regression analysis is to estimate how one or more variables might impact the dependent variable, in order to identify trends and patterns. This is especially useful for making predictions and forecasting future trends.

Let’s imagine you work for an ecommerce company and you want to examine the relationship between: (a) how much money is spent on social media marketing, and (b) sales revenue. In this case, sales revenue is your dependent variable—it’s the factor you’re most interested in predicting and boosting. Social media spend is your independent variable; you want to determine whether or not it has an impact on sales and, ultimately, whether it’s worth increasing, decreasing, or keeping the same. Using regression analysis, you’d be able to see if there’s a relationship between the two variables. A positive correlation would imply that the more you spend on social media marketing, the more sales revenue you make. No correlation at all might suggest that social media marketing has no bearing on your sales. Understanding the relationship between these two variables would help you to make informed decisions about the social media budget going forward. However: It’s important to note that, on their own, regressions can only be used to determine whether or not there is a relationship between a set of variables—they don’t tell you anything about cause and effect. So, while a positive correlation between social media spend and sales revenue may suggest that one impacts the other, it’s impossible to draw definitive conclusions based on this analysis alone.

There are many different types of regression analysis, and the model you use depends on the type of data you have for the dependent variable. For example, your dependent variable might be continuous (i.e. something that can be measured on a continuous scale, such as sales revenue in USD), in which case you’d use a different type of regression analysis than if your dependent variable was categorical in nature (i.e. comprising values that can be categorised into a number of distinct groups based on a certain characteristic, such as customer location by continent). You can learn more about different types of dependent variables and how to choose the right regression analysis in this guide .

Regression analysis in action: Investigating the relationship between clothing brand Benetton’s advertising expenditure and sales

b. Monte Carlo simulation

When making decisions or taking certain actions, there are a range of different possible outcomes. If you take the bus, you might get stuck in traffic. If you walk, you might get caught in the rain or bump into your chatty neighbor, potentially delaying your journey. In everyday life, we tend to briefly weigh up the pros and cons before deciding which action to take; however, when the stakes are high, it’s essential to calculate, as thoroughly and accurately as possible, all the potential risks and rewards.

Monte Carlo simulation, otherwise known as the Monte Carlo method, is a computerized technique used to generate models of possible outcomes and their probability distributions. It essentially considers a range of possible outcomes and then calculates how likely it is that each particular outcome will be realized. The Monte Carlo method is used by data analysts to conduct advanced risk analysis, allowing them to better forecast what might happen in the future and make decisions accordingly.

So how does Monte Carlo simulation work, and what can it tell us? To run a Monte Carlo simulation, you’ll start with a mathematical model of your data—such as a spreadsheet. Within your spreadsheet, you’ll have one or several outputs that you’re interested in; profit, for example, or number of sales. You’ll also have a number of inputs; these are variables that may impact your output variable. If you’re looking at profit, relevant inputs might include the number of sales, total marketing spend, and employee salaries. If you knew the exact, definitive values of all your input variables, you’d quite easily be able to calculate what profit you’d be left with at the end. However, when these values are uncertain, a Monte Carlo simulation enables you to calculate all the possible options and their probabilities. What will your profit be if you make 100,000 sales and hire five new employees on a salary of $50,000 each? What is the likelihood of this outcome? What will your profit be if you only make 12,000 sales and hire five new employees? And so on. It does this by replacing all uncertain values with functions which generate random samples from distributions determined by you, and then running a series of calculations and recalculations to produce models of all the possible outcomes and their probability distributions. The Monte Carlo method is one of the most popular techniques for calculating the effect of unpredictable variables on a specific output variable, making it ideal for risk analysis.

Monte Carlo simulation in action: A case study using Monte Carlo simulation for risk analysis

 c. Factor analysis

Factor analysis is a technique used to reduce a large number of variables to a smaller number of factors. It works on the basis that multiple separate, observable variables correlate with each other because they are all associated with an underlying construct. This is useful not only because it condenses large datasets into smaller, more manageable samples, but also because it helps to uncover hidden patterns. This allows you to explore concepts that cannot be easily measured or observed—such as wealth, happiness, fitness, or, for a more business-relevant example, customer loyalty and satisfaction.

Let’s imagine you want to get to know your customers better, so you send out a rather long survey comprising one hundred questions. Some of the questions relate to how they feel about your company and product; for example, “Would you recommend us to a friend?” and “How would you rate the overall customer experience?” Other questions ask things like “What is your yearly household income?” and “How much are you willing to spend on skincare each month?”

Once your survey has been sent out and completed by lots of customers, you end up with a large dataset that essentially tells you one hundred different things about each customer (assuming each customer gives one hundred responses). Instead of looking at each of these responses (or variables) individually, you can use factor analysis to group them into factors that belong together—in other words, to relate them to a single underlying construct. In this example, factor analysis works by finding survey items that are strongly correlated. This is known as covariance . So, if there’s a strong positive correlation between household income and how much they’re willing to spend on skincare each month (i.e. as one increases, so does the other), these items may be grouped together. Together with other variables (survey responses), you may find that they can be reduced to a single factor such as “consumer purchasing power”. Likewise, if a customer experience rating of 10/10 correlates strongly with “yes” responses regarding how likely they are to recommend your product to a friend, these items may be reduced to a single factor such as “customer satisfaction”.

In the end, you have a smaller number of factors rather than hundreds of individual variables. These factors are then taken forward for further analysis, allowing you to learn more about your customers (or any other area you’re interested in exploring).

Factor analysis in action: Using factor analysis to explore customer behavior patterns in Tehran

d. Cohort analysis

Cohort analysis is a data analytics technique that groups users based on a shared characteristic , such as the date they signed up for a service or the product they purchased. Once users are grouped into cohorts, analysts can track their behavior over time to identify trends and patterns.

So what does this mean and why is it useful? Let’s break down the above definition further. A cohort is a group of people who share a common characteristic (or action) during a given time period. Students who enrolled at university in 2020 may be referred to as the 2020 cohort. Customers who purchased something from your online store via the app in the month of December may also be considered a cohort.

With cohort analysis, you’re dividing your customers or users into groups and looking at how these groups behave over time. So, rather than looking at a single, isolated snapshot of all your customers at a given moment in time (with each customer at a different point in their journey), you’re examining your customers’ behavior in the context of the customer lifecycle. As a result, you can start to identify patterns of behavior at various points in the customer journey—say, from their first ever visit to your website, through to email newsletter sign-up, to their first purchase, and so on. As such, cohort analysis is dynamic, allowing you to uncover valuable insights about the customer lifecycle.

This is useful because it allows companies to tailor their service to specific customer segments (or cohorts). Let’s imagine you run a 50% discount campaign in order to attract potential new customers to your website. Once you’ve attracted a group of new customers (a cohort), you’ll want to track whether they actually buy anything and, if they do, whether or not (and how frequently) they make a repeat purchase. With these insights, you’ll start to gain a much better understanding of when this particular cohort might benefit from another discount offer or retargeting ads on social media, for example. Ultimately, cohort analysis allows companies to optimize their service offerings (and marketing) to provide a more targeted, personalized experience. You can learn more about how to run cohort analysis using Google Analytics .

Cohort analysis in action: How Ticketmaster used cohort analysis to boost revenue

e. Cluster analysis

Cluster analysis is an exploratory technique that seeks to identify structures within a dataset. The goal of cluster analysis is to sort different data points into groups (or clusters) that are internally homogeneous and externally heterogeneous. This means that data points within a cluster are similar to each other, and dissimilar to data points in another cluster. Clustering is used to gain insight into how data is distributed in a given dataset, or as a preprocessing step for other algorithms.

There are many real-world applications of cluster analysis. In marketing, cluster analysis is commonly used to group a large customer base into distinct segments, allowing for a more targeted approach to advertising and communication. Insurance firms might use cluster analysis to investigate why certain locations are associated with a high number of insurance claims. Another common application is in geology, where experts will use cluster analysis to evaluate which cities are at greatest risk of earthquakes (and thus try to mitigate the risk with protective measures).

It’s important to note that, while cluster analysis may reveal structures within your data, it won’t explain why those structures exist. With that in mind, cluster analysis is a useful starting point for understanding your data and informing further analysis. Clustering algorithms are also used in machine learning—you can learn more about clustering in machine learning in our guide .

Cluster analysis in action: Using cluster analysis for customer segmentation—a telecoms case study example

f. Time series analysis

Time series analysis is a statistical technique used to identify trends and cycles over time. Time series data is a sequence of data points which measure the same variable at different points in time (for example, weekly sales figures or monthly email sign-ups). By looking at time-related trends, analysts are able to forecast how the variable of interest may fluctuate in the future.

When conducting time series analysis, the main patterns you’ll be looking out for in your data are:

  • Trends: Stable, linear increases or decreases over an extended time period.
  • Seasonality: Predictable fluctuations in the data due to seasonal factors over a short period of time. For example, you might see a peak in swimwear sales in summer around the same time every year.
  • Cyclic patterns: Unpredictable cycles where the data fluctuates. Cyclical trends are not due to seasonality, but rather, may occur as a result of economic or industry-related conditions.

As you can imagine, the ability to make informed predictions about the future has immense value for business. Time series analysis and forecasting is used across a variety of industries, most commonly for stock market analysis, economic forecasting, and sales forecasting. There are different types of time series models depending on the data you’re using and the outcomes you want to predict. These models are typically classified into three broad types: the autoregressive (AR) models, the integrated (I) models, and the moving average (MA) models. For an in-depth look at time series analysis, refer to our guide .

Time series analysis in action: Developing a time series model to predict jute yarn demand in Bangladesh

g. Sentiment analysis

When you think of data, your mind probably automatically goes to numbers and spreadsheets.

Many companies overlook the value of qualitative data, but in reality, there are untold insights to be gained from what people (especially customers) write and say about you. So how do you go about analyzing textual data?

One highly useful qualitative technique is sentiment analysis , a technique which belongs to the broader category of text analysis —the (usually automated) process of sorting and understanding textual data.

With sentiment analysis, the goal is to interpret and classify the emotions conveyed within textual data. From a business perspective, this allows you to ascertain how your customers feel about various aspects of your brand, product, or service.

There are several different types of sentiment analysis models, each with a slightly different focus. The three main types include:

Fine-grained sentiment analysis

If you want to focus on opinion polarity (i.e. positive, neutral, or negative) in depth, fine-grained sentiment analysis will allow you to do so.

For example, if you wanted to interpret star ratings given by customers, you might use fine-grained sentiment analysis to categorize the various ratings along a scale ranging from very positive to very negative.

Emotion detection

This model often uses complex machine learning algorithms to pick out various emotions from your textual data.

You might use an emotion detection model to identify words associated with happiness, anger, frustration, and excitement, giving you insight into how your customers feel when writing about you or your product on, say, a product review site.

Aspect-based sentiment analysis

This type of analysis allows you to identify what specific aspects the emotions or opinions relate to, such as a certain product feature or a new ad campaign.

If a customer writes that they “find the new Instagram advert so annoying”, your model should detect not only a negative sentiment, but also the object towards which it’s directed.

In a nutshell, sentiment analysis uses various Natural Language Processing (NLP) algorithms and systems which are trained to associate certain inputs (for example, certain words) with certain outputs.

For example, the input “annoying” would be recognized and tagged as “negative”. Sentiment analysis is crucial to understanding how your customers feel about you and your products, for identifying areas for improvement, and even for averting PR disasters in real-time!

Sentiment analysis in action: 5 Real-world sentiment analysis case studies

4. The data analysis process

In order to gain meaningful insights from data, data analysts will perform a rigorous step-by-step process. We go over this in detail in our step by step guide to the data analysis process —but, to briefly summarize, the data analysis process generally consists of the following phases:

Defining the question

The first step for any data analyst will be to define the objective of the analysis, sometimes called a ‘problem statement’. Essentially, you’re asking a question with regards to a business problem you’re trying to solve. Once you’ve defined this, you’ll then need to determine which data sources will help you answer this question.

Collecting the data

Now that you’ve defined your objective, the next step will be to set up a strategy for collecting and aggregating the appropriate data. Will you be using quantitative (numeric) or qualitative (descriptive) data? Do these data fit into first-party, second-party, or third-party data?

Learn more: Quantitative vs. Qualitative Data: What’s the Difference? 

Cleaning the data

Unfortunately, your collected data isn’t automatically ready for analysis—you’ll have to clean it first. As a data analyst, this phase of the process will take up the most time. During the data cleaning process, you will likely be:

  • Removing major errors, duplicates, and outliers
  • Removing unwanted data points
  • Structuring the data—that is, fixing typos, layout issues, etc.
  • Filling in major gaps in data

Analyzing the data

Now that we’ve finished cleaning the data, it’s time to analyze it! Many analysis methods have already been described in this article, and it’s up to you to decide which one will best suit the assigned objective. It may fall under one of the following categories:

  • Descriptive analysis , which identifies what has already happened
  • Diagnostic analysis , which focuses on understanding why something has happened
  • Predictive analysis , which identifies future trends based on historical data
  • Prescriptive analysis , which allows you to make recommendations for the future

Visualizing and sharing your findings

We’re almost at the end of the road! Analyses have been made, insights have been gleaned—all that remains to be done is to share this information with others. This is usually done with a data visualization tool, such as Google Charts, or Tableau.

Learn more: 13 of the Most Common Types of Data Visualization

To sum up the process, Will’s explained it all excellently in the following video:

5. The best tools for data analysis

As you can imagine, every phase of the data analysis process requires the data analyst to have a variety of tools under their belt that assist in gaining valuable insights from data. We cover these tools in greater detail in this article , but, in summary, here’s our best-of-the-best list, with links to each product:

The top 9 tools for data analysts

  • Microsoft Excel
  • Jupyter Notebook
  • Apache Spark
  • Microsoft Power BI

6. Key takeaways and further reading

As you can see, there are many different data analysis techniques at your disposal. In order to turn your raw data into actionable insights, it’s important to consider what kind of data you have (is it qualitative or quantitative?) as well as the kinds of insights that will be useful within the given context. In this post, we’ve introduced seven of the most useful data analysis techniques—but there are many more out there to be discovered!

So what now? If you haven’t already, we recommend reading the case studies for each analysis technique discussed in this post (you’ll find a link at the end of each section). For a more hands-on introduction to the kinds of methods and techniques that data analysts use, try out this free introductory data analytics short course. In the meantime, you might also want to read the following:

  • The Best Online Data Analytics Courses for 2024
  • What Is Time Series Data and How Is It Analyzed?
  • What is Spatial Analysis?

Your Modern Business Guide To Data Analysis Methods And Techniques

Data analysis methods and techniques blog post by datapine

Table of Contents

1) What Is Data Analysis?

2) Why Is Data Analysis Important?

3) What Is The Data Analysis Process?

4) Types Of Data Analysis Methods

5) Top Data Analysis Techniques To Apply

6) Quality Criteria For Data Analysis

7) Data Analysis Limitations & Barriers

8) Data Analysis Skills

9) Data Analysis In The Big Data Environment

In our data-rich age, understanding how to analyze and extract true meaning from our business’s digital insights is one of the primary drivers of success.

Despite the colossal volume of data we create every day, a mere 0.5% is actually analyzed and used for data discovery , improvement, and intelligence. While that may not seem like much, considering the amount of digital information we have at our fingertips, half a percent still accounts for a vast amount of data.

With so much data and so little time, knowing how to collect, curate, organize, and make sense of all of this potentially business-boosting information can be a minefield – but online data analysis is the solution.

In science, data analysis uses a more complex approach with advanced techniques to explore and experiment with data. On the other hand, in a business context, data is used to make data-driven decisions that will enable the company to improve its overall performance. In this post, we will cover the analysis of data from an organizational point of view while still going through the scientific and statistical foundations that are fundamental to understanding the basics of data analysis. 

To put all of that into perspective, we will answer a host of important analytical questions, explore analytical methods and techniques, while demonstrating how to perform analysis in the real world with a 17-step blueprint for success.

What Is Data Analysis?

Data analysis is the process of collecting, modeling, and analyzing data using various statistical and logical methods and techniques. Businesses rely on analytics processes and tools to extract insights that support strategic and operational decision-making.

All these various methods are largely based on two core areas: quantitative and qualitative research.

To explain the key differences between qualitative and quantitative research, here’s a video for your viewing pleasure:

Gaining a better understanding of different techniques and methods in quantitative research as well as qualitative insights will give your analyzing efforts a more clearly defined direction, so it’s worth taking the time to allow this particular knowledge to sink in. Additionally, you will be able to create a comprehensive analytical report that will skyrocket your analysis.

Apart from qualitative and quantitative categories, there are also other types of data that you should be aware of before dividing into complex data analysis processes. These categories include: 

  • Big data: Refers to massive data sets that need to be analyzed using advanced software to reveal patterns and trends. It is considered to be one of the best analytical assets as it provides larger volumes of data at a faster rate. 
  • Metadata: Putting it simply, metadata is data that provides insights about other data. It summarizes key information about specific data that makes it easier to find and reuse for later purposes. 
  • Real time data: As its name suggests, real time data is presented as soon as it is acquired. From an organizational perspective, this is the most valuable data as it can help you make important decisions based on the latest developments. Our guide on real time analytics will tell you more about the topic. 
  • Machine data: This is more complex data that is generated solely by a machine such as phones, computers, or even websites and embedded systems, without previous human interaction.

Why Is Data Analysis Important?

Before we go into detail about the categories of analysis along with its methods and techniques, you must understand the potential that analyzing data can bring to your organization.

  • Informed decision-making : From a management perspective, you can benefit from analyzing your data as it helps you make decisions based on facts and not simple intuition. For instance, you can understand where to invest your capital, detect growth opportunities, predict your income, or tackle uncommon situations before they become problems. Through this, you can extract relevant insights from all areas in your organization, and with the help of dashboard software , present the data in a professional and interactive way to different stakeholders.
  • Reduce costs : Another great benefit is to reduce costs. With the help of advanced technologies such as predictive analytics, businesses can spot improvement opportunities, trends, and patterns in their data and plan their strategies accordingly. In time, this will help you save money and resources on implementing the wrong strategies. And not just that, by predicting different scenarios such as sales and demand you can also anticipate production and supply. 
  • Target customers better : Customers are arguably the most crucial element in any business. By using analytics to get a 360° vision of all aspects related to your customers, you can understand which channels they use to communicate with you, their demographics, interests, habits, purchasing behaviors, and more. In the long run, it will drive success to your marketing strategies, allow you to identify new potential customers, and avoid wasting resources on targeting the wrong people or sending the wrong message. You can also track customer satisfaction by analyzing your client’s reviews or your customer service department’s performance.

What Is The Data Analysis Process?

Data analysis process graphic

When we talk about analyzing data there is an order to follow in order to extract the needed conclusions. The analysis process consists of 5 key stages. We will cover each of them more in detail later in the post, but to start providing the needed context to understand what is coming next, here is a rundown of the 5 essential steps of data analysis. 

  • Identify: Before you get your hands dirty with data, you first need to identify why you need it in the first place. The identification is the stage in which you establish the questions you will need to answer. For example, what is the customer's perception of our brand? Or what type of packaging is more engaging to our potential customers? Once the questions are outlined you are ready for the next step. 
  • Collect: As its name suggests, this is the stage where you start collecting the needed data. Here, you define which sources of data you will use and how you will use them. The collection of data can come in different forms such as internal or external sources, surveys, interviews, questionnaires, and focus groups, among others.  An important note here is that the way you collect the data will be different in a quantitative and qualitative scenario. 
  • Clean: Once you have the necessary data it is time to clean it and leave it ready for analysis. Not all the data you collect will be useful, when collecting big amounts of data in different formats it is very likely that you will find yourself with duplicate or badly formatted data. To avoid this, before you start working with your data you need to make sure to erase any white spaces, duplicate records, or formatting errors. This way you avoid hurting your analysis with bad-quality data. 
  • Analyze : With the help of various techniques such as statistical analysis, regressions, neural networks, text analysis, and more, you can start analyzing and manipulating your data to extract relevant conclusions. At this stage, you find trends, correlations, variations, and patterns that can help you answer the questions you first thought of in the identify stage. Various technologies in the market assist researchers and average users with the management of their data. Some of them include business intelligence and visualization software, predictive analytics, and data mining, among others. 
  • Interpret: Last but not least you have one of the most important steps: it is time to interpret your results. This stage is where the researcher comes up with courses of action based on the findings. For example, here you would understand if your clients prefer packaging that is red or green, plastic or paper, etc. Additionally, at this stage, you can also find some limitations and work on them. 

Now that you have a basic understanding of the key data analysis steps, let’s look at the top 17 essential methods.

17 Essential Types Of Data Analysis Methods

Before diving into the 17 essential types of methods, it is important that we go over really fast through the main analysis categories. Starting with the category of descriptive up to prescriptive analysis, the complexity and effort of data evaluation increases, but also the added value for the company.

a) Descriptive analysis - What happened.

The descriptive analysis method is the starting point for any analytic reflection, and it aims to answer the question of what happened? It does this by ordering, manipulating, and interpreting raw data from various sources to turn it into valuable insights for your organization.

Performing descriptive analysis is essential, as it enables us to present our insights in a meaningful way. Although it is relevant to mention that this analysis on its own will not allow you to predict future outcomes or tell you the answer to questions like why something happened, it will leave your data organized and ready to conduct further investigations.

b) Exploratory analysis - How to explore data relationships.

As its name suggests, the main aim of the exploratory analysis is to explore. Prior to it, there is still no notion of the relationship between the data and the variables. Once the data is investigated, exploratory analysis helps you to find connections and generate hypotheses and solutions for specific problems. A typical area of ​​application for it is data mining.

c) Diagnostic analysis - Why it happened.

Diagnostic data analytics empowers analysts and executives by helping them gain a firm contextual understanding of why something happened. If you know why something happened as well as how it happened, you will be able to pinpoint the exact ways of tackling the issue or challenge.

Designed to provide direct and actionable answers to specific questions, this is one of the world’s most important methods in research, among its other key organizational functions such as retail analytics , e.g.

c) Predictive analysis - What will happen.

The predictive method allows you to look into the future to answer the question: what will happen? In order to do this, it uses the results of the previously mentioned descriptive, exploratory, and diagnostic analysis, in addition to machine learning (ML) and artificial intelligence (AI). Through this, you can uncover future trends, potential problems or inefficiencies, connections, and casualties in your data.

With predictive analysis, you can unfold and develop initiatives that will not only enhance your various operational processes but also help you gain an all-important edge over the competition. If you understand why a trend, pattern, or event happened through data, you will be able to develop an informed projection of how things may unfold in particular areas of the business.

e) Prescriptive analysis - How will it happen.

Another of the most effective types of analysis methods in research. Prescriptive data techniques cross over from predictive analysis in the way that it revolves around using patterns or trends to develop responsive, practical business strategies.

By drilling down into prescriptive analysis, you will play an active role in the data consumption process by taking well-arranged sets of visual data and using it as a powerful fix to emerging issues in a number of key areas, including marketing, sales, customer experience, HR, fulfillment, finance, logistics analytics , and others.

Top 17 data analysis methods

As mentioned at the beginning of the post, data analysis methods can be divided into two big categories: quantitative and qualitative. Each of these categories holds a powerful analytical value that changes depending on the scenario and type of data you are working with. Below, we will discuss 17 methods that are divided into qualitative and quantitative approaches. 

Without further ado, here are the 17 essential types of data analysis methods with some use cases in the business world: 

A. Quantitative Methods 

To put it simply, quantitative analysis refers to all methods that use numerical data or data that can be turned into numbers (e.g. category variables like gender, age, etc.) to extract valuable insights. It is used to extract valuable conclusions about relationships, differences, and test hypotheses. Below we discuss some of the key quantitative methods. 

1. Cluster analysis

The action of grouping a set of data elements in a way that said elements are more similar (in a particular sense) to each other than to those in other groups – hence the term ‘cluster.’ Since there is no target variable when clustering, the method is often used to find hidden patterns in the data. The approach is also used to provide additional context to a trend or dataset.

Let's look at it from an organizational perspective. In a perfect world, marketers would be able to analyze each customer separately and give them the best-personalized service, but let's face it, with a large customer base, it is timely impossible to do that. That's where clustering comes in. By grouping customers into clusters based on demographics, purchasing behaviors, monetary value, or any other factor that might be relevant for your company, you will be able to immediately optimize your efforts and give your customers the best experience based on their needs.

2. Cohort analysis

This type of data analysis approach uses historical data to examine and compare a determined segment of users' behavior, which can then be grouped with others with similar characteristics. By using this methodology, it's possible to gain a wealth of insight into consumer needs or a firm understanding of a broader target group.

Cohort analysis can be really useful for performing analysis in marketing as it will allow you to understand the impact of your campaigns on specific groups of customers. To exemplify, imagine you send an email campaign encouraging customers to sign up for your site. For this, you create two versions of the campaign with different designs, CTAs, and ad content. Later on, you can use cohort analysis to track the performance of the campaign for a longer period of time and understand which type of content is driving your customers to sign up, repurchase, or engage in other ways.  

A useful tool to start performing cohort analysis method is Google Analytics. You can learn more about the benefits and limitations of using cohorts in GA in this useful guide . In the bottom image, you see an example of how you visualize a cohort in this tool. The segments (devices traffic) are divided into date cohorts (usage of devices) and then analyzed week by week to extract insights into performance.

Cohort analysis chart example from google analytics

3. Regression analysis

Regression uses historical data to understand how a dependent variable's value is affected when one (linear regression) or more independent variables (multiple regression) change or stay the same. By understanding each variable's relationship and how it developed in the past, you can anticipate possible outcomes and make better decisions in the future.

Let's bring it down with an example. Imagine you did a regression analysis of your sales in 2019 and discovered that variables like product quality, store design, customer service, marketing campaigns, and sales channels affected the overall result. Now you want to use regression to analyze which of these variables changed or if any new ones appeared during 2020. For example, you couldn’t sell as much in your physical store due to COVID lockdowns. Therefore, your sales could’ve either dropped in general or increased in your online channels. Through this, you can understand which independent variables affected the overall performance of your dependent variable, annual sales.

If you want to go deeper into this type of analysis, check out this article and learn more about how you can benefit from regression.

4. Neural networks

The neural network forms the basis for the intelligent algorithms of machine learning. It is a form of analytics that attempts, with minimal intervention, to understand how the human brain would generate insights and predict values. Neural networks learn from each and every data transaction, meaning that they evolve and advance over time.

A typical area of application for neural networks is predictive analytics. There are BI reporting tools that have this feature implemented within them, such as the Predictive Analytics Tool from datapine. This tool enables users to quickly and easily generate all kinds of predictions. All you have to do is select the data to be processed based on your KPIs, and the software automatically calculates forecasts based on historical and current data. Thanks to its user-friendly interface, anyone in your organization can manage it; there’s no need to be an advanced scientist. 

Here is an example of how you can use the predictive analysis tool from datapine:

Example on how to use predictive analytics tool from datapine

**click to enlarge**

5. Factor analysis

The factor analysis also called “dimension reduction” is a type of data analysis used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. The aim here is to uncover independent latent variables, an ideal method for streamlining specific segments.

A good way to understand this data analysis method is a customer evaluation of a product. The initial assessment is based on different variables like color, shape, wearability, current trends, materials, comfort, the place where they bought the product, and frequency of usage. Like this, the list can be endless, depending on what you want to track. In this case, factor analysis comes into the picture by summarizing all of these variables into homogenous groups, for example, by grouping the variables color, materials, quality, and trends into a brother latent variable of design.

If you want to start analyzing data using factor analysis we recommend you take a look at this practical guide from UCLA.

6. Data mining

A method of data analysis that is the umbrella term for engineering metrics and insights for additional value, direction, and context. By using exploratory statistical evaluation, data mining aims to identify dependencies, relations, patterns, and trends to generate advanced knowledge.  When considering how to analyze data, adopting a data mining mindset is essential to success - as such, it’s an area that is worth exploring in greater detail.

An excellent use case of data mining is datapine intelligent data alerts . With the help of artificial intelligence and machine learning, they provide automated signals based on particular commands or occurrences within a dataset. For example, if you’re monitoring supply chain KPIs , you could set an intelligent alarm to trigger when invalid or low-quality data appears. By doing so, you will be able to drill down deep into the issue and fix it swiftly and effectively.

In the following picture, you can see how the intelligent alarms from datapine work. By setting up ranges on daily orders, sessions, and revenues, the alarms will notify you if the goal was not completed or if it exceeded expectations.

Example on how to use intelligent alerts from datapine

7. Time series analysis

As its name suggests, time series analysis is used to analyze a set of data points collected over a specified period of time. Although analysts use this method to monitor the data points in a specific interval of time rather than just monitoring them intermittently, the time series analysis is not uniquely used for the purpose of collecting data over time. Instead, it allows researchers to understand if variables changed during the duration of the study, how the different variables are dependent, and how did it reach the end result. 

In a business context, this method is used to understand the causes of different trends and patterns to extract valuable insights. Another way of using this method is with the help of time series forecasting. Powered by predictive technologies, businesses can analyze various data sets over a period of time and forecast different future events. 

A great use case to put time series analysis into perspective is seasonality effects on sales. By using time series forecasting to analyze sales data of a specific product over time, you can understand if sales rise over a specific period of time (e.g. swimwear during summertime, or candy during Halloween). These insights allow you to predict demand and prepare production accordingly.  

8. Decision Trees 

The decision tree analysis aims to act as a support tool to make smart and strategic decisions. By visually displaying potential outcomes, consequences, and costs in a tree-like model, researchers and company users can easily evaluate all factors involved and choose the best course of action. Decision trees are helpful to analyze quantitative data and they allow for an improved decision-making process by helping you spot improvement opportunities, reduce costs, and enhance operational efficiency and production.

But how does a decision tree actually works? This method works like a flowchart that starts with the main decision that you need to make and branches out based on the different outcomes and consequences of each decision. Each outcome will outline its own consequences, costs, and gains and, at the end of the analysis, you can compare each of them and make the smartest decision. 

Businesses can use them to understand which project is more cost-effective and will bring more earnings in the long run. For example, imagine you need to decide if you want to update your software app or build a new app entirely.  Here you would compare the total costs, the time needed to be invested, potential revenue, and any other factor that might affect your decision.  In the end, you would be able to see which of these two options is more realistic and attainable for your company or research.

9. Conjoint analysis 

Last but not least, we have the conjoint analysis. This approach is usually used in surveys to understand how individuals value different attributes of a product or service and it is one of the most effective methods to extract consumer preferences. When it comes to purchasing, some clients might be more price-focused, others more features-focused, and others might have a sustainable focus. Whatever your customer's preferences are, you can find them with conjoint analysis. Through this, companies can define pricing strategies, packaging options, subscription packages, and more. 

A great example of conjoint analysis is in marketing and sales. For instance, a cupcake brand might use conjoint analysis and find that its clients prefer gluten-free options and cupcakes with healthier toppings over super sugary ones. Thus, the cupcake brand can turn these insights into advertisements and promotions to increase sales of this particular type of product. And not just that, conjoint analysis can also help businesses segment their customers based on their interests. This allows them to send different messaging that will bring value to each of the segments. 

10. Correspondence Analysis

Also known as reciprocal averaging, correspondence analysis is a method used to analyze the relationship between categorical variables presented within a contingency table. A contingency table is a table that displays two (simple correspondence analysis) or more (multiple correspondence analysis) categorical variables across rows and columns that show the distribution of the data, which is usually answers to a survey or questionnaire on a specific topic. 

This method starts by calculating an “expected value” which is done by multiplying row and column averages and dividing it by the overall original value of the specific table cell. The “expected value” is then subtracted from the original value resulting in a “residual number” which is what allows you to extract conclusions about relationships and distribution. The results of this analysis are later displayed using a map that represents the relationship between the different values. The closest two values are in the map, the bigger the relationship. Let’s put it into perspective with an example. 

Imagine you are carrying out a market research analysis about outdoor clothing brands and how they are perceived by the public. For this analysis, you ask a group of people to match each brand with a certain attribute which can be durability, innovation, quality materials, etc. When calculating the residual numbers, you can see that brand A has a positive residual for innovation but a negative one for durability. This means that brand A is not positioned as a durable brand in the market, something that competitors could take advantage of. 

11. Multidimensional Scaling (MDS)

MDS is a method used to observe the similarities or disparities between objects which can be colors, brands, people, geographical coordinates, and more. The objects are plotted using an “MDS map” that positions similar objects together and disparate ones far apart. The (dis) similarities between objects are represented using one or more dimensions that can be observed using a numerical scale. For example, if you want to know how people feel about the COVID-19 vaccine, you can use 1 for “don’t believe in the vaccine at all”  and 10 for “firmly believe in the vaccine” and a scale of 2 to 9 for in between responses.  When analyzing an MDS map the only thing that matters is the distance between the objects, the orientation of the dimensions is arbitrary and has no meaning at all. 

Multidimensional scaling is a valuable technique for market research, especially when it comes to evaluating product or brand positioning. For instance, if a cupcake brand wants to know how they are positioned compared to competitors, it can define 2-3 dimensions such as taste, ingredients, shopping experience, or more, and do a multidimensional scaling analysis to find improvement opportunities as well as areas in which competitors are currently leading. 

Another business example is in procurement when deciding on different suppliers. Decision makers can generate an MDS map to see how the different prices, delivery times, technical services, and more of the different suppliers differ and pick the one that suits their needs the best. 

A final example proposed by a research paper on "An Improved Study of Multilevel Semantic Network Visualization for Analyzing Sentiment Word of Movie Review Data". Researchers picked a two-dimensional MDS map to display the distances and relationships between different sentiments in movie reviews. They used 36 sentiment words and distributed them based on their emotional distance as we can see in the image below where the words "outraged" and "sweet" are on opposite sides of the map, marking the distance between the two emotions very clearly.

Example of multidimensional scaling analysis

Aside from being a valuable technique to analyze dissimilarities, MDS also serves as a dimension-reduction technique for large dimensional data. 

B. Qualitative Methods

Qualitative data analysis methods are defined as the observation of non-numerical data that is gathered and produced using methods of observation such as interviews, focus groups, questionnaires, and more. As opposed to quantitative methods, qualitative data is more subjective and highly valuable in analyzing customer retention and product development.

12. Text analysis

Text analysis, also known in the industry as text mining, works by taking large sets of textual data and arranging them in a way that makes it easier to manage. By working through this cleansing process in stringent detail, you will be able to extract the data that is truly relevant to your organization and use it to develop actionable insights that will propel you forward.

Modern software accelerate the application of text analytics. Thanks to the combination of machine learning and intelligent algorithms, you can perform advanced analytical processes such as sentiment analysis. This technique allows you to understand the intentions and emotions of a text, for example, if it's positive, negative, or neutral, and then give it a score depending on certain factors and categories that are relevant to your brand. Sentiment analysis is often used to monitor brand and product reputation and to understand how successful your customer experience is. To learn more about the topic check out this insightful article .

By analyzing data from various word-based sources, including product reviews, articles, social media communications, and survey responses, you will gain invaluable insights into your audience, as well as their needs, preferences, and pain points. This will allow you to create campaigns, services, and communications that meet your prospects’ needs on a personal level, growing your audience while boosting customer retention. There are various other “sub-methods” that are an extension of text analysis. Each of them serves a more specific purpose and we will look at them in detail next. 

13. Content Analysis

This is a straightforward and very popular method that examines the presence and frequency of certain words, concepts, and subjects in different content formats such as text, image, audio, or video. For example, the number of times the name of a celebrity is mentioned on social media or online tabloids. It does this by coding text data that is later categorized and tabulated in a way that can provide valuable insights, making it the perfect mix of quantitative and qualitative analysis.

There are two types of content analysis. The first one is the conceptual analysis which focuses on explicit data, for instance, the number of times a concept or word is mentioned in a piece of content. The second one is relational analysis, which focuses on the relationship between different concepts or words and how they are connected within a specific context. 

Content analysis is often used by marketers to measure brand reputation and customer behavior. For example, by analyzing customer reviews. It can also be used to analyze customer interviews and find directions for new product development. It is also important to note, that in order to extract the maximum potential out of this analysis method, it is necessary to have a clearly defined research question. 

14. Thematic Analysis

Very similar to content analysis, thematic analysis also helps in identifying and interpreting patterns in qualitative data with the main difference being that the first one can also be applied to quantitative analysis. The thematic method analyzes large pieces of text data such as focus group transcripts or interviews and groups them into themes or categories that come up frequently within the text. It is a great method when trying to figure out peoples view’s and opinions about a certain topic. For example, if you are a brand that cares about sustainability, you can do a survey of your customers to analyze their views and opinions about sustainability and how they apply it to their lives. You can also analyze customer service calls transcripts to find common issues and improve your service. 

Thematic analysis is a very subjective technique that relies on the researcher’s judgment. Therefore,  to avoid biases, it has 6 steps that include familiarization, coding, generating themes, reviewing themes, defining and naming themes, and writing up. It is also important to note that, because it is a flexible approach, the data can be interpreted in multiple ways and it can be hard to select what data is more important to emphasize. 

15. Narrative Analysis 

A bit more complex in nature than the two previous ones, narrative analysis is used to explore the meaning behind the stories that people tell and most importantly, how they tell them. By looking into the words that people use to describe a situation you can extract valuable conclusions about their perspective on a specific topic. Common sources for narrative data include autobiographies, family stories, opinion pieces, and testimonials, among others. 

From a business perspective, narrative analysis can be useful to analyze customer behaviors and feelings towards a specific product, service, feature, or others. It provides unique and deep insights that can be extremely valuable. However, it has some drawbacks.  

The biggest weakness of this method is that the sample sizes are usually very small due to the complexity and time-consuming nature of the collection of narrative data. Plus, the way a subject tells a story will be significantly influenced by his or her specific experiences, making it very hard to replicate in a subsequent study. 

16. Discourse Analysis

Discourse analysis is used to understand the meaning behind any type of written, verbal, or symbolic discourse based on its political, social, or cultural context. It mixes the analysis of languages and situations together. This means that the way the content is constructed and the meaning behind it is significantly influenced by the culture and society it takes place in. For example, if you are analyzing political speeches you need to consider different context elements such as the politician's background, the current political context of the country, the audience to which the speech is directed, and so on. 

From a business point of view, discourse analysis is a great market research tool. It allows marketers to understand how the norms and ideas of the specific market work and how their customers relate to those ideas. It can be very useful to build a brand mission or develop a unique tone of voice. 

17. Grounded Theory Analysis

Traditionally, researchers decide on a method and hypothesis and start to collect the data to prove that hypothesis. The grounded theory is the only method that doesn’t require an initial research question or hypothesis as its value lies in the generation of new theories. With the grounded theory method, you can go into the analysis process with an open mind and explore the data to generate new theories through tests and revisions. In fact, it is not necessary to collect the data and then start to analyze it. Researchers usually start to find valuable insights as they are gathering the data. 

All of these elements make grounded theory a very valuable method as theories are fully backed by data instead of initial assumptions. It is a great technique to analyze poorly researched topics or find the causes behind specific company outcomes. For example, product managers and marketers might use the grounded theory to find the causes of high levels of customer churn and look into customer surveys and reviews to develop new theories about the causes. 

How To Analyze Data? Top 17 Data Analysis Techniques To Apply

17 top data analysis techniques by datapine

Now that we’ve answered the questions “what is data analysis’”, why is it important, and covered the different data analysis types, it’s time to dig deeper into how to perform your analysis by working through these 17 essential techniques.

1. Collaborate your needs

Before you begin analyzing or drilling down into any techniques, it’s crucial to sit down collaboratively with all key stakeholders within your organization, decide on your primary campaign or strategic goals, and gain a fundamental understanding of the types of insights that will best benefit your progress or provide you with the level of vision you need to evolve your organization.

2. Establish your questions

Once you’ve outlined your core objectives, you should consider which questions will need answering to help you achieve your mission. This is one of the most important techniques as it will shape the very foundations of your success.

To help you ask the right things and ensure your data works for you, you have to ask the right data analysis questions .

3. Data democratization

After giving your data analytics methodology some real direction, and knowing which questions need answering to extract optimum value from the information available to your organization, you should continue with democratization.

Data democratization is an action that aims to connect data from various sources efficiently and quickly so that anyone in your organization can access it at any given moment. You can extract data in text, images, videos, numbers, or any other format. And then perform cross-database analysis to achieve more advanced insights to share with the rest of the company interactively.  

Once you have decided on your most valuable sources, you need to take all of this into a structured format to start collecting your insights. For this purpose, datapine offers an easy all-in-one data connectors feature to integrate all your internal and external sources and manage them at your will. Additionally, datapine’s end-to-end solution automatically updates your data, allowing you to save time and focus on performing the right analysis to grow your company.

data connectors from datapine

4. Think of governance 

When collecting data in a business or research context you always need to think about security and privacy. With data breaches becoming a topic of concern for businesses, the need to protect your client's or subject’s sensitive information becomes critical. 

To ensure that all this is taken care of, you need to think of a data governance strategy. According to Gartner , this concept refers to “ the specification of decision rights and an accountability framework to ensure the appropriate behavior in the valuation, creation, consumption, and control of data and analytics .” In simpler words, data governance is a collection of processes, roles, and policies, that ensure the efficient use of data while still achieving the main company goals. It ensures that clear roles are in place for who can access the information and how they can access it. In time, this not only ensures that sensitive information is protected but also allows for an efficient analysis as a whole. 

5. Clean your data

After harvesting from so many sources you will be left with a vast amount of information that can be overwhelming to deal with. At the same time, you can be faced with incorrect data that can be misleading to your analysis. The smartest thing you can do to avoid dealing with this in the future is to clean the data. This is fundamental before visualizing it, as it will ensure that the insights you extract from it are correct.

There are many things that you need to look for in the cleaning process. The most important one is to eliminate any duplicate observations; this usually appears when using multiple internal and external sources of information. You can also add any missing codes, fix empty fields, and eliminate incorrectly formatted data.

Another usual form of cleaning is done with text data. As we mentioned earlier, most companies today analyze customer reviews, social media comments, questionnaires, and several other text inputs. In order for algorithms to detect patterns, text data needs to be revised to avoid invalid characters or any syntax or spelling errors. 

Most importantly, the aim of cleaning is to prevent you from arriving at false conclusions that can damage your company in the long run. By using clean data, you will also help BI solutions to interact better with your information and create better reports for your organization.

6. Set your KPIs

Once you’ve set your sources, cleaned your data, and established clear-cut questions you want your insights to answer, you need to set a host of key performance indicators (KPIs) that will help you track, measure, and shape your progress in a number of key areas.

KPIs are critical to both qualitative and quantitative analysis research. This is one of the primary methods of data analysis you certainly shouldn’t overlook.

To help you set the best possible KPIs for your initiatives and activities, here is an example of a relevant logistics KPI : transportation-related costs. If you want to see more go explore our collection of key performance indicator examples .

Transportation costs logistics KPIs

7. Omit useless data

Having bestowed your data analysis tools and techniques with true purpose and defined your mission, you should explore the raw data you’ve collected from all sources and use your KPIs as a reference for chopping out any information you deem to be useless.

Trimming the informational fat is one of the most crucial methods of analysis as it will allow you to focus your analytical efforts and squeeze every drop of value from the remaining ‘lean’ information.

Any stats, facts, figures, or metrics that don’t align with your business goals or fit with your KPI management strategies should be eliminated from the equation.

8. Build a data management roadmap

While, at this point, this particular step is optional (you will have already gained a wealth of insight and formed a fairly sound strategy by now), creating a data governance roadmap will help your data analysis methods and techniques become successful on a more sustainable basis. These roadmaps, if developed properly, are also built so they can be tweaked and scaled over time.

Invest ample time in developing a roadmap that will help you store, manage, and handle your data internally, and you will make your analysis techniques all the more fluid and functional – one of the most powerful types of data analysis methods available today.

9. Integrate technology

There are many ways to analyze data, but one of the most vital aspects of analytical success in a business context is integrating the right decision support software and technology.

Robust analysis platforms will not only allow you to pull critical data from your most valuable sources while working with dynamic KPIs that will offer you actionable insights; it will also present them in a digestible, visual, interactive format from one central, live dashboard . A data methodology you can count on.

By integrating the right technology within your data analysis methodology, you’ll avoid fragmenting your insights, saving you time and effort while allowing you to enjoy the maximum value from your business’s most valuable insights.

For a look at the power of software for the purpose of analysis and to enhance your methods of analyzing, glance over our selection of dashboard examples .

10. Answer your questions

By considering each of the above efforts, working with the right technology, and fostering a cohesive internal culture where everyone buys into the different ways to analyze data as well as the power of digital intelligence, you will swiftly start to answer your most burning business questions. Arguably, the best way to make your data concepts accessible across the organization is through data visualization.

11. Visualize your data

Online data visualization is a powerful tool as it lets you tell a story with your metrics, allowing users across the organization to extract meaningful insights that aid business evolution – and it covers all the different ways to analyze data.

The purpose of analyzing is to make your entire organization more informed and intelligent, and with the right platform or dashboard, this is simpler than you think, as demonstrated by our marketing dashboard .

An executive dashboard example showcasing high-level marketing KPIs such as cost per lead, MQL, SQL, and cost per customer.

This visual, dynamic, and interactive online dashboard is a data analysis example designed to give Chief Marketing Officers (CMO) an overview of relevant metrics to help them understand if they achieved their monthly goals.

In detail, this example generated with a modern dashboard creator displays interactive charts for monthly revenues, costs, net income, and net income per customer; all of them are compared with the previous month so that you can understand how the data fluctuated. In addition, it shows a detailed summary of the number of users, customers, SQLs, and MQLs per month to visualize the whole picture and extract relevant insights or trends for your marketing reports .

The CMO dashboard is perfect for c-level management as it can help them monitor the strategic outcome of their marketing efforts and make data-driven decisions that can benefit the company exponentially.

12. Be careful with the interpretation

We already dedicated an entire post to data interpretation as it is a fundamental part of the process of data analysis. It gives meaning to the analytical information and aims to drive a concise conclusion from the analysis results. Since most of the time companies are dealing with data from many different sources, the interpretation stage needs to be done carefully and properly in order to avoid misinterpretations. 

To help you through the process, here we list three common practices that you need to avoid at all costs when looking at your data:

  • Correlation vs. causation: The human brain is formatted to find patterns. This behavior leads to one of the most common mistakes when performing interpretation: confusing correlation with causation. Although these two aspects can exist simultaneously, it is not correct to assume that because two things happened together, one provoked the other. A piece of advice to avoid falling into this mistake is never to trust just intuition, trust the data. If there is no objective evidence of causation, then always stick to correlation. 
  • Confirmation bias: This phenomenon describes the tendency to select and interpret only the data necessary to prove one hypothesis, often ignoring the elements that might disprove it. Even if it's not done on purpose, confirmation bias can represent a real problem, as excluding relevant information can lead to false conclusions and, therefore, bad business decisions. To avoid it, always try to disprove your hypothesis instead of proving it, share your analysis with other team members, and avoid drawing any conclusions before the entire analytical project is finalized.
  • Statistical significance: To put it in short words, statistical significance helps analysts understand if a result is actually accurate or if it happened because of a sampling error or pure chance. The level of statistical significance needed might depend on the sample size and the industry being analyzed. In any case, ignoring the significance of a result when it might influence decision-making can be a huge mistake.

13. Build a narrative

Now, we’re going to look at how you can bring all of these elements together in a way that will benefit your business - starting with a little something called data storytelling.

The human brain responds incredibly well to strong stories or narratives. Once you’ve cleansed, shaped, and visualized your most invaluable data using various BI dashboard tools , you should strive to tell a story - one with a clear-cut beginning, middle, and end.

By doing so, you will make your analytical efforts more accessible, digestible, and universal, empowering more people within your organization to use your discoveries to their actionable advantage.

14. Consider autonomous technology

Autonomous technologies, such as artificial intelligence (AI) and machine learning (ML), play a significant role in the advancement of understanding how to analyze data more effectively.

Gartner predicts that by the end of this year, 80% of emerging technologies will be developed with AI foundations. This is a testament to the ever-growing power and value of autonomous technologies.

At the moment, these technologies are revolutionizing the analysis industry. Some examples that we mentioned earlier are neural networks, intelligent alarms, and sentiment analysis.

15. Share the load

If you work with the right tools and dashboards, you will be able to present your metrics in a digestible, value-driven format, allowing almost everyone in the organization to connect with and use relevant data to their advantage.

Modern dashboards consolidate data from various sources, providing access to a wealth of insights in one centralized location, no matter if you need to monitor recruitment metrics or generate reports that need to be sent across numerous departments. Moreover, these cutting-edge tools offer access to dashboards from a multitude of devices, meaning that everyone within the business can connect with practical insights remotely - and share the load.

Once everyone is able to work with a data-driven mindset, you will catalyze the success of your business in ways you never thought possible. And when it comes to knowing how to analyze data, this kind of collaborative approach is essential.

16. Data analysis tools

In order to perform high-quality analysis of data, it is fundamental to use tools and software that will ensure the best results. Here we leave you a small summary of four fundamental categories of data analysis tools for your organization.

  • Business Intelligence: BI tools allow you to process significant amounts of data from several sources in any format. Through this, you can not only analyze and monitor your data to extract relevant insights but also create interactive reports and dashboards to visualize your KPIs and use them for your company's good. datapine is an amazing online BI software that is focused on delivering powerful online analysis features that are accessible to beginner and advanced users. Like this, it offers a full-service solution that includes cutting-edge analysis of data, KPIs visualization, live dashboards, reporting, and artificial intelligence technologies to predict trends and minimize risk.
  • Statistical analysis: These tools are usually designed for scientists, statisticians, market researchers, and mathematicians, as they allow them to perform complex statistical analyses with methods like regression analysis, predictive analysis, and statistical modeling. A good tool to perform this type of analysis is R-Studio as it offers a powerful data modeling and hypothesis testing feature that can cover both academic and general data analysis. This tool is one of the favorite ones in the industry, due to its capability for data cleaning, data reduction, and performing advanced analysis with several statistical methods. Another relevant tool to mention is SPSS from IBM. The software offers advanced statistical analysis for users of all skill levels. Thanks to a vast library of machine learning algorithms, text analysis, and a hypothesis testing approach it can help your company find relevant insights to drive better decisions. SPSS also works as a cloud service that enables you to run it anywhere.
  • SQL Consoles: SQL is a programming language often used to handle structured data in relational databases. Tools like these are popular among data scientists as they are extremely effective in unlocking these databases' value. Undoubtedly, one of the most used SQL software in the market is MySQL Workbench . This tool offers several features such as a visual tool for database modeling and monitoring, complete SQL optimization, administration tools, and visual performance dashboards to keep track of KPIs.
  • Data Visualization: These tools are used to represent your data through charts, graphs, and maps that allow you to find patterns and trends in the data. datapine's already mentioned BI platform also offers a wealth of powerful online data visualization tools with several benefits. Some of them include: delivering compelling data-driven presentations to share with your entire company, the ability to see your data online with any device wherever you are, an interactive dashboard design feature that enables you to showcase your results in an interactive and understandable way, and to perform online self-service reports that can be used simultaneously with several other people to enhance team productivity.

17. Refine your process constantly 

Last is a step that might seem obvious to some people, but it can be easily ignored if you think you are done. Once you have extracted the needed results, you should always take a retrospective look at your project and think about what you can improve. As you saw throughout this long list of techniques, data analysis is a complex process that requires constant refinement. For this reason, you should always go one step further and keep improving. 

Quality Criteria For Data Analysis

So far we’ve covered a list of methods and techniques that should help you perform efficient data analysis. But how do you measure the quality and validity of your results? This is done with the help of some science quality criteria. Here we will go into a more theoretical area that is critical to understanding the fundamentals of statistical analysis in science. However, you should also be aware of these steps in a business context, as they will allow you to assess the quality of your results in the correct way. Let’s dig in. 

  • Internal validity: The results of a survey are internally valid if they measure what they are supposed to measure and thus provide credible results. In other words , internal validity measures the trustworthiness of the results and how they can be affected by factors such as the research design, operational definitions, how the variables are measured, and more. For instance, imagine you are doing an interview to ask people if they brush their teeth two times a day. While most of them will answer yes, you can still notice that their answers correspond to what is socially acceptable, which is to brush your teeth at least twice a day. In this case, you can’t be 100% sure if respondents actually brush their teeth twice a day or if they just say that they do, therefore, the internal validity of this interview is very low. 
  • External validity: Essentially, external validity refers to the extent to which the results of your research can be applied to a broader context. It basically aims to prove that the findings of a study can be applied in the real world. If the research can be applied to other settings, individuals, and times, then the external validity is high. 
  • Reliability : If your research is reliable, it means that it can be reproduced. If your measurement were repeated under the same conditions, it would produce similar results. This means that your measuring instrument consistently produces reliable results. For example, imagine a doctor building a symptoms questionnaire to detect a specific disease in a patient. Then, various other doctors use this questionnaire but end up diagnosing the same patient with a different condition. This means the questionnaire is not reliable in detecting the initial disease. Another important note here is that in order for your research to be reliable, it also needs to be objective. If the results of a study are the same, independent of who assesses them or interprets them, the study can be considered reliable. Let’s see the objectivity criteria in more detail now. 
  • Objectivity: In data science, objectivity means that the researcher needs to stay fully objective when it comes to its analysis. The results of a study need to be affected by objective criteria and not by the beliefs, personality, or values of the researcher. Objectivity needs to be ensured when you are gathering the data, for example, when interviewing individuals, the questions need to be asked in a way that doesn't influence the results. Paired with this, objectivity also needs to be thought of when interpreting the data. If different researchers reach the same conclusions, then the study is objective. For this last point, you can set predefined criteria to interpret the results to ensure all researchers follow the same steps. 

The discussed quality criteria cover mostly potential influences in a quantitative context. Analysis in qualitative research has by default additional subjective influences that must be controlled in a different way. Therefore, there are other quality criteria for this kind of research such as credibility, transferability, dependability, and confirmability. You can see each of them more in detail on this resource . 

Data Analysis Limitations & Barriers

Analyzing data is not an easy task. As you’ve seen throughout this post, there are many steps and techniques that you need to apply in order to extract useful information from your research. While a well-performed analysis can bring various benefits to your organization it doesn't come without limitations. In this section, we will discuss some of the main barriers you might encounter when conducting an analysis. Let’s see them more in detail. 

  • Lack of clear goals: No matter how good your data or analysis might be if you don’t have clear goals or a hypothesis the process might be worthless. While we mentioned some methods that don’t require a predefined hypothesis, it is always better to enter the analytical process with some clear guidelines of what you are expecting to get out of it, especially in a business context in which data is utilized to support important strategic decisions. 
  • Objectivity: Arguably one of the biggest barriers when it comes to data analysis in research is to stay objective. When trying to prove a hypothesis, researchers might find themselves, intentionally or unintentionally, directing the results toward an outcome that they want. To avoid this, always question your assumptions and avoid confusing facts with opinions. You can also show your findings to a research partner or external person to confirm that your results are objective. 
  • Data representation: A fundamental part of the analytical procedure is the way you represent your data. You can use various graphs and charts to represent your findings, but not all of them will work for all purposes. Choosing the wrong visual can not only damage your analysis but can mislead your audience, therefore, it is important to understand when to use each type of data depending on your analytical goals. Our complete guide on the types of graphs and charts lists 20 different visuals with examples of when to use them. 
  • Flawed correlation : Misleading statistics can significantly damage your research. We’ve already pointed out a few interpretation issues previously in the post, but it is an important barrier that we can't avoid addressing here as well. Flawed correlations occur when two variables appear related to each other but they are not. Confusing correlations with causation can lead to a wrong interpretation of results which can lead to building wrong strategies and loss of resources, therefore, it is very important to identify the different interpretation mistakes and avoid them. 
  • Sample size: A very common barrier to a reliable and efficient analysis process is the sample size. In order for the results to be trustworthy, the sample size should be representative of what you are analyzing. For example, imagine you have a company of 1000 employees and you ask the question “do you like working here?” to 50 employees of which 49 say yes, which means 95%. Now, imagine you ask the same question to the 1000 employees and 950 say yes, which also means 95%. Saying that 95% of employees like working in the company when the sample size was only 50 is not a representative or trustworthy conclusion. The significance of the results is way more accurate when surveying a bigger sample size.   
  • Privacy concerns: In some cases, data collection can be subjected to privacy regulations. Businesses gather all kinds of information from their customers from purchasing behaviors to addresses and phone numbers. If this falls into the wrong hands due to a breach, it can affect the security and confidentiality of your clients. To avoid this issue, you need to collect only the data that is needed for your research and, if you are using sensitive facts, make it anonymous so customers are protected. The misuse of customer data can severely damage a business's reputation, so it is important to keep an eye on privacy. 
  • Lack of communication between teams : When it comes to performing data analysis on a business level, it is very likely that each department and team will have different goals and strategies. However, they are all working for the same common goal of helping the business run smoothly and keep growing. When teams are not connected and communicating with each other, it can directly affect the way general strategies are built. To avoid these issues, tools such as data dashboards enable teams to stay connected through data in a visually appealing way. 
  • Innumeracy : Businesses are working with data more and more every day. While there are many BI tools available to perform effective analysis, data literacy is still a constant barrier. Not all employees know how to apply analysis techniques or extract insights from them. To prevent this from happening, you can implement different training opportunities that will prepare every relevant user to deal with data. 

Key Data Analysis Skills

As you've learned throughout this lengthy guide, analyzing data is a complex task that requires a lot of knowledge and skills. That said, thanks to the rise of self-service tools the process is way more accessible and agile than it once was. Regardless, there are still some key skills that are valuable to have when working with data, we list the most important ones below.

  • Critical and statistical thinking: To successfully analyze data you need to be creative and think out of the box. Yes, that might sound like a weird statement considering that data is often tight to facts. However, a great level of critical thinking is required to uncover connections, come up with a valuable hypothesis, and extract conclusions that go a step further from the surface. This, of course, needs to be complemented by statistical thinking and an understanding of numbers. 
  • Data cleaning: Anyone who has ever worked with data before will tell you that the cleaning and preparation process accounts for 80% of a data analyst's work, therefore, the skill is fundamental. But not just that, not cleaning the data adequately can also significantly damage the analysis which can lead to poor decision-making in a business scenario. While there are multiple tools that automate the cleaning process and eliminate the possibility of human error, it is still a valuable skill to dominate. 
  • Data visualization: Visuals make the information easier to understand and analyze, not only for professional users but especially for non-technical ones. Having the necessary skills to not only choose the right chart type but know when to apply it correctly is key. This also means being able to design visually compelling charts that make the data exploration process more efficient. 
  • SQL: The Structured Query Language or SQL is a programming language used to communicate with databases. It is fundamental knowledge as it enables you to update, manipulate, and organize data from relational databases which are the most common databases used by companies. It is fairly easy to learn and one of the most valuable skills when it comes to data analysis. 
  • Communication skills: This is a skill that is especially valuable in a business environment. Being able to clearly communicate analytical outcomes to colleagues is incredibly important, especially when the information you are trying to convey is complex for non-technical people. This applies to in-person communication as well as written format, for example, when generating a dashboard or report. While this might be considered a “soft” skill compared to the other ones we mentioned, it should not be ignored as you most likely will need to share analytical findings with others no matter the context. 

Data Analysis In The Big Data Environment

Big data is invaluable to today’s businesses, and by using different methods for data analysis, it’s possible to view your data in a way that can help you turn insight into positive action.

To inspire your efforts and put the importance of big data into context, here are some insights that you should know:

  • By 2026 the industry of big data is expected to be worth approximately $273.4 billion.
  • 94% of enterprises say that analyzing data is important for their growth and digital transformation. 
  • Companies that exploit the full potential of their data can increase their operating margins by 60% .
  • We already told you the benefits of Artificial Intelligence through this article. This industry's financial impact is expected to grow up to $40 billion by 2025.

Data analysis concepts may come in many forms, but fundamentally, any solid methodology will help to make your business more streamlined, cohesive, insightful, and successful than ever before.

Key Takeaways From Data Analysis 

As we reach the end of our data analysis journey, we leave a small summary of the main methods and techniques to perform excellent analysis and grow your business.

17 Essential Types of Data Analysis Methods:

  • Cluster analysis
  • Cohort analysis
  • Regression analysis
  • Factor analysis
  • Neural Networks
  • Data Mining
  • Text analysis
  • Time series analysis
  • Decision trees
  • Conjoint analysis 
  • Correspondence Analysis
  • Multidimensional Scaling 
  • Content analysis 
  • Thematic analysis
  • Narrative analysis 
  • Grounded theory analysis
  • Discourse analysis 

Top 17 Data Analysis Techniques:

  • Collaborate your needs
  • Establish your questions
  • Data democratization
  • Think of data governance 
  • Clean your data
  • Set your KPIs
  • Omit useless data
  • Build a data management roadmap
  • Integrate technology
  • Answer your questions
  • Visualize your data
  • Interpretation of data
  • Consider autonomous technology
  • Build a narrative
  • Share the load
  • Data Analysis tools
  • Refine your process constantly 

We’ve pondered the data analysis definition and drilled down into the practical applications of data-centric analytics, and one thing is clear: by taking measures to arrange your data and making your metrics work for you, it’s possible to transform raw information into action - the kind of that will push your business to the next level.

Yes, good data analytics techniques result in enhanced business intelligence (BI). To help you understand this notion in more detail, read our exploration of business intelligence reporting .

And, if you’re ready to perform your own analysis, drill down into your facts and figures while interacting with your data on astonishing visuals, you can try our software for a free, 14-day trial .

data analysis techniques case study

Data Analytics Case Study Guide 2024

by Sam McKay, CFA | Data Analytics

data analysis techniques case study

Data analytics case studies reveal how businesses harness data for informed decisions and growth.

For aspiring data professionals, mastering the case study process will enhance your skills and increase your career prospects.

Sales Now On Advertisement

So, how do you approach a case study?

Use these steps to process a data analytics case study:

Understand the Problem: Grasp the core problem or question addressed in the case study.

Collect Relevant Data: Gather data from diverse sources, ensuring accuracy and completeness.

Apply Analytical Techniques: Use appropriate methods aligned with the problem statement.

Visualize Insights: Utilize visual aids to showcase patterns and key findings.

Derive Actionable Insights: Focus on deriving meaningful actions from the analysis.

This article will give you detailed steps to navigate a case study effectively and understand how it works in real-world situations.

By the end of the article, you will be better equipped to approach a data analytics case study, strengthening your analytical prowess and practical application skills.

Let’s dive in!

Data Analytics Case Study Guide

Table of Contents

What is a Data Analytics Case Study?

A data analytics case study is a real or hypothetical scenario where analytics techniques are applied to solve a specific problem or explore a particular question.

It’s a practical approach that uses data analytics methods, assisting in deciphering data for meaningful insights. This structured method helps individuals or organizations make sense of data effectively.

Additionally, it’s a way to learn by doing, where there’s no single right or wrong answer in how you analyze the data.

So, what are the components of a case study?

Key Components of a Data Analytics Case Study

Key Components of a Data Analytics Case Study

A data analytics case study comprises essential elements that structure the analytical journey:

Problem Context: A case study begins with a defined problem or question. It provides the context for the data analysis , setting the stage for exploration and investigation.

Data Collection and Sources: It involves gathering relevant data from various sources , ensuring data accuracy, completeness, and relevance to the problem at hand.

Analysis Techniques: Case studies employ different analytical methods, such as statistical analysis, machine learning algorithms, or visualization tools, to derive meaningful conclusions from the collected data.

Insights and Recommendations: The ultimate goal is to extract actionable insights from the analyzed data, offering recommendations or solutions that address the initial problem or question.

Now that you have a better understanding of what a data analytics case study is, let’s talk about why we need and use them.

Why Case Studies are Integral to Data Analytics

Why Case Studies are Integral to Data Analytics

Case studies serve as invaluable tools in the realm of data analytics, offering multifaceted benefits that bolster an analyst’s proficiency and impact:

Real-Life Insights and Skill Enhancement: Examining case studies provides practical, real-life examples that expand knowledge and refine skills. These examples offer insights into diverse scenarios, aiding in a data analyst’s growth and expertise development.

Validation and Refinement of Analyses: Case studies demonstrate the effectiveness of data-driven decisions across industries, providing validation for analytical approaches. They showcase how organizations benefit from data analytics. Also, this helps in refining one’s own methodologies

Showcasing Data Impact on Business Outcomes: These studies show how data analytics directly affects business results, like increasing revenue, reducing costs, or delivering other measurable advantages. Understanding these impacts helps articulate the value of data analytics to stakeholders and decision-makers.

Learning from Successes and Failures: By exploring a case study, analysts glean insights from others’ successes and failures, acquiring new strategies and best practices. This learning experience facilitates professional growth and the adoption of innovative approaches within their own data analytics work.

Including case studies in a data analyst’s toolkit helps gain more knowledge, improve skills, and understand how data analytics affects different industries.

Using these real-life examples boosts confidence and success, guiding analysts to make better and more impactful decisions in their organizations.

But not all case studies are the same.

Let’s talk about the different types.

Types of Data Analytics Case Studies

 Types of Data Analytics Case Studies

Data analytics encompasses various approaches tailored to different analytical goals:

Exploratory Case Study: These involve delving into new datasets to uncover hidden patterns and relationships, often without a predefined hypothesis. They aim to gain insights and generate hypotheses for further investigation.

Predictive Case Study: These utilize historical data to forecast future trends, behaviors, or outcomes. By applying predictive models, they help anticipate potential scenarios or developments.

Diagnostic Case Study: This type focuses on understanding the root causes or reasons behind specific events or trends observed in the data. It digs deep into the data to provide explanations for occurrences.

Prescriptive Case Study: This case study goes beyond analytics; it provides actionable recommendations or strategies derived from the analyzed data. They guide decision-making processes by suggesting optimal courses of action based on insights gained.

Each type has a specific role in using data to find important insights, helping in decision-making, and solving problems in various situations.

Regardless of the type of case study you encounter, here are some steps to help you process them.

Roadmap to Handling a Data Analysis Case Study

Roadmap to Handling a Data Analysis Case Study

Embarking on a data analytics case study requires a systematic approach, step-by-step, to derive valuable insights effectively.

Here are the steps to help you through the process:

Step 1: Understanding the Case Study Context: Immerse yourself in the intricacies of the case study. Delve into the industry context, understanding its nuances, challenges, and opportunities.

Data Mentor Advertisement

Identify the central problem or question the study aims to address. Clarify the objectives and expected outcomes, ensuring a clear understanding before diving into data analytics.

Step 2: Data Collection and Validation: Gather data from diverse sources relevant to the case study. Prioritize accuracy, completeness, and reliability during data collection. Conduct thorough validation processes to rectify inconsistencies, ensuring high-quality and trustworthy data for subsequent analysis.

Data Collection and Validation in case study

Step 3: Problem Definition and Scope: Define the problem statement precisely. Articulate the objectives and limitations that shape the scope of your analysis. Identify influential variables and constraints, providing a focused framework to guide your exploration.

Step 4: Exploratory Data Analysis (EDA): Leverage exploratory techniques to gain initial insights. Visualize data distributions, patterns, and correlations, fostering a deeper understanding of the dataset. These explorations serve as a foundation for more nuanced analysis.

Step 5: Data Preprocessing and Transformation: Cleanse and preprocess the data to eliminate noise, handle missing values, and ensure consistency. Transform data formats or scales as required, preparing the dataset for further analysis.

Data Preprocessing and Transformation in case study

Step 6: Data Modeling and Method Selection: Select analytical models aligning with the case study’s problem, employing statistical techniques, machine learning algorithms, or tailored predictive models.

In this phase, it’s important to develop data modeling skills. This helps create visuals of complex systems using organized data, which helps solve business problems more effectively.

Understand key data modeling concepts, utilize essential tools like SQL for database interaction, and practice building models from real-world scenarios.

Furthermore, strengthen data cleaning skills for accurate datasets, and stay updated with industry trends to ensure relevance.

Data Modeling and Method Selection in case study

Step 7: Model Evaluation and Refinement: Evaluate the performance of applied models rigorously. Iterate and refine models to enhance accuracy and reliability, ensuring alignment with the objectives and expected outcomes.

Step 8: Deriving Insights and Recommendations: Extract actionable insights from the analyzed data. Develop well-structured recommendations or solutions based on the insights uncovered, addressing the core problem or question effectively.

Step 9: Communicating Results Effectively: Present findings, insights, and recommendations clearly and concisely. Utilize visualizations and storytelling techniques to convey complex information compellingly, ensuring comprehension by stakeholders.

Communicating Results Effectively

Step 10: Reflection and Iteration: Reflect on the entire analysis process and outcomes. Identify potential improvements and lessons learned. Embrace an iterative approach, refining methodologies for continuous enhancement and future analyses.

This step-by-step roadmap provides a structured framework for thorough and effective handling of a data analytics case study.

Now, after handling data analytics comes a crucial step; presenting the case study.

Presenting Your Data Analytics Case Study

Presenting Your Data Analytics Case Study

Presenting a data analytics case study is a vital part of the process. When presenting your case study, clarity and organization are paramount.

To achieve this, follow these key steps:

Structuring Your Case Study: Start by outlining relevant and accurate main points. Ensure these points align with the problem addressed and the methodologies used in your analysis.

Crafting a Narrative with Data: Start with a brief overview of the issue, then explain your method and steps, covering data collection, cleaning, stats, and advanced modeling.

Visual Representation for Clarity: Utilize various visual aids—tables, graphs, and charts—to illustrate patterns, trends, and insights. Ensure these visuals are easy to comprehend and seamlessly support your narrative.

Visual Representation for Clarity

Highlighting Key Information: Use bullet points to emphasize essential information, maintaining clarity and allowing the audience to grasp key takeaways effortlessly. Bold key terms or phrases to draw attention and reinforce important points.

Addressing Audience Queries: Anticipate and be ready to answer audience questions regarding methods, assumptions, and results. Demonstrating a profound understanding of your analysis instills confidence in your work.

Integrity and Confidence in Delivery: Maintain a neutral tone and avoid exaggerated claims about findings. Present your case study with integrity, clarity, and confidence to ensure the audience appreciates and comprehends the significance of your work.

Integrity and Confidence in Delivery

By organizing your presentation well, telling a clear story through your analysis, and using visuals wisely, you can effectively share your data analytics case study.

This method helps people understand better, stay engaged, and draw valuable conclusions from your work.

We hope by now, you are feeling very confident processing a case study. But with any process, there are challenges you may encounter.

EDNA AI Advertisement

Key Challenges in Data Analytics Case Studies

Key Challenges in Data Analytics Case Studies

A data analytics case study can present various hurdles that necessitate strategic approaches for successful navigation:

Challenge 1: Data Quality and Consistency

Challenge: Inconsistent or poor-quality data can impede analysis, leading to erroneous insights and flawed conclusions.

Solution: Implement rigorous data validation processes, ensuring accuracy, completeness, and reliability. Employ data cleansing techniques to rectify inconsistencies and enhance overall data quality.

Challenge 2: Complexity and Scale of Data

Challenge: Managing vast volumes of data with diverse formats and complexities poses analytical challenges.

Solution: Utilize scalable data processing frameworks and tools capable of handling diverse data types. Implement efficient data storage and retrieval systems to manage large-scale datasets effectively.

Challenge 3: Interpretation and Contextual Understanding

Challenge: Interpreting data without contextual understanding or domain expertise can lead to misinterpretations.

Solution: Collaborate with domain experts to contextualize data and derive relevant insights. Invest in understanding the nuances of the industry or domain under analysis to ensure accurate interpretations.

Interpretation and Contextual Understanding

Challenge 4: Privacy and Ethical Concerns

Challenge: Balancing data access for analysis while respecting privacy and ethical boundaries poses a challenge.

Solution: Implement robust data governance frameworks that prioritize data privacy and ethical considerations. Ensure compliance with regulatory standards and ethical guidelines throughout the analysis process.

Challenge 5: Resource Limitations and Time Constraints

Challenge: Limited resources and time constraints hinder comprehensive analysis and exhaustive data exploration.

Solution: Prioritize key objectives and allocate resources efficiently. Employ agile methodologies to iteratively analyze and derive insights, focusing on the most impactful aspects within the given timeframe.

Recognizing these challenges is key; it helps data analysts adopt proactive strategies to mitigate obstacles. This enhances the effectiveness and reliability of insights derived from a data analytics case study.

Now, let’s talk about the best software tools you should use when working with case studies.

Top 5 Software Tools for Case Studies

Top Software Tools for Case Studies

In the realm of case studies within data analytics, leveraging the right software tools is essential.

Here are some top-notch options:

Tableau : Renowned for its data visualization prowess, Tableau transforms raw data into interactive, visually compelling representations, ideal for presenting insights within a case study.

Python and R Libraries: These flexible programming languages provide many tools for handling data, doing statistics, and working with machine learning, meeting various needs in case studies.

Microsoft Excel : A staple tool for data analytics, Excel provides a user-friendly interface for basic analytics, making it useful for initial data exploration in a case study.

SQL Databases : Structured Query Language (SQL) databases assist in managing and querying large datasets, essential for organizing case study data effectively.

Statistical Software (e.g., SPSS , SAS ): Specialized statistical software enables in-depth statistical analysis, aiding in deriving precise insights from case study data.

Choosing the best mix of these tools, tailored to each case study’s needs, greatly boosts analytical abilities and results in data analytics.

Final Thoughts

Case studies in data analytics are helpful guides. They give real-world insights, improve skills, and show how data-driven decisions work.

Using case studies helps analysts learn, be creative, and make essential decisions confidently in their data work.

Check out our latest clip below to further your learning!

Frequently Asked Questions

What are the key steps to analyzing a data analytics case study.

When analyzing a case study, you should follow these steps:

Clarify the problem : Ensure you thoroughly understand the problem statement and the scope of the analysis.

Make assumptions : Define your assumptions to establish a feasible framework for analyzing the case.

Gather context : Acquire relevant information and context to support your analysis.

Analyze the data : Perform calculations, create visualizations, and conduct statistical analysis on the data.

Provide insights : Draw conclusions and develop actionable insights based on your analysis.

How can you effectively interpret results during a data scientist case study job interview?

During your next data science interview, interpret case study results succinctly and clearly. Utilize visual aids and numerical data to bolster your explanations, ensuring comprehension.

Frame the results in an audience-friendly manner, emphasizing relevance. Concentrate on deriving insights and actionable steps from the outcomes.

How do you showcase your data analyst skills in a project?

To demonstrate your skills effectively, consider these essential steps. Begin by selecting a problem that allows you to exhibit your capacity to handle real-world challenges through analysis.

Methodically document each phase, encompassing data cleaning, visualization, statistical analysis, and the interpretation of findings.

Utilize descriptive analysis techniques and effectively communicate your insights using clear visual aids and straightforward language. Ensure your project code is well-structured, with detailed comments and documentation, showcasing your proficiency in handling data in an organized manner.

Lastly, emphasize your expertise in SQL queries, programming languages, and various analytics tools throughout the project. These steps collectively highlight your competence and proficiency as a skilled data analyst, demonstrating your capabilities within the project.

Can you provide an example of a successful data analytics project using key metrics?

A prime illustration is utilizing analytics in healthcare to forecast hospital readmissions. Analysts leverage electronic health records, patient demographics, and clinical data to identify high-risk individuals.

Implementing preventive measures based on these key metrics helps curtail readmission rates, enhancing patient outcomes and cutting healthcare expenses.

This demonstrates how data analytics, driven by metrics, effectively tackles real-world challenges, yielding impactful solutions.

Why would a company invest in data analytics?

Companies invest in data analytics to gain valuable insights, enabling informed decision-making and strategic planning. This investment helps optimize operations, understand customer behavior, and stay competitive in their industry.

Ultimately, leveraging data analytics empowers companies to make smarter, data-driven choices, leading to enhanced efficiency, innovation, and growth.

author avatar

Related Posts

4 Types of Data Analytics: Explained

4 Types of Data Analytics: Explained

Data Analytics

In a world full of data, data analytics is the heart and soul of an operation. It's what transforms raw...

Data Analytics Outsourcing: Pros and Cons Explained

Data Analytics Outsourcing: Pros and Cons Explained

In today's data-driven world, businesses are constantly swimming in a sea of information, seeking the...

What Does a Data Analyst Do on a Daily Basis?

What Does a Data Analyst Do on a Daily Basis?

In the digital age, data plays a significant role in helping organizations make informed decisions and...

data analysis techniques case study

data analysis techniques case study

The Ultimate Guide to Qualitative Research - Part 1: The Basics

data analysis techniques case study

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews

Research question

  • Conceptual framework
  • Conceptual vs. theoretical framework

Data collection

  • Qualitative research methods
  • Focus groups
  • Observational research

What is a case study?

Applications for case study research, what is a good case study, process of case study design, benefits and limitations of case studies.

  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Case studies

Case studies are essential to qualitative research , offering a lens through which researchers can investigate complex phenomena within their real-life contexts. This chapter explores the concept, purpose, applications, examples, and types of case studies and provides guidance on how to conduct case study research effectively.

data analysis techniques case study

Whereas quantitative methods look at phenomena at scale, case study research looks at a concept or phenomenon in considerable detail. While analyzing a single case can help understand one perspective regarding the object of research inquiry, analyzing multiple cases can help obtain a more holistic sense of the topic or issue. Let's provide a basic definition of a case study, then explore its characteristics and role in the qualitative research process.

Definition of a case study

A case study in qualitative research is a strategy of inquiry that involves an in-depth investigation of a phenomenon within its real-world context. It provides researchers with the opportunity to acquire an in-depth understanding of intricate details that might not be as apparent or accessible through other methods of research. The specific case or cases being studied can be a single person, group, or organization – demarcating what constitutes a relevant case worth studying depends on the researcher and their research question .

Among qualitative research methods , a case study relies on multiple sources of evidence, such as documents, artifacts, interviews , or observations , to present a complete and nuanced understanding of the phenomenon under investigation. The objective is to illuminate the readers' understanding of the phenomenon beyond its abstract statistical or theoretical explanations.

Characteristics of case studies

Case studies typically possess a number of distinct characteristics that set them apart from other research methods. These characteristics include a focus on holistic description and explanation, flexibility in the design and data collection methods, reliance on multiple sources of evidence, and emphasis on the context in which the phenomenon occurs.

Furthermore, case studies can often involve a longitudinal examination of the case, meaning they study the case over a period of time. These characteristics allow case studies to yield comprehensive, in-depth, and richly contextualized insights about the phenomenon of interest.

The role of case studies in research

Case studies hold a unique position in the broader landscape of research methods aimed at theory development. They are instrumental when the primary research interest is to gain an intensive, detailed understanding of a phenomenon in its real-life context.

In addition, case studies can serve different purposes within research - they can be used for exploratory, descriptive, or explanatory purposes, depending on the research question and objectives. This flexibility and depth make case studies a valuable tool in the toolkit of qualitative researchers.

Remember, a well-conducted case study can offer a rich, insightful contribution to both academic and practical knowledge through theory development or theory verification, thus enhancing our understanding of complex phenomena in their real-world contexts.

What is the purpose of a case study?

Case study research aims for a more comprehensive understanding of phenomena, requiring various research methods to gather information for qualitative analysis . Ultimately, a case study can allow the researcher to gain insight into a particular object of inquiry and develop a theoretical framework relevant to the research inquiry.

Why use case studies in qualitative research?

Using case studies as a research strategy depends mainly on the nature of the research question and the researcher's access to the data.

Conducting case study research provides a level of detail and contextual richness that other research methods might not offer. They are beneficial when there's a need to understand complex social phenomena within their natural contexts.

The explanatory, exploratory, and descriptive roles of case studies

Case studies can take on various roles depending on the research objectives. They can be exploratory when the research aims to discover new phenomena or define new research questions; they are descriptive when the objective is to depict a phenomenon within its context in a detailed manner; and they can be explanatory if the goal is to understand specific relationships within the studied context. Thus, the versatility of case studies allows researchers to approach their topic from different angles, offering multiple ways to uncover and interpret the data .

The impact of case studies on knowledge development

Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data.

data analysis techniques case study

This can result in the production of rich, practical insights that can be instrumental in both theory-building and practice. Case studies allow researchers to delve into the intricacies and complexities of real-life situations, uncovering insights that might otherwise remain hidden.

Types of case studies

In qualitative research , a case study is not a one-size-fits-all approach. Depending on the nature of the research question and the specific objectives of the study, researchers might choose to use different types of case studies. These types differ in their focus, methodology, and the level of detail they provide about the phenomenon under investigation.

Understanding these types is crucial for selecting the most appropriate approach for your research project and effectively achieving your research goals. Let's briefly look at the main types of case studies.

Exploratory case studies

Exploratory case studies are typically conducted to develop a theory or framework around an understudied phenomenon. They can also serve as a precursor to a larger-scale research project. Exploratory case studies are useful when a researcher wants to identify the key issues or questions which can spur more extensive study or be used to develop propositions for further research. These case studies are characterized by flexibility, allowing researchers to explore various aspects of a phenomenon as they emerge, which can also form the foundation for subsequent studies.

Descriptive case studies

Descriptive case studies aim to provide a complete and accurate representation of a phenomenon or event within its context. These case studies are often based on an established theoretical framework, which guides how data is collected and analyzed. The researcher is concerned with describing the phenomenon in detail, as it occurs naturally, without trying to influence or manipulate it.

Explanatory case studies

Explanatory case studies are focused on explanation - they seek to clarify how or why certain phenomena occur. Often used in complex, real-life situations, they can be particularly valuable in clarifying causal relationships among concepts and understanding the interplay between different factors within a specific context.

data analysis techniques case study

Intrinsic, instrumental, and collective case studies

These three categories of case studies focus on the nature and purpose of the study. An intrinsic case study is conducted when a researcher has an inherent interest in the case itself. Instrumental case studies are employed when the case is used to provide insight into a particular issue or phenomenon. A collective case study, on the other hand, involves studying multiple cases simultaneously to investigate some general phenomena.

Each type of case study serves a different purpose and has its own strengths and challenges. The selection of the type should be guided by the research question and objectives, as well as the context and constraints of the research.

The flexibility, depth, and contextual richness offered by case studies make this approach an excellent research method for various fields of study. They enable researchers to investigate real-world phenomena within their specific contexts, capturing nuances that other research methods might miss. Across numerous fields, case studies provide valuable insights into complex issues.

Critical information systems research

Case studies provide a detailed understanding of the role and impact of information systems in different contexts. They offer a platform to explore how information systems are designed, implemented, and used and how they interact with various social, economic, and political factors. Case studies in this field often focus on examining the intricate relationship between technology, organizational processes, and user behavior, helping to uncover insights that can inform better system design and implementation.

Health research

Health research is another field where case studies are highly valuable. They offer a way to explore patient experiences, healthcare delivery processes, and the impact of various interventions in a real-world context.

data analysis techniques case study

Case studies can provide a deep understanding of a patient's journey, giving insights into the intricacies of disease progression, treatment effects, and the psychosocial aspects of health and illness.

Asthma research studies

Specifically within medical research, studies on asthma often employ case studies to explore the individual and environmental factors that influence asthma development, management, and outcomes. A case study can provide rich, detailed data about individual patients' experiences, from the triggers and symptoms they experience to the effectiveness of various management strategies. This can be crucial for developing patient-centered asthma care approaches.

Other fields

Apart from the fields mentioned, case studies are also extensively used in business and management research, education research, and political sciences, among many others. They provide an opportunity to delve into the intricacies of real-world situations, allowing for a comprehensive understanding of various phenomena.

Case studies, with their depth and contextual focus, offer unique insights across these varied fields. They allow researchers to illuminate the complexities of real-life situations, contributing to both theory and practice.

data analysis techniques case study

Whatever field you're in, ATLAS.ti puts your data to work for you

Download a free trial of ATLAS.ti to turn your data into insights.

Understanding the key elements of case study design is crucial for conducting rigorous and impactful case study research. A well-structured design guides the researcher through the process, ensuring that the study is methodologically sound and its findings are reliable and valid. The main elements of case study design include the research question , propositions, units of analysis, and the logic linking the data to the propositions.

The research question is the foundation of any research study. A good research question guides the direction of the study and informs the selection of the case, the methods of collecting data, and the analysis techniques. A well-formulated research question in case study research is typically clear, focused, and complex enough to merit further detailed examination of the relevant case(s).

Propositions

Propositions, though not necessary in every case study, provide a direction by stating what we might expect to find in the data collected. They guide how data is collected and analyzed by helping researchers focus on specific aspects of the case. They are particularly important in explanatory case studies, which seek to understand the relationships among concepts within the studied phenomenon.

Units of analysis

The unit of analysis refers to the case, or the main entity or entities that are being analyzed in the study. In case study research, the unit of analysis can be an individual, a group, an organization, a decision, an event, or even a time period. It's crucial to clearly define the unit of analysis, as it shapes the qualitative data analysis process by allowing the researcher to analyze a particular case and synthesize analysis across multiple case studies to draw conclusions.

Argumentation

This refers to the inferential model that allows researchers to draw conclusions from the data. The researcher needs to ensure that there is a clear link between the data, the propositions (if any), and the conclusions drawn. This argumentation is what enables the researcher to make valid and credible inferences about the phenomenon under study.

Understanding and carefully considering these elements in the design phase of a case study can significantly enhance the quality of the research. It can help ensure that the study is methodologically sound and its findings contribute meaningful insights about the case.

Ready to jumpstart your research with ATLAS.ti?

Conceptualize your research project with our intuitive data analysis interface. Download a free trial today.

Conducting a case study involves several steps, from defining the research question and selecting the case to collecting and analyzing data . This section outlines these key stages, providing a practical guide on how to conduct case study research.

Defining the research question

The first step in case study research is defining a clear, focused research question. This question should guide the entire research process, from case selection to analysis. It's crucial to ensure that the research question is suitable for a case study approach. Typically, such questions are exploratory or descriptive in nature and focus on understanding a phenomenon within its real-life context.

Selecting and defining the case

The selection of the case should be based on the research question and the objectives of the study. It involves choosing a unique example or a set of examples that provide rich, in-depth data about the phenomenon under investigation. After selecting the case, it's crucial to define it clearly, setting the boundaries of the case, including the time period and the specific context.

Previous research can help guide the case study design. When considering a case study, an example of a case could be taken from previous case study research and used to define cases in a new research inquiry. Considering recently published examples can help understand how to select and define cases effectively.

Developing a detailed case study protocol

A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

The protocol should also consider how to work with the people involved in the research context to grant the research team access to collecting data. As mentioned in previous sections of this guide, establishing rapport is an essential component of qualitative research as it shapes the overall potential for collecting and analyzing data.

Collecting data

Gathering data in case study research often involves multiple sources of evidence, including documents, archival records, interviews, observations, and physical artifacts. This allows for a comprehensive understanding of the case. The process for gathering data should be systematic and carefully documented to ensure the reliability and validity of the study.

Analyzing and interpreting data

The next step is analyzing the data. This involves organizing the data , categorizing it into themes or patterns , and interpreting these patterns to answer the research question. The analysis might also involve comparing the findings with prior research or theoretical propositions.

Writing the case study report

The final step is writing the case study report . This should provide a detailed description of the case, the data, the analysis process, and the findings. The report should be clear, organized, and carefully written to ensure that the reader can understand the case and the conclusions drawn from it.

Each of these steps is crucial in ensuring that the case study research is rigorous, reliable, and provides valuable insights about the case.

The type, depth, and quality of data in your study can significantly influence the validity and utility of the study. In case study research, data is usually collected from multiple sources to provide a comprehensive and nuanced understanding of the case. This section will outline the various methods of collecting data used in case study research and discuss considerations for ensuring the quality of the data.

Interviews are a common method of gathering data in case study research. They can provide rich, in-depth data about the perspectives, experiences, and interpretations of the individuals involved in the case. Interviews can be structured , semi-structured , or unstructured , depending on the research question and the degree of flexibility needed.

Observations

Observations involve the researcher observing the case in its natural setting, providing first-hand information about the case and its context. Observations can provide data that might not be revealed in interviews or documents, such as non-verbal cues or contextual information.

Documents and artifacts

Documents and archival records provide a valuable source of data in case study research. They can include reports, letters, memos, meeting minutes, email correspondence, and various public and private documents related to the case.

data analysis techniques case study

These records can provide historical context, corroborate evidence from other sources, and offer insights into the case that might not be apparent from interviews or observations.

Physical artifacts refer to any physical evidence related to the case, such as tools, products, or physical environments. These artifacts can provide tangible insights into the case, complementing the data gathered from other sources.

Ensuring the quality of data collection

Determining the quality of data in case study research requires careful planning and execution. It's crucial to ensure that the data is reliable, accurate, and relevant to the research question. This involves selecting appropriate methods of collecting data, properly training interviewers or observers, and systematically recording and storing the data. It also includes considering ethical issues related to collecting and handling data, such as obtaining informed consent and ensuring the privacy and confidentiality of the participants.

Data analysis

Analyzing case study research involves making sense of the rich, detailed data to answer the research question. This process can be challenging due to the volume and complexity of case study data. However, a systematic and rigorous approach to analysis can ensure that the findings are credible and meaningful. This section outlines the main steps and considerations in analyzing data in case study research.

Organizing the data

The first step in the analysis is organizing the data. This involves sorting the data into manageable sections, often according to the data source or the theme. This step can also involve transcribing interviews, digitizing physical artifacts, or organizing observational data.

Categorizing and coding the data

Once the data is organized, the next step is to categorize or code the data. This involves identifying common themes, patterns, or concepts in the data and assigning codes to relevant data segments. Coding can be done manually or with the help of software tools, and in either case, qualitative analysis software can greatly facilitate the entire coding process. Coding helps to reduce the data to a set of themes or categories that can be more easily analyzed.

Identifying patterns and themes

After coding the data, the researcher looks for patterns or themes in the coded data. This involves comparing and contrasting the codes and looking for relationships or patterns among them. The identified patterns and themes should help answer the research question.

Interpreting the data

Once patterns and themes have been identified, the next step is to interpret these findings. This involves explaining what the patterns or themes mean in the context of the research question and the case. This interpretation should be grounded in the data, but it can also involve drawing on theoretical concepts or prior research.

Verification of the data

The last step in the analysis is verification. This involves checking the accuracy and consistency of the analysis process and confirming that the findings are supported by the data. This can involve re-checking the original data, checking the consistency of codes, or seeking feedback from research participants or peers.

Like any research method , case study research has its strengths and limitations. Researchers must be aware of these, as they can influence the design, conduct, and interpretation of the study.

Understanding the strengths and limitations of case study research can also guide researchers in deciding whether this approach is suitable for their research question . This section outlines some of the key strengths and limitations of case study research.

Benefits include the following:

  • Rich, detailed data: One of the main strengths of case study research is that it can generate rich, detailed data about the case. This can provide a deep understanding of the case and its context, which can be valuable in exploring complex phenomena.
  • Flexibility: Case study research is flexible in terms of design , data collection , and analysis . A sufficient degree of flexibility allows the researcher to adapt the study according to the case and the emerging findings.
  • Real-world context: Case study research involves studying the case in its real-world context, which can provide valuable insights into the interplay between the case and its context.
  • Multiple sources of evidence: Case study research often involves collecting data from multiple sources , which can enhance the robustness and validity of the findings.

On the other hand, researchers should consider the following limitations:

  • Generalizability: A common criticism of case study research is that its findings might not be generalizable to other cases due to the specificity and uniqueness of each case.
  • Time and resource intensive: Case study research can be time and resource intensive due to the depth of the investigation and the amount of collected data.
  • Complexity of analysis: The rich, detailed data generated in case study research can make analyzing the data challenging.
  • Subjectivity: Given the nature of case study research, there may be a higher degree of subjectivity in interpreting the data , so researchers need to reflect on this and transparently convey to audiences how the research was conducted.

Being aware of these strengths and limitations can help researchers design and conduct case study research effectively and interpret and report the findings appropriately.

data analysis techniques case study

Ready to analyze your data with ATLAS.ti?

See how our intuitive software can draw key insights from your data with a free trial today.

Grad Coach

Quantitative Data Analysis 101

The lingo, methods and techniques, explained simply.

By: Derek Jansen (MBA)  and Kerryn Warren (PhD) | December 2020

Quantitative data analysis is one of those things that often strikes fear in students. It’s totally understandable – quantitative analysis is a complex topic, full of daunting lingo , like medians, modes, correlation and regression. Suddenly we’re all wishing we’d paid a little more attention in math class…

The good news is that while quantitative data analysis is a mammoth topic, gaining a working understanding of the basics isn’t that hard , even for those of us who avoid numbers and math . In this post, we’ll break quantitative analysis down into simple , bite-sized chunks so you can approach your research with confidence.

Quantitative data analysis methods and techniques 101

Overview: Quantitative Data Analysis 101

  • What (exactly) is quantitative data analysis?
  • When to use quantitative analysis
  • How quantitative analysis works

The two “branches” of quantitative analysis

  • Descriptive statistics 101
  • Inferential statistics 101
  • How to choose the right quantitative methods
  • Recap & summary

What is quantitative data analysis?

Despite being a mouthful, quantitative data analysis simply means analysing data that is numbers-based – or data that can be easily “converted” into numbers without losing any meaning.

For example, category-based variables like gender, ethnicity, or native language could all be “converted” into numbers without losing meaning – for example, English could equal 1, French 2, etc.

This contrasts against qualitative data analysis, where the focus is on words, phrases and expressions that can’t be reduced to numbers. If you’re interested in learning about qualitative analysis, check out our post and video here .

What is quantitative analysis used for?

Quantitative analysis is generally used for three purposes.

  • Firstly, it’s used to measure differences between groups . For example, the popularity of different clothing colours or brands.
  • Secondly, it’s used to assess relationships between variables . For example, the relationship between weather temperature and voter turnout.
  • And third, it’s used to test hypotheses in a scientifically rigorous way. For example, a hypothesis about the impact of a certain vaccine.

Again, this contrasts with qualitative analysis , which can be used to analyse people’s perceptions and feelings about an event or situation. In other words, things that can’t be reduced to numbers.

How does quantitative analysis work?

Well, since quantitative data analysis is all about analysing numbers , it’s no surprise that it involves statistics . Statistical analysis methods form the engine that powers quantitative analysis, and these methods can vary from pretty basic calculations (for example, averages and medians) to more sophisticated analyses (for example, correlations and regressions).

Sounds like gibberish? Don’t worry. We’ll explain all of that in this post. Importantly, you don’t need to be a statistician or math wiz to pull off a good quantitative analysis. We’ll break down all the technical mumbo jumbo in this post.

Need a helping hand?

data analysis techniques case study

As I mentioned, quantitative analysis is powered by statistical analysis methods . There are two main “branches” of statistical methods that are used – descriptive statistics and inferential statistics . In your research, you might only use descriptive statistics, or you might use a mix of both , depending on what you’re trying to figure out. In other words, depending on your research questions, aims and objectives . I’ll explain how to choose your methods later.

So, what are descriptive and inferential statistics?

Well, before I can explain that, we need to take a quick detour to explain some lingo. To understand the difference between these two branches of statistics, you need to understand two important words. These words are population and sample .

First up, population . In statistics, the population is the entire group of people (or animals or organisations or whatever) that you’re interested in researching. For example, if you were interested in researching Tesla owners in the US, then the population would be all Tesla owners in the US.

However, it’s extremely unlikely that you’re going to be able to interview or survey every single Tesla owner in the US. Realistically, you’ll likely only get access to a few hundred, or maybe a few thousand owners using an online survey. This smaller group of accessible people whose data you actually collect is called your sample .

So, to recap – the population is the entire group of people you’re interested in, and the sample is the subset of the population that you can actually get access to. In other words, the population is the full chocolate cake , whereas the sample is a slice of that cake.

So, why is this sample-population thing important?

Well, descriptive statistics focus on describing the sample , while inferential statistics aim to make predictions about the population, based on the findings within the sample. In other words, we use one group of statistical methods – descriptive statistics – to investigate the slice of cake, and another group of methods – inferential statistics – to draw conclusions about the entire cake. There I go with the cake analogy again…

With that out the way, let’s take a closer look at each of these branches in more detail.

Descriptive statistics vs inferential statistics

Branch 1: Descriptive Statistics

Descriptive statistics serve a simple but critically important role in your research – to describe your data set – hence the name. In other words, they help you understand the details of your sample . Unlike inferential statistics (which we’ll get to soon), descriptive statistics don’t aim to make inferences or predictions about the entire population – they’re purely interested in the details of your specific sample .

When you’re writing up your analysis, descriptive statistics are the first set of stats you’ll cover, before moving on to inferential statistics. But, that said, depending on your research objectives and research questions , they may be the only type of statistics you use. We’ll explore that a little later.

So, what kind of statistics are usually covered in this section?

Some common statistical tests used in this branch include the following:

  • Mean – this is simply the mathematical average of a range of numbers.
  • Median – this is the midpoint in a range of numbers when the numbers are arranged in numerical order. If the data set makes up an odd number, then the median is the number right in the middle of the set. If the data set makes up an even number, then the median is the midpoint between the two middle numbers.
  • Mode – this is simply the most commonly occurring number in the data set.
  • In cases where most of the numbers are quite close to the average, the standard deviation will be relatively low.
  • Conversely, in cases where the numbers are scattered all over the place, the standard deviation will be relatively high.
  • Skewness . As the name suggests, skewness indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph, or do they skew to the left or right?

Feeling a bit confused? Let’s look at a practical example using a small data set.

Descriptive statistics example data

On the left-hand side is the data set. This details the bodyweight of a sample of 10 people. On the right-hand side, we have the descriptive statistics. Let’s take a look at each of them.

First, we can see that the mean weight is 72.4 kilograms. In other words, the average weight across the sample is 72.4 kilograms. Straightforward.

Next, we can see that the median is very similar to the mean (the average). This suggests that this data set has a reasonably symmetrical distribution (in other words, a relatively smooth, centred distribution of weights, clustered towards the centre).

In terms of the mode , there is no mode in this data set. This is because each number is present only once and so there cannot be a “most common number”. If there were two people who were both 65 kilograms, for example, then the mode would be 65.

Next up is the standard deviation . 10.6 indicates that there’s quite a wide spread of numbers. We can see this quite easily by looking at the numbers themselves, which range from 55 to 90, which is quite a stretch from the mean of 72.4.

And lastly, the skewness of -0.2 tells us that the data is very slightly negatively skewed. This makes sense since the mean and the median are slightly different.

As you can see, these descriptive statistics give us some useful insight into the data set. Of course, this is a very small data set (only 10 records), so we can’t read into these statistics too much. Also, keep in mind that this is not a list of all possible descriptive statistics – just the most common ones.

But why do all of these numbers matter?

While these descriptive statistics are all fairly basic, they’re important for a few reasons:

  • Firstly, they help you get both a macro and micro-level view of your data. In other words, they help you understand both the big picture and the finer details.
  • Secondly, they help you spot potential errors in the data – for example, if an average is way higher than you’d expect, or responses to a question are highly varied, this can act as a warning sign that you need to double-check the data.
  • And lastly, these descriptive statistics help inform which inferential statistical techniques you can use, as those techniques depend on the skewness (in other words, the symmetry and normality) of the data.

Simply put, descriptive statistics are really important , even though the statistical techniques used are fairly basic. All too often at Grad Coach, we see students skimming over the descriptives in their eagerness to get to the more exciting inferential methods, and then landing up with some very flawed results.

Don’t be a sucker – give your descriptive statistics the love and attention they deserve!

Examples of descriptive statistics

Branch 2: Inferential Statistics

As I mentioned, while descriptive statistics are all about the details of your specific data set – your sample – inferential statistics aim to make inferences about the population . In other words, you’ll use inferential statistics to make predictions about what you’d expect to find in the full population.

What kind of predictions, you ask? Well, there are two common types of predictions that researchers try to make using inferential stats:

  • Firstly, predictions about differences between groups – for example, height differences between children grouped by their favourite meal or gender.
  • And secondly, relationships between variables – for example, the relationship between body weight and the number of hours a week a person does yoga.

In other words, inferential statistics (when done correctly), allow you to connect the dots and make predictions about what you expect to see in the real world population, based on what you observe in your sample data. For this reason, inferential statistics are used for hypothesis testing – in other words, to test hypotheses that predict changes or differences.

Inferential statistics are used to make predictions about what you’d expect to find in the full population, based on the sample.

Of course, when you’re working with inferential statistics, the composition of your sample is really important. In other words, if your sample doesn’t accurately represent the population you’re researching, then your findings won’t necessarily be very useful.

For example, if your population of interest is a mix of 50% male and 50% female , but your sample is 80% male , you can’t make inferences about the population based on your sample, since it’s not representative. This area of statistics is called sampling, but we won’t go down that rabbit hole here (it’s a deep one!) – we’ll save that for another post .

What statistics are usually used in this branch?

There are many, many different statistical analysis methods within the inferential branch and it’d be impossible for us to discuss them all here. So we’ll just take a look at some of the most common inferential statistical methods so that you have a solid starting point.

First up are T-Tests . T-tests compare the means (the averages) of two groups of data to assess whether they’re statistically significantly different. In other words, do they have significantly different means, standard deviations and skewness.

This type of testing is very useful for understanding just how similar or different two groups of data are. For example, you might want to compare the mean blood pressure between two groups of people – one that has taken a new medication and one that hasn’t – to assess whether they are significantly different.

Kicking things up a level, we have ANOVA, which stands for “analysis of variance”. This test is similar to a T-test in that it compares the means of various groups, but ANOVA allows you to analyse multiple groups , not just two groups So it’s basically a t-test on steroids…

Next, we have correlation analysis . This type of analysis assesses the relationship between two variables. In other words, if one variable increases, does the other variable also increase, decrease or stay the same. For example, if the average temperature goes up, do average ice creams sales increase too? We’d expect some sort of relationship between these two variables intuitively , but correlation analysis allows us to measure that relationship scientifically .

Lastly, we have regression analysis – this is quite similar to correlation in that it assesses the relationship between variables, but it goes a step further to understand cause and effect between variables, not just whether they move together. In other words, does the one variable actually cause the other one to move, or do they just happen to move together naturally thanks to another force? Just because two variables correlate doesn’t necessarily mean that one causes the other.

Stats overload…

I hear you. To make this all a little more tangible, let’s take a look at an example of a correlation in action.

Here’s a scatter plot demonstrating the correlation (relationship) between weight and height. Intuitively, we’d expect there to be some relationship between these two variables, which is what we see in this scatter plot. In other words, the results tend to cluster together in a diagonal line from bottom left to top right.

Sample correlation

As I mentioned, these are are just a handful of inferential techniques – there are many, many more. Importantly, each statistical method has its own assumptions and limitations.

For example, some methods only work with normally distributed (parametric) data, while other methods are designed specifically for non-parametric data. And that’s exactly why descriptive statistics are so important – they’re the first step to knowing which inferential techniques you can and can’t use.

Remember that every statistical method has its own assumptions and limitations,  so you need to be aware of these.

How to choose the right analysis method

To choose the right statistical methods, you need to think about two important factors :

  • The type of quantitative data you have (specifically, level of measurement and the shape of the data). And,
  • Your research questions and hypotheses

Let’s take a closer look at each of these.

Factor 1 – Data type

The first thing you need to consider is the type of data you’ve collected (or the type of data you will collect). By data types, I’m referring to the four levels of measurement – namely, nominal, ordinal, interval and ratio. If you’re not familiar with this lingo, check out the video below.

Why does this matter?

Well, because different statistical methods and techniques require different types of data. This is one of the “assumptions” I mentioned earlier – every method has its assumptions regarding the type of data.

For example, some techniques work with categorical data (for example, yes/no type questions, or gender or ethnicity), while others work with continuous numerical data (for example, age, weight or income) – and, of course, some work with multiple data types.

If you try to use a statistical method that doesn’t support the data type you have, your results will be largely meaningless . So, make sure that you have a clear understanding of what types of data you’ve collected (or will collect). Once you have this, you can then check which statistical methods would support your data types here .

If you haven’t collected your data yet, you can work in reverse and look at which statistical method would give you the most useful insights, and then design your data collection strategy to collect the correct data types.

Another important factor to consider is the shape of your data . Specifically, does it have a normal distribution (in other words, is it a bell-shaped curve, centred in the middle) or is it very skewed to the left or the right? Again, different statistical techniques work for different shapes of data – some are designed for symmetrical data while others are designed for skewed data.

This is another reminder of why descriptive statistics are so important – they tell you all about the shape of your data.

Factor 2: Your research questions

The next thing you need to consider is your specific research questions, as well as your hypotheses (if you have some). The nature of your research questions and research hypotheses will heavily influence which statistical methods and techniques you should use.

If you’re just interested in understanding the attributes of your sample (as opposed to the entire population), then descriptive statistics are probably all you need. For example, if you just want to assess the means (averages) and medians (centre points) of variables in a group of people.

On the other hand, if you aim to understand differences between groups or relationships between variables and to infer or predict outcomes in the population, then you’ll likely need both descriptive statistics and inferential statistics.

So, it’s really important to get very clear about your research aims and research questions, as well your hypotheses – before you start looking at which statistical techniques to use.

Never shoehorn a specific statistical technique into your research just because you like it or have some experience with it. Your choice of methods must align with all the factors we’ve covered here.

Time to recap…

You’re still with me? That’s impressive. We’ve covered a lot of ground here, so let’s recap on the key points:

  • Quantitative data analysis is all about  analysing number-based data  (which includes categorical and numerical data) using various statistical techniques.
  • The two main  branches  of statistics are  descriptive statistics  and  inferential statistics . Descriptives describe your sample, whereas inferentials make predictions about what you’ll find in the population.
  • Common  descriptive statistical methods include  mean  (average),  median , standard  deviation  and  skewness .
  • Common  inferential statistical methods include  t-tests ,  ANOVA ,  correlation  and  regression  analysis.
  • To choose the right statistical methods and techniques, you need to consider the  type of data you’re working with , as well as your  research questions  and hypotheses.

data analysis techniques case study

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Narrative analysis explainer

74 Comments

Oddy Labs

Hi, I have read your article. Such a brilliant post you have created.

Derek Jansen

Thank you for the feedback. Good luck with your quantitative analysis.

Abdullahi Ramat

Thank you so much.

Obi Eric Onyedikachi

Thank you so much. I learnt much well. I love your summaries of the concepts. I had love you to explain how to input data using SPSS

Lumbuka Kaunda

Amazing and simple way of breaking down quantitative methods.

Charles Lwanga

This is beautiful….especially for non-statisticians. I have skimmed through but I wish to read again. and please include me in other articles of the same nature when you do post. I am interested. I am sure, I could easily learn from you and get off the fear that I have had in the past. Thank you sincerely.

Essau Sefolo

Send me every new information you might have.

fatime

i need every new information

Dr Peter

Thank you for the blog. It is quite informative. Dr Peter Nemaenzhe PhD

Mvogo Mvogo Ephrem

It is wonderful. l’ve understood some of the concepts in a more compréhensive manner

Maya

Your article is so good! However, I am still a bit lost. I am doing a secondary research on Gun control in the US and increase in crime rates and I am not sure which analysis method I should use?

Joy

Based on the given learning points, this is inferential analysis, thus, use ‘t-tests, ANOVA, correlation and regression analysis’

Peter

Well explained notes. Am an MPH student and currently working on my thesis proposal, this has really helped me understand some of the things I didn’t know.

Jejamaije Mujoro

I like your page..helpful

prashant pandey

wonderful i got my concept crystal clear. thankyou!!

Dailess Banda

This is really helpful , thank you

Lulu

Thank you so much this helped

wossen

Wonderfully explained

Niamatullah zaheer

thank u so much, it was so informative

mona

THANKYOU, this was very informative and very helpful

Thaddeus Ogwoka

This is great GRADACOACH I am not a statistician but I require more of this in my thesis

Include me in your posts.

Alem Teshome

This is so great and fully useful. I would like to thank you again and again.

Mrinal

Glad to read this article. I’ve read lot of articles but this article is clear on all concepts. Thanks for sharing.

Emiola Adesina

Thank you so much. This is a very good foundation and intro into quantitative data analysis. Appreciate!

Josyl Hey Aquilam

You have a very impressive, simple but concise explanation of data analysis for Quantitative Research here. This is a God-send link for me to appreciate research more. Thank you so much!

Lynnet Chikwaikwai

Avery good presentation followed by the write up. yes you simplified statistics to make sense even to a layman like me. Thank so much keep it up. The presenter did ell too. i would like more of this for Qualitative and exhaust more of the test example like the Anova.

Adewole Ikeoluwa

This is a very helpful article, couldn’t have been clearer. Thank you.

Samih Soud ALBusaidi

Awesome and phenomenal information.Well done

Nūr

The video with the accompanying article is super helpful to demystify this topic. Very well done. Thank you so much.

Lalah

thank you so much, your presentation helped me a lot

Anjali

I don’t know how should I express that ur article is saviour for me 🥺😍

Saiqa Aftab Tunio

It is well defined information and thanks for sharing. It helps me a lot in understanding the statistical data.

Funeka Mvandaba

I gain a lot and thanks for sharing brilliant ideas, so wish to be linked on your email update.

Rita Kathomi Gikonyo

Very helpful and clear .Thank you Gradcoach.

Hilaria Barsabal

Thank for sharing this article, well organized and information presented are very clear.

AMON TAYEBWA

VERY INTERESTING AND SUPPORTIVE TO NEW RESEARCHERS LIKE ME. AT LEAST SOME BASICS ABOUT QUANTITATIVE.

Tariq

An outstanding, well explained and helpful article. This will help me so much with my data analysis for my research project. Thank you!

chikumbutso

wow this has just simplified everything i was scared of how i am gonna analyse my data but thanks to you i will be able to do so

Idris Haruna

simple and constant direction to research. thanks

Mbunda Castro

This is helpful

AshikB

Great writing!! Comprehensive and very helpful.

himalaya ravi

Do you provide any assistance for other steps of research methodology like making research problem testing hypothesis report and thesis writing?

Sarah chiwamba

Thank you so much for such useful article!

Lopamudra

Amazing article. So nicely explained. Wow

Thisali Liyanage

Very insightfull. Thanks

Melissa

I am doing a quality improvement project to determine if the implementation of a protocol will change prescribing habits. Would this be a t-test?

Aliyah

The is a very helpful blog, however, I’m still not sure how to analyze my data collected. I’m doing a research on “Free Education at the University of Guyana”

Belayneh Kassahun

tnx. fruitful blog!

Suzanne

So I am writing exams and would like to know how do establish which method of data analysis to use from the below research questions: I am a bit lost as to how I determine the data analysis method from the research questions.

Do female employees report higher job satisfaction than male employees with similar job descriptions across the South African telecommunications sector? – I though that maybe Chi Square could be used here. – Is there a gender difference in talented employees’ actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – Is there a gender difference in the cost of actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – What practical recommendations can be made to the management of South African telecommunications companies on leveraging gender to mitigate employee turnover decisions?

Your assistance will be appreciated if I could get a response as early as possible tomorrow

Like

This was quite helpful. Thank you so much.

kidane Getachew

wow I got a lot from this article, thank you very much, keep it up

FAROUK AHMAD NKENGA

Thanks for yhe guidance. Can you send me this guidance on my email? To enable offline reading?

Nosi Ruth Xabendlini

Thank you very much, this service is very helpful.

George William Kiyingi

Every novice researcher needs to read this article as it puts things so clear and easy to follow. Its been very helpful.

Adebisi

Wonderful!!!! you explained everything in a way that anyone can learn. Thank you!!

Miss Annah

I really enjoyed reading though this. Very easy to follow. Thank you

Reza Kia

Many thanks for your useful lecture, I would be really appreciated if you could possibly share with me the PPT of presentation related to Data type?

Protasia Tairo

Thank you very much for sharing, I got much from this article

Fatuma Chobo

This is a very informative write-up. Kindly include me in your latest posts.

naphtal

Very interesting mostly for social scientists

Boy M. Bachtiar

Thank you so much, very helpfull

You’re welcome 🙂

Dr Mafaza Mansoor

woow, its great, its very informative and well understood because of your way of writing like teaching in front of me in simple languages.

Opio Len

I have been struggling to understand a lot of these concepts. Thank you for the informative piece which is written with outstanding clarity.

Eric

very informative article. Easy to understand

Leena Fukey

Beautiful read, much needed.

didin

Always greet intro and summary. I learn so much from GradCoach

Mmusyoka

Quite informative. Simple and clear summary.

Jewel Faver

I thoroughly enjoyed reading your informative and inspiring piece. Your profound insights into this topic truly provide a better understanding of its complexity. I agree with the points you raised, especially when you delved into the specifics of the article. In my opinion, that aspect is often overlooked and deserves further attention.

Shantae

Absolutely!!! Thank you

Thazika Chitimera

Thank you very much for this post. It made me to understand how to do my data analysis.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Qualitative Data Analysis Methods

In the following, we will discuss basic approaches to analyzing data in all six of the acceptable qualitative designs.

After reviewing the information in this document, you will be able to:

  • Recognize the terms for data analysis methods used in the various acceptable designs.
  • Recognize the data preparation tasks that precede actual analysis in all the designs.
  • Understand the basic analytic methods used by the respective qualitative designs.
  • Identify and apply the methods required by your selected design.

Terms Used in Data Analysis by the Six Designs

Each qualitative research approach or design has its own terms for methods of data analysis:

  • Ethnography—uses modified thematic analysis and life histories.
  • Case study—uses description, categorical aggregation, or direct interpretation.
  • Grounded theory—uses open, axial, and selective coding (although recent writers are proposing variations on those basic analysis methods).
  • Phenomenology—describes textures and structures of the essential meaning of the lived experience of the phenomenon
  • Heuristics—patterns, themes, and creative synthesis along with individual portraits.
  • Generic qualitative inquiry—thematic analysis, which is really a foundation for all the other analytic methods. Thematic analysis is the starting point for the other five, and the endpoint for generic qualitative inquiry. Because it is the basic or foundational method, we'll take it first.

Preliminary Tasks in Analysis in all Methods

In all the approaches—case study, grounded theory, generic inquiry, and phenomenology—there are preliminary tasks that must be performed prior to the analysis itself. For each, you will need to:

  • Arrange for secure storage of original materials. Storage should be secure and guaranteed to protect the privacy and confidentiality of the participants' information and identities.
  • Transcribe interviews or otherwise transform raw data into usable formats.
  • Make master copies and working copies of all materials. Master copies should be kept securely with the original data. Working copies will be marked up, torn apart, and used heavily: make plenty.
  • Arrange secure passwords or other protection for all electronic data and copies.
  • When ready to begin, read all the transcripts repeatedly—at least three times—for a sense of the whole. Don't force it—allow the participants' words to speak to you.

These tasks are done in all forms of qualitative analysis. Now let's look specifically at generic qualitative inquiry.

Data Analysis in Generic Qualitative Inquiry: Thematic Analysis

The primary tool for conducting the analysis of data when using the generic qualitative inquiry approach is thematic analysis, a flexible analytic method for deriving the central themes from verbal data. A thematic analysis can also be used to conduct analysis of the qualitative data in some types of case study.

Thematic analysis essentially creates theme-statements for ideas or categories of ideas (codes) that the researcher extracts from the words of the participants.

There are two main types of thematic analysis:

  • Inductive thematic analysis, in which the data are interpreted inductively, that is, without bringing in any preselected theoretical categories.
  • Theoretical thematic analysis, in which the participants' words are interpreted according to categories or constructs from the existing literature.

Analytic Steps in Thematic Analysis: Reading

Remember that the last preliminary task listed above was to read the transcripts for a sense of the whole. In this discussion, we'll assume you're working with transcribed data, usually from interviews. You can apply each step, with changes, to any kind of qualitative data. Now, before you start analyzing, take the first transcript and read it once more, as often as necessary, for a sense of what this participant told you about the topic of your study. If you're using other sources of data, spend time with them holistically.

Thematic Analysis: Steps in the Process

When you have a feel for the data,

  • Underline any passages (phases, sentences, or paragraphs) that appear meaningful to you. Don't make any interpretations yet! Review the underlined data.
  • Decide if the underlined data are relevant to the research question and cross out or delete all data unrelated to the research question. Some information in the transcript may be interesting but unrelated to the research question.
  • Create a name or "code" for each remaining underlined passage (expressions or meaning units) that focus on one single idea. The code should be:
  • Briefer than the passage, should
  • Sum up its meaning, and should be
  • Supported by the meaning unit (the participant's words).
  • Find codes that recur; cluster these together. Now begin the interpretation, but only with the understanding that the codes or patterns may shift and change during the process of analysis.
  • After you have developed the clusters or patterns of codes, name each pattern. The pattern name is a theme. Use language supported by the original data in the language of your discipline and field.
  • Write a brief description of each theme. Use brief direct quotations from the transcript to show the reader how the patterns emerged from the data.
  • Compose a paragraph integrating all the themes you developed from the individual's data.
  • Repeat this process for each participant, the "within-participant" analysis.
  • Finally, integrate all themes from all participants in "across-participants" analysis, showing what general themes are found across all the data.

Some variation of thematic analysis will appear in most of the other forms of qualitative data analysis, but the other methods tend to be more complex. Let's look at them one at a time. If you are already clear as to which approach or design your study will use, you can skip to the appropriate section below.

Ethnographic Data Analysis

Ethnographic data analysis relies on a modified thematic analysis. It is called modified because it combines standard thematic analysis as previously described for interview data with modified thematic methods applied to artifacts, observational notes, and other non-interview data.

Depending on the kinds of data to be interpreted (for instance pictures and historical documents) Ethnographers devise unique ways to find patterns or themes in the data. Finally, the themes must be integrated across all sources and kinds of data to arrive at a composite thematic picture of the culture.

(Adapted from Bogdan and Taylor, 1975; Taylor and Bogdan, 1998; Aronson, 1994.)

Data Analysis in Grounded Theory

Going beyond the descriptive and interpretive goals of many other qualitative models, grounded theory's goal is building a theory. It seeks explanation, not simply description.

It uses a constant comparison method of data analysis that begins as soon as the researcher starts collecting data. Each data collection event (for example, an interview) is analyzed immediately, and later data collection events can be modified to seek more information on emerging themes.

In other words, analysis goes on during each step of the data collection, not merely after data collection.

The heart of the grounded theory analysis is coding, which is analogous to but more rigorous than coding in thematic analysis.

Coding in Grounded Theory Method

There are three different types of coding used in a sequential manner.

  • The first type of coding is open coding, which is like basic coding in thematic analysis. During open coding, the researcher performs:
  • A line-by-line analysis (or sentence or paragraph analysis) of the data.
  • Labels and categorizes the dimensions or aspects of the phenomenon being studied.
  • The researcher also uses memos to describe the categories that are found.
  • The second type of coding is axial coding, which involves finding links between categories and subcategories found in the open coding.
  • The open codes are examined for their relationships: cause and effect, co-occurrence, and so on.
  • The goal here is to picture how the various dimensions or categories of data interact with one another in time and space.
  • The third type of coding is selective coding, which identifies a core category and relates the categories subsidiary to this core.
  • Selective coding selects the main phenomenon, (core category) around which subsidiary phenomena, (all other categories) are grouped, arranging the groupings, studying the results, and rearranging where the data require it.

The Final Stages of Grounded Theory Analysis, after Coding

From selective coding, the grounded theory researcher develops:

  • A model of the process, which is the description of which actions and interactions occur in a sequence or series.
  • A transactional system, which is the description of how the interactions of different events explain the phenomenon being investigated.
  • Finally, A conditional matrix is diagrammed to help consider the conditions and consequences related to the phenomenon under study.

These three essentially tell the story of the outcome of the research, in other words, the description of the process by which the phenomenon seems to happen, the transactional system supporting it, and the conditional matrix that pictures the explanation of the phenomenon are the findings of a grounded theory study.

(Adapted from Corbin and Strauss, 2008; Strauss and Corbin, 1990, 1998.)

Data Analysis in Qualitative Case Study: Background

There are a few points to consider in analyzing case study data:

  • Analysis can be:
  • Holistic—the entire case.
  • Embedded—a specific aspect of the case.
  • Multiple sources and kinds of data must be collected and analyzed.
  • Data must be collected, analyzed, and described about both:
  • The contexts of the case (its social, political, economic contexts, its affiliations with other organizations or cases, and so on).
  • The setting of the case (geography, location, physical grounds, or set-up, business organization, etc.).

Qualitative Case Study Data Analysis Methods

Data analysis is detailed in description and consists of an analysis of themes. Especially for interview or documentary analysis, thematic analysis can be used (see the section on generic qualitative inquiry). A typical format for data analysis in a case study consists of the following phases:

  • Description: This entails developing a detailed description of each instance of the case and its setting. The words "instance" and "case" can be confusing. Let's say we're conducting a case study of gay and lesbian members of large urban evangelical Christian congregations in the Southeast. The case would be all such people and their congregations. Instances of the case would be any individual person or congregation. In this phase, all the congregations (the settings) and their larger contexts would be described in detail, along with the individuals who are interviewed or observed.
  • Categorical Aggregation: This involves seeking a collection of themes from the data, hoping that relevant meaning about lessons to be learned about the case will emerge. Using our example, a kind of thematic analysis from all the data would be performed, looking for common themes.
  • Direct Interpretation: By looking at the single instance or member of the case and drawing meaning from it without looking for multiple instances, direct interpretation pulls the data apart and puts it together in more meaningful ways. Here, the interviews with all the gay and lesbian congregation members would be subjected to thematic analysis or some other form of analysis for themes.
  • Within-Case Analysis: This would identify the themes that emerge from the data collected from each instance of the case, including connections between or among the themes. These themes would be further developed using verbatim passages and direct quotation to elucidate each theme. This would serve as the summary of the thematic analysis for each individual participant.
  • Cross-Case Analysis: This phase develops a thematic analysis across cases as well as assertions and interpretations of the meaning of the themes emerging from all participants in the study.
  • Interpretive Phase: In the final phase, this is the creation of naturalistic generalizations from the data as a whole and reporting on the lesson learned from the case study.

(Adapted from Creswell, 1998; Stake, 1995.)

Data Analysis in Phenomenological Research

There are a few existing models of phenomenological research, and they each propose slightly different methods of data analysis. They all arrive at the same goal, however. The goal of phenomenological analysis is to describe the essence or core structures and textures of some conscious psychological experience. One such model, empirical, was developed at Duquesne University. This method of analysis consists of five essential steps and represents the other variations well. Whichever model is chosen, those wishing to conduct phenomenological research must choose a model and abide by its procedures. Empirical phenomenology is presented as an example.

  • Sense of the whole. One reads the entire description in order to get a general sense of the whole statement. This often takes a few readings, which should be approached contemplatively.
  • Discrimination of meaning units. Once the sense of the whole has been grasped, the researcher returns to the beginning and reads through the text once more, delineating each transition in meaning.
  • The researcher adopts a psychological perspective to do this. This means that the researcher looks for shifts in psychological meaning.
  • The researcher focuses on the phenomenon being investigated. This means that the researcher keeps in mind the study's topic and looks for meaningful passages related to it.
  • The researcher next eliminates redundancies and unrelated meaning units.
  • Transformation of subjects' everyday expressions (meaning units) into psychological language. Once meaning units have been delineated,
  • The researcher reflects on each of the meaning units, which are still expressed in the concrete language of the participants, and describes the essence of the statement for the participant.
  • The researcher makes these descriptions in the language of psychological science.
  • Synthesis of transformed meaning units into a consistent statement of the structure of the experience.
  • Using imaginative variation on these transformed meaning units, the researcher discovers what remains unchanged when variations are imaginatively applied, and
  • From this develops a consistent statement regarding the structure of the participant's experience.
  • The researcher completes this process for each transcript in the study.
  • Final synthesis. Finally, the researcher synthesizes all of the statements regarding each participant's experience into one consistent statement that describes and captures [of] the essence of the experience being studied.

(Adapted from Giorgi, 1985, 1997; Giorgi and Giorgi, 2003.)

Data Analysis in Heuristics

Six steps typically characterize the heuristic process of data analysis, consisting of:

  • Initial engagement.
  • Incubation.
  • Illumination.
  • Explication.

To start, place all the material drawn from one participant before you (recordings, transcriptions, journals, notes, poems, artwork, and so on). This material may either be data gathered by self-search or by interviews with co-researchers.

  • Immerse yourself fully in the material until you are aware of and understand everything that is before you.
  • Incubate the material. Put the material aside for a while. Let it settle in you. Live with it but without particular attention or focus. Return to the immersion process. Make notes where they would enable you to remember or classify the material. Continue this rhythm of working with the data and resting until an illumination or essential configuration emerges. From your core or global sense, list the essential components or patterns and themes that characterize the fundamental nature and meaning of the experience. Reflectively study the patterns and themes, dwell inside them, and develop a full depiction of the experience. The depiction must include the essential components of the experience.
  • Illustrate the depiction of the experience with verbatim samples, poems, stories, or other materials to highlight and accentuate the person's lived experience.
  • Return to the raw material of your co-researcher (participant). Does your depiction of the experience fit the data from which you have developed it? Does it contain all that is essential?
  • Develop a full reflective depiction of the experience, one that characterizes the participant's experience reflecting core meanings for the individuals as a whole. Include in the depiction, verbatim samples, poems, stories, and the like to highlight and accentuate the lived nature of the experience. This depiction will serve as the creative synthesis, which will combine the themes and patterns into a representation of the whole in an aesthetically pleasing way. This synthesis will communicate the essence of the lived experience under inquiry. The synthesis is more than a summary: it is like a chemical reaction, a creation anew.
  • Return to the data and develop a portrait of the person in such a way that the phenomenon and the person emerge as real.

(Adapted from Douglass and Moustakas, l985; Moustakas, 1990.)

Bogdan, R., & Taylor, S. J. (1975). Introduction to qualitative research methods: A phenomenological approach (3rd ed.). New York, NY: Wiley.

Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory (3rd ed.). Los Angeles, CA: Sage.

Creswell, J. W. (1998). Qualitative inquiry and research design: Choosing among five traditions . Thousand Oaks, CA: Sage.

Douglass, B. G., & Moustakas, C. (1985). Heuristic inquiry: The internal search to know. Journal of Humanistic Psychology , 25(3), 39–55.

Giorgi, A. (Ed.). (1985). Phenomenology and psychological research . Pittsburgh, PA: Duquesne University Press.

Giorgi, A. (1997). The theory, practice and evaluation of phenomenological methods as a qualitative research procedure. Journal of Phenomenological Psychology , 28, 235–260.

Giorgi, A. P., & Giorgi, B. M. (2003). The descriptive phenomenological psychological method. In P. M. Camic, J. E. Rhodes, & L. Yardley (Eds.), Qualitative research in psychology: Expanding perspectives in methodology and design (pp. 243–273). Washington, DC: American Psychological Association.

Moustakas, C. (1990). Heuristic research: Design, methodology, and applications . Newbury Park, CA: Sage.

Stake, R. E. (1995). The art of case study research . Thousand Oaks, CA: Sage.

Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques . Newbury Park, CA: Sage.

Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and theory for developing grounded theory (2nd ed.). Thousand Oaks, CA: Sage.

Taylor, S. J., & Bogdan, R. (1998). Introduction to qualitative research methods: A guidebook and resource (3rd ed.). New York: Wiley.

Doc. reference: phd_t3_u06s6_qualanalysis.html

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Sage Choice

Logo of sageopen

Continuing to enhance the quality of case study methodology in health services research

Shannon l. sibbald.

1 Faculty of Health Sciences, Western University, London, Ontario, Canada.

2 Department of Family Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.

3 The Schulich Interfaculty Program in Public Health, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.

Stefan Paciocco

Meghan fournie, rachelle van asseldonk, tiffany scurr.

Case study methodology has grown in popularity within Health Services Research (HSR). However, its use and merit as a methodology are frequently criticized due to its flexible approach and inconsistent application. Nevertheless, case study methodology is well suited to HSR because it can track and examine complex relationships, contexts, and systems as they evolve. Applied appropriately, it can help generate information on how multiple forms of knowledge come together to inform decision-making within healthcare contexts. In this article, we aim to demystify case study methodology by outlining its philosophical underpinnings and three foundational approaches. We provide literature-based guidance to decision-makers, policy-makers, and health leaders on how to engage in and critically appraise case study design. We advocate that researchers work in collaboration with health leaders to detail their research process with an aim of strengthening the validity and integrity of case study for its continued and advanced use in HSR.

Introduction

The popularity of case study research methodology in Health Services Research (HSR) has grown over the past 40 years. 1 This may be attributed to a shift towards the use of implementation research and a newfound appreciation of contextual factors affecting the uptake of evidence-based interventions within diverse settings. 2 Incorporating context-specific information on the delivery and implementation of programs can increase the likelihood of success. 3 , 4 Case study methodology is particularly well suited for implementation research in health services because it can provide insight into the nuances of diverse contexts. 5 , 6 In 1999, Yin 7 published a paper on how to enhance the quality of case study in HSR, which was foundational for the emergence of case study in this field. Yin 7 maintains case study is an appropriate methodology in HSR because health systems are constantly evolving, and the multiple affiliations and diverse motivations are difficult to track and understand with traditional linear methodologies.

Despite its increased popularity, there is debate whether a case study is a methodology (ie, a principle or process that guides research) or a method (ie, a tool to answer research questions). Some criticize case study for its high level of flexibility, perceiving it as less rigorous, and maintain that it generates inadequate results. 8 Others have noted issues with quality and consistency in how case studies are conducted and reported. 9 Reporting is often varied and inconsistent, using a mix of approaches such as case reports, case findings, and/or case study. Authors sometimes use incongruent methods of data collection and analysis or use the case study as a default when other methodologies do not fit. 9 , 10 Despite these criticisms, case study methodology is becoming more common as a viable approach for HSR. 11 An abundance of articles and textbooks are available to guide researchers through case study research, including field-specific resources for business, 12 , 13 nursing, 14 and family medicine. 15 However, there remains confusion and a lack of clarity on the key tenets of case study methodology.

Several common philosophical underpinnings have contributed to the development of case study research 1 which has led to different approaches to planning, data collection, and analysis. This presents challenges in assessing quality and rigour for researchers conducting case studies and stakeholders reading results.

This article discusses the various approaches and philosophical underpinnings to case study methodology. Our goal is to explain it in a way that provides guidance for decision-makers, policy-makers, and health leaders on how to understand, critically appraise, and engage in case study research and design, as such guidance is largely absent in the literature. This article is by no means exhaustive or authoritative. Instead, we aim to provide guidance and encourage dialogue around case study methodology, facilitating critical thinking around the variety of approaches and ways quality and rigour can be bolstered for its use within HSR.

Purpose of case study methodology

Case study methodology is often used to develop an in-depth, holistic understanding of a specific phenomenon within a specified context. 11 It focuses on studying one or multiple cases over time and uses an in-depth analysis of multiple information sources. 16 , 17 It is ideal for situations including, but not limited to, exploring under-researched and real-life phenomena, 18 especially when the contexts are complex and the researcher has little control over the phenomena. 19 , 20 Case studies can be useful when researchers want to understand how interventions are implemented in different contexts, and how context shapes the phenomenon of interest.

In addition to demonstrating coherency with the type of questions case study is suited to answer, there are four key tenets to case study methodologies: (1) be transparent in the paradigmatic and theoretical perspectives influencing study design; (2) clearly define the case and phenomenon of interest; (3) clearly define and justify the type of case study design; and (4) use multiple data collection sources and analysis methods to present the findings in ways that are consistent with the methodology and the study’s paradigmatic base. 9 , 16 The goal is to appropriately match the methods to empirical questions and issues and not to universally advocate any single approach for all problems. 21

Approaches to case study methodology

Three authors propose distinct foundational approaches to case study methodology positioned within different paradigms: Yin, 19 , 22 Stake, 5 , 23 and Merriam 24 , 25 ( Table 1 ). Yin is strongly post-positivist whereas Stake and Merriam are grounded in a constructivist paradigm. Researchers should locate their research within a paradigm that explains the philosophies guiding their research 26 and adhere to the underlying paradigmatic assumptions and key tenets of the appropriate author’s methodology. This will enhance the consistency and coherency of the methods and findings. However, researchers often do not report their paradigmatic position, nor do they adhere to one approach. 9 Although deliberately blending methodologies may be defensible and methodologically appropriate, more often it is done in an ad hoc and haphazard way, without consideration for limitations.

Cross-analysis of three case study approaches, adapted from Yazan 2015

The post-positive paradigm postulates there is one reality that can be objectively described and understood by “bracketing” oneself from the research to remove prejudice or bias. 27 Yin focuses on general explanation and prediction, emphasizing the formulation of propositions, akin to hypothesis testing. This approach is best suited for structured and objective data collection 9 , 11 and is often used for mixed-method studies.

Constructivism assumes that the phenomenon of interest is constructed and influenced by local contexts, including the interaction between researchers, individuals, and their environment. 27 It acknowledges multiple interpretations of reality 24 constructed within the context by the researcher and participants which are unlikely to be replicated, should either change. 5 , 20 Stake and Merriam’s constructivist approaches emphasize a story-like rendering of a problem and an iterative process of constructing the case study. 7 This stance values researcher reflexivity and transparency, 28 acknowledging how researchers’ experiences and disciplinary lenses influence their assumptions and beliefs about the nature of the phenomenon and development of the findings.

Defining a case

A key tenet of case study methodology often underemphasized in literature is the importance of defining the case and phenomenon. Researches should clearly describe the case with sufficient detail to allow readers to fully understand the setting and context and determine applicability. Trying to answer a question that is too broad often leads to an unclear definition of the case and phenomenon. 20 Cases should therefore be bound by time and place to ensure rigor and feasibility. 6

Yin 22 defines a case as “a contemporary phenomenon within its real-life context,” (p13) which may contain a single unit of analysis, including individuals, programs, corporations, or clinics 29 (holistic), or be broken into sub-units of analysis, such as projects, meetings, roles, or locations within the case (embedded). 30 Merriam 24 and Stake 5 similarly define a case as a single unit studied within a bounded system. Stake 5 , 23 suggests bounding cases by contexts and experiences where the phenomenon of interest can be a program, process, or experience. However, the line between the case and phenomenon can become muddy. For guidance, Stake 5 , 23 describes the case as the noun or entity and the phenomenon of interest as the verb, functioning, or activity of the case.

Designing the case study approach

Yin’s approach to a case study is rooted in a formal proposition or theory which guides the case and is used to test the outcome. 1 Stake 5 advocates for a flexible design and explicitly states that data collection and analysis may commence at any point. Merriam’s 24 approach blends both Yin and Stake’s, allowing the necessary flexibility in data collection and analysis to meet the needs.

Yin 30 proposed three types of case study approaches—descriptive, explanatory, and exploratory. Each can be designed around single or multiple cases, creating six basic case study methodologies. Descriptive studies provide a rich description of the phenomenon within its context, which can be helpful in developing theories. To test a theory or determine cause and effect relationships, researchers can use an explanatory design. An exploratory model is typically used in the pilot-test phase to develop propositions (eg, Sibbald et al. 31 used this approach to explore interprofessional network complexity). Despite having distinct characteristics, the boundaries between case study types are flexible with significant overlap. 30 Each has five key components: (1) research question; (2) proposition; (3) unit of analysis; (4) logical linking that connects the theory with proposition; and (5) criteria for analyzing findings.

Contrary to Yin, Stake 5 believes the research process cannot be planned in its entirety because research evolves as it is performed. Consequently, researchers can adjust the design of their methods even after data collection has begun. Stake 5 classifies case studies into three categories: intrinsic, instrumental, and collective/multiple. Intrinsic case studies focus on gaining a better understanding of the case. These are often undertaken when the researcher has an interest in a specific case. Instrumental case study is used when the case itself is not of the utmost importance, and the issue or phenomenon (ie, the research question) being explored becomes the focus instead (eg, Paciocco 32 used an instrumental case study to evaluate the implementation of a chronic disease management program). 5 Collective designs are rooted in an instrumental case study and include multiple cases to gain an in-depth understanding of the complexity and particularity of a phenomenon across diverse contexts. 5 , 23 In collective designs, studying similarities and differences between the cases allows the phenomenon to be understood more intimately (for examples of this in the field, see van Zelm et al. 33 and Burrows et al. 34 In addition, Sibbald et al. 35 present an example where a cross-case analysis method is used to compare instrumental cases).

Merriam’s approach is flexible (similar to Stake) as well as stepwise and linear (similar to Yin). She advocates for conducting a literature review before designing the study to better understand the theoretical underpinnings. 24 , 25 Unlike Stake or Yin, Merriam proposes a step-by-step guide for researchers to design a case study. These steps include performing a literature review, creating a theoretical framework, identifying the problem, creating and refining the research question(s), and selecting a study sample that fits the question(s). 24 , 25 , 36

Data collection and analysis

Using multiple data collection methods is a key characteristic of all case study methodology; it enhances the credibility of the findings by allowing different facets and views of the phenomenon to be explored. 23 Common methods include interviews, focus groups, observation, and document analysis. 5 , 37 By seeking patterns within and across data sources, a thick description of the case can be generated to support a greater understanding and interpretation of the whole phenomenon. 5 , 17 , 20 , 23 This technique is called triangulation and is used to explore cases with greater accuracy. 5 Although Stake 5 maintains case study is most often used in qualitative research, Yin 17 supports a mix of both quantitative and qualitative methods to triangulate data. This deliberate convergence of data sources (or mixed methods) allows researchers to find greater depth in their analysis and develop converging lines of inquiry. For example, case studies evaluating interventions commonly use qualitative interviews to describe the implementation process, barriers, and facilitators paired with a quantitative survey of comparative outcomes and effectiveness. 33 , 38 , 39

Yin 30 describes analysis as dependent on the chosen approach, whether it be (1) deductive and rely on theoretical propositions; (2) inductive and analyze data from the “ground up”; (3) organized to create a case description; or (4) used to examine plausible rival explanations. According to Yin’s 40 approach to descriptive case studies, carefully considering theory development is an important part of study design. “Theory” refers to field-relevant propositions, commonly agreed upon assumptions, or fully developed theories. 40 Stake 5 advocates for using the researcher’s intuition and impression to guide analysis through a categorical aggregation and direct interpretation. Merriam 24 uses six different methods to guide the “process of making meaning” (p178) : (1) ethnographic analysis; (2) narrative analysis; (3) phenomenological analysis; (4) constant comparative method; (5) content analysis; and (6) analytic induction.

Drawing upon a theoretical or conceptual framework to inform analysis improves the quality of case study and avoids the risk of description without meaning. 18 Using Stake’s 5 approach, researchers rely on protocols and previous knowledge to help make sense of new ideas; theory can guide the research and assist researchers in understanding how new information fits into existing knowledge.

Practical applications of case study research

Columbia University has recently demonstrated how case studies can help train future health leaders. 41 Case studies encompass components of systems thinking—considering connections and interactions between components of a system, alongside the implications and consequences of those relationships—to equip health leaders with tools to tackle global health issues. 41 Greenwood 42 evaluated Indigenous peoples’ relationship with the healthcare system in British Columbia and used a case study to challenge and educate health leaders across the country to enhance culturally sensitive health service environments.

An important but often omitted step in case study research is an assessment of quality and rigour. We recommend using a framework or set of criteria to assess the rigour of the qualitative research. Suitable resources include Caelli et al., 43 Houghten et al., 44 Ravenek and Rudman, 45 and Tracy. 46

New directions in case study

Although “pragmatic” case studies (ie, utilizing practical and applicable methods) have existed within psychotherapy for some time, 47 , 48 only recently has the applicability of pragmatism as an underlying paradigmatic perspective been considered in HSR. 49 This is marked by uptake of pragmatism in Randomized Control Trials, recognizing that “gold standard” testing conditions do not reflect the reality of clinical settings 50 , 51 nor do a handful of epistemologically guided methodologies suit every research inquiry.

Pragmatism positions the research question as the basis for methodological choices, rather than a theory or epistemology, allowing researchers to pursue the most practical approach to understanding a problem or discovering an actionable solution. 52 Mixed methods are commonly used to create a deeper understanding of the case through converging qualitative and quantitative data. 52 Pragmatic case study is suited to HSR because its flexibility throughout the research process accommodates complexity, ever-changing systems, and disruptions to research plans. 49 , 50 Much like case study, pragmatism has been criticized for its flexibility and use when other approaches are seemingly ill-fit. 53 , 54 Similarly, authors argue that this results from a lack of investigation and proper application rather than a reflection of validity, legitimizing the need for more exploration and conversation among researchers and practitioners. 55

Although occasionally misunderstood as a less rigourous research methodology, 8 case study research is highly flexible and allows for contextual nuances. 5 , 6 Its use is valuable when the researcher desires a thorough understanding of a phenomenon or case bound by context. 11 If needed, multiple similar cases can be studied simultaneously, or one case within another. 16 , 17 There are currently three main approaches to case study, 5 , 17 , 24 each with their own definitions of a case, ontological and epistemological paradigms, methodologies, and data collection and analysis procedures. 37

Individuals’ experiences within health systems are influenced heavily by contextual factors, participant experience, and intricate relationships between different organizations and actors. 55 Case study research is well suited for HSR because it can track and examine these complex relationships and systems as they evolve over time. 6 , 7 It is important that researchers and health leaders using this methodology understand its key tenets and how to conduct a proper case study. Although there are many examples of case study in action, they are often under-reported and, when reported, not rigorously conducted. 9 Thus, decision-makers and health leaders should use these examples with caution. The proper reporting of case studies is necessary to bolster their credibility in HSR literature and provide readers sufficient information to critically assess the methodology. We also call on health leaders who frequently use case studies 56 – 58 to report them in the primary research literature.

The purpose of this article is to advocate for the continued and advanced use of case study in HSR and to provide literature-based guidance for decision-makers, policy-makers, and health leaders on how to engage in, read, and interpret findings from case study research. As health systems progress and evolve, the application of case study research will continue to increase as researchers and health leaders aim to capture the inherent complexities, nuances, and contextual factors. 7

An external file that holds a picture, illustration, etc.
Object name is 10.1177_08404704211028857-img1.jpg

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 27 April 2024

Spatial non-parametric Bayesian clustered coefficients

  • Wala Draidi Areed 1 ,
  • Aiden Price 1 ,
  • Helen Thompson 1 ,
  • Reid Malseed 2 &
  • Kerrie Mengersen 1  

Scientific Reports volume  14 , Article number:  9677 ( 2024 ) Cite this article

Metrics details

  • Health care
  • Mathematics and computing

In the field of population health research, understanding the similarities between geographical areas and quantifying their shared effects on health outcomes is crucial. In this paper, we synthesise a number of existing methods to create a new approach that specifically addresses this goal. The approach is called a Bayesian spatial Dirichlet process clustered heterogeneous regression model. This non-parametric framework allows for inference on the number of clusters and the clustering configurations, while simultaneously estimating the parameters for each cluster. We demonstrate the efficacy of the proposed algorithm using simulated data and further apply it to analyse influential factors affecting children’s health development domains in Queensland. The study provides valuable insights into the contributions of regional similarities in education and demographics to health outcomes, aiding targeted interventions and policy design.

Introduction

Spatial data analysis in public health often involves statistical models for areal data, which aggregate health outcomes over administrative units like states, counties, or zip codes 1 . Statistical models for areal data typically aim to provide estimates of geospatial outcomes of interest, find boundaries between abrupt changes in spatial patterns, describe smoothly varying spatial trends, identify and characterise spatial clusters, and so on. These models have been extensively employed in various fields, including geography, econometrics, ecology, epidemiology and public health.

When spatial dependence is present in the data, traditional statistical models that assume independent observations are inadequate and can produce biased estimates of outcomes of interest. This necessitates the use of alternative spatial models that incorporate this dependence 2 . There is a very wide range of spatial models tailored to the inferential aim, the nature of the spatial dependence, and the type of data.

Recent advancements in methods for spatial boundary detection have focused on model-based approaches which focus on probabilistic uncertainty quantification 3 , 4 . An exemplar paper is by Lee 5 , who employs stochastic models for adjacency matrices in order to identify edges between regions with significant differences in health outcomes. Elaborations of this method have included control for multiple comparisons 6 and Bayesian hierarchical approaches 7 . Other approaches in boundary detection include integrated stochastic processes 8 , stochastic edge mixed-effects models 9 , and methods for estimating adjacencies in areal modelling contexts 10 , 11 . This modelling introduces spatial dependence using stochastic models on graphs, where nodes represent regions, and edges connect neighbouring regions 12 . Other methods include Markov random fields using undirected graphs 13 , 14 or directed acyclic graphical autoregression (DAGAR) models 15 .

The most common regression methods for geographically referenced data are spatial linear regression 16 and spatial generalized linear regression 17 . However, these models assume that the coefficients of the explanatory variables are constant across space, which can be overly restrictive for large regions where the regression coefficients may vary spatially. Many methods include longitude and latitude coordinates as location variables, while others account for spatial variability in the model by including an additive spatial random effect for each location. This technique has been applied to linear models by Cressie 16 , and generalized linear models by Diggle 17 .

Numerous methods have been developed to identify and describe smoothly varying patterns of regression coefficients, such as Gelfand’s 18 spatially varying coefficient processes (SVCM ) and the spatial expansion methods proposed by Casetti 19 . In a follow-up paper, Casetti and Jones 20 treat the regression coefficients that vary spatially as a function of expansion variables.

An alternative popular method for capturing smoothly varying spatial patterns is through geographically weighted regression (GWR) 21 . The GWR fits a local weighted regression model at the location of each observation and captures spatial information by accounting for nearby observations, using a weight matrix defined by a kernel function 21 . This approach has been extended in a variety of ways, for example to a Cox survival model for spatially dependent survival data to explore how geographic factors impact time-to-event outcomes 22 . Unlike SVCM, GWR does not assume a specific functional form for the relationship between covariates and the response variable. This flexibility is advantageous when dealing with complex spatial data where relationships may vary across space 23 . The GWR can also be computationally more efficient, especially for large datasets, and the results from GWR are often more interpretable as they provide localized parameter estimates for each spatial location 23 . This allows for a deeper understanding of how relationships between variables vary across space, which may be more intuitive for practitioners and policymakers.

The traditional GWR models are typically fit using a frequentist framework. A critical limitation of this approach is the violation of the usual assumption of non-constant variation between observations, and the resultant normality assumption for the errors 24 . Additionally, the usual frequentist approach struggles to address issues of model complexity, overfitting, variable selection and multicollinearity 24 . The stability and reliability of frequentist GWR might also yield unstable results or high variance when dealing with small sample sizes 25 .

Bayesian GWR (BGWR) provides an appealing solution to these problems 26 . An exemplar paper is by Gelfand 27 , who built a Bayesian model with spatially varying coefficients by applying a Gaussian process to the distribution of regression coefficients. Lesage 28 suggested an early version of BGWR, where the prior distribution of the parameters depends on expert knowledge. More recently, Ma 29 proposed BGWR based on the weighted log-likelihood and Liu 30 proposed BGWR based on a weighted least-squares approach. Spline approaches have been explored to estimate bivariate regression functions 31 and to accommodate irregular domains with complex boundaries or interior gaps 32 . Other studies, including those by Li et al. 30 and Wang et al. 33 , also address this problem over irregular domains. However, all of these methods have a significant limitation, in that they cannot handle the possibility of a spatially clustered pattern in the regression coefficients. A recent development by Li et al. 34 is the spatially clustered coefficient (SCC) regression, which employs the fused LASSO to automatically detect spatially clustered patterns in the regression coefficients. Ma et al. 35 and Luo et al. 36 have proposed spatially clustered coefficient models using Bayesian approaches. Ma et al. 35 identified coefficient clusters based on the Dirichlet process, whereas Luo et al. 36 used a hierarchical modelling framework with a Bayesian partition prior model from spanning trees of a graph. Sugasawa et al. proposed spatially clustered regression (SCR) 37 . The selection of the appropriate number of clusters is a crucial aspect of clustering analysis. Most traditional methods require the number of clusters to be specified beforehand, which can limit their applicability in practice. This applies for K-means 38 , hierarchical clustering 39 and Gaussian Mixture Models (GMM) 40 . These constraints pose challenges in scenarios where the optimal number of clusters isn’t obvious from the start or varies across datasets, limiting the flexibility and adaptability of these clustering approaches in real-world applications. Dirichlet process mixture models (DPMM) have gained popularity in Bayesian statistics as they allow for an unknown number of clusters, increasing the flexibility of clustering analysis. However the DPMM does not account for the spatial information in the clusters.

In this paper, we synthesise two approaches, namely, a Bayesian GWR and a Bayesian spatial DPMM, to create a new method called the Bayesian spatial Dirichlet process clustered heterogeneous regression model. This method can detect spatially clustered patterns while considering the smoothly varying relationship between the response and the covariates within each group. We used a Bayesian geographically weighted regression algorithm to model the varying coefficients over the geographic regions and incorporated spatial neighbourhood information of regression coefficients. We then combined the regression coefficient and a spatial Dirichlet mixture process to perform the clustering. The approach is demonstrated using simulated data and then applied to a real-world case study on children’s development in Queensland, Australia.

This approach meets the inferential aims of clustering and localised regression, for areal data. The clustering approach is preferred over the boundary detection approach in this context, since abrupt explainable changes in the spatial process are not anticipated and the prioritisation is to identify and profile broadly similar geospatial areas. The proposed use of GWR is also preferred over SCR, since GWR explicitly accounts for spatial variation in relationships between variables by estimating separate regression parameters for different locations, whereas SCR typically assumes spatial homogeneity within clusters and estimates a single set of parameters for each cluster. GWR is therefore capable of capturing fine-scale spatial variation, as it estimates parameters at the level of individual spatial areal units, whereas SCR aggregates data into clusters, potentially smoothing out fine-scale variation and overlooking localized patterns.

The strength of the proposed clustering method lies in several key features that set it apart from traditional clustering algorithms. Unlike K-Means and hierarchical clustering, which lack uncertainty measures, the proposed method provides clusters with associated uncertainty measures, enhancing interpretability and making them more valuable for decision-making and analysis. Additionally, the proposed method incorporates spatial neighbourhood information. This ensures that the resulting clusters not only reflect data similarity but also account for spatial heterogeneity. Furthermore, this Bayesian framework allows for better handling of outliers and uncertainties in the data by incorporating prior information. This adaptability is particularly beneficial in scenarios where data quality varies or is incomplete. The paper proceeds as follows: In Sect. " Results ", we present the results obtained from applying the proposed algorithm to both simulated and real case studies. Following this, Sect. " Methods " provides a detailed explanation of the proposed algorithm. Section " Discussion " includes the discussion for the results and its limitation. In Sect. " Bayesian estimation and inference ", we delve into the sampling procedure utilized in the proposed algorithms, along with an analysis of cluster accuracy. Finally, Sect. " Conclusion " concludes the paper by summarizing the findings.

The proposed method, described in detail in the " Methods " section below, is evaluated through a simulation study and applied to a real-world case study. These applications demonstrate the effectiveness of the approach in simultaneously estimating and clustering spatially varying regression coefficients, with associated measures of uncertainty.

Simulation study

The simulation was structured based on the Georgia dataset with 159 regions introduced by Ma 35 , where spatial sampling locations represented geographical positions for data collection. Specifically, we used centroids of geographical areas as the sampling locations.

For the simulation, six covariates ( \(X_1\) to \(X_6\) ) were introduced as independent variables, each representing distinct features or characteristics at each sampling location. To incorporate spatial autocorrelation, we generated the covariates using multivariate normal distributions with spatial weight matrices derived from the distance matrix and parameter bandwidth.

The response variable ( Y ) in the simulation was generated using the GWR model 21 :

It is noteworthy that the true parameters ( \(\beta _1\) to \(\beta _6\) ) of the GWR model varied spatially, implying that they differed across sampling locations based on the spatial weight matrices. This spatial variation allowed us to capture spatially dependent effects in the simulation 37 . We generate simulated spatial data with six covariates using the following steps. First, we generate 159 spatial locations, denoted as \( s_1, \ldots , s_n \) , based on the centroids of geographic areas. The locations are determined based on specific conditions related to the x and y coordinates of the centroids. Next, six covariates, \( x_1(s_i), x_2(s_i), \ldots , x_6(s_i) \) , are generated for each spatial location \( s_i \) . These covariates are derived from a spatial Gaussian process with mean zero and a covariance matrix defined by an exponential function \( w_{ij} = \exp \left( -\frac{{\Vert s_i - s_j \Vert }}{{\phi }} \right) \) , where \( \phi \) is the bandwidth parameter with \( \phi = 0.9 \) . This parameter influences the strength of spatial correlation in the covariates. Finally, the response at each location, \( y(s_i) \) , is generated according to a spatially varying linear model. This model includes the coefficients \( \beta _1(s_i), \beta _2(s_i), \ldots , \beta _6(s_i) \) corresponding to the six covariates \( x_1(s_i), x_2(s_i), \ldots , x_6(s_i) \) , respectively. The error terms \( \epsilon (s_i) \) are mutually independent.

To create distinct spatial patterns in the data, we visually partitioned the counties of Georgia into three large regions based on the spatial coordinates of centroids, defining true clustering settings. This approach enabled us to incorporate spatial autocorrelation, spatial variability, and true clustering effects in the simulated data. Figure 1 visualizes partition of the counties into three large regions with sizes, 51, 49 and 59 areas.

figure 1

Regional cluster assignment for Georgia counties used for simulation study.

The code for the proposed algorithm can be found in the first author’s GitHub https://github.com/waladraidi/Spatial-stick-breaking-BGWR .

The simulation was repeated 100 times. Figure 2 illustrates the spatial distribution of the posterior mean parameter coefficients for each location over the 100 replicates. This figure showcases the diverse spatial patterns and disparities in these parameter coefficients across the study area, providing insights into the geographical variation.

figure 2

The spatial distribution of the posterior mean for the parameters obtained from the proposed model.

The performance of these posterior estimates was evaluated by mean absolute bias (MAB), mean standard deviation (MSD), mean of mean squared error (MMSE), as follows:

where \(\bar{\hat{\beta }}_{s, k}\) , is the average parameter estimate and has been calculated by the average of \(\hat{\beta }_{s,k}\) ( \(s = 1, \ldots , 159; \quad k = 1, \ldots , 6\) ) in 100 simulations, and \(\hat{\beta }_{s, k, r}\) denotes the posterior estimate for the k -th coefficient of county s in the r -th replicate. In each replicate, the MCMC chain length is set to be 10,000, and the first 2000 samples are discarded as burn-in. Therefore, we have 8000 samples for posterior inference. Table 1 reports the the three performance measures in Eqs. ( 2 )–( 4 ) for the simulated data. The parameter estimates are very close to the true underlying values and have a small MAB, MSD, and MMSE.

Three distinct clusters were found within the 159 regions. The spatial layout of these clusters is visualized in Fig. 3 , where two cluster configurations are described in the later section on cluster configurations. Notably, when examining Fig. 3 , it is clear that the cluster assignments derived from Dahl’s and mode allocation approaches (see " Methods " section below) exhibit a high degree of similarity. The corresponding parameter estimates are shown in Table 2 .

figure 3

(LHS) Cluster assignment for Georgia counties using Dahl’s method from the proposed algorithm. (RHS) The cluster assignment obtained from the proposed algorithm using the mode method.

Since the kernel type, bandwidth prior and the number of knots play a crucial role in the spatial stick-breaking construction of the the proposed mode for the DPMM, the priors and kernel functions from Table 8 (" Methods " section) were utilised to test the accuracy of the proposed model. We explored different options to determine the optimal fit for the data using the Watanabe-Akaike onformation criterion (WAIC) 39 , and we performed a sensitivity analysis on the proposed model with respect to number of knots. The results are summarized in Table 3 .

According to the Table 3 , the optimal number of knots for the simulated data as 9, as evidenced by the lowest WAIC value. In Table 4 , we present a sensitivity analysis for our proposed algorithm, discussing its performance under various bandwidth priors and kernel functions. This table categorizes the results under two primary kernel types: uniform and squared exponential.

For each kernel type, two bandwidth priors were evaluated. Based on the WAIC values, the squared exponential kernel with a bandwidth prior of \(\varepsilon _{1i}, \varepsilon _{2i} \equiv \frac{\lambda ^2}{2}\) emerged as the most effective. Importantly, our algorithm not only demonstrated the stability of clusters when compared to two established methods but also managed to accurately assign clusters with an accuracy of 0.87. In the simulated dataset, our method effectively identified three distinct clusters.

Real data analysis

Children’s Health Queensland (CHQ) has developed the CHQ Population Health Dashboard, a remarkable resource providing data on health outcomes and socio-demographic factors for a one-year period (2018-2019) across 528 small areas (Statistical area level 2 (SA2) in Queensland, Australia. The dashboard presents over 40 variables in a user-friendly format, with a focus on health outcomes, particularly vulnerability indicators measuring children’s developmental vulnerability across five Australian Early Development Census (AEDC) domains. These domains include physical health, social competence, emotional maturity, language and cognitive skills, and communication skills with general knowledge.

The AEDC also includes two additional domain indicators: vulnerable on one or more domains (Vuln 1) and vulnerable on two or more domains (Vuln 2). Socio-demographic factors, including Socio-Economic Indexes for Areas (SEIFA) score, preschool attendance, and remoteness factors are also incorporated, offering insights into potential links to health outcomes. The SEIFA score summarizes socio-economic conditions in an area, while remoteness factors categorize regions into cities, regional, and remote areas.

In the field of population health, publicly available data are often grouped according to geographical regions, such as the statistical areas (SA) defined in the Australian Statistical Geography Standard (ASGS). These areas, called SA1, SA2, SA3, and SA4, range respectively from the smallest to the largest defined geographical regions. Due to privacy and confidentiality concerns, personal-level information is typically not released. Therefore, in this paper, we focus on group-level data, and in the case study, we use data that have been aggregated at the SA2 level 41 .

Data for the analysis are sourced from the 2018 AEDC, and focus on the proportion of vulnerable children in each SA2. Some missing data is handled through imputation using neighboring SA2s, with two islands having no contiguous neighbors excluded from the analysis. The study utilises the remaining data from 526 SA2 areas to conduct the analysis.

Our study uses the proposed methodology to analyse the influential factors affecting the development of children who are vulnerable in one or more domains (Vuln 1) in the Queensland SA2 regions. Data were found on the Australian Bureau of Statistics (ABS) official website and the AEDC. For each SA2 region, we considered several dependent variables, including the proportion of attendance at preschool, the remoteness factor which is converted using the one hot coding to three variables including zero and one and the index of relative socio-economic disadvantage (IRSD) factor which is considered continuous in this case study. Before fitting the model, we scaled the variables using the logarithm. As a result, all the models are fitted without an intercept term. In our Bayesian Geographically Weighted Regression (GWR) analysis, we illustrate substantively important regions by plotting the 95% credible intervals for each coefficient. With (BGWR), a separate parameter estimate is indeed generated for each region. This means that the credible intervals obtained are specific to each region and its corresponding parameter. Therefore, the 95% credible interval associated with each region reflects the uncertainty in the parameter estimate for that particular geographical area. This is illustrated in the Fig. 4 , where the blue line represents the mean.

figure 4

95% posterior credible interval form the proposed algorithm.

Spatial cluster inferences

Figure 5 offers a geographical representation of five posterior mean parameters plotted on a map of Queensland. These values have been obtained through the proposed method, revealing that the relationship between the response variable (Vuln 1) and the covariates varies across different locations.

figure 5

The spatial distribution of the posterior mean parameters derived from the proposed model.

To find the suitable structure of spatial weighs kernel for SDPMM for the case study, we used the WAIC. The WAIC values of the uniform and exponentially weighted kernels associated with different bandwidth priors can be found in Table 5 . Comparison of the WAIC value leads to the conclusion that the exponential kernel is the most suitable for the real dataset. Additionally, Table 6 shows that as the complexity of the model (in terms of the number of knots) increases, the fit of the model to the data (WAIC) also improves. However, since the total number of SA2 is just 526, in this case study we assumed the number of knots to be 9.

Figure 6 showed the cluster distribution on the map obtained from the proposed algorithm with 6 clusters using Dahl’s method. The cluster sizes are 124, 103, 90, 101 , 101 and 7. The strength of the proposed algorithm lies in its capability to create smaller cluster sizes compared to other cluster algorithms. This is beneficial for policy interventions targeting specific regions in Queensland, especially for identifying regions with high developmental vulnerabilities. Further, we provide a summary (Table 7 ) for each of these clusters according to the parameter estimation and 95% highest posterior density (HPD) interval.

Cluster 1 (124 out of 526) stands out due to its negative effect on the regression parameters for “Attendance at Preschool” with a narrow credible interval. The positive effects for the three levels of “Remoteness” are reliable, with the broadest uncertainty observed for the “Cities” parameters in comparison with the rest of the clusters. There’s also some uncertainty in the “IRSD” parameters, which exhibit a negative effect, although they remain influential. Cluster 2 (103 out of 526) is characterized by a significant negative effect for “Attendance at Preschool” with a narrowest credible interval across the six clusters, indicating a strong impact and high confidence. Additionally, There are more positive effects for the “Cities”, “Regional” and “Remote” parameters compared to Cluster 1, there is a more negative relationship for “IRSD” parameters compared to Cluster 1. Cluster 3 (90 out of 526) also exhibits a significant negative effect for “Attendance at Preschool” parameters but with a broader credible interval, indicating a strong impact with more uncertainty. The positive effects for “Remoteness” parameters are still significant and confident, with the broadest uncertainty for the “Regional” parameters across the six clusters, “IRSD” exhibits the most negative parameters in this cluster in comparison with the rest. Cluster 4 (101 out of 526) maintains a significant negative effect for “Attendance at Preschool” with a narrow credible interval, with a positive effects for “Remoteness” parameters. In this cluster “IRSD” has a positive effect with a narrow credible interval in comparison with clusters 1, 2 and 3. Cluster 5 (101 out of 526) has a negative effect for “Attendance at Preschool” and a narrow credible interval. Similar to Cluster 4, the positive effects for “Remoteness”. But in this cluster “IRSD” has more positive effect in comparison with cluster 4. Cluster 6 (7 out of 526) stands out with it negative effect for “Attendance at Preschool” even though it has a wider credible interval. The positive effects for “Remoteness” are similar to the previous clusters, with the narrowest credible intervals for the “Cities, Regional, and Remote” parameters, also the “IRSD” has a negative effect with a narrow credible interval.

These clusters are distinguished primarily by the magnitude and certainty of the effect of “Attendance at Preschool” and the reliability of the “Remoteness” and “IRSD”. Cluster 1, 4,5, and 6 share a strong negative impact of “Attendance at Preschool” with narrow credible intervals. Cluster 2 , with a broader credible interval, indicates more uncertainty in the impact of “Attendance at Preschool”. Cluster 3, despite having a wider credible interval for “Attendance at Preschool” still shows a significant negative effect. Additionally, the “IRSD” exhibits variations across clusters, adding another layer of distinction.

figure 6

Cluster distribution from the proposed algorithm for the case study.

In this paper, we introduce a new statistical framework aimed at addressing the challenges in clustering posed by spatially varying relationships within regression analysis. Specifically, we present a Bayesian model that integrates geographically weighted regression with a spatial Dirichlet process to cluster relevant model parameters. This solution therefore not only identifies clusters of the model parameters but effectively captures the inherent heterogeneity present in spatial data. Our exploration encompasses various weighting schemes designed to effectively model the complex spatial interaction between neighborhood characteristics and the positioning of key points (or “knots”). This modelling is supported by a discussion of Bayesian model selection criteria, a crucial step in the analysis process that ensures selection of an appropriate and well-fitted model. Spatial variation in the effects of covariates empowers our model to provide a better fit to spatial data compared to conventional models, offering insights into the complex patterns of heterogeneity across diverse geographical locations. Additionally, making smaller group sizes helps decision-makers identify which regions need more help. To demonstrate the efficacy of our methodology, we have presented a simulation study. Moreover, we have extended our investigation to a real-world application: a thorough analysis of the factors influencing children’s development indicators in Queensland. Through this practical example, we showcase the benefits of our proposed approach, emphasizing its ability to find hidden dynamics that might otherwise remain obscured.

In our case study, we aimed to explore the influential factors affecting child development vulnerability in Queensland’s statistical area level 2 (SA2) regions. Our analysis utilised a dataset consisting of 526 observations, each corresponding to one of Queensland’s SA2 regions. The dataset included various explanatory variables, including preschool attendance, remoteness factors, and socio-economic factors. The primary objective was to identify spatial clusters of children’s vulnerability and gain insights into the regional disparities in children’s development domains. To select the appropriate spatial weights kernel for our model, we employed WAIC and found the uniform kernel, suggesting that it provides a better fit for our real dataset. Furthermore, we performed a sensitivity analysis to determine the optimal number of knots in the spatial stick-breaking process and found increasing the complexity of the model by adding more knots improved its fit to the data. We selected 9 knots as the optimal number for our analysis. Using the selected model with an exponential kernel and 10 knots, we applied the proposed algorithm to identify spatial clusters of child vulnerability. Our analysis revealed a total of 6 clusters across Queensland’s SA2 regions. These clusters vary in size, with the largest containing 124 regions and the smallest comprising only 7 regions. The ability of the proposed algorithm to create smaller cluster sizes is noteworthy, as it allows for more targeted policy interventions in regions with specific developmental needs. Moreover, we conducted a detailed analysis of the clusters to understand their characteristics and implications. For instance, the presence of smaller clusters may indicate isolated areas with unique developmental challenges that require tailored interventions. In contrast, larger clusters could represent regions with similar vulnerabilities, suggesting the need for broader policy strategies. These findings offer valuable insights for policymakers and stakeholders interested in addressing child development disparities in Queensland.

Both the Bayesian Geographically Weighted Regression (GWR) and the Bayesian Spatially Varying Coefficient Model (Bayesian SVCM) offer powerful tools for understanding spatially varying relationships within data. Comparing and contrasting these two approaches can help in justifying the consideration of Bayesian GWR.

Firstly, both Bayesian GWR and Bayesian SVCM operate within a Bayesian framework, allowing for the incorporation of prior knowledge and uncertainty into the modelling process. However, they differ in their approaches to capturing spatial variation. Bayesian GWR explicitly models spatial heterogeneity by allowing regression coefficients to vary across space, making it well-suited for exploring localized relationships between variables. On the other hand, Bayesian SVCM focuses on estimating spatially varying coefficients for a global regression model, which may overlook finer-scale variations present in the data.

Furthermore, it is important to note that coefficients obtained from these methods may differ. Bayesian GWR produces coefficients that are specific to each geographic location, reflecting the spatially varying nature of relationships within the data. In contrast, Bayesian SVCM estimates coefficients that represent spatially varying effects within the context of a global model. These differences in coefficient estimation highlight the distinct strengths and interpretation nuances of each approach, the Bayesian GWR approach can complement existing non-Bayesian techniques such as the Spatial Clustered Regression (SCR) proposed by Sugasawa and Murakami 37 While SCR provides an alternative for capturing spatial clustering effects, it may lack the flexibility to adequately model spatially varying relationships. Bayesian GWR, with its emphasis on local estimation, can offer additional insights into how relationships between variables change across different geographic areas .

Bayesian SVCM and our method have their computational challenges. Our proposed algorithm is not computationally intensive, in comparison with other clustering Bayesian methods. The time to run the simulated data was around 25 minutes, while for the real data set it took around 2:23 hours using the high performance computer (HPC).

While our paper represents a step forward in the field of spatial regression, it is essential to acknowledge the avenues for further exploration that our research did not study. For instance, while we thoroughly examined the full model that incorporates all relevant covariates, we did not delve into methodologies for variable selection within the context of clustered regression. This presents a clear direction for future research, where approaches for selecting the most influential variables among a clustered regression could enhance the performance of our model even further. Additionally, our work touched upon the utilisation of the spatial Dirichlet process mixture model (SDPMM) to derive cluster information for regression coefficients. However, we acknowledge that the posterior distribution of the cluster count might not always be accurately estimated through the SDPMM, as demonstrated by Miller and Harrison 42 . Our simulation studies confirm this observation. This area emerges as a critical focus for future studies. Another area for future work involves expanding our methodology to accommodate non-Gaussian data distributions, a direction that holds promise for a wider range of applications. Moreover, the pursuit of adapting our model to handle multivariate response scenarios represents an essential avenue for future exploration, offering the potential to unlock insights and applications across various domains. Lastly, extend the proposed algorithm to a semi-parametric GWR scenario where certain exploratory variables remain fixed while others vary spatially 43 . Further, GWR allows regression coefficients to vary by location; it typically assumes a linear relationship between all predictor variables and the response within each location. However, in some real-world scenarios, not all predictor variables may exhibit linear relationships with the response variable. Some variables might have non-linear patterns or lack a certain discernible pattern altogether. These features could be included in the linear model through polynomials, splines, interactions, and so on, and alternative non-parametric regression models could be developed. It would be interesting to extend the proposed algorithm to allow for more flexibility in modeling complex relationships between predictor variables and the response 44 .

This section outlines the proposed model called the spatial Dirichlet process clustered heterogeneous regression model. The model utilises a non-parametric spatial Dirichlet mixture model applied to the regression coefficients of the geographically weighted regression model. The model is cast in a Bayesian framework.

Bayesian geographical weighted regression

The Bayesian geographically weighted regression (BGWR) model can be described as follows. Given diagonal weight matrix \( W(s) \) for a location s , the likelihood for each \( y(s) \) is:

where \( y(s) \) is the \(i\) th observation of the dependent variable, \( x(s) \) is the \(i\) th row (or observation) from the design matrix \( X \) and \( W_i(s) \) is the \(i\) th diagonal element from the spatial weight matrix \( W(s) \) . The weighted matrix W ( s ) is constructed to identify the relative influence of neighbouring regions on the parameter estimates at locations.

When working with areal data, the graph distance is an alternative distance metric that can be used. It is based on the concept of a graph, where \(V=\{v_1,...,v_m\}\) represents the set of nodes (locations) and \(E(G)=\{e_1,...,e_n\}\) represents the set of edges connecting these nodes. The graph distance is defined as the distance between any two nodes in the graph 35 .

where | V ( e )| is the number of edges in e 45 . The graph distance-based weighted function is given as:

where \(d_i(s)^ b\) is the graph distance between locations i and s , f is a weighting function, and b represents the bandwidth. In this study, we suppose that f () is a negative exponential function 29 , so,

where b represents the bandwidth that controls the decay with respect to distance 46 . Here, \(d_i(s)\) indicates that an observation far away from the location of interest contributes little to the estimate of parameters at that location. In this paper, we used the graph distance and the greater circle distances 47 and both of these methods show consistent parameters. The proposed model is constructed in a Bayesian framework with conjugate priors on the regression parameters and other model terms. The full model is given in the (Full Bayesian spatial Dirichlet process mixture prior cluster heterogeneous regression) section.

Heterogeneous regression with spatial Dirichlet process mixture prior

In a Bayesian framework, coefficient clustering can be achieved by using a Dirichlet process mixture model (DPMM). This approach links the response variable to the covariates through cluster membership. The DPMM is defined by a probability measure G that follows a Dirichlet process, denoted as \(G \sim (\alpha , G_0)\) , where \(\alpha \) is the concentration parameter and \(G_0\) is the base distribution 35 . Hence,

where \((A_1,...,A_k)\) is a finite measurable partition of the space \(\Omega \) , and the variable k represents the number of components or clusters in a (DPMM). Several formulas have been proposed in the literature for specifying the DPMM’s parameters and incorporating spatial dependencies 48 , 49 . A popular approach is the spatial stick-breaking algorithm 50 , 51 , which in a BGWR setup is applied at each location as follows:

where \(\delta (\theta _i)\) is the Dirac distribution with a point mass at ( \(\theta _i)\) , and \(p_i (s)\) is a random probability weight between 0 and 1. The distribution of G ( s ) depends on \(V_i\) and \(\theta _i\) ; the distribution varies according to the kernel function \(l_i(s)\) . However, the spatial distributions of the kernel function \(l_i(s)\) vary, constrained within the interval [0, 1]. These functions are centered at knots \(\psi _i=(\psi _{1i}, \psi _{2i})\) , and the degree of spread is determined by the bandwidth parameter \(\epsilon _i=(\epsilon _{1i}, \epsilon _{2i})\) . Both the knots and bandwidths are treated as unknown parameters with independent prior distributions, unrelated to \(V_i\) and \(\theta _i\) . The knots \(\psi _i\) are assigned independent uniform priors, covering the bounded spatial domain. The bandwidths can be modelled to be uniform for all kernel functions or can vary across kernel functions, following specified prior distributions 50 , 52 . The most common kernels are the uniform and the square exponential functions. This kernel can take different formats. Table 8 provides examples of the most popular kernels used for the spatial stick-breaking configuration.

A vector of latent allocation variables Z is generated to characterize the clustering explicitly. Let \(Z_{n,k}=\{z_1.,...,z_n\}\) , where \(z_i \in \{1,...,k\}\) and \(1\le i \le n\) represents all possible clustering of n observations into K clusters.

Full Bayesian spatial dirichlet process mixture prior cluster heterogeneous regression

Adapting the spatial Dirichlet process to the heterogeneous regression model, we focus on clustering of spatial coefficients \(\beta (s_1),...,\beta (s_n)\) and \(\beta (s_i)=\beta _{{z_i}} \in \{\beta _1,...,\beta _k\}\) . The full model is described as follows with the most commonly adopted priors:

Here, the response variable \(Y\) is assumed to follow a Gaussian distribution; the design matrix representing the predictors is denoted by X , and the spatial weight matrix W ( s ) depends on two key aspects: the distance between observations, represented as \(d_i\) , and a parameter \(b\) , which controls the bandwidth. This bandwidth is assumed to follow a uniform distribution between 0 and a certain value \(D\) , which represents the bandwidth parameter. A common prior for the bandwidth is given by: b-Uniform(0,D), where D > 0. Without any prior knowledge, D can be selected to be large enough that we begin to approximate with a non-informative prior; i.e. we begin with an approximate global model in which all observations are weighted equally. We used a bandwidth parameter D set to 100. The maximum great circle distance in the spatial structure of the 159 regions is 10, so using a bandwidth of 100 induces a weighting scheme that ensures relative weights are assigned appropriately. If the distance between two regions is considerable, the relative weight is approximately exp(-10/100) = 0.904. This approximation thus allows the model to behave similarly to a global model where every observation is equally weighted, ensuring a sufficiently non-informative prior bandwidth b. please see the method section. f is the graph weighting function. The regression coefficients \(\beta _{z_i}\) are associated with a specific group, or cluster, \(z_i\) , for a particular observation. The mean and spread of cluster \(z_i\) are denoted as \(\mu \) and \(\Sigma _{z_i}\) , respectively, and the maximum number of possible clusters is \(K\) .

The hyper-parameter \(m_k\) is a prior mean value for the \(\mu _{z_i}\) and \(\Sigma _k\) is a way to express how different a cluster can be. Similarly, \(D_k\) is the scale matrix, and \(c_k >p-1\) is the degrees of freedom. Another important aspect is the variation in the data, which is \(\sigma ^2(s)\) . This variation changes across locations and follows a specific prior pattern, which is assumed to be an inverse Gamma distribution with parameters \(\alpha _1\) and \(\alpha _2\) .

we focus on the probability \(P(z_i = k)\) that observation \(i\) belongs to cluster \(k\) . This assignment probability at a specific location \(s\) is denoted as \(p_k(s)\) . For the clusters, we also consider “stick-breaking weights”, denoted by \(V_k(s)\) , which change across locations. The values \(a_v\) and \(b_v\) are related to how these weights are determined using a beta distribution. Here \(\sum _{j=1}^{k} p_k (s) = 1\) almost surely under the constraint that \(V_k (s) = 1\) for all locations s 53 .

Bayesian estimation and inference

This section covers using MCMC to obtain samples from posterior distributions of model parameters. It explains the sampling scheme, covers the use of posterior inference for cluster assignments, and methods for evaluating accuracy.

The MCMC sampling schemes

The main R function for the model is implemented using the nimble package 54 . This function encapsulates the model and provides an interface for executing the MCMC sampling scheme, performing posterior inference, and evaluating estimation performance and clustering accuracy. The model itself is wrapped within a nimbleCode function, which allows the nimble package to generate and compile C++ code to execute the MCMC sampling scheme efficiently. This can result in substantial speed improvements over pure R implementations, especially for models with large datasets or complex parameter space. In the context of the proposed algorithm, the nimble package provides several MCMC sampling methods, including the popular Gibbs and Metropolis-Hasting algorithms for inferring the posterior distribution of the regression and other model parameters. Nimble also allows for the specification of priors and likelihood functions for the parameters to customise the MCMC sampling process. In our study, the Gibbs sampling algorithm was used to obtain the clusters of the parameters.

Block Gibbs sampling is a MCMC technique used for sampling from the joint distribution of multiple random variables. The primary idea behind block sampling is to group related variables together into “blocks” and sample them jointly, which can improve the efficiency and convergence of the sampling process 55 . An explanation of this sampling algorithm for the proposed algorithm can be found in the Appendix .

Cluster configurations

Two methods are used to determine cluster configurations. In the first, the estimated parameters, together with the cluster assignments \(Z_{n,k}\) are determined for each replicate from the best post-burn-in iteration selected using Dahl’s method 56 , which involves estimating the clustering of observations through a least-squares model-based approach that draws from the posterior distribution. In this method, membership matrices for each iteration, denoted as \(B^{(1)}, \ldots , B^{(M)}\) , with \(M\) being the number of post-burn-in MCMC iterations, are computed. The membership matrix for the \(c\) -th iteration, \(B^{(c)}\) is defined as:

where \(\textbf{1}(\cdot )\) represents the indicator function. The entries \(B^{(c)}(i, j)\) take values in \(\{0, 1\}\) for all \(i, j = 1, \ldots , n\) and \(c = 1, \ldots , M\) . When \(B^{(c)}(i, j) = 1\) , it indicates that observations i , and j belong to the same cluster in the c th iteration.

To obtain an empirical estimate of the probability for locations i and j being in the same cluster, the average of \(B^{(1)}, \ldots , B^{(M)}\) can be calculated as:

where \(\sum \) denotes the element-wise summation of matrices. The ( i ,  j )th entry of \(\overline{B}\) provides this empirical estimate.

Subsequently, the iteration that exhibits the least squared distance to \(\overline{B}\) is determined as:

where \(B^{(c)}(i, j)\) represents the ( i ,  j )th entry of B ( c ), and \(\overline{B}(i, j)\) denotes the ( i ,  j )th entry of \(\overline{B}\) . The least-squares clustering offers an advantage in that it leverages information from all clusterings through the empirical pairwise probability matrix \(\overline{B}\) .

The second method utilised here is the posterior mode method. This method leverages posterior samples from iterations associated with \(z_i\) , where z denotes the cluster assignments specific to each region. Each iteration generates a new set of cluster assignments z , which are dependent on the parameters. Consequently, following multiple iterations, each region will have an empirical posterior distribution of cluster assignments z . The mode indicates the cluster with the highest probability of assignment for a given region.

Cluster accuracy

In order to assess the accuracy of the proposed algorithm, we compared the cluster configurations with the true labels provided for the simulated data. It is important to note that while the true labels are available for the simulated data, such information is not readily available for real-world datasets. In practice, true labels are often unknown, which poses a challenge for the evaluation of clustering accuracy. In this study, we utilised the Rand index (RI) 57 . This index measures the level of similarities between two sets of cluster assignments, labelled as \(C\) and \(C'\) , with respect to a given dataset \(X = \{x_1, x_2, \ldots , x_n\}\) . Each data point \(x(s)\) is assigned a cluster label \(c_i\) in \(C\) and \(c'_i\) in \(C'\) . The RI is computed using the following formula:

Hhere \(a\) , represents the number of pairs of data points that are in the same cluster in both \(C\) and \(C'\) (true positives); \(b\) indicates the number of pairs of data points that are in different clusters in both \(C\) and \(C'\) (true negatives); \(c\) represents the number of pairs of data points that are in the same cluster in \(C\) but in different clusters in \(C'\) (false positives); and \(d\) stands for the number of pairs of data points that are in different clusters \(C\) but in the same cluster in \(C'\) (false negatives).

The Rand index ranges from 0 to 1, with a value of 1 denoting a complete concordance between the two clusterings (both C and \(C'\) perfectly agree on all pairs of data points). Conversely, a value close to 0 indicates a weak level of agreement between the two clusterings.

This paper introduces a method called the spatial Dirichlet process clustered heterogeneous regression model. The method employs a non-parametric Bayesian clustering approach to group the spatially varying regression parameters of a Bayesian geographically weighted regression, and also determines the best number and arrangement of clusters. The model uses advanced Bayesian techniques to cluster the parameters and determine the best number and arrangement of clusters. The model’s abilities were demonstrated using simulated data and then applied to actual data related to children’s development vulnerabilities in their first year of school. In this application, the model successfully identified key factors. This approach enhances our understanding of how children develop in various regions, revealing the factors that impact their health and well-being. With these insights, policymakers can create targeted policies that are suited to each area’s unique characteristics. As a result, this innovative method not only improves the suite of analytical tools but also contributes to the broader goal of enhancing the health and development prospects of children in different places.

Data availibility

All the datasets used in this article are publicly accessible and free to download. Anyone interested can access them without special privileges. Likewise, the authors did not have any special privileges when accessing the data for analysis in this article. The datasets can be obtained from the following sources: Children’s Health Data is sourced from the Australian Early Development Census, available upon request at https://www.aedc.gov.au/data-explorer/ . The Explanatory Data is obtained from the Australian Bureau of Statistics and is publicly available at https://www.abs.gov.au/census/find-census-data/quickstats/2021/3 .

Lawson, A. B., Banerjee, S., Haining, R. P. & Ugarte, M. D. Handbook of Spatial Epidemiology (CRC Press, 2016).

Book   Google Scholar  

Anselin, L. Spatial dependence and spatial structural instability in applied regression analysis. J. Reg. Sci. 30 , 185–207 (1990).

Article   Google Scholar  

Hanson, T., Banerjee, S., Li, P. & McBean, A. Spatial boundary detection for areal counts. Nonparametric Bayesian Inference Biostat. https://doi.org/10.1007/978-3-319-19518-6_19 (2015).

Ma, H., Carlin, B. P. & Banerjee, S. Hierarchical and joint site-edge methods for medicare hospice service region boundary analysis. Biometrics 66 , 355–364 (2010).

Article   MathSciNet   PubMed   Google Scholar  

Lee, D. & Mitchell, R. Boundary detection in disease mapping studies. Biostatistics 13 , 415–426 (2012).

Article   PubMed   Google Scholar  

Storey, J. D. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 , 479–498 (2002).

Article   MathSciNet   Google Scholar  

Aiello, L. & Banerjee, S. Detecting spatial health disparities using disease maps. Preprint at http://arxiv.org/abs/2309.02086 (2023).

Riley, D. D., Koutsoukos, X. & Riley, K. Simulation of stochastic hybrid systems using probabilistic boundary detection and adaptive time stepping. Simul. Model. Pract. Theory 18 , 1397–1411 (2010).

Gao, H. & Bradley, J. R. Bayesian analysis of areal data with unknown adjacencies using the stochastic edge mixed effects model. Spat. Stat. 31 , 100357 (2019).

Lu, H., Reilly, C. S., Banerjee, S. & Carlin, B. P. Bayesian areal wombling via adjacency modeling. Environ. Ecol. Stat. 14 , 433–452 (2007).

Lu, H. & Carlin, B. P. Bayesian areal wombling for geographical boundary analysis. Geogr. Anal. 37 , 265–285 (2005).

Dale, M. & Fortin, M.-J. From graphs to spatial graphs. Annu. Rev. Ecol. Evolut. Syst. 41 , 21–38 (2010).

Besag, J. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B (Methodol.) 36 , 192–225 (1974).

Rue, H. & Held, L. Gaussian Markov Random Fields: Theory and Applications (CRC Press, 2005).

Datta, A., Banerjee, S., Hodges, J. S. & Gao, L. Spatial disease mapping using directed acyclic graph auto-regressive (Dagar) models. Bayesian Anal. 14 , 1221 (2019).

Article   MathSciNet   PubMed   PubMed Central   Google Scholar  

Cressie, N. Statistics for Spatial Data Vol. 4 (Wiley, Terra Nova, 1992).

Google Scholar  

Diggle, P. J., Tawn, J. A. & Moyeed, R. A. Model-based geostatistics. J. R. Stat. Soc. Ser. C Appl. Stat. 47 , 299–350 (1998).

Gelfand, A. E., Kim, H.-M.J., Sirmans, C. F. & Banerjee, S. Spatial modeling with spatially varying coefficient processes. J. Am. Stat. Assoc. 98 , 387–396 (2003).

Casetti, E. Generating models by the expansion method: Applications to geographical research. Geogr. Anal. 4 , 81–91 (1972).

Casetti, E. & Jones, J. P. Spatial aspects of the productivity slowdown: An analysis of us manufacturing data. Ann. Assoc. Am. Geogr. 77 , 76–88 (1987).

Fotheringham, A. S., Charlton, M. E. & Brunsdon, C. Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environ. Plan. A 30 , 1905–1927 (1998).

Xue, Y., Schifano, E. D. & Hu, G. Geographically weighted Cox regression for prostate cancer survival data in Louisiana. Geogr. Anal. 52 , 570–587 (2020).

Finley, A. O. Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence. Methods Ecol. Evolut. 2 , 143–154 (2011).

Chan, H. S. R. Incorporating the Concept of Community into a Spatially-weighted Local Regression Analysis (University of New Brunswick, 2008).

Dormann, F. C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30 , 609–628 (2007).

Article   ADS   Google Scholar  

Sodikin, I., Pramoedyo, H. & Astutik, S. Geographically weighted regression and Bayesian geograpically weighted regression modelling with adaptive Gaussian kernel weight function on the poverty level in West Java province. Int. J. Humanit. Relig. Soc. Sci. 2 , 21–30 (2017).

Gelfand, A. E. & Schliep, E. M. Spatial statistics and Gaussian processes: A beautiful marriage. Spat. Stat. 18 , 86–104 (2016).

LeSage, J. P. A family of geographically weighted regression models. In Advances in Spatial Econometrics (ed. LeSage, J. P.) 241–264 (Springer, 2004).

Chapter   Google Scholar  

Ma, Z., Xue, Y. & Hu, G. Geographically weighted regression analysis for spatial economics data: A Bayesian recourse. Int. Reg. Sci. Rev. 44 , 582–604 (2021).

Liu, Y. & Goudie, R. J. Generalized geographically weighted regression model within a modularized bayesian framework. Preprint at http://arxiv.org/abs/2106.00996 (2021).

Opsomer, J. D., Claeskens, G., Ranalli, M. G., Kauermann, G. & Breidt, F. J. Non-parametric small area estimation using penalized spline regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 , 265–286 (2008).

Wang, H. & Ranalli, M. G. Low-rank smoothing splines on complicated domains. Biometrics 63 , 209–217 (2007).

Wang, L., Wang, G., Lai, M.-J. & Gao, L. Efficient estimation of partially linear models for data on complicated domains by bivariate penalized splines over triangulations. Stat. Sin. 30 , 347–369 (2020).

MathSciNet   Google Scholar  

Li, X., Wang, L., Wang, H. J. & Initiative, A. D. N. Sparse learning and structure identification for ultrahigh-dimensional image-on-scalar regression. J. Am. Stat. Assoc. 116 , 1994–2008 (2021).

Article   MathSciNet   CAS   Google Scholar  

Ma, Z., Xue, Y. & Hu, G. Heterogeneous regression models for clusters of spatial dependent data. Spat. Econ. Anal. 15 , 459–475 (2020).

Luo, Z. T., Sang, H. & Mallick, B. A Bayesian contiguous partitioning method for learning clustered latent variables. J. Mach. Learn. Res. 22 , 1748–1799 (2021).

Sugasawa, S. & Murakami, D. Adaptively robust geographically weighted regression. Spat. Stat. 48 , 100623 (2022).

Liu, F. & Deng, Y. Determine the number of unknown targets in open world based on elbow method. IEEE Trans. Fuzzy Syst. 29 , 986–995 (2020).

Watanabe, S. A widely applicable Bayesian information criterion. J. Mach. Learn. Res. 14 , 867–897 (2013).

Bouguila, N. & Fan, W. Mixture Models and Applications (Springer, 2020).

Buchin, K. et al. Clusters in aggregated health data. In Headway in Spatial Data Handling (eds Buchin, K. et al. ) 77–90 (Springer, 2008).

Miller, J. W. & Harrison, M. T. A simple example of Dirichlet process mixture inconsistency for the number of components. In Advances in Neural Information Processing Systems Vol. 26 (eds Miller, J. W. & Harrison, M. T.) (Neural Information Processing Systems Foundation, Inc, 2013).

Laome, L., Budiantara, I. N. & Ratnasari, V. Estimation curve of mixed spline truncated and Fourier series estimator for geographically weighted nonparametric regression. Mathematics 11 , 152 (2022).

Laome, L., Budiantara, I. N. & Ratnasari, V. Construction of a geographically weighted nonparametric regression model fit test. MethodsX 12 , 102536 (2024).

Article   PubMed   PubMed Central   Google Scholar  

Gao, X., Xiao, B., Tao, D. & Li, X. A survey of graph edit distance. Pattern Anal. Appl. 13 , 113–129 (2010).

Cho, S.-H., Lambert, D. M. & Chen, Z. Geographically weighted regression bandwidth selection and spatial autocorrelation: An empirical example using Chinese agriculture data. Appl. Econ. Lett. 17 , 767–772 (2010).

Bullock, R. Great circle distances and bearings between two locations. MDT 5 , 1–3 (2007).

Quintana, F. A., Müller, P., Jara, A. & MacEachern, S. N. The dependent Dirichlet process and related models. Stat. Sci. 37 , 24–41 (2022).

Yamato, H. Dirichlet process, Ewens sampling formula, and Chinese restaurant process. In Statistics Based on Dirichlet Processes and Related Topics (ed. Yamato, H.) 7–28 (Springer, 2020).

Reich, B. J. & Fuentes, M. A multivariate semiparametric Bayesian spatial modeling framework for hurricane surface wind fields. Ann. Appl. Stat. 1 , 249–264 (2007).

Sethuraman, J. A constructive definition of Dirichlet priors. Stat. Sin. 4 , 639–650 (1994).

Hosseinpouri, M. & Khaledi, M. J. An area-specific stick breaking process for spatial data. Stat. Pap. 60 , 199–221 (2019).

Ishwaran, H. & James, L. F. Gibbs sampling methods for stick-breaking priors. J. Am. Stat. Assoc. 96 , 161–173 (2001).

de Valpine, P. et al. Programming with models: Writing statistical algorithms for general model structures with nimble. J. Comput. Graph. Stat. 26 , 403–413 (2017).

Yu, G., Huang, R. & Wang, Z. Document clustering via Dirichlet process mixture model with feature selection. In Proc. of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining , 763–772 (2010).

Dahl, D. B. Model-based clustering for expression data via a Dirichlet process mixture model. Bayesian Inference Gene Expr. Proteomics 4 , 201–218 (2006).

Rand, W. M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66 , 846–850 (1971).

Download references

Acknowledgements

We would like to express our gratitude to the team at Children’s Health Queensland and the Centre for Data Science for their invaluable assistance and support in this project.

Author information

Authors and affiliations.

School of Mathematical Science, Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia

Wala Draidi Areed, Aiden Price, Helen Thompson & Kerrie Mengersen

Children’s Health Queensland, Brisbane, QLD, Australia

Reid Malseed

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization: Wala Draidi Areed, Aiden Price, Helen Thompson, Kerrie Mengersen. Data curation: Wala Draidi Areed, Aiden Price, Reid Malseed, Kerrie Mengersen. Formal analysis: Wala Draidi Areed. Investigation: Wala Draidi Areed. Methodology: Wala Draidi Areed, Kerrie Mengersen. Software: Wala Draidi Areed. Supervision: Aiden Price, Helen Thompson, Reid Malseed, Kerrie Mengersen. Validation: Wala Draidi Areed. Visualization: Wala Draidi Areed. Writing – original draft: Wala Draidi Areed. Writing - review and editing: Wala Draidi Areed, Aiden Price, Helen Thompson, Reid Malseed, Kerrie Mengersen.

Corresponding author

Correspondence to Wala Draidi Areed .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary information., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Areed, W.D., Price, A., Thompson, H. et al. Spatial non-parametric Bayesian clustered coefficients. Sci Rep 14 , 9677 (2024). https://doi.org/10.1038/s41598-024-59973-w

Download citation

Received : 21 November 2023

Accepted : 17 April 2024

Published : 27 April 2024

DOI : https://doi.org/10.1038/s41598-024-59973-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

data analysis techniques case study

The independent source for health policy research, polling, and news.

A New Use for Wegovy Opens the Door to Medicare Coverage for Millions of People with Obesity

Juliette Cubanski , Tricia Neuman , Nolan Sroczynski , and Anthony Damico Published: Apr 24, 2024

The FDA recently approved a new use for Wegovy (semaglutide), the blockbuster anti-obesity drug, to reduce the risk of heart attacks and stroke in people with cardiovascular disease who are overweight or obese. Wegovy belongs to a class of medications called GLP-1 (glucagon-like peptide-1) agonists that were initially approved to treat type 2 diabetes but are also highly effective anti-obesity drugs. The new FDA-approved indication for Wegovy paves the way for Medicare coverage of this drug and broader coverage by other insurers. Medicare is currently prohibited by law from covering Wegovy and other medications when used specifically for obesity. However, semaglutide is covered by Medicare as a treatment for diabetes, branded as Ozempic.

What does the FDA’s decision mean for Medicare coverage of Wegovy?

The FDA’s decision opens the door to Medicare coverage of Wegovy, which was first approved by the FDA as an anti-obesity medication. Soon after the FDA’s approval of the new use for Wegovy, the Centers for Medicare & Medicaid Services (CMS) issued a memo indicating that Medicare Part D plans can add Wegovy to their formularies now that it has a medically-accepted indication that is not specifically excluded from Medicare coverage . Because Wegovy is a self-administered injectable drug, coverage will be provided under Part D , Medicare’s outpatient drug benefit offered by private stand-alone drug plans and Medicare Advantage plans, not Part B, which covers physician-administered drugs.

How many Medicare beneficiaries could be eligible for coverage of Wegovy for its new use?

Figure 1: An Estimated 1 in 4 Medicare Beneficiaries With Obesity or Overweight Could Be Eligible for Medicare Part D Coverage of Wegovy to Reduce the Risk of Serious Heart Problems

Of these 3.6 million beneficiaries, 1.9 million also had diabetes (other than Type 1) and may already have been eligible for Medicare coverage of GLP-1s as diabetes treatments prior to the FDA’s approval of the new use of Wegovy.

Not all people who are eligible based on the new indication are likely to take Wegovy, however. Some might be dissuaded by the potential side effects and adverse reactions . Out-of-pocket costs could also be a barrier. Based on the list price of $1,300 per month (not including rebates or other discounts negotiated by pharmacy benefit managers), Wegovy could be covered as a specialty tier drug, where Part D plans are allowed to charge coinsurance of 25% to 33%. Because coinsurance amounts are pegged to the list price, Medicare beneficiaries required to pay coinsurance could face monthly costs of $325 to $430 before they reach the new cap on annual out-of-pocket drug spending established by the Inflation Reduction Act – around $3,300 in 2024, based on brand drugs only, and $2,000 in 2025. But even paying $2,000 out of pocket would still be beyond the reach of many people with Medicare who live on modest incomes . Ultimately, how much beneficiaries pay out of pocket will depend on Part D plan coverage and formulary tier placement of Wegovy.

Further, some people may have difficulty accessing Wegovy if Part D plans apply prior authorization and step therapy tools to manage costs and ensure appropriate use. These factors could have a dampening effect on use by Medicare beneficiaries, even among the target population.

When will Medicare Part D plans begin covering Wegovy?

Some Part D plans have already announced that they will begin covering Wegovy this year, although it is not yet clear how widespread coverage will be in 2024. While Medicare drug plans can add new drugs to their formularies during the year to reflect new approvals and expanded indications, plans are not required to cover every new drug that comes to market. Part D plans are required to cover at least two drugs in each category or class and all or substantially all drugs in six protected classes . However, facing a relatively high price and potentially large patient population for Wegovy, many Part D plans might be reluctant to expand coverage now, since they can’t adjust their premiums mid-year to account for higher costs associated with use of this drug. So, broader coverage in 2025 could be more likely.

How might expanded coverage of Wegovy affect Medicare spending?

The impact on Medicare spending associated with expanded coverage of Wegovy will depend in part on how many Part D plans add coverage for it and the extent to which plans apply restrictions on use like prior authorization; how many people who qualify to take the drug use it; and negotiated prices paid by plans. For example, if plans receive a 50% rebate on the list price of $1,300 per month (or $15,600 per year), that could mean annual net costs per person around $7,800. If 10% of the target population (an estimated 360,000 people) uses Wegovy for a full year, that would amount to additional net Medicare Part D spending of $2.8 billion for one year for this one drug alone.

It’s possible that Medicare could select semaglutide for drug price negotiation as early as 2025, based on the earliest FDA approval of Ozempic in late 2017 . For small-molecule drugs like semaglutide, at least seven years must have passed from its FDA approval date to be eligible for selection, and for drugs with multiple FDA approvals, CMS will use the earliest approval date to make this determination. If semaglutide is selected for negotiation next year, a negotiated price would be available beginning in 2027. This could help to lower Medicare and out-of-pocket spending on semaglutide products, including Wegovy as well as Ozempic and Rybelsus, the oral formulation approved for type 2 diabetes. As of 2022, gross Medicare spending on Ozempic alone placed it sixth among the 10 top-selling drugs in Medicare Part D, with annual gross spending of $4.6 billion, based on KFF analysis . This estimate does not include rebates, which Medicare’s actuaries estimated to be  31.5% overall in 2022  but could be as high as  69%  for Ozempic, according to one estimate.

What does this mean for Medicare coverage of anti-obesity drugs?

For now, use of GLP-1s specifically for obesity continues to be excluded from Medicare coverage by law. But the FDA’s decision signals a turning point for broader Medicare coverage of GLP-1s since Wegovy can now be used to reduce the risk of heart attack and stroke by people with cardiovascular disease and obesity or overweight, and not only as an anti-obesity drug. And more pathways to Medicare coverage could open up if these drugs gain FDA approval for other uses . For example, Eli Lilly has just reported clinical trial results showing the benefits of its GLP-1, Zepbound (tirzepatide), in reducing the occurrence of sleep apnea events among people with obesity or overweight. Lilly reportedly plans to seek FDA approval for this use and if approved, the drug would be the first pharmaceutical treatment on the market for sleep apnea.

If more Medicare beneficiaries with obesity or overweight gain access to GLP-1s based on other approved uses for these medications, that could reduce the cost of proposed legislation to lift the statutory prohibition on Medicare coverage of anti-obesity drugs. This is because the Congressional Budget Office (CBO), Congress’s official scorekeeper for proposed legislation, would incorporate the cost of coverage for these other uses into its baseline estimates for Medicare spending, which means that the incremental cost of changing the law to allow Medicare coverage for anti-obesity drugs would be lower than it would be without FDA’s approval of these drugs for other uses. Ultimately how widely Medicare Part D coverage of GLP-1s expands could have far-reaching effects on people with obesity and on Medicare spending.

  • Medicare Part D
  • Chronic Diseases
  • Heart Disease
  • Medicare Advantage

news release

  • An Estimated 1 in 4 Medicare Beneficiaries With Obesity or Overweight Could Be Eligible for Medicare Coverage of Wegovy, an Anti-Obesity Drug, to Reduce Heart Risk

Also of Interest

  • An Overview of the Medicare Part D Prescription Drug Benefit
  • FAQs about the Inflation Reduction Act’s Medicare Drug Price Negotiation Program
  • What Could New Anti-Obesity Drugs Mean for Medicare?
  • Medicare Spending on Ozempic and Other GLP-1s Is Skyrocketing

IMAGES

  1. How To Do Case Study Analysis?

    data analysis techniques case study

  2. 5 Steps of the Data Analysis Process

    data analysis techniques case study

  3. How to Customize a Case Study Infographic With Animated Data

    data analysis techniques case study

  4. CHOOSING A QUALITATIVE DATA ANALYSIS (QDA) PLAN

    data analysis techniques case study

  5. Top 4 Data Analysis Techniques

    data analysis techniques case study

  6. 10 KEY TYPES OF DATA ANALYSIS METHODS AND TECHNIQUES

    data analysis techniques case study

VIDEO

  1. Analysis of Data? Some Examples to Explore

  2. Part 9:Data Analysis Techniques:How to present and interpret your result as a data analyst/scientist

  3. Data Analysis Skills: What, Why and How

  4. Data Analysis Techniques| Basic Data Analysis Techniques| Analysis Techniques #database #sql #dbwala

  5. Advanced-Data Analysis and Visualization of Wholesale Price Index (WPI) with Python

  6. Part 8: Data Analysis Techniques: Knowing the right visualization to run as a data analyst

COMMENTS

  1. Data Analysis Techniques for Case Studies

    Qualitative analysis involves examining the non-numerical data from your case study, such as interviews, observations, documents, and images. You can use qualitative analysis to explore the ...

  2. Case Study

    The data collection method should be selected based on the research questions and the nature of the case study phenomenon. Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions ...

  3. Case Study Methodology of Qualitative Research: Key Attributes and

    In a case study research, multiple methods of data collection are used, as it involves an in-depth study of a phenomenon. It must be noted, as highlighted by Yin ... (2001, p. 220) posits that the 'unit of analysis' in a case study research can be an individual, a family, a household, a community, an organisation, an event or even a decision.

  4. 10 Real World Data Science Case Studies Projects with Example

    A case study in data science is an in-depth analysis of a real-world problem using data-driven approaches. It involves collecting, cleaning, and analyzing data to extract insights and solve challenges, offering practical insights into how data science techniques can address complex issues across various industries.

  5. Four Steps to Analyse Data from a Case Study Method

    The strategies to collect data using such techniques are well defined however one of the main issues associated with any research is how to interpret the resulting data (Coffey and Atkinson, 1996). ... the Miles and Huberman (1994) process of analysis of case study data, although quite detailed, may still be insufficient to guide the novice ...

  6. Qualitative case study data analysis: an example from practice

    Data sources: The research example used is a multiple case study that explored the role of the clinical skills laboratory in preparing students for the real world of practice. Data analysis was conducted using a framework guided by the four stages of analysis outlined by Morse ( 1994 ): comprehending, synthesising, theorising and recontextualising.

  7. Case Study Method: A Step-by-Step Guide for Business Researchers

    Case study protocol is a formal document capturing the entire set of procedures involved in the collection of empirical material . It extends direction to researchers for gathering evidences, empirical material analysis, and case study reporting . This section includes a step-by-step guide that is used for the execution of the actual study.

  8. Chapter 5: DATA ANALYSIS AND INTERPRETATION

    5.2 ANALYSIS OF DATA IN FLEXIBLE RESEARCH 5.2.1 Introduction. As case study research is a flexible research method, qualitative data analysis methods are commonly used [176]. The basic objective of the analysis is, as in any other analysis, to derive conclusions from the data, keeping a clear chain of evidence. The chain of evidence means that ...

  9. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  10. Case Study

    Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data. Example: Mixed methods case study. For a case study of a wind farm development in a ...

  11. Data Analysis Case Study: Learn From These Winning Data Projects

    Humana's Automated Data Analysis Case Study. The key thing to note here is that the approach to creating a successful data program varies from industry to industry. Let's start with one to demonstrate the kind of value you can glean from these kinds of success stories. Humana has provided health insurance to Americans for over 50 years.

  12. What Is a Case Study?

    A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are sometimes also used.

  13. PDF A (VERY) BRIEF REFRESHER ON THE CASE STUDY METHOD

    Besides discussing case study design, data collection, and analysis, the refresher addresses several key features of case study research. First, an abbreviated definition of a "case study" will help identify the circumstances when you might choose to use the case study method instead of (or as a complement to) some other research method.

  14. The 7 Most Useful Data Analysis Techniques [2024 Guide]

    Data analysis techniques. Now we're familiar with some of the different types of data, let's focus on the topic at hand: different methods for analyzing data. a. Regression analysis. Regression analysis is used to estimate the relationship between a set of variables.

  15. What is data analysis? Methods, techniques, types & how-to

    9. Integrate technology. There are many ways to analyze data, but one of the most vital aspects of analytical success in a business context is integrating the right decision support software and technology.. Robust analysis platforms will not only allow you to pull critical data from your most valuable sources while working with dynamic KPIs that will offer you actionable insights; it will ...

  16. Data Analytics Case Study Guide 2024

    A data analytics case study comprises essential elements that structure the analytical journey: Problem Context: A case study begins with a defined problem or question. It provides the context for the data analysis, setting the stage for exploration and investigation.. Data Collection and Sources: It involves gathering relevant data from various sources, ensuring data accuracy, completeness ...

  17. What is a Case Study?

    A good research question guides the direction of the study and informs the selection of the case, the methods of collecting data, and the analysis techniques. A well-formulated research question in case study research is typically clear, focused, and complex enough to merit further detailed examination of the relevant case(s). Propositions

  18. PDF Analyzing Case Study Evidence

    For case study analysis, one of the most desirable techniques is to use a pattern-matching logic. Such a logic (Trochim, 1989) compares an empiri-cally based pattern with a predicted one (or with several alternative predic-tions). If the patterns coincide, the results can help a case study to strengthen its internal validity. If the case study ...

  19. What is Data Analysis? An Expert Guide With Examples

    Data analysis is a comprehensive method of inspecting, cleansing, transforming, and modeling data to discover useful information, draw conclusions, and support decision-making. It is a multifaceted process involving various techniques and methodologies to interpret data from various sources in different formats, both structured and unstructured.

  20. Learning to Do Qualitative Data Analysis: A Starting Point

    In this article, we take up this open question as a point of departure and offer thematic analysis, an analytic method commonly used to identify patterns across language-based data (Braun & Clarke, 2006), as a useful starting point for learning about the qualitative analysis process.In doing so, we do not advocate for only learning the nuances of thematic analysis, but rather see it as a ...

  21. Quantitative Data Analysis Methods & Techniques 101

    Quantitative data analysis is one of those things that often strikes fear in students. It's totally understandable - quantitative analysis is a complex topic, full of daunting lingo, like medians, modes, correlation and regression.Suddenly we're all wishing we'd paid a little more attention in math class…. The good news is that while quantitative data analysis is a mammoth topic ...

  22. Qualitative Data Analysis Methods

    Terms Used in Data Analysis by the Six Designs. Each qualitative research approach or design has its own terms for methods of data analysis: Ethnography—uses modified thematic analysis and life histories. Case study—uses description, categorical aggregation, or direct interpretation. Grounded theory—uses open, axial, and selective coding ...

  23. Continuing to enhance the quality of case study methodology in health

    Authors sometimes use incongruent methods of data collection and analysis or use the case study as a default when other methodologies do not fit. 9,10 Despite these criticisms, case study methodology is becoming more common as a viable approach for HSR. 11 An abundance of articles and textbooks are available to guide researchers through case ...

  24. Guidelines for data collection on energy performance of higher

    A case study of a governmental office building used for educational purposes ... the implementation is challenged by the absence of a clear road for data collection as the first step for meaningful data analysis. Therefore, the main objective of this study is to provide simple guidelines for collecting energy performance data and presenting it ...

  25. Leading Quality and Safety on the Frontline

    Citation 32 A case study is a method that investigates a contemporary phenomenon in-depth in a real-world context, and the approach is suitable when seeking to understand a complex social phenomenon. Citation 32 The case for this study is defined as the two perspectives of safety: HSE and QPS in a Norwegian nursing home context, and how they ...

  26. Spatial non-parametric Bayesian clustered coefficients

    Spatial data analysis in public health often involves statistical models for areal data, which aggregate health outcomes over administrative units like states, counties, or zip codes 1.Statistical ...

  27. Food additive emulsifiers and the risk of type 2 diabetes: analysis of

    We found direct associations between the risk of type 2 diabetes and exposures to various food additive emulsifiers widely used in industrial foods, in a large prospective cohort of French adults. Further research is needed to prompt re-evaluation of regulations governing the use of additive emulsifiers in the food industry for better consumer protection.

  28. A New Use for Wegovy Opens the Door to Medicare Coverage for ...

    The FDA recently approved a new use for Wegovy, the blockbuster anti-obesity drug, to reduce the risk of heart attacks and stroke in people with cardiovascular disease who are overweight or obese ...

  29. Full article: A classification framework with multi-level fusion of

    This study proposes a new classification framework with Multi-level Fusion of Object-based analysis and CNN (MFOCNN) to achieves high-accuracy land use classification in mining areas. First, Simple Linear Iterative Cluster (SLIC) is employed to generate image objects, which serve as the basic unit for classification.

  30. Water

    The non-tectonic deformation caused by hydrological loads is an important influencing factor in GNSS vertical displacement. Limited by the temporal and spatial resolution of global models and model errors, the hydrological load results calculated by traditional methods are difficult to meet the high temporal and spatial resolution requirements of small to medium-scale regions. This paper ...