• U.S. Department of Health & Human Services

National Institutes of Health (NIH) - Turning Discovery into Health

  • Virtual Tour
  • Staff Directory
  • En Español

You are here

Science, health, and public trust.

September 8, 2021

Explaining How Research Works

Understanding Research infographic

We’ve heard “follow the science” a lot during the pandemic. But it seems science has taken us on a long and winding road filled with twists and turns, even changing directions at times. That’s led some people to feel they can’t trust science. But when what we know changes, it often means science is working.

Expaling How Research Works Infographic en español

Explaining the scientific process may be one way that science communicators can help maintain public trust in science. Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle.

Questions about how the world works are often investigated on many different levels. For example, scientists can look at the different atoms in a molecule, cells in a tissue, or how different tissues or systems affect each other. Researchers often must choose one or a finite number of ways to investigate a question. It can take many different studies using different approaches to start piecing the whole picture together.

Sometimes it might seem like research results contradict each other. But often, studies are just looking at different aspects of the same problem. Researchers can also investigate a question using different techniques or timeframes. That may lead them to arrive at different conclusions from the same data.

Using the data available at the time of their study, scientists develop different explanations, or models. New information may mean that a novel model needs to be developed to account for it. The models that prevail are those that can withstand the test of time and incorporate new information. Science is a constantly evolving and self-correcting process.

Scientists gain more confidence about a model through the scientific process. They replicate each other’s work. They present at conferences. And papers undergo peer review, in which experts in the field review the work before it can be published in scientific journals. This helps ensure that the study is up to current scientific standards and maintains a level of integrity. Peer reviewers may find problems with the experiments or think different experiments are needed to justify the conclusions. They might even offer new ways to interpret the data.

It’s important for science communicators to consider which stage a study is at in the scientific process when deciding whether to cover it. Some studies are posted on preprint servers for other scientists to start weighing in on and haven’t yet been fully vetted. Results that haven't yet been subjected to scientific scrutiny should be reported on with care and context to avoid confusion or frustration from readers.

We’ve developed a one-page guide, "How Research Works: Understanding the Process of Science" to help communicators put the process of science into perspective. We hope it can serve as a useful resource to help explain why science changes—and why it’s important to expect that change. Please take a look and share your thoughts with us by sending an email to  [email protected].

Below are some additional resources:

  • Discoveries in Basic Science: A Perfectly Imperfect Process
  • When Clinical Research Is in the News
  • What is Basic Science and Why is it Important?
  • ​ What is a Research Organism?
  • What Are Clinical Trials and Studies?
  • Basic Research – Digital Media Kit
  • Decoding Science: How Does Science Know What It Knows? (NAS)
  • Can Science Help People Make Decisions ? (NAS)

Connect with Us

  • More Social Media from NIH

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

why is it important to understand research

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

17k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

2.1 Why Is Research Important?

Learning objectives.

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure 2.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student's acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children's development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

Link to Learning

Watch this video about early childhood program effectiveness to learn how scientists evaluate effectiveness and how best to invest money into programs that are most effective.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine that your sister, Maria, expresses concern about her two-year-old child, Umberto. Umberto does not speak as much or as clearly as the other children in his daycare or others in the family. Umberto's pediatrician undertakes some screening and recommends an evaluation by a speech pathologist, but does not refer Maria to any other specialists. Maria is concerned that Umberto's speech delays are signs of a developmental disorder, but Umberto's pediatrician does not; she sees indications of differences in Umberto's jaw and facial muscles. Hearing this, you do some internet searches, but you are overwhelmed by the breadth of information and the wide array of sources. You see blog posts, top-ten lists, advertisements from healthcare providers, and recommendations from several advocacy organizations. Why are there so many sites? Which are based in research, and which are not?

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

NOTABLE RESEARCHERS

Psychological research has a long history involving important figures from diverse backgrounds. While the introductory chapter discussed several researchers who made significant contributions to the discipline, there are many more individuals who deserve attention in considering how psychology has advanced as a science through their work ( Figure 2.3 ). For instance, Margaret Floy Washburn (1871–1939) was the first woman to earn a PhD in psychology. Her research focused on animal behavior and cognition (Margaret Floy Washburn, PhD, n.d.). Mary Whiton Calkins (1863–1930) was a preeminent first-generation American psychologist who opposed the behaviorist movement, conducted significant research into memory, and established one of the earliest experimental psychology labs in the United States (Mary Whiton Calkins, n.d.).

Francis Sumner (1895–1954) was the first African American to receive a PhD in psychology in 1920. His dissertation focused on issues related to psychoanalysis. Sumner also had research interests in racial bias and educational justice. Sumner was one of the founders of Howard University’s department of psychology, and because of his accomplishments, he is sometimes referred to as the “Father of Black Psychology.” Thirteen years later, Inez Beverly Prosser (1895–1934) became the first African American woman to receive a PhD in psychology. Prosser’s research highlighted issues related to education in segregated versus integrated schools, and ultimately, her work was very influential in the hallmark Brown v. Board of Education Supreme Court ruling that segregation of public schools was unconstitutional (Ethnicity and Health in America Series: Featured Psychologists, n.d.).

Although the establishment of psychology’s scientific roots occurred first in Europe and the United States, it did not take much time until researchers from around the world began to establish their own laboratories and research programs. For example, some of the first experimental psychology laboratories in South America were founded by Horatio Piñero (1869–1919) at two institutions in Buenos Aires, Argentina (Godoy & Brussino, 2010). In India, Gunamudian David Boaz (1908–1965) and Narendra Nath Sen Gupta (1889–1944) established the first independent departments of psychology at the University of Madras and the University of Calcutta, respectively. These developments provided an opportunity for Indian researchers to make important contributions to the field (Gunamudian David Boaz, n.d.; Narendra Nath Sen Gupta, n.d.).

When the American Psychological Association (APA) was first founded in 1892, all of the members were White males (Women and Minorities in Psychology, n.d.). However, by 1905, Mary Whiton Calkins was elected as the first female president of the APA, and by 1946, nearly one-quarter of American psychologists were female. Psychology became a popular degree option for students enrolled in the nation’s historically Black higher education institutions, increasing the number of Black Americans who went on to become psychologists. Given demographic shifts occurring in the United States and increased access to higher educational opportunities among historically underrepresented populations, there is reason to hope that the diversity of the field will increasingly match the larger population, and that the research contributions made by the psychologists of the future will better serve people of all backgrounds (Women and Minorities in Psychology, n.d.).

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested in the real world; in inductive reasoning , real-world observations lead to new ideas ( Figure 2.4 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure 2.5 .

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( Figure 2.6 ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/2-1-why-is-research-important

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Logo for UNT Open Books

1 Chapter 1: The Importance of Research Methods and Becoming an Informed Consumer of Research

Case study : student apprehension regarding research methods.

Research Study

Understanding and Measuring Student Apprehension in Criminal Justice Research Methods Courses 1

Research Question

How do we measure disinterest, relevance argumentation, and math anxiety experienced by students enrolled in research methods courses?

Methodology

It is said that “misery loves company,” so you are not alone in your apprehension and anxiety regarding your research methods course. The problem of student apprehension and anxiety related to taking a research methods course is not new and has been studied for over 25 years. Previously, such apprehension and anxiety appeared to be caused by math anxiety, especially as it applies to statistics. The authors of this article believe that student apprehension goes beyond math anxiety; that math anxiety is too simplistic of an explanation of student fear of research methods courses. Besides math anxiety, the researchers think that apprehension is caused by student indifference to the subject matter and irrelevance of the course because it does not apply to the “real world.” They state that student apprehension in research methods and statistics courses is due to three main factors:

Disinterest (D.);

Relevance Argumentation (RA.), and;

Math Anxiety (MA.).

Taken together, the reconceptualization is known as D.RA.MA., and the combination of these three factors constitutes the D.RA.MA. scale for research methods and statistics courses.

The researchers developed the D.RA.MA. scale by constructing survey questions to measure each factor in the scale (i.e., disinterest, relevance argumentation, and math anxiety). After they developed the survey, they tested it by distributing the survey to three criminal justice classes, totaling 80 students, from a midsized regional comprehensive university in the southern region of the United States. Higher scale scores demonstrate more disinterest, more relevance argumentation, or more math anxiety.

The D.RA.MA. scale consists of 20 survey questions. Ten questions were borrowed from an existing Math Anxiety scale developed by Betz 2 . The researchers then created five items to assess Disinterest and five items intended to measure Relevance Argumentation. The items for the D.RA.MA. scale are illustrated below.

Math Anxiety 3

I usually have been at ease in math classes.

Math does not scare me at all.

I am no good at math.

I don’t think that I could do advanced math.

Generally, I have been secure about attempting math.

For some reason, even though I study, math seems unusually hard for me.

Math has been my worst subject.

My mind goes blank and I am unable to think clearly when working in mathematics.

I think I could handle more difficult math.

I am not the type to do well in mathematics.

Relevance Argumentation 4

I will need research methods for my future work.

I view research methods as a subject that I will rarely use.

Research methods is not really useful for students who intend to work in Criminal Justice.

Knowing research methods will help me earn a living.

Research methods does not reflect the “real world.”

Research Disinterest 5

I am excited about taking research methods.

It would not bother me at all to take more research methods courses.

I expect a research methods class to be boring.

I don’t expect to learn much in research methods.

I really don’t care if I learn anything in research methods, as long as I get the requirement completed.

The Math Anxiety Scale responses for the 80 students ranged from 0 to 30 with a mean of 14, demonstrating a moderate level of math anxiety among the study participants. The responses for Relevance Argumentation ranged from 0 to 12 with a mean of 5.4 while those for Disinterest ranged from 1 to 15 with a mean of 7.0, demonstrating a moderate level of disinterest and relevance argumentation among students regarding research methods. Based on these findings, the study demonstrated that student apprehension regarding research methods courses goes beyond math anxiety and includes two additional factors; disinterest in the subject matter and irrelevance of research methods to the “real world.”

Limitations with the Study Procedure

This research study was designed to develop a broader measure of student apprehension in criminal justice research methods courses. Moving beyond just math anxiety, the researchers accomplished their objective by developing the D.RA.MA. scale; adding disinterest and relevance argumentation to the understanding of student apprehension regarding research methods. As is true for all research, this study is not without limitations. The biggest limitation of this study is the limited sample size. Only 80 students completed the survey. Although this is certainly a good start, similar research (i.e., replication) needs to be completed with larger student samples in different locations throughout the country before the actual quality of the D.RA.MA. scale can be determined.

Impact on Criminal Justice

The D.RA.MA. scale developed in this study identifies disinterest and relevance argumentation, in addition to math anxiety, as part of student apprehension and resistance to research methods. A variety of instructional strategies can be inferred from the D.RA.MA. survey. However, it is important for professors to recognize that no single approach will reduce research methods resistance and apprehension for all students. For example, discussing research methods in a popular culture framework may resonate with students and lead to engaged students who are more interested in the subject matter and identify with the relevance of research methods to criminal justice in general and the future careers of students, in particular. This approach may provide an effective means for combating student disinterest and relevance argumentation in criminal justice research methods courses. At a minimum, it is critical for professors to explain the relevance of research methods to the policies and practices of police, courts, and corrections. Students need to realize that research methods are essential tools for assessing agency policies and practices. Professors will always have D.RA.MA.-plagued students, but recognizing the problem and then developing effective strategies to connect with these students is the challenge all professors face. Experimenting with a multitude of teaching strategies to alleviate the math anxiety, relevance argumentation, and disinterest of criminal justice research methods students will result in more effective teaching and learning.

In This Chapter You Will Learn

What research is and why it is important to be an informed consumer of research

The sources of knowledge development and problems with each

How research methods can dispel myths about crime and the criminal justice system

The steps in the research process

How research has impacted criminal justice operations

Introduction

As noted in the chapter opening case study, it is expected that you have some anxiety and apprehension about taking this criminal justice research methods course. But, you have taken a significant step toward success in this course by opening up your research methods book, so congratulations are in order. You might have opened this book for a number of reasons. Perhaps it is the first day of class and you are ready to get started on the course material. Perhaps you have a quiz or exam soon. Perhaps the book has been gathering dust on your shelf since the first day of class and you are not doing well in your research methods class and are looking for the book to help with course improvement. Perhaps you are taking a research methods class in the future and are seeing if all the chatter among students is true.

No matter how you got here, two things are probably true. First, you are taking this research methods course because it is a requirement for your major. The bottom line is that most of the students who read this text are required to take a research methods course. While you may think studying research methods is irrelevant to your career goals, unnecessary, overly academic, or perhaps even intimidating, you probably must finish this course in order to graduate. Second, you have heard negative comments about this course. The negative comments mention the difficulty of the course and the relevance of the course (e.g., “I am going to be a police officer, so why do I need to take a research methods course?”). If you are like most students we have experienced in our research methods courses in the past, you are not initially interested in this course and are concerned about whether you will do well in it.

If you are concerned about the course, realize that you are not alone because most students are anxious about taking a research methods course. Also realize that your professor is well aware of student anxiety and apprehension regarding research methods. So, relax and do not think about the entire course and the entire book. Take the course content one chapter, one week at a time. One of the advantages of taking a research methods course is that you learn about the process of research methods. Each chapter builds upon the previous chapters, illustrating and discussing more about the research process. This is certainly an advantage, but it is also critical that you understand the initial chapters in this book so you are not confused with the content discussed in later chapters. In addition to anxiety and apprehension over the course material, research methods can be boring if you only read and learn about it with no particular purpose in mind. Although examples are prevalent throughout the book, as you read this material, it is recommended that you think about the relevancy and application of the topics covered in this book to your specific criminal justice interests. As you continue to read the book, think about how you might use the information you are reading in your current position or your intended profession.

The goal of this research methods book is to develop you into an informed consumer of research. Most, if not all, of your fellow classmates will never conduct their own research studies. However, every one of you will be exposed to research findings in your professional and personal lives for the remainder of your lives. You are exposed to research findings in the media (e.g., television, newspapers, and online), in personal interaction with others (e.g., friends and family, doctors, and professors), as well as in class. You should challenge yourself for this semester to keep a journal and document exposure to research in your daily life outside of college whether through the nightly news, newspapers, magazine articles, Internet, personal conversations, or other means. At the end of the semester, you will be amazed at the amount of research you are exposed to in a short period of time. This book is focused on research exposure and assisting you to become an educated consumer of research by providing you the skills necessary to differentiate between good and not so good research. Why should you believe research findings if the study is faulty? Without being an educated consumer of research, you will not be able to differentiate between useful and not useful research. This book is designed to remedy this problem.

This book was written to make your first encounter with research methods relevant and successful while providing you the tools necessary to become an educated consumer of research. Therefore, this book is written with the assumption that students have not had a prior class on research methods. In addition, this book assumes that practical and evaluative knowledge of research methods is more useful than theoretical knowledge of the development of research methods and the relationship between theory and research. Since the focus of this book is on consumerism, not researcher training, practical and evaluative knowledge is more useful than theoretical knowledge.

It is also important to understand that the professors who design academic programs in criminal justice at the associate and bachelor level believe that an understanding of research methods is important for students. That is why, more than likely, this research methods course is a required course in your degree program. These professors understand that a solid understanding of research methods will enrich the qualifications of students for employment and performance in their criminal justice careers.

As previously stated, the basic goal of this book is to make students, as future and possibly even current practitioners in the criminal justice system, better informed and more capable consumers of the results of criminal justice research. This goal is based on the belief that an understanding of research methods allows criminal justice practitioners to be better able to make use of the results of research as it applies to their work-related duties. In fact, thousands of research questions are asked and answered each year in research involving criminal justice and criminological topics. In addition, thousands of articles are published, papers presented at conferences, and reports prepared that provide answers to these questions. The ability to understand research gives practitioners knowledge of the most current information in their respective fields and the ability to use this knowledge to improve the effectiveness of criminal justice agencies.

How Do We Know What We Know? Sources of Knowledge

The reality is the understanding of crime and criminal justice system operations by the public is frequently the product of misguided assumptions, distorted interpretations, outright myths, and hardened ideological positions. 6 This is a bold statement that basically contends that most people’s knowledge of crime and criminal justice is inaccurate. But, how do these inaccuracies occur? Most people have learned what they know about crime and criminal justice system operations through some other means besides scientific research results and findings. Some of that knowledge is based on personal experience and common sense. Much of it is based on the information and images supported by politicians, governmental agencies, and especially the media. This section will discuss the mechanisms used to understand crime and criminal justice operations by the public. It is important to note that although this section will focus on the failings of these knowledge sources, they each can be, and certainly are, accurate at times, and thus are valuable sources of knowledge.

Knowledge from Authority

We gain knowledge from parents, teachers, experts, and others who are in positions of authority in our lives. When we accept something as being correct and true just because someone in a position of authority says it is true, we are using what is referred to as authority knowledge as a means of knowing. Authorities often expend significant time and effort to learn something, and we can benefit from their experience and work.

However, relying on authority as a means of knowing has limitations. It is easy to overestimate the expertise of other people. A person’s expertise is typically limited to a few core areas of significant knowledge; a person is not an expert in all areas. More specifically, criminal justice professors are not experts on all topics related to criminal justice. One professor may be an expert on corrections but know little about policing. If this professor discusses topics in policing in which he is not an expert, we may still assume he is right when he may be wrong. Authority figures may speak on fields they know little about. They can be completely wrong but we may believe them because of their status as an expert. Furthermore, an expert in one area may try to use his authority in an unrelated area. Other times, we have no idea of how the experts arrived at their knowledge. We just know they are experts in the topic area.

As I am writing this, I recall an example of authority knowledge that was wrong during my police academy training in the late 1980s. My academy training was about four years after the U.S. Supreme Court decision in Tennessee v. Garner. 7 In this case, the Court limited the use of deadly force by police to defense of life situations and incidents where the suspect committed a violent offense. Prior to the decision, the police in several states could use deadly force on any fleeing suspect accused of a felony offense. One day, the academy class was practicing mock traffic stops. During one of my mock traffic stops, I received information that the vehicle I stopped was stolen. The driver and passenger exited the vehicle and fled on foot. I did not use deadly force (this was a training exercise so was not real) against the suspects and was chastised by my instructor who insisted that I should have shot the suspects as they were fleeing. Training instructors, just like professors, convey authority knowledge but, in this case, the instructor was wrong. I was not legally authorized to use deadly force in the traffic stop scenario despite the insistence of my instructor to the contrary.

Politicians are sometimes taken as a source of authority knowledge about the law, crime, and criminal justice issues. Since they enact laws that directly impact the operations of the criminal justice system, we may assume they are an authority on crime and criminal justice. More specifically, we may assume that politicians know best about how to reduce crime and increase the effectiveness of the criminal justice system. However, history is rife with laws that sounded good on paper but had no impact on crime. For example, there is little evidence that sex offender registration protects the public from sexual predators or acts as a deterrent to repeat sex offenders even though every state has a law requiring convicted sex offenders to register with local authorities. Perhaps politicians are not the criminal justice experts some perceive them to be.

History is also full of criminal justice authorities that we now see as being misinformed. For example, Cesare Lombroso is the father of the positivist school of criminology. He is most readily recognized for his idea that some individuals are born criminal. He stated that criminals have certain unique biological characteristics, including large protruding jaws, high foreheads, flattened noses, and asymmetrical faces, to name a few. 8 These characteristics were similar to those found in primitive humans. Therefore, Lombroso argued that some individuals were genetic “throwbacks” to a more primitive time and were less evolved than other people and thus, were more likely to be criminals. Lombroso’s research has been discredited because he failed to compare criminals with noncriminals. By studying only criminals, he found characteristics that were common to criminals. However, if Lombroso had studied a group of noncriminals, he would have discovered that these biological characteristics are just as prevalent among noncriminals. This example involves authority knowledge that is supported by research but the research methods used were flawed. The errors of Lombroso seem obvious now, but what do we know today through authority knowledge that is inaccurate or will be proven wrong in the future?

Knowledge from Tradition

In addition to authority knowledge, people often rely on tradition for knowledge. Tradition knowledge relies on the knowledge of the past. Individuals accept something as true because that is the way things have always been so it must be right. A good example of tradition knowledge is preventive/random patrol. Ever since vehicles were brought into the police patrol function, police administrators assumed that having patrol officers drive around randomly in the communities they serve, while they are not answering calls for service, would prevent crime. If you were a patrol officer in the early 1970s and asked your supervisor, “Why do I drive around randomly throughout my assigned area when I am not answering a call for service?” the answer would have been, “That is the way we have always done patrol and random patrol reduces crime through deterrence.” The Kansas City Preventive Patrol Experiment challenged the tradition knowledge that preventive/random patrol reduces crime. The results of the study made it clear that the traditional practice of preventive/random patrol had little to no impact on reducing crime. This allowed police departments to develop other patrol deployment strategies such as directed patrol and “hot spots” policing since preventive patrol was seen as ineffective. The development of effective patrol deployment strategies continues today.

Knowledge from Common Sense

We frequently rely on common sense knowledge for what we know about crime and the criminal justice system because it “just makes sense.” For example, it “just makes sense” that if we send juvenile delinquents on a field trip to prison where they will see first hand the prison environment as well as be yelled at by actual prisoners, they will refrain from future delinquency. That is exactly what the program Scared Straight, originally developed in the 1970s, is designed to do. Scared Straight programs are still in existence today and are even the premise for the television show Beyond Scared Straight on the A&E television network. As originally created, the program was designed to decrease juvenile delinquency by bringing at-risk and delinquent juveniles into prison where they would be “scared straight” by inmates serving life sentences. Participants in the program were talked to and yelled at by the inmates in an effort to scare them. It was believed that the fear felt by the participants would lead to a discontinuation of their delinquent behavior so that they would not end up in prison themselves. This sounds like a good idea. It makes sense, and the program was initially touted as a success due to anecdotal evidence based on a few delinquents who turned their lives around after participation in the program.

However, evaluations of the program and others like it showed that the program was in fact unsuccessful. In the initial evaluation of the Scared Straight program, Finckenauer used a classic experimental design (discussed in Chapter 5), to evaluate the original “Lifer’s Program” at Rahway State Prison in New Jersey where the program was initially developed. 13 Juveniles were randomly assigned to an experimental group that attended the Scared Straight program and a control group that did not participate in the program. Results of the evaluation were not positive. Post-test measures revealed that juveniles who were assigned to the experimental group and participated in the program were actually more seriously delinquent afterwards than those who did not participate in the program. Also using an experimental design with random assignment, Yarborough evaluated the “Juvenile Offenders Learn Truth” (JOLT) program at the State Prison of Southern Michigan at Jackson. 14 This program was similar to that of the “Lifer’s Program,” only with fewer obscenities used by inmates. Post-test measurements were taken at two intervals, three and six months after program completion. Again, results were not positive. Findings revealed no significant differences in delinquency between those juveniles who attended the program and those who did not. Other experiments conducted on Scared Straight- type programs further revealed their inability to deter juveniles from further delinquency. 15 Despite the common sense popularity of these programs, the evaluations showed that Scared Straight programs do not reduce delinquency and, in some instances, may actually increase delinquency. The programs may actually do more harm than good. I guess that begs the question, “Why do we still do these types of programs?”

Scared Straight programs and other widely held common sense beliefs about crime and the criminal justice system are questionable, based on the available research evidence. Common sense is important in our daily lives and is frequently correct, but, at times, it also contains inaccuracies, misinformation, and even prejudice.

CLASSICS IN CJ RESEARCH

Is It Safe to Put Felons on Probation?

Research Study 9

In the mid-1970s, the number of offenders on probation began to significantly increase. By the mid-1980s, probation was the most frequently used sentence in most states and its use was becoming more common for felons, whereas previously, probation was typically limited to misdemeanor crimes and offenses committed by juveniles. Increasing numbers of felony offenders were being placed on probation because judges had no other alternative forms of punishment. Prisons were already operating above capacity due to rising crime rates. Despite the increase in the use of probation in the 1980s, few empirical studies of probation (particularly its use with felony offenders) had been published. In the early 1980s, the Rand Corporation conducted an extensive study of probation to learn more about the offenders sentenced to probation and the effectiveness of probation as a criminal sanction. At the time the study began, over one-third of California’s probation population were convicted felons. 10 This was the first large-scale study of felony probation.

Is it safe to put felons on probation?

Data for the study were obtained from the California Board of Prison Terms (CBPT). The Board had been collecting comprehensive data on all offenders sentenced to prison since 1978 and on a sample of adult males from 17 counties who received probation. From these two data sources, researchers selected a sample of male offenders who had been convicted of the following crimes: robbery, assault, burglary, theft, forgery, and drug offenses. These crimes were selected because an offender could receive either prison or probation if convicted. Approximately 16,500 male felony offenders were included in the study. For each offender, researchers had access to their personal characteristics, information on their crimes, court proceedings, and disposition.

Two main research questions were answered in this study. First, what were the recidivism rates for felony offenders who received probation? When assessing recidivism rates, the study found that the majority of offenders sentenced to probation recidivated during the follow-up period, which averaged 31 months. Overall, 65% of the sample of probationers were re-arrested and 51 % were charged with and convicted of another offense. A total of 18% were convicted of a violent crime.

The second research question asked, what were the characteristics of the probationers who recidivated? Property offenders were more likely to recidivate compared to violent or drug offenders. Researchers also discovered that probationers tended to recidivate by committing the same crime that placed them on probation. Rand researchers included time to recidivism in their analysis and found that property and violent offenders recidivated sooner than drug offenders. The median time to the first filed charge was five months for property offenders and eight months for violent offenders.

The issue of whether or not the findings would generalize to other counties in California and to other states was raised. Data for the study came from probation and prison records from two counties in California. These two counties were not randomly selected, but were chosen because of their large probation populations and the willingness of departments to provide information. Further, the probation departments in these counties had experienced significant budget cuts. Supervision may have become compromised as a result and this could have explained why these counties had high rates of recidivism. Studies of probation recidivism in other states have found recidivism rates to be much lower, suggesting the Rand results may not have applied elsewhere. 11 Several studies examining the effectiveness of probation and the factors correlated with probation outcomes were published after 1985. Much of this research failed to produce results consistent with the Rand study.

The Rand study of felony probation received a considerable amount of attention within the field of corrections. According to one scholar, the study was acclaimed as “the most important criminological research to be reported since World War II.” 12 The National Institute of Justice disseminated the report to criminal justice agencies across the country and even highlighted the study in their monthly newsletter. Today, the study remains one of the most highly cited pieces of corrections research.

According to Rand researchers, these findings raised serious doubts about the effectiveness of probation for felony offenders. Most of the felons sentenced to probation recidivated and researchers were unable to develop an accurate prediction model to improve the courts’ decision-making. The continued use of probation as a sanction for felony offenders appeared to be putting the public at risk. However, without adequate prison space, the courts had no other alternatives besides probation when sentencing offenders.

The researchers made several recommendations to address the limitations of using probation for felony offenders. First, it was recommended that states formally acknowledge that the purpose of probation had changed. Probation was originally used as a means of furthering the goal of rehabilitation in the correctional system. As the United States moved away from that goal in the late 1960s, the expectations of probation changed. Probation was now used as a way to exercise “restrictive supervision” over more serious offenders. Second, probation departments needed to redefine the responsibilities of their probation officers. Probation officers were now expected to be surveillance officers instead of treatment personnel, which required specialized training. In addition, states needed to explore the possibility of broadening the legal authority of its probation officers by allowing them to act as law enforcement officers if necessary. Third, states were advised to adopt a formal client management system that included risk/need assessments of every client. Such a system would help establish uniform, consistent treatment of those on probation and would also help departments allocate their resources efficiently and effectively. Fourth, researchers encouraged states to develop alternative forms of community punishment that offered more public protection than regular probation, which led to the development and use of intensive supervision probation, house arrest, electronic monitoring, day reporting centers, and other intermediate punishments.

Knowledge from Personal Experience

If you personally see something or if it actually happens to you, then you are likely to accept it as true and gain knowledge from the experience. Gaining knowledge through actual experiences is known as personal experience knowledge, and it has a powerful and lasting impact on everyone. Personal experiences are essential building blocks of knowledge and of what we believe to be true. The problem with knowledge gained from personal experiences is that personal experiences can be unique and unreliable, which can distort reality and lead us to believe things that are actually false.

How can events that someone personally experienced be wrong? The events are not wrong. Instead, the knowledge gained from the experience is wrong. For example, the research consistently shows that a person’s demeanor significantly impacts the decision-making of police officers. During a traffic stop, if a person is rude, disrespectful, and uncooperative to the officer, then the driver is more likely to receive a traffic citation than a warning. That is what the research on police discretion shows. However, if a person was rude and uncooperative to a police officer during a traffic stop and was let go without a citation, the person will gain knowledge from this personal experience. The knowledge gained may include that being disrespectful during future traffic stops will get this person out of future tickets. Not likely. The event is not wrong. Instead, the knowledge gained from the experience is wrong because being disrespectful to the police usually leads to more enforcement action taken by the police, not less.

As a student in criminal justice, you have probably experienced something similar in interaction with friends, relatives, and neighbors. Your knowledge of criminal justice that you have developed in your criminal justice classes is trumped by one experience your friend, relative, or neighbor had with the criminal justice system. They believe they are right because they experienced it. However, there are four errors that occur in the knowledge gained from personal experiences: overgeneralization, selective observation, illogical reasoning, and resistance to change.

Overgeneralization happens when people conclude that what they have observed in one or a few cases is true for all cases. For example, you may see that a wealthy businesswomen in your community is acquitted of bribery and may conclude that “wealthy people, especially women, are never convicted in our criminal justice system,” which is an overgeneralization. It is common to draw conclusions about people and society from our personal interactions, but, in reality, our experiences are limited because we interact with just a small percentage of people in society.

The same is true for practitioners in the criminal justice system. Practitioners have a tendency to believe that because something was done a particular way in their agency, it is done that way in all agencies. That may not be true. Although there are certainly operational similarities across criminal justice agencies, there are also nuances that exist across the over 50,000 criminal justice agencies in the United States. Believing that just because it was that way in your agency, it must be that way in all agencies leads to overgeneralization.

Selective observation is choosing, either consciously or unconsciously, to pay attention to and remember events that support our personal preferences and beliefs. In fact, with selective observation, we will seek out evidence that confirms what we believe to be true and ignore the events that provide contradictory evidence. We are more likely to notice pieces of evidence that reinforce and support our ideology. As applied to the criminal justice system, when we are inclined to be critical of the criminal justice system, it is pretty easy to notice its every failing and ignore its successes. For example, if someone believes the police commonly use excessive force, the person is more likely to pay attention to and remember a police brutality allegation on the nightly news than a police pursuit that led to the apprehension of the suspect without incident on the same nightly news. As another example, if you believe treatment efforts on sex offenders are futile, you will pay attention to and remember each sex offender you hear about that recidivates but will pay little attention to any successes. It is easy to find instances that confirm our beliefs, but with selective observation, the complete picture is not being viewed. Therefore, if we only acknowledge the events that confirm our beliefs and ignore those that challenge them, we are falling victim to selective observation.

Besides selective observation, some of our observations may simply be wrong. Consider eyewitness identification. It is a common practice in the criminal justice system, but research has consistently demonstrated inaccuracies in eyewitness identification. The witness feels certain that the person viewed is the person who committed the offense, but sometimes the witness is wrong. Even when our senses of sight, hearing, taste, touch, and smell are fully operational, our minds have to interpret what we have sensed, which may lead to an inaccurate observation.

RESEARCH IN THE NEWS

When Your Criminal Past Isn’t Yours 16

The business of background checks on prospective employees is increasing significantly. According to the Society for Human Resource Management, since the events of September 11, 2001, the percentage of companies that conduct criminal history checks during the hiring process has risen past 90%. Employers spend at least $2 billion a year to look into the pasts of their prospective employees. Problems with the business of background checks were identified through research that included a review of thousands of pages of court filings and interviews with dozens of court officials, data providers, lawyers, victims, and regulators.

The business of background checks is a system weakened by the conversion to digital files and compromised by the significant number of private companies that profit by amassing public records and selling them to employers. The private companies create a system in which a computer program scrapes the public files of court systems around the country to retrieve personal data. Basically, these are automated data-mining programs. Today, half the courts in the United States put criminal records on their public websites. So, the data are there for the taking, but the records that are retrieved typically are not checked for errors—errors that would be obvious to human eyes.

The errors can start with a mistake entered into the logs of a law enforcement agency or a court file. The biggest culprits, though, are companies that compile databases using public information. In some instances, their automated formulas misinterpret the information provided them. Other times, records wind up assigned to the wrong people with a common name. Furthermore, when a government agency erases a criminal conviction after a designated period of good behavior, many of the commercial databases don’t perform the updates required to purge offenses that have been removed from public record. It is clear that these errors can have substantial ramifications, including damaged reputations and loss of job opportunities.

Illogical reasoning occurs when someone jumps to premature conclusions or presents an argument that is based on invalid assumptions. Premature conclusions occur when we feel we have the answer based on a few pieces of evidence and do not need to seek additional information that may invalidate our conclusion. Think of a detective who, after examining only a few pieces of evidence, quickly narrows in on a murder suspect. It is common for a detective to assess the initial evidence and make an initial determination of who committed the murder. However, it is hoped that the detective will continue to sort through all the evidence for confirmation or rejection of his original conclusion regarding the murder suspect. Illogical reasoning by jumping to premature conclusions is common in everyday life. We look for evidence to confirm or reject our beliefs and stop when a small amount of evidence is present; we jump to conclusions. If a person states, “I know four people who have dropped out of high school, and each one of them ended up addicted to drugs, so all dropouts abuse drugs,” the person is jumping to conclusions.

Illogical reasoning also occurs when an argument, based on invalid assumptions, is presented. Let’s revisit the Scared Straight example previously discussed. Program developers assumed that brief exposure to the harsh realities of prison would deter juveniles from future delinquency. The Scared Straight program is an example of illogical reasoning. Four hours of exposure to prison life is not going to counteract years of delinquency and turn a delinquent into a nondelinquent. The program is based on a false assumption and fails to recognize the substantial risk factors present in the lives of most delinquents that must be mediated before the juvenile can live a crime-free lifestyle. A fear of prison, developed through brief exposure, is not enough to counteract the risk factors present in the lives of most delinquents. Although the Scared Straight program sounds good, it is illogical to assume that a brief experience with prison life will have a stronger impact on the decisions made by delinquents than peer support for delinquency, drug abuse, lack of education, poor parental supervision, and other factors that influence delinquency.

Resistance to change is the reluctance to change our beliefs in light of new, accurate, and valid information to the contrary. Resistance to change is common and it occurs for several reasons. First, even though our personal experience may be counter to our belief system, it is hard to admit we were wrong after we have taken a position on an issue. Even when the research evidence shows otherwise, people who work within programs may still believe they are effective. As previously stated, even though the research evidence shows otherwise, Scared Straight programs still exist and there is even a television show devoted to the program. Second, too much devotion to tradition and the argument that this is the way it has always been done inhibits change and hinders our ability to accept new directions and develop new knowledge. Third, uncritical agreement with authority inhibits change. Although authority knowledge is certainly an important means of gaining knowledge, we must critically evaluate the ideas, beliefs, and statements of those in positions of authority and be willing to challenge those statements where necessary. However, people often accept the beliefs of those in positions of authority without question, which hinders change.

Knowledge from Media Portrayals

Television shows, movies, websites, newspapers, and magazine articles are important sources of information. This is especially true for information about crime and the criminal justice system since most people have not had much contact with criminals or the criminal justice system. Instead of gaining knowledge about the criminal justice system through personal experience, most people learn about crime and the operations of the criminal justice system through media outlets. Since the primary goal of many of these media outlets is to entertain, they may not accurately reflect the reality of crime and criminal justice. Despite their inaccuracies, the media has a substantial impact on what people know about crime and the criminal justice system. Most people know what they know about crime and criminal justice through the media, and this knowledge even has an impact on criminal justice system operations.

An example of the potential impact of the media on the actual operations of the criminal justice system involves the CSI: Crime Scene Investigation television shows. The shows have been criticized for their unrealistic portrayal of the role of forensic science in solving criminal cases. Critics claim that CSI viewers accept what they see on the show as an accurate representation of how forensic science works. When summoned for jury duty, they bring with them unrealistic expectations of the forensic evidence they will see in trial. When the expected sophisticated forensic evidence is not presented in the real trial, the juror is more likely to vote to acquit the defendant. This phenomenon is known as the CSI Effect. Has the research shown that the CSI Effect exists and is impacting the criminal justice system? Most of the research shows that the CSI Effect does not exist and thus does not impact juror decision-making, but other research has shown that viewers of CSI have higher expectations related to evidence presented at trial. 17

There are several instances in which media attention on a particular topic created the idea that a major problem existed when it did not. An example is Halloween sadism. Halloween sadism is the practice of giving contaminated treats to children during trick or treating. 18 In 1985, Joel Best wrote an article entitled, “The Myth of the Halloween Sadist.” 19 His article reviewed press coverage of Halloween sadism in the leading papers in the three largest metropolitan areas ( New York Times, Los Angeles Times, and Chicago Tribune ) from 1958–1984. Although the belief in Halloween sadism is widespread, Best found few reported incidents and few reports of children being injured by Halloween sadism. Follow-ups on these reported incidents led to the conclusion that most of these reports were hoaxes. Best concluded, “I have been unable to find a substantiated report of a child being killed or seriously injured by a contaminated treat picked up in the course of trick or treating.” 20 Since 1985, Best has kept his research up to date and has come to the same conclusion. Halloween sadism is an urban legend; it is a story that is told as true, even though there is little or no evidence that the events in the story ever occurred.

Dispelling Myths: The Power of Research Methods

In the prior section, sources of knowledge were discussed along with the limitations of each. A researcher (e.g., criminologist), ideally, takes no knowledge claim for granted, but instead relies on research methods to discover the truth. In the attempt to generate new knowledge, a researcher is skeptical of knowledge that is generated by the sources discussed in the prior section, and this skepticism leads to the questioning of conventional thinking. Through this process, existing knowledge claims are discredited, modified, or substantiated. Research methods provide the researcher with the tools necessary to test current knowledge and discover new knowledge.

Although knowledge developed through research methods is by no means perfect and infallible, it is definitely a more systematic, structured, precise, and evidence-based process than the knowledge sources previously discussed. However, researchers should not dismiss all knowledge from the prior sources discussed, because, as mentioned, these sources of knowledge are sometimes accurate and certainly have their place in the development of knowledge. Researchers should guard against an elitist mind-set in which all knowledge, unless it is research-based knowledge, is dismissed.

To further discuss the importance of research methods in the development of knowledge, this section will discuss myths about crime and criminal justice. Myths are beliefs that are based on emotion rather than rigorous analysis. Take the myth of the Halloween sadist previously discussed. Many believe that there are real examples of children being harmed by razor blades, poison, or other nefarious objects placed in Halloween candy. This belief has changed the practices of many parents on Halloween; not allowing their children to trick-or-treat in their neighborhood and forbidding them from going to the doors of strangers. After careful analysis by Best, there is not a single, known example of children being seriously injured or killed by contaminated candy given by strangers. The Halloween sadist is a myth but it is still perpetuated today, and as the definition states, it is a belief based upon emotion rather than rigorous analysis. People accept myths as accurate knowledge of reality when, in fact, the knowledge is false.

The power of research is the ability to dispel myths. If someone were to assess the research literature on a myth or do their own research, she would find that the knowledge based on the myth is wrong. Perceived reality is contradicted by the facts developed through research. But that does not mean that the myth still doesn’t exist. It is important to keep in mind that the perpetuation and acceptance of myths by the public, politicians, and criminal justice personnel has contributed to the failure of criminal justice practices and policies designed to reduce crime and improve the operations of the criminal justice system. In this section, a detailed example of a myth about crime, police, courts, and corrections will be presented to demonstrate how the myth has been dispelled through research. In addition, several additional myths about crime, police, courts, and corrections will be briefly presented.

The Health Benefits of Alcohol Consumption 21

The press release from Oregon State University is titled “Beer Compound Shows Potent Promise in Prostate Cancer Battle.” The press release leads to several newspaper articles throughout the country written on the preventative nature of drinking beer on prostate cancer development with titles such as “Beer Protects Your Prostate” and “Beer May Help Men Ward Off Prostate Cancer.” By the titles alone, this sounds great; one of the main ingredients in beer appears to thwart prostate cancer.

The study that generated these headlines was conducted by a group of researchers at Oregon State University using cultured cells with purified compounds in a laboratory setting. The research showed that xanthohumol, a compound found in hops, slowed the growth of prostate cancer cells and also the growth of cells that cause enlarged prostates. But you would have to drink more than 17 pints of beer to consume a medically effective dose of xanthohumol, which is almost a case of beer. In addition, although the research is promising, further study is necessary to determine xanthohumol’s true impact on prostate cancer.

These are the types of headlines that people pay attention to and want to believe as true, even if disproven by later research. People want to believe that there are health benefits to alcohol consumption. You have probably heard about the health benefits of drinking red wine, but here is something you should consider. Recently, the University of Connecticut released a statement describing an extensive research misconduct investigation involving a member of its faculty. The investigation was sparked by an anonymous allegation of research irregularities. The comprehensive report of the investigation, which totals approximately 60,000 pages, concludes that the professor is guilty of 145 counts of fabrication and falsification of data. The professor had gained international notoriety for his research into the beneficial properties of resveratrol, which is found in red wine, especially its impact on aging. Obviously, this throws his research conclusions, that red wine has a beneficial impact on the aging process, into question.

Myths about Crime—Drug Users Are Violent

The myth of drug users as violent offenders continues to be perpetuated by media accounts of violent drug users. The public sees drug users as violent offenders who commit violent crimes to get money for drugs or who commit violent crimes while under the intoxicating properties of drugs. The public also recognizes the violent nature of the drug business with gangs and cartels using violence to protect their turf. In May 2012, extensive media attention was given to the case of the Miami man who ate the face of a homeless man for an agonizing 18 minutes until police shot and killed the suspect. The police believed that the suspect was high on the street drug known as “bath salts.” This horrific case definitely leaves the image in the public’s mind about the relationship between violence and drug use.

In recent years, media reports have focused on the relationship between methamphetamine use and violence; before then it was crack cocaine use and violence. 32 However, media portrayals regarding the violent tendencies of drug users date back to the 1930s and the release of Reefer Madness. In 1985, Goldstein suggested that drugs and violence could be related in three different ways:

1. violence could be the direct result of drug ingestion;

2. violence could be a product of the instability of drug market activity; and

3. violence could be the consequence of people having a compulsive need for drugs or money for drugs. 33

So, what does the research show? Studies have found that homicides related to crack cocaine were usually the product of the instability of drug market activity (i.e., buying and selling drugs can be a violent activity) and rarely the result of drug ingestion. 34 After an extensive review of research studies on alcohol, drugs, and violence, Parker and Auerhahn concluded, “Despite a number of published statements to the contrary, we find no significant evidence suggesting that drug use is associated with violence. There is substantial evidence to suggest that alcohol use is significantly associated with violence of all kinds.” 35 The reality is not everyone who uses drugs becomes violent and users who do become violent do not do so every time they use drugs; therefore, the relationship between violence and drug use is a myth.

MYTHS ABOUT CRIME

Some additional myths about crime that research does not support include:

•Crime statistics accurately show what crimes are being committed and what crimes are most harmful. 22

•Most criminals—especially the dangerous ones—are mentally ill. 23

•White-collar crime is only about financial loss and does not hurt anyone. 24

•Serial murderers are middle-aged, white males. 25

•Criminals are significantly different from noncriminals. 26

•People are more likely to be a victim of violent crime committed by a stranger than by someone they know. 27

•Older adults are more likely to be victimized than people in any other age group. 28

•Sex offender registration protects the public from sexual predators. 29

•Juvenile crime rates are significantly increasing. 30

•Only the most violent juveniles are tried as adults. 31

Myths about Police—Female Police Officers Do Not Perform as Well as Males

Female police officers still face the myth that they cannot perform as well as male police officers. Throughout history, females have faced significant difficulties even becoming police officers. In the past, it was common for police agencies to require all police applicants to meet a minimum height requirement to be considered for employment. The minimum height requirement was 5′8″ for most agencies, which limited the ability of females to successfully meet the minimum standards to become a police officer. Even if women could meet the minimum height requirements, they were typically faced with a physical-abilities test that emphasized upper body strength (e.g., push-ups and bench presses). Women failed these tests more often than men, and thus were not eligible to be police officers. Minimum height requirements are no longer used in law enforcement, but the perception that female police officers are not as good as males still exists. Today, the myth that women cannot be effective police officers is based largely on the belief that the need to demonstrate superior physical strength is a daily, common occurrence in law enforcement along with the belief that police work is routinely dangerous, violent, and crime-related.

So, what does the research show? On occasion, it is useful for police officers to be able to overpower suspects by demonstrating superior physical strength, but those types of activities are rare in law enforcement. In addition, it is fairly rare for a police officer to have to deal with a dangerous and violent encounter or even an incident involving a crime. The Police Services Study conducted in the 1970s analyzed 26,418 calls for service in three metropolitan areas and found that only 19% of calls for service involve crime and only 2% of the total calls for service involve violent crime. 43 This research study was among the first to assess the types of calls for service received by police agencies.

Despite the belief that women do not make good police officers, consistent research findings show that women are extremely capable as police officers, and in some respects, outperform their male counterparts. 44 Research has demonstrated several advantages to the hiring, retention, and promotion of women in law enforcement. First, female officers are as competent as their male counterparts. Research does not show any consistent differences in how male and female patrol officers perform their duties. Second, female officers are less likely to use excessive force. Research has shown that female patrol officers are less likely to be involved in high-speed pursuits, incidents of deadly force, and the use of excessive force. Female officers are more capable at calming potentially violent situations through communication and also demonstrate heightened levels of caution. Third, female officers can help implement community-oriented policing. Studies have shown that female officers are more supportive of the community-policing philosophy than are their male counterparts. Fourth, female officers can improve law enforcement’s response to violence against women. Studies have shown that female officers are more patient and understanding in handling domestic violence calls, and female victims of domestic violence are more likely to provide positive evaluations of female officers than their male counterparts. 52

MYTHS ABOUT POLICE

Some additional myths about the police that research does not support include:

•Police target minorities for traffic stops and arrests. 36

•Most crimes are solved through forensic science. 37

•COMPSTAT reduces crime. 38

•Intensive law enforcement efforts at the street level will lead to the control of illicit drug use and abuse. 39

•Police work primarily entails responding to crimes in progress or crimes that have just occurred. 40

•Police presence reduces crime. 41

•Detectives are most responsible for solving crimes and arresting offenders. 42

Myths about Courts—The Death Penalty Is Administered Fairly

According to a recent Gallup poll, 52% of Americans say the death penalty is applied fairly in the United States, the lowest mark in almost 40 years. 53 The issue of fairness and the death penalty typically concerns whether the punishment is equally imposed on offenders who are equally deserving based on legal factors (i.e., similar offense, similar prior criminal history, similar aggravating circumstances, and similar mitigating circumstances). 54 Unfairness can be shown if similarly situated offenders are more or less likely to receive death sentences based on age, gender, and race.

So, what does the research show? First, has research shown that a defendant’s age influences his or her chances of being sentenced to death? A study of about 5,000 homicides, controlling for legally relevant variables, found that defendants over the age of 25 were more than twice as likely to receive the death penalty in comparison to those 25 years of age or younger. 55

Second, has research shown that a defendant’s gender influences his or her chance of being sentenced to death? Capital punishment is almost exclusively reserved for male defendants. On December 31, 2010, there were 3,158 prisoners under a sentence of death in the United States: 58 were women, or 1.8%. 56 However, women account for 10–12% of all murders in the United States. 57 One research study found that male defendants were 2.6 times more likely than females to receive a death sentence after controlling for legally relevant factors. 58

Third, has research shown that a defendant’s race influences his or her chance of being sentenced to death? Most of the research on the biased nature of the death penalty has focused on racial inequities in the sentence. Although some research has shown that a defendant’s race has an impact on the likelihood of receiving a death sentence, a significant amount of research has shown that the race of the victim has the most substantial impact on death sentences. The research evidence clearly shows that offenders who murder white victims are more likely to receive a death sentence than offenders who murder black victims. 59 When assessing the race of both the victim and offender, the composition most likely to receive the death penalty is when a black offender murders a white victim. 60

MYTHS ABOUT COURTS

Some additional myths about courts that research does not support include:

•Many criminals escape justice because of the exclusionary rule. 45

•Subjecting juvenile offenders to harsh punishments can reduce crime committed by juveniles. 46

•Public opinion is overwhelmingly in favor of imprisonment and harsh punishment for offenders. 47

•The death penalty brings closure and a sense of justice to the family and friends of murder victims. 48

•Insanity is a common verdict in criminal courts in the United States. 49

•Eyewitness identification is reliable evidence. 50

•Most people who commit crimes based on hatred, bias, or discrimination face hate crime charges and longer sentencing. 51

Myths about Corrections—Imprisonment Is the Most Severe Form of Punishment

It seems clear that besides the death penalty, the most severe punishment available in our criminal justice system is to lock up offenders in prison. On a continuum, it is perceived that sentence severity increases as one moves from fines, to probation, to intermediate sanctions such as boot camps, and finally, to incarceration in prison. The public and politicians support this perception as well.

So, what does the research show? What do criminals think is the most severe form of punishment? A growing body of research has assessed how convicted offenders perceive and experience the severity of sentences in our criminal justice system. 61 Research suggests that alternatives to incarceration in prison (i.e., probation and intermediate sanctions) are perceived by many offenders as more severe due to a greater risk of program failure (e.g., probation revocation). In comparison, serving prison time is easier. 62  

For example, one study found that about one-third of nonviolent offenders given the option of participating in an Intensive Supervision Probation (ISP) program, chose prison instead because the prospects of working every day and submitting to random drug tests was more punitive than serving time in prison. 73 Prisoners also stated that they would likely be caught violating probation conditions (i.e., high risk of program failure) and be sent to prison anyway. 74 In another research study involving survey responses from 415 inmates serving a brief prison sentence for a nonviolent crime, prison was considered the eighth most severe sanction, with only community service and probation seen as less punitive. Electronic monitoring (seventh), intensive supervision probation (sixth), halfway house (fifth), intermittent incarceration (fourth), day reporting (third), county jail (second), and boot camp (first) were all rated by inmates as more severe sanctions than prison. 75

MYTHS ABOUT CORRECTIONS

Some additional myths about corrections that research does not support include:

•Punishing criminals reduces crime. 63

•Prisons are too lenient in their day-to-day operations (prisons as country clubs). 64

•Prisons can be self-supporting if only prisoners were forced to work. 65

•Private prisons are more cost effective than state-run prisons. 66

•Focus of community corrections is rehabilitation rather than punishment. 67

•Correctional rehabilitation does not work. 68

•Drug offenders are treated leniently by the criminal justice system. 69

•Most death row inmates will be executed eventually. 70

•If correctional sanctions are severe enough, people will think twice about committing crimes. 71

•Sexual violence against and exploitation of inmates of the same gender are primarily the result of lack of heterosexual opportunities. 72

What is Research and Why is It Important to be an Informed Consumer of Research?

We probably should have started the chapter with the question “What is research?” but we wanted to initially lay a foundation for the question with a discussion of the problems with how knowledge is developed and the power of research in discovering the truth. Research methods are tools that allow criminology and criminal justice researchers to systematically study crime and the criminal justice system. The study of research methods is the study of the basic rules, appropriate techniques, and relevant procedures for conducting research. Research methods provide the tools necessary to approach issues in criminal justice from a rigorous standpoint and challenge opinions based solely on nonscientific observations and experiences. Similarly, research is the scientific investigation of an issue, problem, or subject utilizing research methods. Research is a means of knowledge development that is designed to assist in discovering answers to research questions and leads to the creation of new questions.

How Is Knowledge Development through Research Different?

Previously, sources of knowledge development were discussed, including authority, tradition, common sense, personal experience, and media portrayals. The problems generated by each knowledge source were also discussed. Research is another source of knowledge development, but it is different than those previously discussed in several ways. First, research relies on logical and systematic methods and observations to answer questions. Researchers use systematic, well-established research practices to seek answers to their questions. The methods and observations are completed in such a way that others can inspect and assess the methods and observations and offer feedback and criticism. Researchers develop, refine, and report their understanding of crime and the criminal justice system more systematically than the public does through casual observation. Those who conduct scientific research employ much more rigorous methods to gather the information/knowledge they are seeking.

Second, in order to prove that a research finding is correct, a researcher must be able to replicate the finding using the same methods. Only through replication can we have confidence in our original finding. For researchers, it may be important to replicate findings many times over so that we are assured our original finding was not a coincidence or chance occurrence. The Minneapolis Domestic Violence Experiment is an example of this and will be discussed in detail in Chapter 5. In the experiment, the researchers found that arrests for domestic violence lead to fewer repeat incidences in comparison to separation of the people involved and mediation. Five replication studies were conducted and none were able to replicate the findings in the Minneapolis study. In fact, three of the replications found that those arrested for domestic violence had higher levels of continued domestic violence, so arrest did not have the deterrent effect found in the Minneapolis study.

Third, research is objective. Objectivity indicates a neutral and nonbiased perspective when conducting research. Although there are examples to the contrary, the researcher should not have a vested interest in what findings are discovered from the research. The researcher is expected to remain objective and report the findings of the study regardless of whether the findings support their personal opinion or agenda. In addition, research ensures objectivity by allowing others to examine and be critical of the methodology, findings, and results of research studies.

It should be clear that using research methods to answer questions about crime and the criminal justice system will greatly reduce the errors in the development of knowledge previously discussed. For example, research methods reduces the likelihood of overgeneralization by using systematic procedures for selecting individuals or groups to study that are representative of the individuals or groups that we wish to generalize. This is the topic of Chapter 3, which covers sampling procedures. In addition, research methods reduces the risk of selective observation by requiring that we measure and observe our research subjects systematically.

Being an Informed Consumer of Research

Criminal justice and criminological research is important for several reasons. First, it can provide better and more objective information. Second, it can promote better decision-making. Today, more than ever, we live in a world driven by data and in which there is an increasing dependence on the assessment of data when making decisions. As well as possible, research ensures that our decisions are based on data and not on an arbitrary or personal basis. Third, it allows for the objective assessment of programs. Fourth, it has often been the source of innovation within criminal justice agencies. Fifth, it can be directly relevant to criminal justice practice and have a significant impact on criminal justice operations.

Before we apply research results to practices in the criminal justice system, and before we even accept those research results as reasonable, we need to be able to know whether or not they are worthwhile. In other words, should we believe the results of the study? Research has its own limitations, so we need to evaluate research results and the methods used to produce them, and we do so through critical evaluation. Critical evaluation involves identifying both positive and negative aspects of the research study—both the good and the bad. Critical evaluation involves comparing the methodology used in the research with the standards established in research methods.

Through critical evaluation, consumers of research break studies down into their essential elements. What are the research questions and hypotheses? What were the independent and dependent variables? What research design was used? Was probability sampling used? What data-gathering procedures were employed? What type of data analysis was conducted and what conclusions were made? These are some of the questions that are asked by informed consumers of research. The evaluation of research ranges from the manner in which one obtains an idea to the ways in which one writes about the research results, and understanding each step in the research process is useful in our attempts to consume research conducted by others. Located between these two activities are issues concerning ethics, sampling, research design, data analyses, and interpretations.

The research design and procedures are typically the most critically evaluated aspects of research and will likewise receive the greatest amount of attention in this text. Informed consumers of research don’t just take the results of a research study at face value because the study is in an academic journal or written by someone with a Ph.D. Instead, informed consumers critically evaluate research. Taking what is learned throughout this text, critical evaluation of research is covered in Chapter 8, and upon completing this text, it is hoped that you will be an informed consumer of research and will put your research knowledge to use throughout your career.

Although many students will never undertake their own research, all will be governed by policies based upon research and exposed to research findings in their chosen professional positions. Most government agencies, including the criminal justice system, as well as private industry, routinely rely on data analysis. Criminal justice students employed with these agencies will be challenged if not prepared for quantitative tasks. Unfortunately, it is not unusual to find students as well as professionals in criminal justice who are unable to fully understand research reports and journal articles in their own field.

Beyond our criminal justice careers, we are all exposed to and use research to help us understand issues and to make personal decisions. For example, we know that cigarette smoking causes lung cancer and has other significant health impacts, so we don’t smoke. Your doctor tells you that your cholesterol is too high and you need to limit your red meat intake because research shows that consumption of red meat raises cholesterol; so, you quit eating red meat. That is why not all the examples in this text are criminal justice research examples. Some come from the medical field while others come from psychology and other disciplines. This is to remind you that you are probably exposed to much more research than you thought on day one of this class.

Overall, knowledge of research methods will allow you to more appropriately consider and consume information that is important to your career in criminal justice. It will help you better understand the process of asking and answering a question systematically and be a better consumer of the kind of information that you really need to be the best criminal justice professional you can. Once familiar with research methods, your anxiety about reviewing technical reports and research findings can be minimized. As discussed in the next section, research methods involve a process and once you understand the process, you can apply your knowledge to any research study, even those in other disciplines.

The Research Process

One of the nice things about studying research methods is it is about learning a process. Research methods can be seen as a sequential process with the first step being followed by the second step, and so on. There are certainly times when the order of the steps may be modified, but researchers typically follow the same process for each research study they complete regardless of the research topic (as depicted in Figure 2.1 in Chapter 2). Very simply, a research problem or question is identified, and a methodology is selected, developed, and implemented to answer the research question. This sequential process is one of the advantages of understanding research methods, because once you understand the process, you can apply that process to any research question that interests you. In addition, research methods are the same across disciplines. So, sampling is the same in business as it is in health education and as it is in criminal justice. Certainly the use of a particular method will be more common in one discipline in comparison to another, but the protocol for implementing the method to complete the research study is the same. For example, field research (discussed in Chapter 6) is used much more frequently in anthropology than in criminal justice. However, the research protocol to implement field research is the same whether you are studying an indigenous Indian tribe in South America in anthropology or a group of heroin users in St. Louis in criminal justice.

Some authors have presented the research process as a wheel or circle, with no specific beginning or end. Typically, the research process begins with the selection of a research problem and the development of research questions or hypotheses (discussed further in Chapter 2). It is common for the results of previous research to generate new research questions and hypotheses for the researcher. This suggests that research is cyclical, a vibrant and continuous process. When a research study answers one question, the result is often the generation of additional questions, which plunges the researcher right back into the research process to complete additional research to answer these new questions.

In this section, a brief overview of the research process will be presented. The chapters that follow address various aspects of the research process, but it is critical that you keep in mind the overall research process as you read this book, which is why is it presented here. Although you will probably not be expected to conduct a research study on your own, it is important for an educated consumer of research to understand the steps in the research process. The steps are presented in chronological order and appear neatly ordered. In practice, the researcher can go back and forth between the steps in the research process.

Step 1: Select a Topic and Conduct a Literature Review

The first step in the research process is typically the identification of a problem or topic that the researcher is interested in studying. Research topics can arise from a wide variety of sources, including the findings of a current study, a question that a criminal justice agency needs to have answered, or the result of intellectual curiosity. Once the researcher has identified a particular problem or topic, the researcher assesses the current state of the literature related to the problem or topic. The researcher will often spend a considerable amount of time in determining what the existing literature has to say about the topic. Has the topic already been studied to the point that the questions in which the researcher is interested have been sufficiently answered? If so, can the researcher approach the subject from a previously unexamined perspective? Many times, research topics have been previously explored but not brought to completion. If this is the case, it is certainly reasonable to examine the topic again. It is even appropriate to replicate a previous study to determine whether the findings reported in the prior research continue to be true in different settings with different participants. This step in the research process is also discussed in Chapter 2.

Step 2: Develop a Research Question

After a topic has been identified and a comprehensive literature review has been completed on the topic, the next step is the development of a research question or questions. The research question marks the beginning of your research study and is critical to the remaining steps in the research process. The research question determines the research plan and methodology that will be employed in the study, the data that will be collected, and the data analysis that will be performed. Basically, the remaining steps in the process are completed in order to answer the research question or questions established in this step. The development of research questions is discussed in more detail in Chapter 2.

Step 3: Develop a Hypothesis

After the research questions have been established, the next step is the formulation of hypotheses, which are statements about the expected relationship between two variables. For example, a hypothesis may state that there is no relationship between heavy metal music preference and violent delinquency. The two variables stated in the hypothesis are music preference and violent delinquency. Hypothesis development is discussed in more detail in Chapter 2.

Step 4: Operationalize Concepts

Operationalization involves the process of giving the concepts in your study a working definition and determining how each concept in your study will be measured. For example, in Step 3, the variables were music preference and violent delinquency. The process of operationalization involves determining how music preference and violent delinquency will be measured. Operationalization is further discussed in Chapter 2.

Step 5: Develop the Research Plan and Methodology

The next step is to develop the methodology that will be employed to answer the research questions and test the hypotheses. The research methodology is the blueprint for the study, which outlines how the research is to be conducted. The research questions will determine the appropriate methodology for the study. The research design selected should be driven by the research questions asked. In other words, the research questions dictate the methods used to answer them. The methodology is basically a research plan on how the research questions will be answered and will detail:

1. What group, subjects, or population will be studied and selected? Sampling will be discussed in Chapter 3.

2 . What research design will be used to collect data to answer the research questions? Various research designs will be covered in Chapters 4–7.

You need to have familiarity with all research designs so that you can become an educated consumer of research. A survey cannot answer all research questions, so knowing a lot about surveys but not other research designs will not serve you well as you assess research studies. There are several common designs used in criminal justice and criminology research. Brief descriptions of several common research designs are presented below, but each is discussed in detail in later chapters.

Survey research is one of the most common research designs employed in criminal justice research. It obtains data directly from research participants by asking them questions and is often conducted through self-administered questionnaires and personal interviews. For example, a professor might have her students complete a survey during class to understand the relationship between drug use and self-esteem. Survey research is discussed in Chapter 4.

Experimental designs are used when researchers are interested in determining whether a program, policy, practice, or intervention is effective. For example, a researcher may use an experimental design to determine if boot camps are effective at reducing juvenile delinquency. Experimental design is discussed in Chapter 5.

Field research involves researchers studying individuals or groups of individuals in their natural environment. The researcher is observing closely or acting as part of the group under study and is able to describe in depth not only the subject’s behaviors, but also consider the motivations that drive those behaviors. For example, if a researcher wanted to learn more about gangs and their activities, he may “hang out” with a gang in order to observe their behavior. Field research is discussed in Chapter 6.

A case study is an in-depth analysis of one or a few illustrative cases. This design allows the story behind an individual, a particular offender, to be told and then information from cases studies can be extrapolated to a larger group. Often these studies require the review and analysis of documents such as police reports and court records and interviews with the offender and others. For example, a researcher may explore the life history of a serial killer to try and understand why the offender killed. Case studies are discussed in Chapter 6.

Secondary data analysis occurs when researchers obtain and reanalyze data that was originally collected for a different purpose. This can include reanalyzing data collected from a prior research study, using criminal justice agency records to answer a research question, or historical research. For example, a researcher using secondary data analysis may analyze inmate files from a nearby prison to understand the relationship between custody level assignment and disciplinary violations inside prison. Secondary data analysis is discussed in Chapter 7.

Content analysis requires the assessment of content contained in mass communication outlets such as newspapers, television, magazines, and the like. In this research design, documents, publications, or presentations are reviewed and analyzed. For example, a researcher utilizing content analysis might review true crime books involving murder to see how the characteristics of the offender and victim in the true crime books match reality as depicted in the FBI’s Supplemental Homicide Reports. Content analysis is discussed in Chapter 7.

Despite the options these designs offer, other research designs are available and will be discussed later in the text. Ultimately, the design used will depend on the nature of the study and the research questions asked.

Step 6: Execute the Research Plan and Collect Data

The next step in the research process is the collection of the data based on the research design developed. For example, if a survey is developed to study the relationship between gang membership and violent delinquency, the distribution and collection of surveys from a group of high school students would occur in this step. Data collection is discussed in several chapters throughout this text.

Step 7: Analyze Data

After the data have been collected, the next phase in the research process involves analyzing the data through various and appropriate statistical techniques. The most common means for data analysis today is through the use of a computer and statistically oriented software. Data analysis and statistics are discussed in Chapter 9.

Step 8: Report Findings, Results, and Limitations

Reporting and interpreting the results of the study make up the final step in the research process. The findings and results of the study can be communicated through reports, journals, books, or computer presentations. At this step, the results are reported and the research questions are answered. In addition, an assessment is made regarding the support or lack of support for the hypotheses tested. It is also at this stage that the researcher can pose additional research questions that may now need to be answered as a result of the research study. In addition, the limitations of the study, as well as the impact those limitations may have on the results of the study, will be described by the researcher. All research has limitations, so it is incumbent on the researcher to identify those limitations for the reader. The process of assessing the quality of research will be discussed in Chapter 8.

Research in Action: Impacting Criminal Justice Operations

Research in the criminal justice system has had significant impacts on its operations. The following sections provide an example of research that has significantly impacted each of the three main components of the criminal justice system: police, courts, and corrections. The purpose of this section is to demonstrate that research has aided the positive development and progression of the criminal justice system.

Police Research Example 76

The efforts of criminal justice researchers in policing have been important and have created the initial and critical foundation necessary for the further development of effective and productive law enforcement. One seminal study asked: How important is it for the police to respond quickly when a citizen calls? The importance of rapid response was conveyed in a 1973 National Commission on Productivity Report despite the fact that there was very little empirical evidence upon which to base this assumption. In fact, the Commission stated “there is no definitive relationship between response time and deterrence, but professional judgment and logic do suggest that the two are related in a strong enough manner to make more rapid response important.” 77 Basically the Commission members were stating that we don’t have any research evidence that response times are important, but we “know” that they are. Police departments allocated substantial resources to the patrol function and deployed officers in an effort to improve response time through the use of the 9-1-1 telephone number, computer-assisted dispatch, and beat assignment systems. Officers were typically assigned to a patrol beat. When the officers were not answering calls for service, they remained in their assigned beats so they could immediately respond to an emergency.

The data for the project were collected as part of a larger experiment on preventive patrol carried out in Kansas City, Missouri, between October 1972 and September 1973. 78 To determine the impact of response time, researchers speculated that the following variables would be influenced by response time: 1) the outcome of the response, 2) citizen satisfaction with response time, and 3) citizen satisfaction with the responding officer. Several data sources were used in the study. First, surveys were completed after all citizen-initiated calls (excluding automobile accidents) that involved contact with a police officer. The survey instrument consisted of questions to assess the length of time to respond to a call and the outcome of the call (i.e., arrest). Over 1,100 surveys were completed. Second, a follow-up survey was mailed to citizens whom the police had contacted during their response. These surveys asked questions to assess citizen satisfaction with response time and outcome. Over 425 of these surveys were returned.

The data collected during the study showed that response time did not determine whether or not the police made an arrest or recovered stolen property. This was the most surprising finding from the study because it challenged one of the basic underlying principles of police patrol. Researchers attributed the lack of significance to the fact that most citizens waited before calling the police. Rapid response simply did not matter in situations where citizens delayed in reporting the crime.

Rapid response time was not only believed to be important in determining the outcome of a response (i.e., more likely to lead to an arrest), it was also considered an important predictor of citizen satisfaction. Data from the study showed that when the police arrived sooner than expected, citizens were more satisfied with response time. However, subsequent research has shown that citizens are also satisfied with a delayed response as long as the dispatcher sets a reasonable expectation for when the patrol officer will arrive. Response time was also the best predictor of how satisfied a citizen was with the responding officer. It was further revealed that citizens became dissatisfied with the police when they were not informed of the outcome (i.e., someone was arrested). Again, these findings indicate the need for dispatchers and patrol officers to communicate with complainants regarding when they should expect an officer to arrive and the outcome of the call.

Based on the results of the response time study, the researchers concluded that rapid response was not as important as police administrators had thought. Response time was not related to an officer’s ability to make an arrest or recover stolen property. Results from the response time study challenged traditional beliefs about the allocation of patrol in our communities. Based on tradition knowledge, as previously discussed, rapidly responding to calls for service is what the police had always done since they started using patrol vehicles. In addition, common sense, as previously discussed, played a role in the practice of rapid response to calls for service; it just made sense that if a patrol officer arrives sooner, she will be more likely to make an arrest.

Prior to the research, police departments operated under the assumption that rapid response was a crucial factor in the ability of an officer to solve a crime and an important predictor of citizen satisfaction. In response to the research on rapid response, many police departments changed the way they responded to calls for service. Many departments adopted a differential police response approach. Differential police response protocols allow police departments to prioritize calls and rapidly dispatch an officer only when an immediate response is needed (i.e., crimes in progress). For crimes in progress, rapid response is critical and may reduce the injuries sustained by the victim as well, but these emergency calls usually account for less than 2% of all 9-1-1 calls for police service. For nonemergency calls, an officer is either dispatched at a later time when the officer is available or a report is taken over the phone or through some other means. Differential police response has been shown to save departments money and give patrol officers more time to engage in community-oriented and proactive policing activities. The benefits for a department are not at the expense of the public. In fact, a study by Robert Worden found a high degree of citizen satisfaction with differential police response. 79

Courts Research Example 80

Research on the courts component of the criminal justice system, while far from complete, has produced direct effects on the operations of the criminal justice system. The study reviewed in this section asked the following research question: Are jurors able to understand different legal rules for establishing a defendant’s criminal responsibility? The study described below explored the issue of criminal responsibility as it applies to the insanity defense in the United States. For several years, the M ’ Naghten rule was the legal rule applied in all courts of the United States. Under M ’ Naghten, criminal responsibility was absent when the offender did not understand the nature of his actions due to failure to distinguish “right” from “wrong.” This is known as the “right/wrong test” for criminal responsibility. The case of Durham v. United States was heard in the U.S. Court of Appeals for the District of Columbia and offered an alternative test for criminal responsibility and insanity. The legal rule emerging from Durham was that criminal responsibility was absent if the offense was a product of mental disease or defect. This ruling provided psychiatrists with a more important role at trial because of the requirement that the behavior be linked to a mental disorder that only a psychiatrist could officially determine.

At the time of Simon’s 1967 study, most courts across the country still followed the M ’ Naghten rule. Questions arose, however, regarding whether juries differed in their understanding of M ’ Naghten versus Durham and, in turn, whether this resulted in differences in their ability to make informed decisions regarding criminal responsibility in cases involving the insanity defense. The study was designed to determine the effect of different legal rules on jurors’ decision-making in cases where the defense was insanity. There was a question of whether there was a difference between the rules to the extent that jurors understood each rule and could capably apply it.

Simon conducted an experimental study on jury deliberations in cases where the only defense was insanity. 81 Utilizing a mock jury approach, Simon took the transcripts of two actual trials with one reflecting the use of the M ’ Naghten rule and the other the Durham rule. Both cases were renamed and the transcripts were edited to constitute a trial of 60–90 minutes in length. These edited transcripts were then recorded, with University of Chicago Law School faculty as the attorneys, judges, and witnesses involved in each case. Groups of 12 jurors listened to each trial with instruction provided at the end regarding the particular rule of law ( M ’ Naghten or Durham) for determining criminal responsibility. Each juror submitted a written statement with his or her initial decision on the case before jury deliberations, and the juries’ final decisions after deliberation were also reported.

Simon found significant differences in the verdicts across the two groups ( M ’ Naghten rule applied and Durham rule applied) even when the case was the same. For the M ’ Naghten version of the case, the psychiatrists stated that the defendant was mentally ill yet knew right from wrong during the crime. These statements/instructions should have led to a guilty verdict on the part of the mock jury. As expected, the M ’ Naghten juries delivered guilty verdicts in 19 of the 20 trials, with one hung jury. For the Durham version of the case, the psychiatrists stated that the crime resulted from the defendant’s mental illness, which should have lead to acquittal. However, the defendant was acquitted in only five of the 26 Durham trials. Twenty-six groups of 12 jurors were exposed to the Durham version of the trial and the case was the same each time. Simon interpreted these results as suggesting that jurors were unambiguous in their interpretations and applications of M ’ Naghten (due to the consistency in guilty verdicts), but they were less clear on the elements of Durham and how to apply it (reflected by the mix of guilty, not guilty, and hung verdicts). 82

After Simon’s study, most states rejected the Durham test. Recall her finding that the Durham rule produced inconsistent verdicts. She interpreted this finding as Durham being no better than providing no guidance to jurors on how to decide the issue of insanity. The observation helped to fuel arguments against the use of Durham, which, in turn, contributed to its demise as a legal rule. Today, only New Hampshire uses a version of the Durham rule in insanity cases.

WHAT RESEARCH SHOWS: IMPACTING CRIMINAL JUSTICE OPERATIONS

The Punishment Cost of Being Young, Black, and Male

Steffensmeier, Ulmer, and Kramer 83 hypothesized that African Americans overall were not likely to be treated more harshly than white defendants by the courts because it was only particular subgroups of minority defendants that fit with court actors’ stereotypes of “more dangerous” offenders. In particular, they argued that younger African American males not only fulfilled this stereotype more than any other age, race, and gender combination, they were also more likely to be perceived by judges as being able to handle incarceration better than other subgroups.

In order to test their hypotheses, the researchers examined sentencing data from Pennsylvania spanning four years (1989–1992). Almost 139,000 cases were examined. The sentences they examined included whether a convicted defendant was incarcerated in prison or jail, and the length of incarceration in prison or jail. The researchers found that offense severity and prior record were the most important predictors of whether a convicted defendant was incarcerated and the length of incarceration. The authors found that the highest likelihood of incarceration and the longest sentences for males were distributed to African Americans aged 18–29 years. Their analysis of females revealed that white females were much less likely than African American females to be incarcerated, regardless of the age group examined. Taken altogether, the analysis revealed that African American males aged 18–29 years maintained the highest odds of incarceration and the longest sentences relative to any other race, sex, and age group.

Overall, this research showed that judges focused primarily on legal factors (offense severity and prior record) when determining the sentences of convicted offenders. These are the factors we expect judges to consider when making sentencing decisions. However, the research also found that judges base their decisions in part on extralegal factors, particularly the interaction of a defendant’s age, race, and gender. This research expanded our knowledge beyond the impact of singular factors on sentencing to expose the interaction effects of several variables (race, gender, and age). Court personnel are aware of these interaction effects based on this study, and others that followed, as well as their personal experiences in the criminal justice system. Identification and recognition of inequities in our justice system (in this case that young, African American males are punished more severely in our justice system) is the first step in mitigating this inequity.

Corrections Research Example 84

Although the research in corrections is far from complete, it has contributed greatly to the development of innovative programs and the professional development of correctional personnel. The contributions of academic and policy-oriented research can be seen across the whole range of correctional functions from pretrial services through probation, institutional corrections, and parole.

Rehabilitation remained the goal of our correctional system until the early 1970s, when the efficacy of rehabilitation was questioned. Violent crime was on the rise, and many politicians placed the blame on the criminal justice system. Some believed the system was too lenient on offenders. Interest in researching the effectiveness of correctional treatment remained low until 1974 when an article written by Robert Martinson and published in Public Interest titled “What Works? Questions and Answers about Prison Reform” generated enormous political and public attention to the effectiveness of correctional treatment. 85

Over a six-month period, Martinson and his colleagues reviewed all of the existing literature on correctional treatment published in English from 1945 to 1967. Each of the articles was evaluated according to traditional standards of social science research. Only studies that utilized an experimental design, included a sufficient sample size, and could be replicated were selected for review. A total of 231 studies examining a variety of different types of treatment were chosen, including educational and vocational training, individual and group counseling, therapeutic milieus, medical treatment, differences in length and type of incarceration, and community corrections. All of the treatment studies included at least one measure of offender recidivism, such as whether or not offenders were rearrested or violated their parole. The recidivism measures were used to examine the success or failure of a program in terms of reducing crime.

After reviewing all 231 studies, Martinson reported that there was no consistent evidence that correctional treatment reduced recidivism. Specifically, he wrote, “with few and isolated exceptions, the rehabilitative efforts that have been reported so far have had no appreciable effect on recidivism.” 86 Martinson further indicated that the lack of empirical support for correctional treatment could be a consequence of poorly implemented programs. If the quality of the programs were improved, the results may have proved more favorable, but this conclusion was for the most part ignored by the media and policy-makers.

Martinson’s report became commonly referred to as “nothing works” and was subsequently used as the definitive study detailing the failures of rehabilitation. The article had implications beyond questioning whether or not specific types of correctional treatment reduced recidivism. The entire philosophy of rehabilitation was now in doubt because of Martinson’s conclusion that “our present strategies … cannot overcome, or even appreciably reduce, the powerful tendencies of offenders to continue in criminal behavior.” 87

Martinson’s article provided policy makers the evidence to justify spending cuts on rehabilitative programs. Furthermore, it allowed politicians to respond to growing concerns about crime with punitive, get-tough strategies. States began implementing strict mandatory sentences that resulted in more criminals being sent to prison and for longer periods of time. Over the next several years, Martinson’s article was used over and over to support abandoning efforts to treat offenders until rehabilitation became virtually nonexistent in our correctional system.

Chapter Summary

This chapter began with a discussion of sources of knowledge development and the problems with each. To depict the importance of research methods in knowledge development, myths about crime and the criminal justice system were reviewed along with research studies that have dispelled myths. As the introductory chapter in this text, this chapter also provided an overview of the steps in the research process from selecting a topic and conducting a literature review at the beginning of a research study to reporting findings, results, and limitations at the end of the study. Examples of actual research studies in the areas of police, courts, and corrections were also provided in this chapter to demonstrate the research process in action and to illustrate how research has significantly impacted practices within the criminal justice system. In addition, this chapter demonstrated the critical importance of becoming an informed consumer of research in both your personal and professional lives.

Critical Thinking Questions

1. What are the primary sources of knowledge development, and what are the problems with each?

2. How is knowledge developed through research methods different from other sources of knowledge?

3. What myths about crime and criminal justice have been dispelled through research? Give an example of a research study that dispelled a myth.

4. Why is it important to be an informed consumer of research?

5. What are the steps in the research process, and what activities occur at each step?

authority knowledge: Knowledge developed when we accept something as being correct and true just because someone in a position of authority says it is true

case study: An in-depth analysis of one or a few illustrative cases

common sense knowledge: Knowledge developed when the information “just makes sense”

content analysis: A method requiring the analyzing of content contained in mass communication outlets such as newspapers, television, magazines, and the like

CSI Effect: Due to the unrealistic portrayal of the role of forensic science in solving criminal cases in television shows, jurors are more likely to vote to acquit a defendant when the expected sophisticated forensic evidence is not presented

differential police response: Methods that allow police departments to prioritize calls and rapidly dispatch an officer only when an immediate response is needed (i.e., crimes in progress)

experimental designs: Used when researchers are interested in determining whether a program, policy, practice, or intervention is effective

field research: Research that involves researchers studying individuals or groups of individuals in their natural environment

Halloween sadism: The practice of giving contaminated treats to children during trick or treating

hypotheses: Statements about the expected relationship between two concepts

illogical reasoning: Occurs when someone jumps to premature conclusions or presents an argument that is based on invalid assumptions

myths: Beliefs that are based on emotion rather than rigorous analysis

operationalization: The process of giving a concept a working definition; determining how each concept in your study will be measured

overgeneralization: Occurs when people conclude that what they have observed in one or a few cases is true for all cases

personal experience knowledge: Knowledge developed through actual experiences

research: The scientific investigation of an issue, problem, or subject utilizing research methods

research methods: The tools that allow criminology and criminal justice researchers to systematically study crime and the criminal justice system and include the basic rules, appropriate techniques, and relevant procedures for conducting research

resistance to change: The reluctance to change our beliefs in light of new, accurate, and valid information to the contrary

secondary data analysis: Occurs when researchers obtain and reanalyze data that were originally collected for a different purpose

selective observation: Choosing, either consciously or unconsciously, to pay attention to and remember events that support our personal preferences and beliefs

survey research: Obtaining data directly from research participants by asking them questions, often conducted through self-administered questionnaires and personal interviews

tradition knowledge: Knowledge developed when we accept something as true because that is the way things have always been, so it must be right

variables: Concepts that have been given a working definition and can take on different values

1 Briggs, Lisa T., Stephen E. Brown, Robert B. Gardner, and Robert L. Davidson. (2009). “D.RA.MA: An extended conceptualization of student anxiety in criminal justice research methods courses.” Journal of Criminal Justice Education 20 (3), 217–226.

2 Betz, N. E. (1978). “Prevalence, distribution, and correlates of math anxiety in college students. Journal of Counseling Psychology 25 (5), 441–448.

3 Briggs, et al., 2009, p. 221.

4 Ibid, p. 221.

5 Ibid, p. 221.

6 Kappeler, Victor E., and Gary W. Potter. (2005). The mythology of crime and criminal justice. Prospect Heights, IL: Waveland.

7 Tennessee v. Gamer, 471 U.S. 1 (1985).

8 Lombroso-Ferrero, Gina. (1911). Criminal man, according to the classification of Cesare Lombroso. New York: Putnam.

9 This study was included in Amy B. Thistlethwaite and John D. Wooldredge. (2010). Forty studies that changed criminal justice: Explorations into the history of criminal justice research. Upper Saddle River, NJ: Prentice Hall.

10 Petersilia, J., S. Turner, J. Kahan, and J. Peterson. (1985). Granting felons probation: Public risks and alternatives. Santa Monica, CA: Rand.

11 Vito, G. (1986). “Felony probation and recidivism: Replication and response.” Federal Probation 50, 17–25.

12 Conrad, J. (1985). “Research and development in corrections.” Federal Probation 49, 69–71.

13 Finckenauer, James O. (1982). Scared straight! and the panacea phenomenon. Englewood Cliffs, NJ: Prentice Hall.

14 Yarborough, J.C. (1979). Evaluation of JOLT (Juvenile Offenders Learn Truth) as a deterrence program. Lansing, MI: Michigan Department of Corrections.

15 Petrosino, Anthony, Carolyn Turpin-Petrosino, and James O. Finckenauer. (2000). “Well-meaning programs can have harmful effects! Lessons from experiments of programs such as Scared Straight,” Crime & Delinquency 46, 354–379.

16 Robertson, Jordan. “I’m being punished for living right”: Background check system is haunted by errors. December 20, 2011. http://finance.yahoo.com/news /ap-impact-criminal-past-isnt-182335059.html. Retrieved on December 29, 2011.

17 Shelton, D. E. (2008). “The ‘CSI Effect’: Does it really exist?” NIJ Journal 259 [NCJ 221501].

18 Best, Joel. (2011). “Halloween sadism: The evidence.” http://dspace.udel.edu:8080/dspace/bitstream/handle/ 19716/726/Halloween%20sadism.revised%20thru%20201l.pdf?sequence=6. Retrieved on May 7, 2012.

19 Best, Joel. (1985, November). “The myth of the Halloween sadist. Psychology Today 19 (11), p. 14.

21 “Beer compound shows potent promise in prostate cancer battle.” Press release from Oregon State University May 30, 2006. http://oregonstate.edu/ua/ncs/archives/2006/ may/beer-compound-shows-potent-promise-prostate-cancer-battle. Retrieved on January 6, 2012; Colgate, Emily C., Cristobal L. Miranda, Jan F. Stevens, Tammy M. Bray, and Emily Ho. (2007). “Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells,” Cancer Letters 246, 201–209; “Health benefits of red wine exaggerated” http://health.yahoo.net/articles /nutrition/health-benefits-red-wine-exaggerated. Retrieved on January 14, 2012; “Scientific journals notified following research misconduct investigation.” January 11, 2012. http://today.uconn.edu/blog/2012/01/scientific-journals -notified-following-research-misconduct-investigation/. Retrieved on January 14, 2012.

22 Pepinsky, Hal. “The myth that crime and criminality can be measured.” 3–11 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

23 Bullock, Jennifer L., and Bruce A. Arrigo. “The myth that mental illness causes crime.” 12–19 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

24 Friedrichs, David O. “The myth that white-collar crime is only about financial loss.” 20–28 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

25 Kuhns III, Joseph B., and Charisse T. M. Coston. “The myth that serial murderers are disproportionately white males.” 37–44 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

26 Longmire, Dennis R., Jacqueline Buffington-Vollum, and Scott Vollum. “The myth of positive differentiation in the classification of dangerous offenders.” 123–131 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

27 Masters, Ruth E., Lori Beth Way, Phyllis B. Gerstenfeld, Bernadette T. Muscat, Michael Hooper, John P. J. Dussich, Lester Pincu, and Candice A. Skrapec. (2013). CJ realities and challenges, 2nd ed. New York: McGraw-Hill.

32 Brownstein, Henry H. “The myth of drug users as violent offenders.” 45–53 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

33 Goldstein, P. (1985). “The drugs/violence nexus: A tripartite conceptual framework.” Journal of Drug Issues 15, 493–506.

34 Goldstein, P, H. Brownstein, and P. Ryan. (1992). “Drug-related homicide in New York City: 1984 and 1988.” Crime & Delinquency 38, 459–476.

35 Parker, R., and K. Auerhahn. (1998). “Alcohol, drugs, and violence.” Annual Review of Sociology 24, 291–311, p. 291.

36 Buerger, Michael. “The myth of racial profiling.” 97–103 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

37 Cordner, Gary, and Kathryn E. Scarborough. “The myth that science solves crimes.” 104–110 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

38 Willis, James J., Stephen D. Mastrofski, and David Weisburd. “The myth that COMPSTAT reduces crime and transforms police organizations.” 111–119 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

39 Masters, et al., 2013.

43 Scott, Eric J. (1981). Calls for service: Citizen demand and initial police response. Washington, DC: Government Printing Office.

44 Lersch, Kim. “The myth of policewomen on patrol.” 89–96 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

45 Janikowski, Richard. “The myth that the exclusionary rule allows many criminals to escape justice.” 132–139 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

46 Bishop, Donna M. “The myth that harsh punishments reduce juvenile crime.” 140–148 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

47 Immarigeon, Russ. “The myth that public attitudes are punitive.” 149–157 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

48 Acker, James R. “The myth of closure and capital punishment.” 167–175 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

49 Masters, et al., 2013.

52 Lersch, 2006.

53 Newport, Frank. “In U.S., support for death penalty falls to 39-year low.” October 13, 2011. http://www.gallup .com/poll/150089/support-death-penalty-falls-year-low.aspx. Retrieved on April 16, 2012.

54 Applegate, Brandon. “The myth that the death penalty is administered fairly.” 158–166 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

55 Williams, M. R., and J. E. Holcomb. (2001). “Racial disparity and death sentences in Ohio.” Journal of Criminal Justice 29, 207–218.

56 Snell, Tracy L. (2011, December). Capital punishment, 2010—statistical tables. Washington, DC: Bureau of Justice Statistics.

57 Applegate, 2006.

58 Williams and Holcomb, 2001.

59 Applegate, 2006.

61 Wood, Peter B. “The myth that imprisonment is the most severe form of punishment.” 192–200 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

63 Michalowski, Raymond. “The myth that punishment reduces crime.” 179–191 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

64 McShane, Marilyn, Frank P. Williams III, and Beth Pelz. “The myth of prisons as country clubs.” 201–208 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

65 Parker, Mary. “The myth that prisons can be self-supporting.” 209–213 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

66 Blakely, Curtis, and John Ortiz Smykla. “Correctional privatization and the myth of inherent efficiency.” 214–220 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

67 Jones, G. Mark. “The myth that the focus of community corrections is rehabilitation.” 221–226 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

68 Cullen, Francis T., and Paula Smith. “The myth that correctional rehabilitation does not work.” 227–238 in Bohm, Robert M., and Jeffrey T. Walker. (2006). Demystifying crime and criminal justice. Los Angeles: Roxbury.

69 Masters, et al., 2013.

73 Petersilia, Joan. (1990). “When probation becomes more dreaded than prison. Federal Probation 54, 23–27.

75 Wood, P. B., and H. G. Grasmick. (1999). “Toward the development of punishment equivalencies: Male and female inmates rate the severity of alternative sanctions compared to prison.” Justice Quarterly 16, 19–50.

76 Example is excerpted from Amy B. Thistlethwaite and John D. Wooldredge. (2010). Forty studies that changed criminal justice: Explorations into the history of criminal justice research. Upper Saddle River, NJ: Prentice Hall. This is an excellent book that demonstrates the impact research has had on criminal justice operations.

77 National Commission on Productivity. (1973). Opportunities for improving productivity in police services. Washington, DC: United States Government Printing Office, p. 19.

78 Pate, T., A. Ferrara, R. Bowers, and J. Lorence. (1976). Police response time: Its determinants and effects. Washington, DC: Police Foundation.

79 Worden, R. (1993). “Toward equity and efficiency in law enforcement: Differential police response. American Journal of Police 12, 1–32.

80 Example is excerpted from Amy B. Thistlethwaite and John D. Wooldredge. (2010). Forty studies that changed criminal justice: Explorations into the history of criminal justice research. Upper Saddle River, NJ: Prentice Hall.

81 Simon, R. (1967). The jury and the defense of insanity. Boston: Little, Brown.

83 Steffensmeier, D., J. Ulmer, & J. Kramer. (1998). “The interaction of race, gender, and age in criminal sentencing: The punishment cost of being young, black, and male. Criminology 36, 763–797.

84 Example is excerpted from Amy B. Thistlethwaite and John D. Wooldredge. (2010). Forty studies that changed criminal justice: Explorations into the history of criminal justice research. Upper Saddle River, NJ: Prentice Hall.

85 Martinson, R. (1974). “What works? Questions and answers about prison reform.” The Public Interest 10, 22–54.

86 Ibid, p. 25.

87 Ibid, p. 49.

Applied Research Methods in Criminal Justice and Criminology by University of North Texas is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License , except where otherwise noted.

Share This Book

8 Why Is Research Important?

[latexpage]

Learning Objectives

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( [link] ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

USE OF RESEARCH INFORMATION

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the hypothesized link between exposure to media violence and subsequent aggression has been debated in the scientific community for roughly 60 years. Even today, we will find detractors, but a consensus is building. Several professional organizations view media violence exposure as a risk factor for actual violence, including the American Medical Association, the American Psychiatric Association, and the American Psychological Association (American Academy of Pediatrics, American Academy of Child & Adolescent Psychiatry, American Psychological Association, American Medical Association, American Academy of Family Physicians, American Psychiatric Association, 2000).

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding the D.A.R.E. (Drug Abuse Resistance Education) program in public schools ( [link] ). This program typically involves police officers coming into the classroom to educate students about the dangers of becoming involved with alcohol and other drugs. According to the D.A.R.E. website (www.dare.org), this program has been very popular since its inception in 1983, and it is currently operating in 75% of school districts in the United States and in more than 40 countries worldwide. Sounds like an easy decision, right? However, on closer review, you discover that the vast majority of research into this program consistently suggests that participation has little, if any, effect on whether or not someone uses alcohol or other drugs (Clayton, Cattarello, & Johnstone, 1996; Ennett, Tobler, Ringwalt, & Flewelling, 1994; Lynam et al., 1999; Ringwalt, Ennett, & Holt, 1991). If you are committed to being a good steward of taxpayer money, will you fund this particular program, or will you try to find other programs that research has consistently demonstrated to be effective?

A D.A.R.E. poster reads “D.A.R.E. to resist drugs and violence.”

Watch this news report to learn more about some of the controversial issues surrounding the D.A.R.E. program.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

THE PROCESS OF SCIENTIFIC RESEARCH

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested against the empirical world; in inductive reasoning , empirical observations lead to new ideas ( [link] ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

Play this “Deal Me In” interactive card game to practice using inductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests [link] .

A diagram has four boxes: the top is labeled “theory,” the right is labeled “hypothesis,” the bottom is labeled “research,” and the left is labeled “observation.” Arrows flow in the direction from top to right to bottom to left and back to the top, clockwise. The top right arrow is labeled “use the hypothesis to form a theory,” the bottom right arrow is labeled “design a study to test the hypothesis,” the bottom left arrow is labeled “perform the research,” and the top left arrow is labeled “create or modify the theory.”

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( [link] ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

Visit this website to apply the scientific method and practice its steps by using them to solve a murder mystery, determine why a student is in trouble, and design an experiment to test house paint.

Scientists are engaged in explaining and understanding how the world around them works, and they are able to do so by coming up with theories that generate hypotheses that are testable and falsifiable. Theories that stand up to their tests are retained and refined, while those that do not are discarded or modified. In this way, research enables scientists to separate fact from simple opinion. Having good information generated from research aids in making wise decisions both in public policy and in our personal lives.

Review Questions

Scientific hypotheses are ________ and falsifiable.

________ are defined as observable realities.

Scientific knowledge is ________.

A major criticism of Freud’s early theories involves the fact that his theories ________.

  • were too limited in scope
  • were too outrageous
  • were too broad
  • were not testable

Critical Thinking Questions

In this section, the D.A.R.E. program was described as an incredibly popular program in schools across the United States despite the fact that research consistently suggests that this program is largely ineffective. How might one explain this discrepancy?

There is probably tremendous political pressure to appear to be hard on drugs. Therefore, even though D.A.R.E. might be ineffective, it is a well-known program with which voters are familiar.

The scientific method is often described as self-correcting and cyclical. Briefly describe your understanding of the scientific method with regard to these concepts.

This cyclical, self-correcting process is primarily a function of the empirical nature of science. Theories are generated as explanations of real-world phenomena. From theories, specific hypotheses are developed and tested. As a function of this testing, theories will be revisited and modified or refined to generate new hypotheses that are again tested. This cyclical process ultimately allows for more and more precise (and presumably accurate) information to be collected.

Personal Application Questions

Healthcare professionals cite an enormous number of health problems related to obesity, and many people have an understandable desire to attain a healthy weight. There are many diet programs, services, and products on the market to aid those who wish to lose weight. If a close friend was considering purchasing or participating in one of these products, programs, or services, how would you make sure your friend was fully aware of the potential consequences of this decision? What sort of information would you want to review before making such an investment or lifestyle change yourself?

Creative Commons License

Share This Book

  • Increase Font Size

AOFIRS

  • Board Members
  • Management Team
  • Become a Contributor
  • Volunteer Opportunities
  • Code of Ethical Practices

KNOWLEDGE NETWORK

  • Search Engines List
  • Suggested Reading Library
  • Web Directories
  • Research Papers
  • Industry News

AOFIRS Knowledge Share Network

  • Become a Member
  • Associate Membership
  • Certified Membership
  • Membership Application
  • Corporate Application

Join Professional Group of Online Researchers

  • CIRS Certification Program
  • CIRS Certification Objectives
  • CIRS Certification Benefits
  • CIRS Certification Exam
  • Maintain Your Certification

Top Research Courses

  • Upcoming Events
  • Live Classes
  • Classes Schedule
  • Webinars Schedules

Online Research Training Program

  • Latest Articles
  • Internet Research
  • Search Techniques
  • Research Methods
  • Business Research
  • Search Engines
  • Research & Tools
  • Investigative Research
  • Internet Search
  • Work from Home
  • Internet Ethics
  • Internet Privacy

Six Reasons Why Research is Important

Importance of internet Research

Everyone conducts research in some form or another from a young age, whether news, books, or browsing the Internet. Internet users come across thoughts, ideas, or perspectives - the curiosity that drives the desire to explore. However, when research is essential to make practical decisions, the nature of the study alters - it all depends on its application and purpose. For instance, skilled research offered as a  research paper service  has a definite objective, and it is focused and organized. Professional research helps derive inferences and conclusions from solving problems. visit the HB tool services for the amazing research tools that will help to solve your problems regarding the research on any project.

What is the Importance of Research?

The primary goal of the research is to guide action, gather evidence for theories, and contribute to the growth of knowledge in data analysis. This article discusses the importance of research and the multiple reasons why it is beneficial to everyone, not just students and scientists.

On the other hand, research is important in business decision-making because it can assist in making better decisions when combined with their experience and intuition.

Reasons for the Importance of Research

  • Acquire Knowledge Effectively
  • Research helps in problem-solving
  • Provides the latest information
  • Builds credibility
  • Helps in business success
  • Discover and Seize opportunities

1-  Acquire Knowledge Efficiently through Research

The most apparent reason to conduct research is to understand more. Even if you think you know everything there is to know about a subject, there is always more to learn. Research helps you expand on any prior knowledge you have of the subject. The research process creates new opportunities for learning and progress.

2- Research Helps in Problem-solving

Problem-solving can be divided into several components, which require knowledge and analysis, for example,  identification of issues, cause identification,  identifying potential solutions, decision to take action, monitoring and evaluation of activity and outcomes.

You may just require additional knowledge to formulate an informed strategy and make an informed decision. When you know you've gathered reliable data, you'll be a lot more confident in your answer.

3- Research Provides the Latest Information

Research enables you to seek out the most up-to-date facts. There is always new knowledge and discoveries in various sectors, particularly scientific ones. Staying updated keeps you from falling behind and providing inaccurate or incomplete information. You'll be better prepared to discuss a topic and build on ideas if you have the most up-to-date information. With the help of tools and certifications such as CIRS , you may learn internet research skills quickly and easily. Internet research can provide instant, global access to information.

4- Research Builds Credibility

Research provides a solid basis for formulating thoughts and views. You can speak confidently about something you know to be true. It's much more difficult for someone to find flaws in your arguments after you've finished your tasks. In your study, you should prioritize the most reputable sources. Your research should focus on the most reliable sources. You won't be credible if your "research" comprises non-experts' opinions. People are more inclined to pay attention if your research is excellent.

5-  Research Helps in Business Success

R&D might also help you gain a competitive advantage. Finding ways to make things run more smoothly and differentiate a company's products from those of its competitors can help to increase a company's market worth.

6-  Research Discover and Seize Opportunities

People can maximize their potential and achieve their goals through various opportunities provided by research. These include getting jobs, scholarships, educational subsidies, projects, commercial collaboration, and budgeted travel. Research is essential for anyone looking for work or a change of environment. Unemployed people will have a better chance of finding potential employers through job advertisements or agencies. 

How to Improve Your Research Skills

Start with the big picture and work your way down.

It might be hard to figure out where to start when you start researching. There's nothing wrong with a simple internet search to get you started. Online resources like Google and Wikipedia are a great way to get a general idea of a subject, even though they aren't always correct. They usually give a basic overview with a short history and any important points.

Identify Reliable Source

Not every source is reliable, so it's critical that you can tell the difference between the good ones and the bad ones. To find a reliable source, use your analytical and critical thinking skills and ask yourself the following questions: Is this source consistent with other sources I've discovered? Is the author a subject matter expert? Is there a conflict of interest in the author's point of view on this topic?

Validate Information from Various Sources

Take in new information.

The purpose of research is to find answers to your questions, not back up what you already assume. Only looking for confirmation is a minimal way to research because it forces you to pick and choose what information you get and stops you from getting the most accurate picture of the subject. When you do research, keep an open mind to learn as much as possible.

Facilitates Learning Process

Learning new things and implementing them in daily life can be frustrating. Finding relevant and credible information requires specialized training and web search skills due to the sheer enormity of the Internet and the rapid growth of indexed web pages. On the other hand, short courses and Certifications like CIRS make the research process more accessible. CIRS Certification offers complete knowledge from beginner to expert level. You can become a Certified Professional Researcher and get a high-paying job, but you'll also be much more efficient and skilled at filtering out reliable data. You can learn more about becoming a Certified Professional Researcher.

Stay Organized

You'll see a lot of different material during the process of gathering data, from web pages to PDFs to videos. You must keep all of this information organized in some way so that you don't lose anything or forget to mention something properly. There are many ways to keep your research project organized, but here are a few of the most common:  Learning Management Software , Bookmarks in your browser, index cards, and a bibliography that you can add to as you go are all excellent tools for writing.

Make Use of the library's Resources

If you still have questions about researching, don't worry—even if you're not a student performing academic or course-related research, there are many resources available to assist you. Many high school and university libraries, in reality, provide resources not only for staff and students but also for the general public. Look for research guidelines or access to specific databases on the library's website. Association of Internet Research Specialists enjoys sharing informational content such as research-related articles , research papers , specialized search engines list compiled from various sources, and contributions from our members and in-house experts.

of Conducting Research

Latest from erin r. goodrich.

  • Enhancing Efficiency: The Role of Technology in Personal Injury Case Management
  • The Evolution and Future of Workplace Benefit Administration
  • 10 Best People Search Engines and Websites in 2022

Live Classes Schedule

  • MAY 24 CIRS Certification Internet Research Training Program Live Classes Online
  • MAY 24 Web Search Methods & Techniques Live Training Live Classes Online

World's leading professional association of Internet Research Specialists - We deliver Knowledge, Education, Training, and Certification in the field of Professional Online Research. The AOFIRS is considered a major contributor in improving Web Search Skills and recognizes Online Research work as a full-time occupation for those that use the Internet as their primary source of information.

Get Exclusive Research Tips in Your Inbox

  • Privacy Policy
  • Terms & Conditions
  • Advertising Opportunities
  • Knowledge Network

Open Education Online

10 Reasons Why Research is Important

No matter what career field you’re in or how high up you are, there’s always more to learn . The same applies to your personal life. No matter how many experiences you have or how diverse your social circle, there are things you don’t know. Research unlocks the unknowns, lets you explore the world from different perspectives, and fuels a deeper understanding. In some areas, research is an essential part of success. In others, it may not be absolutely necessary, but it has many benefits. Here are ten reasons why research is important:

#1. Research expands your knowledge base

The most obvious reason to do research is that you’ll learn more. There’s always more to learn about a topic, even if you are already well-versed in it. If you aren’t, research allows you to build on any personal experience you have with the subject. The process of research opens up new opportunities for learning and growth.

#2. Research gives you the latest information

Research encourages you to find the most recent information available . In certain fields, especially scientific ones, there’s always new information and discoveries being made. Staying updated prevents you from falling behind and giving info that’s inaccurate or doesn’t paint the whole picture. With the latest info, you’ll be better equipped to talk about a subject and build on ideas.

#3. Research helps you know what you’re up against

In business, you’ll have competition. Researching your competitors and what they’re up to helps you formulate your plans and strategies. You can figure out what sets you apart. In other types of research, like medicine, your research might identify diseases, classify symptoms, and come up with ways to tackle them. Even if your “enemy” isn’t an actual person or competitor, there’s always some kind of antagonist force or problem that research can help you deal with.

#4. Research builds your credibility

People will take what you have to say more seriously when they can tell you’re informed. Doing research gives you a solid foundation on which you can build your ideas and opinions. You can speak with confidence about what you know is accurate. When you’ve done the research, it’s much harder for someone to poke holes in what you’re saying. Your research should be focused on the best sources. If your “research” consists of opinions from non-experts, you won’t be very credible. When your research is good, though, people are more likely to pay attention.

#5. Research helps you narrow your scope

When you’re circling a topic for the first time, you might not be exactly sure where to start. Most of the time, the amount of work ahead of you is overwhelming. Whether you’re writing a paper or formulating a business plan, it’s important to narrow the scope at some point. Research helps you identify the most unique and/or important themes. You can choose the themes that fit best with the project and its goals.

#6. Research teaches you better discernment

Doing a lot of research helps you sift through low-quality and high-quality information. The more research you do on a topic, the better you’ll get at discerning what’s accurate and what’s not. You’ll also get better at discerning the gray areas where information may be technically correct but used to draw questionable conclusions.

#7. Research introduces you to new ideas

You may already have opinions and ideas about a topic when you start researching. The more you research, the more viewpoints you’ll come across. This encourages you to entertain new ideas and perhaps take a closer look at yours. You might change your mind about something or, at least, figure out how to position your ideas as the best ones.

#8. Research helps with problem-solving

Whether it’s a personal or professional problem, it helps to look outside yourself for help. Depending on what the issue is, your research can focus on what others have done before. You might just need more information, so you can make an informed plan of attack and an informed decision. When you know you’ve collected good information, you’ll feel much more confident in your solution.

#9. Research helps you reach people

Research is used to help raise awareness of issues like climate change , racial discrimination, gender inequality , and more. Without hard facts, it’s very difficult to prove that climate change is getting worse or that gender inequality isn’t progressing as quickly as it should. The public needs to know what the facts are, so they have a clear idea of what “getting worse” or “not progressing” actually means. Research also entails going beyond the raw data and sharing real-life stories that have a more personal impact on people.

#10. Research encourages curiosity

Having curiosity and a love of learning take you far in life. Research opens you up to different opinions and new ideas. It also builds discerning and analytical skills. The research process rewards curiosity. When you’re committed to learning, you’re always in a place of growth. Curiosity is also good for your health. Studies show curiosity is associated with higher levels of positivity, better satisfaction with life, and lower anxiety.

Leave a Comment Cancel reply

You must be logged in to post a comment.

why is it important to understand research

Stanford University

Along with Stanford news and stories, show me:

  • Student information
  • Faculty/Staff information

We want to provide announcements, events, leadership messages and resources that are relevant to you. Your selection is stored in a browser cookie which you can remove at any time using “Clear all personalization” below.

Speaking, writing and reading are integral to everyday life, where language is the primary tool for expression and communication. Studying how people use language – what words and phrases they unconsciously choose and combine – can help us better understand ourselves and why we behave the way we do.

Linguistics scholars seek to determine what is unique and universal about the language we use, how it is acquired and the ways it changes over time. They consider language as a cultural, social and psychological phenomenon.

“Understanding why and how languages differ tells about the range of what is human,” said Dan Jurafsky , the Jackson Eli Reynolds Professor in Humanities and chair of the Department of Linguistics in the School of Humanities and Sciences at Stanford . “Discovering what’s universal about languages can help us understand the core of our humanity.”

The stories below represent some of the ways linguists have investigated many aspects of language, including its semantics and syntax, phonetics and phonology, and its social, psychological and computational aspects.

Understanding stereotypes

Stanford linguists and psychologists study how language is interpreted by people. Even the slightest differences in language use can correspond with biased beliefs of the speakers, according to research.

One study showed that a relatively harmless sentence, such as “girls are as good as boys at math,” can subtly perpetuate sexist stereotypes. Because of the statement’s grammatical structure, it implies that being good at math is more common or natural for boys than girls, the researchers said.

Language can play a big role in how we and others perceive the world, and linguists work to discover what words and phrases can influence us, unknowingly.

How well-meaning statements can spread stereotypes unintentionally

New Stanford research shows that sentences that frame one gender as the standard for the other can unintentionally perpetuate biases.

Algorithms reveal changes in stereotypes

New Stanford research shows that, over the past century, linguistic changes in gender and ethnic stereotypes correlated with major social movements and demographic changes in the U.S. Census data.

Exploring what an interruption is in conversation

Stanford doctoral candidate Katherine Hilton found that people perceive interruptions in conversation differently, and those perceptions differ depending on the listener’s own conversational style as well as gender.

Cops speak less respectfully to black community members

Professors Jennifer Eberhardt and Dan Jurafsky, along with other Stanford researchers, detected racial disparities in police officers’ speech after analyzing more than 100 hours of body camera footage from Oakland Police.

How other languages inform our own

People speak roughly 7,000 languages worldwide. Although there is a lot in common among languages, each one is unique, both in its structure and in the way it reflects the culture of the people who speak it.

Jurafsky said it’s important to study languages other than our own and how they develop over time because it can help scholars understand what lies at the foundation of humans’ unique way of communicating with one another.

“All this research can help us discover what it means to be human,” Jurafsky said.

Stanford PhD student documents indigenous language of Papua New Guinea

Fifth-year PhD student Kate Lindsey recently returned to the United States after a year of documenting an obscure language indigenous to the South Pacific nation.

Students explore Esperanto across Europe

In a research project spanning eight countries, two Stanford students search for Esperanto, a constructed language, against the backdrop of European populism.

Chris Manning: How computers are learning to understand language​

A computer scientist discusses the evolution of computational linguistics and where it’s headed next.

Stanford research explores novel perspectives on the evolution of Spanish

Using digital tools and literature to explore the evolution of the Spanish language, Stanford researcher Cuauhtémoc García-García reveals a new historical perspective on linguistic changes in Latin America and Spain.

Language as a lens into behavior

Linguists analyze how certain speech patterns correspond to particular behaviors, including how language can impact people’s buying decisions or influence their social media use.

For example, in one research paper, a group of Stanford researchers examined the differences in how Republicans and Democrats express themselves online to better understand how a polarization of beliefs can occur on social media.

“We live in a very polarized time,” Jurafsky said. “Understanding what different groups of people say and why is the first step in determining how we can help bring people together.”

Analyzing the tweets of Republicans and Democrats

New research by Dora Demszky and colleagues examined how Republicans and Democrats express themselves online in an attempt to understand how polarization of beliefs occurs on social media.

Examining bilingual behavior of children at Texas preschool

A Stanford senior studied a group of bilingual children at a Spanish immersion preschool in Texas to understand how they distinguished between their two languages.

Predicting sales of online products from advertising language

Stanford linguist Dan Jurafsky and colleagues have found that products in Japan sell better if their advertising includes polite language and words that invoke cultural traditions or authority.

Language can help the elderly cope with the challenges of aging, says Stanford professor

By examining conversations of elderly Japanese women, linguist Yoshiko Matsumoto uncovers language techniques that help people move past traumatic events and regain a sense of normalcy.

'Applicable Algebra reshaped my understanding of math'

Zhenghui Zhang: Mathematics

A&S Communications

Zhenghui Zhang

Mathematics  China

What was your favorite class and why?

There are many classes I have taken that are truly inspirational, and it is tough to say which one is my favorite. However, I do think MATH 3360 Applicable Algebra, taught by Prof. Marcelo Aguiar, greatly impacted my thinking about mathematics. It is the first proof-based mathematics class I took at Cornell, and Prof. Aguiar demonstrated how to derive rich, intricate mathematical theorems in algebra from clear, simple definitions. In the class, deduction was the nutrition that fertilized the growth of mathematical ideas, and I often found myself shocked to realize how far we have gone, given how little we started with. Moreover, the class has the perpetual power to reassure and energize me whenever I get stuck in research math: I will think back about how we do proofs in MATH 3360, calm myself down, restart thinking, and end up proving something! By reshaping my understanding of math, the class's influence is truly everlasting.

What is your main extracurricular activity and why is it important to you?

While during semesters I devote myself primarily to math, during breaks I tend to push myself out of my bubble by traveling to different countries. In the past, I have been to Mexico, Peru, the Dominican Republic, Haiti, etc., and it is a fantastic experience to witness different cultures/lifestyles and see gorgeous scenery! I really like traveling to Latin American countries, especially given that my comparative literature minor has helped me understand some of their special historical backgrounds through novels/scholarly texts. Specifically, one novel that I find extremely motivating is "One Hundred Years of Solitude." This is a reading from my comparative literature class, and I can really relate to the plot. By reading Latin American literature and experiencing life there, I can understand social issues inherent in these countries after colonization and have intellectual discussions with my friends by putting myself in a global perspective. I believe traveling/reading can help me see the broader, more complex parts of life that are undetectable/incomprehensible by rationality but are worth understanding through sympathy and love.

What have you accomplished as a Cornell student that you are most proud of?

Since junior year, I have been working on connecting the (co)homology of specific linear quotient spaces with their associated matroids under the supervision of Prof. Ed Swartz. Unlike short-term REU projects, this long-term project shows me the side of research that values resilience and patience. Working on this research is like gradually clearing the mud and finding the scattered gems bit by bit. So far, we have obtained excellent partial results like long exact sequences based on matroid deletion, contraction and computations of rational homologies through characteristic polynomials of dual matroids. Recently, our primary focus has been on computing the cohomology ring structures of certain linear quotients of spheres using equivariant cohomology and Smith's theory. We have a concrete conjecture for the ring structure, which has proven true for certain examples. I hope to continue working on this research project over the summer and potentially prove some nice theorems! This year, I began working on my senior thesis, which focuses on the ends of spaces and boundaries of groups under the supervision of Prof. Jason Manning. Shape theory, a variant of homotopy theory, can be used to study local ‘bad’ spaces that arise as the boundaries of groups, like the Sierpinski carpet or the Menger cube. I am currently writing my senior thesis, which will show some applications of shape theory in geometric group theory and low-dimensional topology!

What are your plans for next year? 

I will attend graduate school and start doing research in topology, an area of mathematics that studies spaces and their shapes. Specifically, I want to understand low-dimensional topology; i.e., 3-dimensional or 4-dimensional spaces. While spaces in dimensions 1, 2, >=5 are somehow well understood by mathematicians, 3 or 4-dimensional spaces, those closest to the space we live in (because the physical world we live in is 3-dimensional and the spacetime is 4-dimensional), are the hardest to comprehend. One of the most famous unsolved conjectures in this area is the 4-dimensional smooth Poincare conjecture, which boils down to understanding whether the 4-dimensional sphere admits an additional differentiable structure. Low-dimensional topology is a very active area of research. I want to contribute to this area in the future, using methods like gauge theory, floer homology and hyperbolic/symplectic techniques.

Every year, our faculty nominate graduating Arts & Sciences students to be featured as part of our Extraordinary Journeys series.  Read more about the Class of 202 4.

More News from A&S

College campus with stately buildings and green lawns under a blue sky, with a lake in the background

Committee to recommend final expressive activity policy

Person making a sign using both hands

American Sign Language has found a growing home on the Hill

Members of the A&S Class of 2024

Extraordinary Journeys: The Class of 2024

Illustration showing a gold coin stamped with the letter "B"

BTPI will research relationship between Bitcoin and financial freedom

Zhenghui (Sunny) Zhang

U.S. flag

A .gov website belongs to an official government organization in the United States.

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Handwashing
  • Hand Hygiene as a Family Activity
  • Hand Hygiene FAQs
  • Handwashing Facts
  • Publications, Data, & Statistics
  • Health Promotion Materials
  • Global Handwashing Day
  • Life is Better with Clean Hands Campaign
  • Clinical Safety
  • Healthcare Training
  • Clean Hands Count Materials

About Handwashing

  • Many diseases and conditions are spread by not washing hands with soap and clean, running water.
  • Handwashing with soap is one of the best ways to stay healthy.
  • If soap and water are not readily available, use a hand sanitizer with at least 60% alcohol to clean your hands.

boy showing his clean hands

Why it's important

Washing hands can keep you healthy and prevent the spread of respiratory and diarrheal infections. Germs can spread from person to person or from surfaces to people when you:

  • Touch your eyes, nose, and mouth with unwashed hands
  • Prepare or eat food and drinks with unwashed hands
  • Touch surfaces or objects that have germs on them
  • Blow your nose, cough, or sneeze into hands and then touch other people's hands or common objects

Key times to wash hands

You can help yourself and your loved ones stay healthy by washing your hands often, especially during these key times when you are likely to get and spread germs:

  • Before, during, and after preparing food
  • Before and after eating food
  • Before and after caring for someone at home who is sick with vomiting or diarrhea
  • Before and after treating a cut or wound
  • After using the toilet
  • After changing diapers or cleaning up a child who has used the toilet
  • After blowing your nose, coughing, or sneezing
  • After touching an animal, animal feed, or animal waste
  • After handling pet food or pet treats
  • After touching garbage

How it works

Washing your hands is easy, and it’s one of the most effective ways to prevent the spread of germs. Follow these five steps every time.

  • Wet your hands with clean, running water (warm or cold), turn off the tap, and apply soap.
  • Lather your hands by rubbing them together with the soap. Lather the backs of your hands, between your fingers, and under your nails.
  • Scrub your hands for at least 20 seconds . Need a timer? Hum the “Happy Birthday” song from beginning to end twice.
  • Rinse your hands well under clean, running water.
  • Dry your hands using a clean towel or an air dryer.

Use hand sanitizer when you can't use soap and water

Washing hands with soap and water is the best way to get rid of germs in most situations. If soap and water are not readily available, you can use an alcohol-based hand sanitizer that contains at least 60% alcohol. You can tell if the sanitizer contains at least 60% alcohol by looking at the product label.

What you can do

CDC has health promotion materials to encourage kids and adults to make handwashing part of their everyday lives.

  • Share social media graphics and messages.
  • Print stickers and place clings on bathroom mirrors.
  • Promote handwashing on or around Global Handwashing Day , celebrated each year on October 15.
  • Distribute fact sheets to share information about hand hygiene for specific audiences.
  • Frequent Questions About Hand Hygiene
  • Hand Hygiene in Healthcare Settings
  • The Life is Better with Clean Hands Campaign

Clean Hands

Having clean hands is one of the best ways to avoid getting sick and prevent the spread of germs to others.

For Everyone

Health care providers.

why is it important to understand research

Cultural Relativity and Acceptance of Embryonic Stem Cell Research

Article sidebar.

why is it important to understand research

Main Article Content

There is a debate about the ethical implications of using human embryos in stem cell research, which can be influenced by cultural, moral, and social values. This paper argues for an adaptable framework to accommodate diverse cultural and religious perspectives. By using an adaptive ethics model, research protections can reflect various populations and foster growth in stem cell research possibilities.

INTRODUCTION

Stem cell research combines biology, medicine, and technology, promising to alter health care and the understanding of human development. Yet, ethical contention exists because of individuals’ perceptions of using human embryos based on their various cultural, moral, and social values. While these disagreements concerning policy, use, and general acceptance have prompted the development of an international ethics policy, such a uniform approach can overlook the nuanced ethical landscapes between cultures. With diverse viewpoints in public health, a single global policy, especially one reflecting Western ethics or the ethics prevalent in high-income countries, is impractical. This paper argues for a culturally sensitive, adaptable framework for the use of embryonic stem cells. Stem cell policy should accommodate varying ethical viewpoints and promote an effective global dialogue. With an extension of an ethics model that can adapt to various cultures, we recommend localized guidelines that reflect the moral views of the people those guidelines serve.

Stem cells, characterized by their unique ability to differentiate into various cell types, enable the repair or replacement of damaged tissues. Two primary types of stem cells are somatic stem cells (adult stem cells) and embryonic stem cells. Adult stem cells exist in developed tissues and maintain the body’s repair processes. [1] Embryonic stem cells (ESC) are remarkably pluripotent or versatile, making them valuable in research. [2] However, the use of ESCs has sparked ethics debates. Considering the potential of embryonic stem cells, research guidelines are essential. The International Society for Stem Cell Research (ISSCR) provides international stem cell research guidelines. They call for “public conversations touching on the scientific significance as well as the societal and ethical issues raised by ESC research.” [3] The ISSCR also publishes updates about culturing human embryos 14 days post fertilization, suggesting local policies and regulations should continue to evolve as ESC research develops. [4]  Like the ISSCR, which calls for local law and policy to adapt to developing stem cell research given cultural acceptance, this paper highlights the importance of local social factors such as religion and culture.

I.     Global Cultural Perspective of Embryonic Stem Cells

Views on ESCs vary throughout the world. Some countries readily embrace stem cell research and therapies, while others have stricter regulations due to ethical concerns surrounding embryonic stem cells and when an embryo becomes entitled to moral consideration. The philosophical issue of when the “someone” begins to be a human after fertilization, in the morally relevant sense, [5] impacts when an embryo becomes not just worthy of protection but morally entitled to it. The process of creating embryonic stem cell lines involves the destruction of the embryos for research. [6] Consequently, global engagement in ESC research depends on social-cultural acceptability.

a.     US and Rights-Based Cultures

In the United States, attitudes toward stem cell therapies are diverse. The ethics and social approaches, which value individualism, [7] trigger debates regarding the destruction of human embryos, creating a complex regulatory environment. For example, the 1996 Dickey-Wicker Amendment prohibited federal funding for the creation of embryos for research and the destruction of embryos for “more than allowed for research on fetuses in utero.” [8] Following suit, in 2001, the Bush Administration heavily restricted stem cell lines for research. However, the Stem Cell Research Enhancement Act of 2005 was proposed to help develop ESC research but was ultimately vetoed. [9] Under the Obama administration, in 2009, an executive order lifted restrictions allowing for more development in this field. [10] The flux of research capacity and funding parallels the different cultural perceptions of human dignity of the embryo and how it is socially presented within the country’s research culture. [11]

b.     Ubuntu and Collective Cultures

African bioethics differs from Western individualism because of the different traditions and values. African traditions, as described by individuals from South Africa and supported by some studies in other African countries, including Ghana and Kenya, follow the African moral philosophies of Ubuntu or Botho and Ukama , which “advocates for a form of wholeness that comes through one’s relationship and connectedness with other people in the society,” [12] making autonomy a socially collective concept. In this context, for the community to act autonomously, individuals would come together to decide what is best for the collective. Thus, stem cell research would require examining the value of the research to society as a whole and the use of the embryos as a collective societal resource. If society views the source as part of the collective whole, and opposes using stem cells, compromising the cultural values to pursue research may cause social detachment and stunt research growth. [13] Based on local culture and moral philosophy, the permissibility of stem cell research depends on how embryo, stem cell, and cell line therapies relate to the community as a whole. Ubuntu is the expression of humanness, with the person’s identity drawn from the “’I am because we are’” value. [14] The decision in a collectivistic culture becomes one born of cultural context, and individual decisions give deference to others in the society.

Consent differs in cultures where thought and moral philosophy are based on a collective paradigm. So, applying Western bioethical concepts is unrealistic. For one, Africa is a diverse continent with many countries with different belief systems, access to health care, and reliance on traditional or Western medicines. Where traditional medicine is the primary treatment, the “’restrictive focus on biomedically-related bioethics’” [is] problematic in African contexts because it neglects bioethical issues raised by traditional systems.” [15] No single approach applies in all areas or contexts. Rather than evaluating the permissibility of ESC research according to Western concepts such as the four principles approach, different ethics approaches should prevail.

Another consideration is the socio-economic standing of countries. In parts of South Africa, researchers have not focused heavily on contributing to the stem cell discourse, either because it is not considered health care or a health science priority or because resources are unavailable. [16] Each country’s priorities differ given different social, political, and economic factors. In South Africa, for instance, areas such as maternal mortality, non-communicable diseases, telemedicine, and the strength of health systems need improvement and require more focus. [17] Stem cell research could benefit the population, but it also could divert resources from basic medical care. Researchers in South Africa adhere to the National Health Act and Medicines Control Act in South Africa and international guidelines; however, the Act is not strictly enforced, and there is no clear legislation for research conduct or ethical guidelines. [18]

Some parts of Africa condemn stem cell research. For example, 98.2 percent of the Tunisian population is Muslim. [19] Tunisia does not permit stem cell research because of moral conflict with a Fatwa. Religion heavily saturates the regulation and direction of research. [20] Stem cell use became permissible for reproductive purposes only recently, with tight restrictions preventing cells from being used in any research other than procedures concerning ART/IVF.  Their use is conditioned on consent, and available only to married couples. [21] The community's receptiveness to stem cell research depends on including communitarian African ethics.

c.     Asia

Some Asian countries also have a collective model of ethics and decision making. [22] In China, the ethics model promotes a sincere respect for life or human dignity, [23] based on protective medicine. This model, influenced by Traditional Chinese Medicine (TCM), [24] recognizes Qi as the vital energy delivered via the meridians of the body; it connects illness to body systems, the body’s entire constitution, and the universe for a holistic bond of nature, health, and quality of life. [25] Following a protective ethics model, and traditional customs of wholeness, investment in stem cell research is heavily desired for its applications in regenerative therapies, disease modeling, and protective medicines. In a survey of medical students and healthcare practitioners, 30.8 percent considered stem cell research morally unacceptable while 63.5 percent accepted medical research using human embryonic stem cells. Of these individuals, 89.9 percent supported increased funding for stem cell research. [26] The scientific community might not reflect the overall population. From 1997 to 2019, China spent a total of $576 million (USD) on stem cell research at 8,050 stem cell programs, increased published presence from 0.6 percent to 14.01 percent of total global stem cell publications as of 2014, and made significant strides in cell-based therapies for various medical conditions. [27] However, while China has made substantial investments in stem cell research and achieved notable progress in clinical applications, concerns linger regarding ethical oversight and transparency. [28] For example, the China Biosecurity Law, promoted by the National Health Commission and China Hospital Association, attempted to mitigate risks by introducing an institutional review board (IRB) in the regulatory bodies. 5800 IRBs registered with the Chinese Clinical Trial Registry since 2021. [29] However, issues still need to be addressed in implementing effective IRB review and approval procedures.

The substantial government funding and focus on scientific advancement have sometimes overshadowed considerations of regional cultures, ethnic minorities, and individual perspectives, particularly evident during the one-child policy era. As government policy adapts to promote public stability, such as the change from the one-child to the two-child policy, [30] research ethics should also adapt to ensure respect for the values of its represented peoples.

Japan is also relatively supportive of stem cell research and therapies. Japan has a more transparent regulatory framework, allowing for faster approval of regenerative medicine products, which has led to several advanced clinical trials and therapies. [31] South Korea is also actively engaged in stem cell research and has a history of breakthroughs in cloning and embryonic stem cells. [32] However, the field is controversial, and there are issues of scientific integrity. For example, the Korean FDA fast-tracked products for approval, [33] and in another instance, the oocyte source was unclear and possibly violated ethical standards. [34] Trust is important in research, as it builds collaborative foundations between colleagues, trial participant comfort, open-mindedness for complicated and sensitive discussions, and supports regulatory procedures for stakeholders. There is a need to respect the culture’s interest, engagement, and for research and clinical trials to be transparent and have ethical oversight to promote global research discourse and trust.

d.     Middle East

Countries in the Middle East have varying degrees of acceptance of or restrictions to policies related to using embryonic stem cells due to cultural and religious influences. Saudi Arabia has made significant contributions to stem cell research, and conducts research based on international guidelines for ethical conduct and under strict adherence to guidelines in accordance with Islamic principles. Specifically, the Saudi government and people require ESC research to adhere to Sharia law. In addition to umbilical and placental stem cells, [35] Saudi Arabia permits the use of embryonic stem cells as long as they come from miscarriages, therapeutic abortions permissible by Sharia law, or are left over from in vitro fertilization and donated to research. [36] Laws and ethical guidelines for stem cell research allow the development of research institutions such as the King Abdullah International Medical Research Center, which has a cord blood bank and a stem cell registry with nearly 10,000 donors. [37] Such volume and acceptance are due to the ethical ‘permissibility’ of the donor sources, which do not conflict with religious pillars. However, some researchers err on the side of caution, choosing not to use embryos or fetal tissue as they feel it is unethical to do so. [38]

Jordan has a positive research ethics culture. [39] However, there is a significant issue of lack of trust in researchers, with 45.23 percent (38.66 percent agreeing and 6.57 percent strongly agreeing) of Jordanians holding a low level of trust in researchers, compared to 81.34 percent of Jordanians agreeing that they feel safe to participate in a research trial. [40] Safety testifies to the feeling of confidence that adequate measures are in place to protect participants from harm, whereas trust in researchers could represent the confidence in researchers to act in the participants’ best interests, adhere to ethical guidelines, provide accurate information, and respect participants’ rights and dignity. One method to improve trust would be to address communication issues relevant to ESC. Legislation surrounding stem cell research has adopted specific language, especially concerning clarification “between ‘stem cells’ and ‘embryonic stem cells’” in translation. [41] Furthermore, legislation “mandates the creation of a national committee… laying out specific regulations for stem-cell banking in accordance with international standards.” [42] This broad regulation opens the door for future global engagement and maintains transparency. However, these regulations may also constrain the influence of research direction, pace, and accessibility of research outcomes.

e.     Europe

In the European Union (EU), ethics is also principle-based, but the principles of autonomy, dignity, integrity, and vulnerability are interconnected. [43] As such, the opportunity for cohesion and concessions between individuals’ thoughts and ideals allows for a more adaptable ethics model due to the flexible principles that relate to the human experience The EU has put forth a framework in its Convention for the Protection of Human Rights and Dignity of the Human Being allowing member states to take different approaches. Each European state applies these principles to its specific conventions, leading to or reflecting different acceptance levels of stem cell research. [44]

For example, in Germany, Lebenzusammenhang , or the coherence of life, references integrity in the unity of human culture. Namely, the personal sphere “should not be subject to external intervention.” [45]  Stem cell interventions could affect this concept of bodily completeness, leading to heavy restrictions. Under the Grundgesetz, human dignity and the right to life with physical integrity are paramount. [46] The Embryo Protection Act of 1991 made producing cell lines illegal. Cell lines can be imported if approved by the Central Ethics Commission for Stem Cell Research only if they were derived before May 2007. [47] Stem cell research respects the integrity of life for the embryo with heavy specifications and intense oversight. This is vastly different in Finland, where the regulatory bodies find research more permissible in IVF excess, but only up to 14 days after fertilization. [48] Spain’s approach differs still, with a comprehensive regulatory framework. [49] Thus, research regulation can be culture-specific due to variations in applied principles. Diverse cultures call for various approaches to ethical permissibility. [50] Only an adaptive-deliberative model can address the cultural constructions of self and achieve positive, culturally sensitive stem cell research practices. [51]

II.     Religious Perspectives on ESC

Embryonic stem cell sources are the main consideration within religious contexts. While individuals may not regard their own religious texts as authoritative or factual, religion can shape their foundations or perspectives.

The Qur'an states:

“And indeed We created man from a quintessence of clay. Then We placed within him a small quantity of nutfa (sperm to fertilize) in a safe place. Then We have fashioned the nutfa into an ‘alaqa (clinging clot or cell cluster), then We developed the ‘alaqa into mudgha (a lump of flesh), and We made mudgha into bones, and clothed the bones with flesh, then We brought it into being as a new creation. So Blessed is Allah, the Best of Creators.” [52]

Many scholars of Islam estimate the time of soul installment, marked by the angel breathing in the soul to bring the individual into creation, as 120 days from conception. [53] Personhood begins at this point, and the value of life would prohibit research or experimentation that could harm the individual. If the fetus is more than 120 days old, the time ensoulment is interpreted to occur according to Islamic law, abortion is no longer permissible. [54] There are a few opposing opinions about early embryos in Islamic traditions. According to some Islamic theologians, there is no ensoulment of the early embryo, which is the source of stem cells for ESC research. [55]

In Buddhism, the stance on stem cell research is not settled. The main tenets, the prohibition against harming or destroying others (ahimsa) and the pursuit of knowledge (prajña) and compassion (karuna), leave Buddhist scholars and communities divided. [56] Some scholars argue stem cell research is in accordance with the Buddhist tenet of seeking knowledge and ending human suffering. Others feel it violates the principle of not harming others. Finding the balance between these two points relies on the karmic burden of Buddhist morality. In trying to prevent ahimsa towards the embryo, Buddhist scholars suggest that to comply with Buddhist tenets, research cannot be done as the embryo has personhood at the moment of conception and would reincarnate immediately, harming the individual's ability to build their karmic burden. [57] On the other hand, the Bodhisattvas, those considered to be on the path to enlightenment or Nirvana, have given organs and flesh to others to help alleviate grieving and to benefit all. [58] Acceptance varies on applied beliefs and interpretations.

Catholicism does not support embryonic stem cell research, as it entails creation or destruction of human embryos. This destruction conflicts with the belief in the sanctity of life. For example, in the Old Testament, Genesis describes humanity as being created in God’s image and multiplying on the Earth, referencing the sacred rights to human conception and the purpose of development and life. In the Ten Commandments, the tenet that one should not kill has numerous interpretations where killing could mean murder or shedding of the sanctity of life, demonstrating the high value of human personhood. In other books, the theological conception of when life begins is interpreted as in utero, [59] highlighting the inviolability of life and its formation in vivo to make a religious point for accepting such research as relatively limited, if at all. [60] The Vatican has released ethical directives to help apply a theological basis to modern-day conflicts. The Magisterium of the Church states that “unless there is a moral certainty of not causing harm,” experimentation on fetuses, fertilized cells, stem cells, or embryos constitutes a crime. [61] Such procedures would not respect the human person who exists at these stages, according to Catholicism. Damages to the embryo are considered gravely immoral and illicit. [62] Although the Catholic Church officially opposes abortion, surveys demonstrate that many Catholic people hold pro-choice views, whether due to the context of conception, stage of pregnancy, threat to the mother’s life, or for other reasons, demonstrating that practicing members can also accept some but not all tenets. [63]

Some major Jewish denominations, such as the Reform, Conservative, and Reconstructionist movements, are open to supporting ESC use or research as long as it is for saving a life. [64] Within Judaism, the Talmud, or study, gives personhood to the child at birth and emphasizes that life does not begin at conception: [65]

“If she is found pregnant, until the fortieth day it is mere fluid,” [66]

Whereas most religions prioritize the status of human embryos, the Halakah (Jewish religious law) states that to save one life, most other religious laws can be ignored because it is in pursuit of preservation. [67] Stem cell research is accepted due to application of these religious laws.

We recognize that all religions contain subsets and sects. The variety of environmental and cultural differences within religious groups requires further analysis to respect the flexibility of religious thoughts and practices. We make no presumptions that all cultures require notions of autonomy or morality as under the common morality theory , which asserts a set of universal moral norms that all individuals share provides moral reasoning and guides ethical decisions. [68] We only wish to show that the interaction with morality varies between cultures and countries.

III.     A Flexible Ethical Approach

The plurality of different moral approaches described above demonstrates that there can be no universally acceptable uniform law for ESC on a global scale. Instead of developing one standard, flexible ethical applications must be continued. We recommend local guidelines that incorporate important cultural and ethical priorities.

While the Declaration of Helsinki is more relevant to people in clinical trials receiving ESC products, in keeping with the tradition of protections for research subjects, consent of the donor is an ethical requirement for ESC donation in many jurisdictions including the US, Canada, and Europe. [69] The Declaration of Helsinki provides a reference point for regulatory standards and could potentially be used as a universal baseline for obtaining consent prior to gamete or embryo donation.

For instance, in Columbia University’s egg donor program for stem cell research, donors followed standard screening protocols and “underwent counseling sessions that included information as to the purpose of oocyte donation for research, what the oocytes would be used for, the risks and benefits of donation, and process of oocyte stimulation” to ensure transparency for consent. [70] The program helped advance stem cell research and provided clear and safe research methods with paid participants. Though paid participation or covering costs of incidental expenses may not be socially acceptable in every culture or context, [71] and creating embryos for ESC research is illegal in many jurisdictions, Columbia’s program was effective because of the clear and honest communications with donors, IRBs, and related stakeholders.  This example demonstrates that cultural acceptance of scientific research and of the idea that an egg or embryo does not have personhood is likely behind societal acceptance of donating eggs for ESC research. As noted, many countries do not permit the creation of embryos for research.

Proper communication and education regarding the process and purpose of stem cell research may bolster comprehension and garner more acceptance. “Given the sensitive subject material, a complete consent process can support voluntary participation through trust, understanding, and ethical norms from the cultures and morals participants value. This can be hard for researchers entering countries of different socioeconomic stability, with different languages and different societal values. [72]

An adequate moral foundation in medical ethics is derived from the cultural and religious basis that informs knowledge and actions. [73] Understanding local cultural and religious values and their impact on research could help researchers develop humility and promote inclusion.

IV.     Concerns

Some may argue that if researchers all adhere to one ethics standard, protection will be satisfied across all borders, and the global public will trust researchers. However, defining what needs to be protected and how to define such research standards is very specific to the people to which standards are applied. We suggest that applying one uniform guide cannot accurately protect each individual because we all possess our own perceptions and interpretations of social values. [74] Therefore, the issue of not adjusting to the moral pluralism between peoples in applying one standard of ethics can be resolved by building out ethics models that can be adapted to different cultures and religions.

Other concerns include medical tourism, which may promote health inequities. [75] Some countries may develop and approve products derived from ESC research before others, compromising research ethics or drug approval processes. There are also concerns about the sale of unauthorized stem cell treatments, for example, those without FDA approval in the United States. Countries with robust research infrastructures may be tempted to attract medical tourists, and some customers will have false hopes based on aggressive publicity of unproven treatments. [76]

For example, in China, stem cell clinics can market to foreign clients who are not protected under the regulatory regimes. Companies employ a marketing strategy of “ethically friendly” therapies. Specifically, in the case of Beike, China’s leading stem cell tourism company and sprouting network, ethical oversight of administrators or health bureaus at one site has “the unintended consequence of shifting questionable activities to another node in Beike's diffuse network.” [77] In contrast, Jordan is aware of stem cell research’s potential abuse and its own status as a “health-care hub.” Jordan’s expanded regulations include preserving the interests of individuals in clinical trials and banning private companies from ESC research to preserve transparency and the integrity of research practices. [78]

The social priorities of the community are also a concern. The ISSCR explicitly states that guidelines “should be periodically revised to accommodate scientific advances, new challenges, and evolving social priorities.” [79] The adaptable ethics model extends this consideration further by addressing whether research is warranted given the varying degrees of socioeconomic conditions, political stability, and healthcare accessibilities and limitations. An ethical approach would require discussion about resource allocation and appropriate distribution of funds. [80]

While some religions emphasize the sanctity of life from conception, which may lead to public opposition to ESC research, others encourage ESC research due to its potential for healing and alleviating human pain. Many countries have special regulations that balance local views on embryonic personhood, the benefits of research as individual or societal goods, and the protection of human research subjects. To foster understanding and constructive dialogue, global policy frameworks should prioritize the protection of universal human rights, transparency, and informed consent. In addition to these foundational global policies, we recommend tailoring local guidelines to reflect the diverse cultural and religious perspectives of the populations they govern. Ethics models should be adapted to local populations to effectively establish research protections, growth, and possibilities of stem cell research.

For example, in countries with strong beliefs in the moral sanctity of embryos or heavy religious restrictions, an adaptive model can allow for discussion instead of immediate rejection. In countries with limited individual rights and voice in science policy, an adaptive model ensures cultural, moral, and religious views are taken into consideration, thereby building social inclusion. While this ethical consideration by the government may not give a complete voice to every individual, it will help balance policies and maintain the diverse perspectives of those it affects. Embracing an adaptive ethics model of ESC research promotes open-minded dialogue and respect for the importance of human belief and tradition. By actively engaging with cultural and religious values, researchers can better handle disagreements and promote ethical research practices that benefit each society.

This brief exploration of the religious and cultural differences that impact ESC research reveals the nuances of relative ethics and highlights a need for local policymakers to apply a more intense adaptive model.

[1] Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice.  Orthopedic reviews ,  14 (3), 37498. https://doi.org/10.52965/001c.37498

[2] Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice.  Orthopedic reviews ,  14 (3), 37498. https://doi.org/10.52965/001c.37498

[3] International Society for Stem Cell Research. (2023). Laboratory-based human embryonic stem cell research, embryo research, and related research activities . International Society for Stem Cell Research. https://www.isscr.org/guidelines/blog-post-title-one-ed2td-6fcdk ; Kimmelman, J., Hyun, I., Benvenisty, N.  et al.  Policy: Global standards for stem-cell research.  Nature   533 , 311–313 (2016). https://doi.org/10.1038/533311a

[4] International Society for Stem Cell Research. (2023). Laboratory-based human embryonic stem cell research, embryo research, and related research activities . International Society for Stem Cell Research. https://www.isscr.org/guidelines/blog-post-title-one-ed2td-6fcdk

[5] Concerning the moral philosophies of stem cell research, our paper does not posit a personal moral stance nor delve into the “when” of human life begins. To read further about the philosophical debate, consider the following sources:

Sandel M. J. (2004). Embryo ethics--the moral logic of stem-cell research.  The New England journal of medicine ,  351 (3), 207–209. https://doi.org/10.1056/NEJMp048145 ; George, R. P., & Lee, P. (2020, September 26). Acorns and Embryos . The New Atlantis. https://www.thenewatlantis.com/publications/acorns-and-embryos ; Sagan, A., & Singer, P. (2007). The moral status of stem cells. Metaphilosophy , 38 (2/3), 264–284. http://www.jstor.org/stable/24439776 ; McHugh P. R. (2004). Zygote and "clonote"--the ethical use of embryonic stem cells.  The New England journal of medicine ,  351 (3), 209–211. https://doi.org/10.1056/NEJMp048147 ; Kurjak, A., & Tripalo, A. (2004). The facts and doubts about beginning of the human life and personality.  Bosnian journal of basic medical sciences ,  4 (1), 5–14. https://doi.org/10.17305/bjbms.2004.3453

[6] Vazin, T., & Freed, W. J. (2010). Human embryonic stem cells: derivation, culture, and differentiation: a review.  Restorative neurology and neuroscience ,  28 (4), 589–603. https://doi.org/10.3233/RNN-2010-0543

[7] Socially, at its core, the Western approach to ethics is widely principle-based, autonomy being one of the key factors to ensure a fundamental respect for persons within research. For information regarding autonomy in research, see: Department of Health, Education, and Welfare, & National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research (1978). The Belmont Report. Ethical principles and guidelines for the protection of human subjects of research.; For a more in-depth review of autonomy within the US, see: Beauchamp, T. L., & Childress, J. F. (1994). Principles of Biomedical Ethics . Oxford University Press.

[8] Sherley v. Sebelius , 644 F.3d 388 (D.C. Cir. 2011), citing 45 C.F.R. 46.204(b) and [42 U.S.C. § 289g(b)]. https://www.cadc.uscourts.gov/internet/opinions.nsf/6c690438a9b43dd685257a64004ebf99/$file/11-5241-1391178.pdf

[9] Stem Cell Research Enhancement Act of 2005, H. R. 810, 109 th Cong. (2001). https://www.govtrack.us/congress/bills/109/hr810/text ; Bush, G. W. (2006, July 19). Message to the House of Representatives . National Archives and Records Administration. https://georgewbush-whitehouse.archives.gov/news/releases/2006/07/20060719-5.html

[10] National Archives and Records Administration. (2009, March 9). Executive order 13505 -- removing barriers to responsible scientific research involving human stem cells . National Archives and Records Administration. https://obamawhitehouse.archives.gov/the-press-office/removing-barriers-responsible-scientific-research-involving-human-stem-cells

[11] Hurlbut, W. B. (2006). Science, Religion, and the Politics of Stem Cells.  Social Research ,  73 (3), 819–834. http://www.jstor.org/stable/40971854

[12] Akpa-Inyang, Francis & Chima, Sylvester. (2021). South African traditional values and beliefs regarding informed consent and limitations of the principle of respect for autonomy in African communities: a cross-cultural qualitative study. BMC Medical Ethics . 22. 10.1186/s12910-021-00678-4.

[13] Source for further reading: Tangwa G. B. (2007). Moral status of embryonic stem cells: perspective of an African villager. Bioethics , 21(8), 449–457. https://doi.org/10.1111/j.1467-8519.2007.00582.x , see also Mnisi, F. M. (2020). An African analysis based on ethics of Ubuntu - are human embryonic stem cell patents morally justifiable? African Insight , 49 (4).

[14] Jecker, N. S., & Atuire, C. (2021). Bioethics in Africa: A contextually enlightened analysis of three cases. Developing World Bioethics , 22 (2), 112–122. https://doi.org/10.1111/dewb.12324

[15] Jecker, N. S., & Atuire, C. (2021). Bioethics in Africa: A contextually enlightened analysis of three cases. Developing World Bioethics, 22(2), 112–122. https://doi.org/10.1111/dewb.12324

[16] Jackson, C.S., Pepper, M.S. Opportunities and barriers to establishing a cell therapy programme in South Africa.  Stem Cell Res Ther   4 , 54 (2013). https://doi.org/10.1186/scrt204 ; Pew Research Center. (2014, May 1). Public health a major priority in African nations . Pew Research Center’s Global Attitudes Project. https://www.pewresearch.org/global/2014/05/01/public-health-a-major-priority-in-african-nations/

[17] Department of Health Republic of South Africa. (2021). Health Research Priorities (revised) for South Africa 2021-2024 . National Health Research Strategy. https://www.health.gov.za/wp-content/uploads/2022/05/National-Health-Research-Priorities-2021-2024.pdf

[18] Oosthuizen, H. (2013). Legal and Ethical Issues in Stem Cell Research in South Africa. In: Beran, R. (eds) Legal and Forensic Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32338-6_80 , see also: Gaobotse G (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[19] United States Bureau of Citizenship and Immigration Services. (1998). Tunisia: Information on the status of Christian conversions in Tunisia . UNHCR Web Archive. https://webarchive.archive.unhcr.org/20230522142618/https://www.refworld.org/docid/3df0be9a2.html

[20] Gaobotse, G. (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[21] Kooli, C. Review of assisted reproduction techniques, laws, and regulations in Muslim countries.  Middle East Fertil Soc J   24 , 8 (2020). https://doi.org/10.1186/s43043-019-0011-0 ; Gaobotse, G. (2018) Stem Cell Research in Africa: Legislation and Challenges. J Regen Med 7:1. doi: 10.4172/2325-9620.1000142

[22] Pang M. C. (1999). Protective truthfulness: the Chinese way of safeguarding patients in informed treatment decisions. Journal of medical ethics , 25(3), 247–253. https://doi.org/10.1136/jme.25.3.247

[23] Wang, L., Wang, F., & Zhang, W. (2021). Bioethics in China’s biosecurity law: Forms, effects, and unsettled issues. Journal of law and the biosciences , 8(1).  https://doi.org/10.1093/jlb/lsab019 https://academic.oup.com/jlb/article/8/1/lsab019/6299199

[24] Wang, Y., Xue, Y., & Guo, H. D. (2022). Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction.  Frontiers in pharmacology ,  13 , 1013740. https://doi.org/10.3389/fphar.2022.1013740

[25] Li, X.-T., & Zhao, J. (2012). Chapter 4: An Approach to the Nature of Qi in TCM- Qi and Bioenergy. In Recent Advances in Theories and Practice of Chinese Medicine (p. 79). InTech.

[26] Luo, D., Xu, Z., Wang, Z., & Ran, W. (2021). China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students.  Stem cells international ,  2021 , 6667743. https://doi.org/10.1155/2021/6667743

[27] Luo, D., Xu, Z., Wang, Z., & Ran, W. (2021). China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students.  Stem cells international ,  2021 , 6667743. https://doi.org/10.1155/2021/6667743

[28] Zhang, J. Y. (2017). Lost in translation? accountability and governance of Clinical Stem Cell Research in China. Regenerative Medicine , 12 (6), 647–656. https://doi.org/10.2217/rme-2017-0035

[29] Wang, L., Wang, F., & Zhang, W. (2021). Bioethics in China’s biosecurity law: Forms, effects, and unsettled issues. Journal of law and the biosciences , 8(1).  https://doi.org/10.1093/jlb/lsab019 https://academic.oup.com/jlb/article/8/1/lsab019/6299199

[30] Chen, H., Wei, T., Wang, H.  et al.  Association of China’s two-child policy with changes in number of births and birth defects rate, 2008–2017.  BMC Public Health   22 , 434 (2022). https://doi.org/10.1186/s12889-022-12839-0

[31] Azuma, K. Regulatory Landscape of Regenerative Medicine in Japan.  Curr Stem Cell Rep   1 , 118–128 (2015). https://doi.org/10.1007/s40778-015-0012-6

[32] Harris, R. (2005, May 19). Researchers Report Advance in Stem Cell Production . NPR. https://www.npr.org/2005/05/19/4658967/researchers-report-advance-in-stem-cell-production

[33] Park, S. (2012). South Korea steps up stem-cell work.  Nature . https://doi.org/10.1038/nature.2012.10565

[34] Resnik, D. B., Shamoo, A. E., & Krimsky, S. (2006). Fraudulent human embryonic stem cell research in South Korea: lessons learned.  Accountability in research ,  13 (1), 101–109. https://doi.org/10.1080/08989620600634193 .

[35] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: interviews with researchers from Saudi Arabia. BMC medical ethics, 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6

[36] Association for the Advancement of Blood and Biotherapies.  https://www.aabb.org/regulatory-and-advocacy/regulatory-affairs/regulatory-for-cellular-therapies/international-competent-authorities/saudi-arabia

[37] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: Interviews with researchers from Saudi Arabia.  BMC medical ethics ,  21 (1), 35. https://doi.org/10.1186/s12910-020-00482-6

[38] Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: Interviews with researchers from Saudi Arabia. BMC medical ethics , 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6

Culturally, autonomy practices follow a relational autonomy approach based on a paternalistic deontological health care model. The adherence to strict international research policies and religious pillars within the regulatory environment is a great foundation for research ethics. However, there is a need to develop locally targeted ethics approaches for research (as called for in Alahmad, G., Aljohani, S., & Najjar, M. F. (2020). Ethical challenges regarding the use of stem cells: interviews with researchers from Saudi Arabia. BMC medical ethics, 21(1), 35. https://doi.org/10.1186/s12910-020-00482-6), this decision-making approach may help advise a research decision model. For more on the clinical cultural autonomy approaches, see: Alabdullah, Y. Y., Alzaid, E., Alsaad, S., Alamri, T., Alolayan, S. W., Bah, S., & Aljoudi, A. S. (2022). Autonomy and paternalism in Shared decision‐making in a Saudi Arabian tertiary hospital: A cross‐sectional study. Developing World Bioethics , 23 (3), 260–268. https://doi.org/10.1111/dewb.12355 ; Bukhari, A. A. (2017). Universal Principles of Bioethics and Patient Rights in Saudi Arabia (Doctoral dissertation, Duquesne University). https://dsc.duq.edu/etd/124; Ladha, S., Nakshawani, S. A., Alzaidy, A., & Tarab, B. (2023, October 26). Islam and Bioethics: What We All Need to Know . Columbia University School of Professional Studies. https://sps.columbia.edu/events/islam-and-bioethics-what-we-all-need-know

[39] Ababneh, M. A., Al-Azzam, S. I., Alzoubi, K., Rababa’h, A., & Al Demour, S. (2021). Understanding and attitudes of the Jordanian public about clinical research ethics.  Research Ethics ,  17 (2), 228-241.  https://doi.org/10.1177/1747016120966779

[40] Ababneh, M. A., Al-Azzam, S. I., Alzoubi, K., Rababa’h, A., & Al Demour, S. (2021). Understanding and attitudes of the Jordanian public about clinical research ethics.  Research Ethics ,  17 (2), 228-241.  https://doi.org/10.1177/1747016120966779

[41] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[42] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[43] The EU’s definition of autonomy relates to the capacity for creating ideas, moral insight, decisions, and actions without constraint, personal responsibility, and informed consent. However, the EU views autonomy as not completely able to protect individuals and depends on other principles, such as dignity, which “expresses the intrinsic worth and fundamental equality of all human beings.” Rendtorff, J.D., Kemp, P. (2019). Four Ethical Principles in European Bioethics and Biolaw: Autonomy, Dignity, Integrity and Vulnerability. In: Valdés, E., Lecaros, J. (eds) Biolaw and Policy in the Twenty-First Century. International Library of Ethics, Law, and the New Medicine, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-030-05903-3_3

[44] Council of Europe. Convention for the protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine (ETS No. 164) https://www.coe.int/en/web/conventions/full-list?module=treaty-detail&treatynum=164 (forbidding the creation of embryos for research purposes only, and suggests embryos in vitro have protections.); Also see Drabiak-Syed B. K. (2013). New President, New Human Embryonic Stem Cell Research Policy: Comparative International Perspectives and Embryonic Stem Cell Research Laws in France.  Biotechnology Law Report ,  32 (6), 349–356. https://doi.org/10.1089/blr.2013.9865

[45] Rendtorff, J.D., Kemp, P. (2019). Four Ethical Principles in European Bioethics and Biolaw: Autonomy, Dignity, Integrity and Vulnerability. In: Valdés, E., Lecaros, J. (eds) Biolaw and Policy in the Twenty-First Century. International Library of Ethics, Law, and the New Medicine, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-030-05903-3_3

[46] Tomuschat, C., Currie, D. P., Kommers, D. P., & Kerr, R. (Trans.). (1949, May 23). Basic law for the Federal Republic of Germany. https://www.btg-bestellservice.de/pdf/80201000.pdf

[47] Regulation of Stem Cell Research in Germany . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-germany

[48] Regulation of Stem Cell Research in Finland . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-finland

[49] Regulation of Stem Cell Research in Spain . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-spain

[50] Some sources to consider regarding ethics models or regulatory oversights of other cultures not covered:

Kara MA. Applicability of the principle of respect for autonomy: the perspective of Turkey. J Med Ethics. 2007 Nov;33(11):627-30. doi: 10.1136/jme.2006.017400. PMID: 17971462; PMCID: PMC2598110.

Ugarte, O. N., & Acioly, M. A. (2014). The principle of autonomy in Brazil: one needs to discuss it ...  Revista do Colegio Brasileiro de Cirurgioes ,  41 (5), 374–377. https://doi.org/10.1590/0100-69912014005013

Bharadwaj, A., & Glasner, P. E. (2012). Local cells, global science: The rise of embryonic stem cell research in India . Routledge.

For further research on specific European countries regarding ethical and regulatory framework, we recommend this database: Regulation of Stem Cell Research in Europe . Eurostemcell. (2017, April 26). https://www.eurostemcell.org/regulation-stem-cell-research-europe   

[51] Klitzman, R. (2006). Complications of culture in obtaining informed consent. The American Journal of Bioethics, 6(1), 20–21. https://doi.org/10.1080/15265160500394671 see also: Ekmekci, P. E., & Arda, B. (2017). Interculturalism and Informed Consent: Respecting Cultural Differences without Breaching Human Rights.  Cultura (Iasi, Romania) ,  14 (2), 159–172.; For why trust is important in research, see also: Gray, B., Hilder, J., Macdonald, L., Tester, R., Dowell, A., & Stubbe, M. (2017). Are research ethics guidelines culturally competent?  Research Ethics ,  13 (1), 23-41.  https://doi.org/10.1177/1747016116650235

[52] The Qur'an  (M. Khattab, Trans.). (1965). Al-Mu’minun, 23: 12-14. https://quran.com/23

[53] Lenfest, Y. (2017, December 8). Islam and the beginning of human life . Bill of Health. https://blog.petrieflom.law.harvard.edu/2017/12/08/islam-and-the-beginning-of-human-life/

[54] Aksoy, S. (2005). Making regulations and drawing up legislation in Islamic countries under conditions of uncertainty, with special reference to embryonic stem cell research. Journal of Medical Ethics , 31: 399-403.; see also: Mahmoud, Azza. "Islamic Bioethics: National Regulations and Guidelines of Human Stem Cell Research in the Muslim World." Master's thesis, Chapman University, 2022. https://doi.org/10.36837/ chapman.000386

[55] Rashid, R. (2022). When does Ensoulment occur in the Human Foetus. Journal of the British Islamic Medical Association , 12 (4). ISSN 2634 8071. https://www.jbima.com/wp-content/uploads/2023/01/2-Ethics-3_-Ensoulment_Rafaqat.pdf.

[56] Sivaraman, M. & Noor, S. (2017). Ethics of embryonic stem cell research according to Buddhist, Hindu, Catholic, and Islamic religions: perspective from Malaysia. Asian Biomedicine,8(1) 43-52.  https://doi.org/10.5372/1905-7415.0801.260

[57] Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[58] Lecso, P. A. (1991). The Bodhisattva Ideal and Organ Transplantation.  Journal of Religion and Health ,  30 (1), 35–41. http://www.jstor.org/stable/27510629 ; Bodhisattva, S. (n.d.). The Key of Becoming a Bodhisattva . A Guide to the Bodhisattva Way of Life. http://www.buddhism.org/Sutras/2/BodhisattvaWay.htm

[59] There is no explicit religious reference to when life begins or how to conduct research that interacts with the concept of life. However, these are relevant verses pertaining to how the fetus is viewed. (( King James Bible . (1999). Oxford University Press. (original work published 1769))

Jerimiah 1: 5 “Before I formed thee in the belly I knew thee; and before thou camest forth out of the womb I sanctified thee…”

In prophet Jerimiah’s insight, God set him apart as a person known before childbirth, a theme carried within the Psalm of David.

Psalm 139: 13-14 “…Thou hast covered me in my mother's womb. I will praise thee; for I am fearfully and wonderfully made…”

These verses demonstrate David’s respect for God as an entity that would know of all man’s thoughts and doings even before birth.

[60] It should be noted that abortion is not supported as well.

[61] The Vatican. (1987, February 22). Instruction on Respect for Human Life in Its Origin and on the Dignity of Procreation Replies to Certain Questions of the Day . Congregation For the Doctrine of the Faith. https://www.vatican.va/roman_curia/congregations/cfaith/documents/rc_con_cfaith_doc_19870222_respect-for-human-life_en.html

[62] The Vatican. (2000, August 25). Declaration On the Production and the Scientific and Therapeutic Use of Human Embryonic Stem Cells . Pontifical Academy for Life. https://www.vatican.va/roman_curia/pontifical_academies/acdlife/documents/rc_pa_acdlife_doc_20000824_cellule-staminali_en.html ; Ohara, N. (2003). Ethical Consideration of Experimentation Using Living Human Embryos: The Catholic Church’s Position on Human Embryonic Stem Cell Research and Human Cloning. Department of Obstetrics and Gynecology . Retrieved from https://article.imrpress.com/journal/CEOG/30/2-3/pii/2003018/77-81.pdf.

[63] Smith, G. A. (2022, May 23). Like Americans overall, Catholics vary in their abortion views, with regular mass attenders most opposed . Pew Research Center. https://www.pewresearch.org/short-reads/2022/05/23/like-americans-overall-catholics-vary-in-their-abortion-views-with-regular-mass-attenders-most-opposed/

[64] Rosner, F., & Reichman, E. (2002). Embryonic stem cell research in Jewish law. Journal of halacha and contemporary society , (43), 49–68.; Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[65] Schenker J. G. (2008). The beginning of human life: status of embryo. Perspectives in Halakha (Jewish Religious Law).  Journal of assisted reproduction and genetics ,  25 (6), 271–276. https://doi.org/10.1007/s10815-008-9221-6

[66] Ruttenberg, D. (2020, May 5). The Torah of Abortion Justice (annotated source sheet) . Sefaria. https://www.sefaria.org/sheets/234926.7?lang=bi&with=all&lang2=en

[67] Jafari, M., Elahi, F., Ozyurt, S. & Wrigley, T. (2007). 4. Religious Perspectives on Embryonic Stem Cell Research. In K. Monroe, R. Miller & J. Tobis (Ed.),  Fundamentals of the Stem Cell Debate: The Scientific, Religious, Ethical, and Political Issues  (pp. 79-94). Berkeley: University of California Press.  https://escholarship.org/content/qt9rj0k7s3/qt9rj0k7s3_noSplash_f9aca2e02c3777c7fb76ea768ba458f0.pdf https://doi.org/10.1525/9780520940994-005

[68] Gert, B. (2007). Common morality: Deciding what to do . Oxford Univ. Press.

[69] World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA , 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053 Declaration of Helsinki – WMA – The World Medical Association .; see also: National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. (1979).  The Belmont report: Ethical principles and guidelines for the protection of human subjects of research . U.S. Department of Health and Human Services.  https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html

[70] Zakarin Safier, L., Gumer, A., Kline, M., Egli, D., & Sauer, M. V. (2018). Compensating human subjects providing oocytes for stem cell research: 9-year experience and outcomes.  Journal of assisted reproduction and genetics ,  35 (7), 1219–1225. https://doi.org/10.1007/s10815-018-1171-z https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063839/ see also: Riordan, N. H., & Paz Rodríguez, J. (2021). Addressing concerns regarding associated costs, transparency, and integrity of research in recent stem cell trial. Stem Cells Translational Medicine , 10 (12), 1715–1716. https://doi.org/10.1002/sctm.21-0234

[71] Klitzman, R., & Sauer, M. V. (2009). Payment of egg donors in stem cell research in the USA.  Reproductive biomedicine online ,  18 (5), 603–608. https://doi.org/10.1016/s1472-6483(10)60002-8

[72] Krosin, M. T., Klitzman, R., Levin, B., Cheng, J., & Ranney, M. L. (2006). Problems in comprehension of informed consent in rural and peri-urban Mali, West Africa.  Clinical trials (London, England) ,  3 (3), 306–313. https://doi.org/10.1191/1740774506cn150oa

[73] Veatch, Robert M.  Hippocratic, Religious, and Secular Medical Ethics: The Points of Conflict . Georgetown University Press, 2012.

[74] Msoroka, M. S., & Amundsen, D. (2018). One size fits not quite all: Universal research ethics with diversity.  Research Ethics ,  14 (3), 1-17.  https://doi.org/10.1177/1747016117739939

[75] Pirzada, N. (2022). The Expansion of Turkey’s Medical Tourism Industry.  Voices in Bioethics ,  8 . https://doi.org/10.52214/vib.v8i.9894

[76] Stem Cell Tourism: False Hope for Real Money . Harvard Stem Cell Institute (HSCI). (2023). https://hsci.harvard.edu/stem-cell-tourism , See also: Bissassar, M. (2017). Transnational Stem Cell Tourism: An ethical analysis.  Voices in Bioethics ,  3 . https://doi.org/10.7916/vib.v3i.6027

[77] Song, P. (2011) The proliferation of stem cell therapies in post-Mao China: problematizing ethical regulation,  New Genetics and Society , 30:2, 141-153, DOI:  10.1080/14636778.2011.574375

[78] Dajani, R. (2014). Jordan’s stem-cell law can guide the Middle East.  Nature  510, 189. https://doi.org/10.1038/510189a

[79] International Society for Stem Cell Research. (2024). Standards in stem cell research . International Society for Stem Cell Research. https://www.isscr.org/guidelines/5-standards-in-stem-cell-research

[80] Benjamin, R. (2013). People’s science bodies and rights on the Stem Cell Frontier . Stanford University Press.

Mifrah Hayath

SM Candidate Harvard Medical School, MS Biotechnology Johns Hopkins University

Olivia Bowers

MS Bioethics Columbia University (Disclosure: affiliated with Voices in Bioethics)

Article Details

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License .

  • Type 2 Diabetes
  • Heart Disease
  • Digestive Health
  • Multiple Sclerosis
  • Diet & Nutrition
  • Supplements
  • Health Insurance
  • Public Health
  • Patient Rights
  • Caregivers & Loved Ones
  • End of Life Concerns
  • Health News
  • Thyroid Test Analyzer
  • Doctor Discussion Guides
  • Hemoglobin A1c Test Analyzer
  • Lipid Test Analyzer
  • Complete Blood Count (CBC) Analyzer
  • What to Buy
  • Editorial Process
  • Meet Our Medical Expert Board

Understanding Cannabinoids and Their Medical Uses

What are cannabinoids and what do they do, how do cannabinoids work, how are cannabinoids used, current uses, side effects and safety of cannabinoids, who shouldn’t use cannabinoids, legal status of cannabinoids.

Cannabis is a term used to describe all products derived from a specific type of cannabis plant that consists of more than 500 chemicals. The two main types of cannabis are indica and sativa .

Cannabinoids are a group of chemicals or compounds found in the cannabis sativa plant. This includes tetrahydrocannabinol (THC) , cannabidiol (CBD) , and hundreds of other substances.

Cannabinoids may also be naturally present in the human body and are referred to as endocannabinoids.

Cannabinoids are commonly used to minimize symptoms associated with pain conditions such as neuropathy , rheumatoid arthritis , and chronic pain . They may also be used for a variety of other conditions, such as epilepsy and cancer-related side effects. Additional research is needed to establish and understand their appropriate use and place in therapy.

This article will define cannabinoids and discuss what the research says about them.

Getty Images | Jordan Siemens

Cannabinoids are the chemical components of cannabis. They work like messengers, interacting with the endocannabinoid system in our bodies and working on receptors that can help regulate mood, memory, appetite, and pain.

Additionally, cannabinoids activate receptors throughout the body, affecting the central nervous system and immune system.

Examples of Cannabinoids

THC and CBD are the two main types of cannabinoids. Cannabinol (CBN) is a less popular type of cannabinoid. Medications that contain cannabinoids typically include THC, CBD, or both.

THC is mainly responsible for the psychoactive (mind-altering) and intoxicating effects that are commonly associated with cannabis use. CBD is known for its potential therapeutic benefits, which range from pain relief to anxiety management.

CBD and CBN differ from THC in that they are not psychoactive, meaning they do not cause changes to the mind, mood, or mental state. Unlike THC, CBD should not cause mental impairment or a "high" feeling.

While CBD and CBN work similarly, CBD has been more widely studied. More research is needed to better understand the therapeutic potential of CBN.

Medications on the Market

The United States Food & Drug Administration (FDA) has not approved the cannabis plant itself for medical use. However, several FDA-approved medications contain individual cannabinoids.

Cannabis-related compounds are created in a lab and can be used to manufacture drug products. Cannabis-derived compounds are found naturally in the cannabis plant and can also be used to manufacture medications.

The following synthetic cannabis-related medications are currently on the market:

  • Marinol, Syndros (dronabinol)
  • Cesamet (nabilone)

Epidiolex (cannabidiol) is a cannabis-derived medication that is also approved by the FDA to treat very specific types of seizures. It contains a purified form of CBD.

Marinol and Syndros contain artificial THC, and Cesamet contains an artificial substance that mimics THC.

Many cannabis products remain unapproved by the FDA, and their safety and efficacy have not been studied.

Beyond THC, CBD, and CBN, researchers are exploring the potential of other cannabinoids to better understand their varying effects on health and well-being.

Are Cannabinoids and Marijuana the Same?

Cannabinoids and marijuana are closely related, but they are not the same and have some distinct differences.

Cannabinoids are the chemical compounds that make up the cannabis plant, which include THC and CBD. Cannabinoids are responsible for interacting with receptors in the body, which determine how the body responds.

Marijuana refers to the dried leaves, flowers, stems, and seeds of the cannabis plant, which includes cannabinoids as the active ingredients. Marijuana contains high levels of the cannabinoid THC, which is responsible for the mental effects of the drug.

Cannabinoids interact with the body's endocannabinoid system, which is found throughout the brain, nervous system, and other tissues in the body. This system acts as a messenger.

When cannabinoids are consumed, they send signals to the body, influencing various processes and responses. For example, some cannabinoids may trigger feelings of happiness and relaxation; others may help alleviate pain or cause drowsiness.

There are two main types of cannabinoid receptors: cannabinoid 1 receptor (CB1) and cannabinoid 2 receptor (CB2).

CB1 receptors are primarily located in the brain and central nervous system. They are responsible for the effects of cannabinoids on the mental state. CB2 receptors are found mostly on immune cells and peripheral tissues. They regulate inflammation and immune function.

Depending on the specific cannabinoid and its concentration, cannabinoids can produce a wide range of effects, including pain relief, relaxation, appetite stimulation, and mood changes.

Understanding how cannabinoids interact with the endocannabinoid system is crucial for exploring their potential therapeutic benefits and ensuring safe and effective use.

Cannabinoids are used for different purposes and are being studied for a wide range of medical uses. The majority of people who take cannabinoids use them for chronic pain and mental health conditions.

Until more research is conducted, it is important to use cannabinoids only as instructed by your healthcare provider to prevent long-term complications.

Epidiolex contains a purified form of cannabis-derived CBD. It is FDA-approved for the treatment of seizures associated with two rare forms of epilepsy, Lennox-Gastaut syndrome and Dravet syndrome , that typically begin in early childhood.

Epidiolex can be used in people 2 years of age and older to reduce the frequency of seizures in those with either condition.

Marinol, Syndros, and Cesamet are used to treat nausea and vomiting caused by cancer chemotherapy. Marinol and Sydnros are also used to treat appetite and weight loss in people with HIV/AIDS .

Clinical studies suggest that CBD can be used to reduce anxiety and help reduce symptoms associated with mental health disorders.

In addition to the FDA-approved formulations, over-the-counter (OTC) CBD products may be easily accessible depending on location and state laws. These products are much less regulated, making it difficult to know exactly what they contain, and therefore, raises safety concerns.

Studied Uses

Some promising areas of research for cannabinoid use include:

  • Sleep problems
  • Post-traumatic stress disorder (PTSD)
  • Movement disorders

Cannabinoids are generally well tolerated with minimal known risks; however, like most drug products, there are some side effects and safety concerns associated with their use.

It is unknown what makes someone more likely to experience negative effects, but factors such as genetics and personality may play a role.

It is recommended that cannabinoids be taken by mouth rather than inhaled. Smoking cannabinoid products used for medical purposes can increase exposure to gene-altering and cancer-causing substances.

You are more likely to experience serious side effects associated with cannabinoid use if you are taking higher doses.

Side Effects

Side effects associated with THC are different than CBD. In general, dizziness and fatigue are the most common adverse events people using THC or a combination of THC and CBD experience.

THC use may negatively affect memory and lead to decreased ability to engage in activities that require hand-eye coordination. CBD, on the other hand, has shown benefit in reducing the negative mental effects of THC when they are used together.

The severity of side effects usually correlates to the dose, meaning that as the dose of cannabinoids increases, so does the likelihood of side effects.

The most common side effects associated with THC when used alone include:

  • Drowsiness and fatigue
  • Nausea/vomiting
  • Cognitive effects such as elevated mood (euphoria) and confusion
  • Problems with balance and coordination

The most common side effects associated with CBD use include:

  • Decreased appetite
  • Upper respiratory tract infection
  • Elevated liver enzymes

Research studies show that even though side effects may occur in those using cannabinoids, there is no major concern for serious side effects when they are used as directed.

Drug Interactions

Cannabinoids do have several potential drug interactions, and these should be taken into consideration when determining if treatment is appropriate.

There is a risk of drug–drug interactions between some cannabinoids and the following medications:

  • Anticholinergic medications (such as amitriptyline)
  • Benzodiazepines
  • Specific types of medications to treat cancer ( such as Keytruda )

Alcohol should also be avoided and not used at the same time as cannabinoids.

More studies are needed to evaluate potential drug interactions further. It is important to consult with a healthcare provider before use, especially if you are taking other medications.

What Are Synthetic Cannabinoids?

Synthetic cannabinoids are similar to the compounds found in the cannabis plant. They are "man-made" products usually created in a lab and often intended to mimic the effects of cannabinoids.

Examples of synthetic cannabinoids on the market include Syndros and Marinol (dronabinol), which contain synthetic THC, and Cesamet (nabilone), which contains a synthetic THC-like substance.

Some synthetic cannabinoids have medical uses, but in other cases, they are illegally made and distributed. The use of unregulated synthetic cannabinoids can cause severe side effects and potential health risks, including long-term health complications and death.

You should avoid cannabinoid use if you:

  • Are under 25 years of age
  • Have liver disease, including Hepatitis C
  • Are pregnant or breastfeeding
  • Have a personal or family history of psychosis or schizophrenia
  • Have a history of substance abuse disorder

The health risks and concerns associated with cannabinoid use in these populations may vary, but in some cases, the benefits may outweigh the risks. You should consult with your healthcare provider to determine if cannabinoid use is safe and appropriate.

The legal status of cannabinoids, particularly THC and CBD, is a complex and evolving topic, as laws and regulations can vary greatly across the United States. Of note, it is technically illegal under federal law.

In some states, cannabinoids are strictly regulated by the law, and in other states, cannabinoids may be legal for medical use, recreational use, or both.

There are protocols in place for cannabinoid use in research. Researchers must work with the FDA to submit the proper applications and documentation.

Depending on the particular state, whether or not CBD products are legal depends on whether it is hemp-derived or cannabis-derived. Regardless of the source, products containing THC or CBD cannot be sold legally as dietary supplements.

It is important to be aware of the laws regarding cannabinoid use in your state and places you may travel to.

Cannabinoids are found in the cannabis sativa plant and include hundreds of compounds, including the two most common types, THC and CBD.

Cannabinoids can help regulate mood, memory, appetite, and pain. THC is mainly responsible for the mind-altering effects that are commonly associated with cannabis use. CBD is known for its therapeutic benefits without impacting the mental state or causing a high.

Despite conflicting federal and state regulations for cannabinoids, there are a few cannabinoid-containing medications approved by the FDA. The legal status of cannabinoids is constantly evolving as laws change and new research becomes available.

Understanding cannabinoids and their effects is crucial for navigating the complex landscape of cannabis-based therapies and supplements.

Discuss the risks and benefits of cannabinoid use with your healthcare provider to help determine whether a cannabinoid-based therapy may be an appropriate treatment option for you.

National Center for Complementary and Integrative Health. Cannabis (marijuana) and cannabinoids: what you need to know .

Atakan Z. Cannabis, a complex plant: different compounds and different effects on individuals . Ther Adv Psychopharmacol . 2012;2(6):241-254. doi:10.1177/2045125312457586

Bridgeman MB, Abazia DT. Medicinal cannabis: history, pharmacology, and implications for the acute care setting . P&T. 2017;42(3):180-188.

Gottschling S, Ayonrinde O, Bhaskar A, et al. Safety considerations in cannabinoid-based medicine . Int J Gen Med . 2020;13:1317-1333. doi:10.2147/IJGM.S275049

National Cancer Institute. Cannabis and cannabinoids (PDQ®)–health professional version .

Centers for Disease Control and Prevention. Health effects of marijuana .

U.S. Food & Drug Administration. FDA and cannabis: research and drug approval process .

National Institute on Drug Abuse. Cannabis (marijuana) drug facts .

National Institute on Drug Abuse. Synthetic cannabinoids .

U.S. Food & Drug Administration. FDA regulation of cannabis and cannabis-derived products, including cannabidiol (CBD) .

Department of Justice/Drug Enforcement Administration. Marijuana/cannabis .

Centers for Disease Control and Prevention. CBD: what you need to know .

By T'Keyah Bazin, PharmD T'Keyah Bazin, PharmD, is a clinical pharmacist and experienced health content writer. She received her Doctor of Pharmacy degree from the University of Mississippi School of Pharmacy.

COMMENTS

  1. Explaining How Research Works

    Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle. Questions about how the world works are often investigated on many different levels.

  2. 2.1 Why is Research Important

    Discuss how scientific research guides public policy. Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck.

  3. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  4. 7 Reasons Why Research Is Important

    Why Research Is Necessary and Valuable in Our Daily Lives. It's a tool for building knowledge and facilitating learning. It's a means to understand issues and increase public awareness. It helps us succeed in business. It allows us to disprove lies and support truths. It is a means to find, gauge, and seize opportunities.

  5. 2.1 Why Is Research Important?

    Psychological research has a long history involving important figures from diverse backgrounds. While the introductory chapter discussed several researchers who made significant contributions to the discipline, there are many more individuals who deserve attention in considering how psychology has advanced as a science through their work ...

  6. 1 Chapter 1: The Importance of Research Methods and Becoming an

    It is also important to understand that the professors who design academic programs in criminal justice at the associate and bachelor level believe that an understanding of research methods is important for students. That is why, more than likely, this research methods course is a required course in your degree program.

  7. Basic Research: Understanding The Way Things Work and Why It Matters

    In basic science, scientists utilize many simple organisms, like fruit flies and worms, because they are easy to study and manipulate, yet share many molecular and biological processes with humans. Results of these basic studies contribute to our understanding in fields such as genetics, biochemistry, stem cell research, and neurobiology.

  8. Why Is Research Important?

    Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck. While many of us feel confident in our abilities to decipher and interact ...

  9. PDF Why research is important

    Why research is important 3 concepts or constructs. A piece of research is embedded in a frame-work or way of seeing the world. Second, research involves the application of a method, which has been designed to achieve knowledge that is as valid and truthful as possible. 4 The products of research are propositions or statements. There is a

  10. The Why: Explaining the significance of your research

    According to the Unite for Sight online module titled " The Importance of Research ": "The purpose of research is to inform action. Thus, your study should seek to contextualize its findings within the larger body of research. Research must always be of high quality in order to produce knowledge that is applicable outside of the research ...

  11. Six Reasons Why Research Is Important

    2- Research Helps in Problem-solving. The goal of the research is to broaden our understanding. Research gives us the information and knowledge to solve problems and make decisions. To differentiate between research that attempts to advance our knowledge and research that seeks to apply pre-existing information to real-world situations.

  12. Back to the Basics: Reading Research Literature

    It is important to remember, as Riegleman (2005) reminds us, our goal is not to find the flaws, but "to find the truth" (page vii). Consider the following questions: 1. Does the research report present a rationale? Do you understand its purpose, and are there specific questions the study is designed to answer?

  13. The Central Role of Theory in Qualitative Research

    The act of nihilating is an action of violence imbedded in the dynamics of power, oppression, dominance, and inequity. As such, the social reproduction of reality is a powerful force. Because systems, processes, definitions, and identities are socially constructed, it is important to understand how they can be deconstructed.

  14. 10 Reasons Why Research is Important

    Here are ten reasons why research is important: #1. Research expands your knowledge base. The most obvious reason to do research is that you'll learn more. There's always more to learn about a topic, even if you are already well-versed in it. If you aren't, research allows you to build on any personal experience you have with the subject.

  15. Understanding Research Paradigms: A Scientific Guide

    Understanding research paradigms are crucial as they guide scientific discoveries through. their assumptions and principles ( Park, Konge, and Artino, 2020). Fitzgerald and Howcroft. (1998) noted ...

  16. Why Do Nurses Need Research?

    Every nurse can benefit from knowing why nursing research is important, how research is conducted and how research informs patient care. ... Understanding how nursing research can be categorized can help you understand and interpret research results. Quantitative research: Numbers, percentages and variables are used to communicate ...

  17. The power of language: How words shape people, culture

    Jurafsky said it's important to study languages other than our own and how they develop over time because it can help scholars understand what lies at the foundation of humans' unique way of ...

  18. 'Applicable Algebra reshaped my understanding of math'

    I will attend graduate school and start doing research in topology, an area of mathematics that studies spaces and their shapes. Specifically, I want to understand low-dimensional topology; i.e., 3-dimensional or 4-dimensional spaces.

  19. Generative models

    This post describes four projects that share a common theme of enhancing or using generative models, a branch of unsupervised learning techniques in machine learning. In addition to describing our work, this post will tell you a bit more about generative models: what they are, why they are important, and where they might be going.

  20. About Handwashing

    Why it's important. Washing hands can keep you healthy and prevent the spread of respiratory and diarrheal infections. Germs can spread from person to person or from surfaces to people when you: Touch your eyes, nose, and mouth with unwashed hands. Prepare or eat food and drinks with unwashed hands. Touch surfaces or objects that have germs on them

  21. Cultural Relativity and Acceptance of Embryonic Stem Cell Research

    Voices in Bioethics is currently seeking submissions on philosophical and practical topics, both current and timeless. Papers addressing access to healthcare, the bioethical implications of recent Supreme Court rulings, environmental ethics, data privacy, cybersecurity, law and bioethics, economics and bioethics, reproductive ethics, research ethics, and pediatric bioethics are sought.

  22. Understanding Cannabinoids and What They Do

    Learn more about its current uses, safety and side effect profile, and why more research is needed. Cannabinoids are a group of chemicals or compounds found in the cannabis sativa plant. ... Additional research is needed to establish and understand their appropriate use and place in therapy. ... Until more research is conducted, it is important ...

  23. Spring Commencement 2024

    Join us for this afternoon's commencement exercises for our graduating class of 2024. #ForeverToThee24