essay on nuclear power station

45,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

essay on nuclear power station

Verification Code

An OTP has been sent to your registered mobile no. Please verify

essay on nuclear power station

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Essay on Nuclear Energy in 500+ words for School Students 

essay on nuclear power station

  • Updated on  
  • Dec 30, 2023

Essay on Nuclear Energy

Essay on Nuclear Energy: Nuclear energy has been fascinating and controversial since the beginning. Using atomic power to generate electricity holds the promise of huge energy supplies but we cannot overlook the concerns about safety, environmental impact, and the increase in potential weapon increase. 

The blog will help you to explore various aspects of energy seeking its history, advantages, disadvantages, and role in addressing the global energy challenge. 

Table of Contents

  • 1 History Overview
  • 2 Nuclear Technology 
  • 3 Advantages of Nuclear Energy
  • 4 Disadvantages of Nuclear Energy
  • 5 Safety Measures and Regulations of Nuclear Energy
  • 6 Concerns of Nuclear Proliferation
  • 7 Future Prospects and Innovations of Nuclear Energy
  • 8 FAQs 

Also Read: Find List of Nuclear Power Plants In India

History Overview

The roots of nuclear energy have their roots back to the early 20th century when innovative discoveries in physics laid the foundation for understanding atomic structure. In the year 1938, Otto Hahn, a German chemist and Fritz Stassman, a German physical chemist discovered nuclear fission, the splitting of atomic nuclei. This discovery opened the way for utilising the immense energy released during the process of fission. 

Also Read: What are the Different Types of Energy?

Nuclear Technology 

Nuclear power plants use controlled fission to produce heat. The heat generated is further used to produce steam, by turning the turbines connected to generators that produce electricity. This process takes place in two types of reactors: Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). PWRs use pressurised water to transfer heat. Whereas, BWRs allow water to boil, which produces steam directly. 

Also Read: Nuclear Engineering Course: Universities and Careers

Advantages of Nuclear Energy

Let us learn about the positive aspects of nuclear energy in the following:

1. High Energy Density

Nuclear energy possesses an unparalleled energy density which means that a small amount of nuclear fuel can produce a substantial amount of electricity. This high energy density efficiency makes nuclear power reliable and powerful.

2. Low Greenhouse Gas Emissions

Unlike other traditional fossil fuels, nuclear power generation produces minimum greenhouse gas emissions during electricity generation. The low greenhouse gas emissions feature positions nuclear energy as a potential solution to weakening climate change.

3. Base Load Power

Nuclear power plants provide consistent, baseload power, continuously operating at a stable output level. This makes nuclear energy reliable for meeting the constant demand for electricity, complementing intermittent renewable sources of energy like wind and solar. 

Also Read: How to Become a Nuclear Engineer in India?

Disadvantages of Nuclear Energy

After learning the pros of nuclear energy, now let’s switch to the cons of nuclear energy.

1. Radioactive Waste

One of the most important challenges that is associated with nuclear energy is the management and disposal of radioactive waste. Nuclear power gives rise to spent fuel and other radioactive byproducts that require secure, long-term storage solutions.

2. Nuclear Accidents

The two catastrophic accidents at Chornobyl in 1986 and Fukushima in 2011 underlined the potential risks of nuclear power. These nuclear accidents can lead to severe environmental contamination, human casualties, and long-lasting negative perceptions of the technology. 

3. High Initial Costs

The construction of nuclear power plants includes substantial upfront costs. Moreover, stringent safety measures contribute to the overall expenses, which makes nuclear energy economically challenging compared to some renewable alternatives. 

Also Read: What is the IAEA Full Form?

Safety Measures and Regulations of Nuclear Energy

After recognizing the potential risks associated with nuclear energy, strict safety measures and regulations have been implemented worldwide. These safety measures include reactor design improvements, emergency preparedness, and ongoing monitoring of the plant operations. Regulatory bodies, such as the Nuclear Regulatory Commission (NRC) in the United States, play an important role in overseeing and enforcing safety standards. 

Also Read: What is the Full Form of AEC?

Concerns of Nuclear Proliferation

The dual-use nature of nuclear technology raises concerns about the spread of nuclear weapons. The same nuclear technology used for the peaceful generation of electricity can be diverted for military purposes. International efforts, including the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), aim to help the proliferation of nuclear weapons and promote the peaceful use of nuclear energy. 

Also Read: Dr. Homi J. Bhabha’s Education, Inventions & Discoveries

Also Read: How to Prepare for UPSC in 6 Months?

Future Prospects and Innovations of Nuclear Energy

The ongoing research and development into advanced reactor technologies are part of nuclear energy. Concepts like small modular reactors (SMRs) and Generation IV reactors aim to address safety, efficiency, and waste management concerns. Moreover, the exploration of nuclear fusion as a clean and virtually limitless energy source represents an innovation for future energy solutions. 

Nuclear energy stands at the crossroads of possibility and peril, offering the possibility of addressing the world´s growing energy needs while posing important challenges. Striking a balance between utilising the benefits of nuclear power and alleviating its risks requires ongoing technological innovation, powerful safety measures, and international cooperation. 

As we drive the complexities of perspective challenges of nuclear energy, the role of nuclear energy in the global energy mix remains a subject of ongoing debate and exploration. 

Also Read: Essay on Science and Technology for Students: 100, 200, 350 Words

Ans. Nuclear energy is the energy released during nuclear reactions. Its importance lies in generating electricity, medical applications, and powering spacecraft.

Ans. Nuclear energy is exploited from the nucleus of atoms through processes like fission or fusion. It is a powerful and controversial energy source with applications in power generation and various technologies. 

Ans. The five benefits of nuclear energy include: 1. Less greenhouse gas emissions 2. High energy density 3. Continuos power generation  4. Relatively low fuel consumption 5. Potential for reducing dependence on fossil fuels

Ans. Three important facts about nuclear energy: a. Nuclear fission releases a significant amount of energy. b. Nuclear power plants use controlled fission reactions to generate electricity. c. Nuclear fusion, combining atomic nuclei, is a potential future energy source.

Ans. Nuclear energy is considered best due to its low carbon footprint, high energy output, and potential to address energy needs. However, concerns about safety, radioactive waste, and proliferation risk are challenges that need careful consideration.

Related Articles


For more information on such interesting topics, visit our essay writing page and follow Leverage Edu.

' src=

Deepika Joshi

Deepika Joshi is an experienced content writer with educational and informative content expertise. She has hands-on experience in Education, Study Abroad and EdTech SaaS. Her strengths lie in conducting thorough research and analysis to provide accurate and up-to-date information to readers. She enjoys staying updated on new skills and knowledge, particularly in the education domain. In her free time, she loves to read articles, and blogs related to her field to expand her expertise further. In her personal life, she loves creative writing and aspires to connect with innovative people who have fresh ideas to offer.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

essay on nuclear power station

Connect With Us

45,000+ students realised their study abroad dream with us. take the first step today..

essay on nuclear power station

Resend OTP in

essay on nuclear power station

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

essay on nuclear power station

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

essay on nuclear power station

Make your study abroad dream a reality in January 2022 with

essay on nuclear power station

India's Biggest Virtual University Fair

essay on nuclear power station

Essex Direct Admission Day

Why attend .

essay on nuclear power station

Don't Miss Out

  • Name This field is for validation purposes and should be left unchanged.
  • Climate Change
  • Policy & Economics
  • Biodiversity
  • Conservation

Get focused newsletters especially designed to be concise and easy to digest

  • ESSENTIAL BRIEFING 3 times weekly
  • TOP STORY ROUNDUP Once a week
  • MONTHLY OVERVIEW Once a month
  • Enter your email *

The Advantages and Disadvantages of Nuclear Energy

The Advantages and Disadvantages of Nuclear Energy

Since the first nuclear plant started operations in the 1950s, the world has been highly divided on nuclear as a source of energy. While it is a cleaner alternative to fossil fuels, this type of power is also associated with some of the world’s most dangerous and deadliest weapons, not to mention nuclear disasters . The extremely high cost and lengthy process to build nuclear plants are compensated by the fact that producing nuclear energy is not nearly as polluting as oil and coal. In the race to net-zero carbon emissions, should countries still rely on nuclear energy or should they make space for more fossil fuels and renewable energy sources? We take a look at the advantages and disadvantages of nuclear energy. 

What Is Nuclear Energy?

Nuclear energy is the energy source found in an atom’s nucleus, or core. Once extracted, this energy can be used to produce electricity by creating nuclear fission in a reactor through two kinds of atomic reaction: nuclear fusion and nuclear fission. During the latter, uranium used as fuel causes atoms to split into two or more nuclei. The energy released from fission generates heat that brings a cooling agent, usually water, to boil. The steam deriving from boiling or pressurised water is then channelled to spin turbines to generate electricity. To produce nuclear fission, reactors make use of uranium as fuel.

For centuries, the industrialisation of economies around the world was made possible by fossil fuels like coal, natural gas, and petroleum and only in recent years countries opened up to alternative, renewable sources like solar and wind energy. In the 1950s, early commercial nuclear power stations started operations, offering to many countries around the world an alternative to oil and gas import dependency and a far less polluting energy source than fossil fuels. Following the 1970s energy crisis and the dramatic increase of oil prices that resulted from it, more and more countries decided to embark on nuclear power programmes. Indeed, most reactors have been built  between 1970 and 1985 worldwide. Today, nuclear energy meets around 10% of global energy demand , with 439 currently operational nuclear plants in 32 countries and about 55 new reactors under construction.

In 2020, 13 countries produced at least one-quarter of their total electricity from nuclear, with the US, China, and France dominating the market by far. 

World nuclear electricity production, 1970-2020 (Image: World Nuclear Association)

Fossil fuels make up 60% of the United States’ electricity while the remaining 40% is equally split between renewables and nuclear power. France embarked on a sweeping expansion of its nuclear power industry in the 1970s with the ultimate goal of breaking its dependence on foreign oil. In doing this, the country was able to build up its economy by simultaneously cutting its emissions at a rate never seen before. Today, France is home to 56 operating reactors and it relies on nuclear power for 70% of its electricity . 

You might also like: A ‘Breakthrough’ In Nuclear Fusion: What Does It Mean for the Future of Energy Generation?

Advantages of Nuclear Energy

France’s success in cutting down emissions is a clear example of some of the main advantages of nuclear energy over fossil fuels. First and foremost, nuclear energy is clean and it provides pollution-free power with no greenhouse gas emissions. Contrary to what many believe, cooling towers in nuclear plants only emit water vapour and are thus, not releasing any pollutant or radioactive substance into the atmosphere. Compared to all the energy alternatives we currently have on hand, many experts believe that nuclear energy is indeed one of the cleanest sources. Many nuclear energy supporters also argue that nuclear power is responsible for the fastest decarbonisation effort in history , with big nuclear players like France, Saudi Arabia, Canada, and South Korea being among the countries that recorded the fastest decline in carbon intensity and experienced a clean energy transition by building nuclear reactors and hydroelectric dams.

Earlier this year, the European Commission took a clear stance on nuclear power by labelling it a green source of energy in its classification system establishing a list of environmentally sustainable economic activities. While nuclear energy may be clean and its production emission-free, experts highlight a hidden danger of this power: nuclear waste. The highly radioactive and toxic byproduct from nuclear reactors can remain radioactive for tens of thousands of years. However, this is still considered a much easier environmental problem to solve than climate change. The main reason for this is that as much as 90% of the nuclear waste generated by the production of nuclear energy can be recycled. Indeed, the fuel used in a reactor, typically uranium, can be treated and put into another reactor as only a small amount of energy in their fuel is extracted in the fission process.

A rather important advantage of nuclear energy is that it is much safer than fossil fuels from a public health perspective. The pro-nuclear movement leverages the fact that nuclear waste is not even remotely as dangerous as the toxic chemicals coming from fossil fuels. Indeed, coal and oil act as ‘ invisible killers ’ and are responsible for 1 in 5 deaths worldwide . In 2018 alone, fossil fuels killed 8.7 million people globally. In contrast, in nearly 70 years since the beginning of nuclear power, only three accidents have raised public alarm: the 1979 Three Mile Island accident, the 1986 Chernobyl disaster and the 2011 Fukushima nuclear disaster. Of these, only the accident at the Chernobyl nuclear plant in Ukraine directly caused any deaths.

Finally, nuclear energy has some advantages compared to some of the most popular renewable energy sources. According to the US Office of Nuclear Energy , nuclear power has by far the highest capacity factor, with plants requiring less maintenance, capable to operate for up to two years before refuelling and able to produce maximum power more than 93% of the time during the year, making them three times more reliable than wind and solar plants. 

You might also like: Nuclear Energy: A Silver Bullet For Clean Energy?

Disadvantages of Nuclear Energy

The anti-nuclear movement opposes the use of this type of energy for several reasons. The first and currently most talked about disadvantage of nuclear energy is the nuclear weapon proliferation, a debate triggered by the deadly atomic bombing of the Japanese cities of Hiroshima and Nagasaki during the Second World War and recently reopened following rising concerns over nuclear escalation in the Ukraine-Russia conflict . After the world saw the highly destructive effect of these bombs, which caused the death of tens of thousands of people, not only in the impact itself but also in the days, weeks, and months after the tragedy as a consequence of radiation sickness, nuclear energy evolved to a pure means of generating electricity. In 1970, the Treaty on the Non-Proliferation of Nuclear Weapons entered into force. Its objective was to prevent the spread of such weapons to eventually achieve nuclear disarmament as well as promote peaceful uses of nuclear energy. However, opposers of this energy source still see nuclear energy as being deeply intertwined with nuclear weapons technologies and believe that, with nuclear technologies becoming globally available, the risk of them falling into the wrong hands is high, especially in countries with high levels of corruption and instability. 

As mentioned in the previous section, nuclear energy is clean. However, radioactive nuclear waste contains highly poisonous chemicals like plutonium and the uranium pellets used as fuel. These materials can be extremely toxic for tens of thousands of years and for this reason, they need to be meticulously and permanently disposed of. Since the 1950s, a stockpile of 250,000 tonnes of highly radioactive nuclear waste has been accumulated and distributed across the world, with 90,000 metric tons stored in the US alone. Knowing the dangers of nuclear waste, many oppose nuclear energy for fears of accidents, despite these being extremely unlikely to happen. Indeed, opposers know that when nuclear does fail, it can fail spectacularly. They were reminded of this in 2011, when the Fukushima disaster, despite not killing anyone directly, led to the displacement of more than 150,000 people, thousands of evacuation/related deaths and billions of dollars in cleanup costs. 

Lastly, if compared to other sources of energy, nuclear power is one of the most expensive and time-consuming forms of energy. Nuclear plants cost billions of dollars to build and they take much longer than any other infrastructure for renewable energy, sometimes even more than a decade. However, while nuclear power plants are expensive to build, they are relatively cheap to run , a factor that improves its competitiveness. Still, the long building process is considered a significant obstacle in the run to net-zero emissions that countries around the world have committed to. If they hope to meet their emission reduction targets in time, they cannot afford to rely on new nuclear plants.

You might also like: The Nuclear Waste Disposal Dilemma

Who Wins the Nuclear Debate?

There are a multitude of advantages and disadvantages of nuclear energy and the debate on whether to keep this technology or find other alternatives is destined to continue in the years to come.

Nuclear power can be a highly destructive weapon, but the risks of a nuclear catastrophe are relatively low. While historic nuclear disasters can be counted on the fingers of a single hand, they are remembered for their devastating impact and the life-threatening consequences they sparked (or almost sparked). However, it is important to remember that fossil fuels like coal and oil represent a much bigger threat and silently kill millions of people every year worldwide. 

Another big aspect to take into account, and one that is currently discussed by global leaders, is the dependence of some of the world’s largest economies on countries like Russia, Saudi Arabia, and Iraq for fossil fuels. While the 2011 Fukushima disaster, for example, pushed the then-German Chancellor Angela Merkel to close all of Germany’s nuclear plants, her decision only increased the country’s dependence on much more polluting Russian oil. Nuclear supporters argue that relying on nuclear energy would decrease the energy dependency from third countries. However, raw materials such as the uranium needed to make plants function would still need to be imported from countries like Canada, Kazakhstan, and Australia.

The debate thus shifts to another problem: which countries should we rely on for imports and, most importantly, is it worth keeping these dependencies?

This story is funded by readers like you

Our non-profit newsroom provides climate coverage free of charge and advertising. Your one-off or monthly donations play a crucial role in supporting our operations, expanding our reach, and maintaining our editorial independence.

About EO | Mission Statement | Impact & Reach | Write for us

About the Author

essay on nuclear power station

Martina Igini

Top 7 Smart Cities in the World in 2024

Top 7 Smart Cities in the World in 2024

What the Future of Renewable Energy Looks Like

What the Future of Renewable Energy Looks Like

The Environmental Impacts of Lithium and Cobalt Mining

The Environmental Impacts of Lithium and Cobalt Mining

Hand-picked stories weekly or monthly. We promise, no spam!

  • Email This field is for validation purposes and should be left unchanged.

Boost this article By donating us $100, $50 or subscribe to Boosting $10/month – we can get this article and others in front of tens of thousands of specially targeted readers. This targeted Boosting – helps us to reach wider audiences – aiming to convince the unconvinced, to inform the uninformed, to enlighten the dogmatic.

Energy.gov Home

Nuclear energy protects air quality by producing massive amounts of carbon-free electricity. It powers communities in 28 U.S. states and contributes to many non-electric applications, ranging from the  medical field to space exploration .

The Office of Nuclear Energy within the U.S. Department of Energy (DOE) focuses its research primarily on maintaining the existing fleet of reactors, developing new advanced reactor technologies, and improving the nuclear fuel cycle to increase the sustainability of our energy supply and strengthen the U.S. economy.

Below are some of the main advantages of nuclear energy and the challenges currently facing the industry today.

Advantages of Nuclear Energy

Clean energy source.

Nuclear is the largest source of clean power in the United States. It generates nearly 775 billion kilowatthours of electricity each year and produces nearly half of the nation’s emissions-free electricity. This avoids more than 471 million metric tons of carbon each year, which is the equivalent of removing 100 million cars off of the road.

Creates Jobs

The nuclear industry supports nearly half a million jobs in the United States. Domestic nuclear power plants can employ up to 800 workers with salaries that are 50% higher than those of other generation sources. They also contribute billions of dollars annually to local economies through federal and state tax revenues.

Supports National Security

A strong civilian nuclear sector is essential to U.S. national security and energy diplomacy. The United States must maintain its global leadership in this arena to influence the peaceful use of nuclear technologies. The U.S. government works with countries in this capacity to build relationships and develop new opportunities for the nation’s nuclear technologies.

Challenges of Nuclear Energy

Public awareness.

Commercial nuclear power is sometimes viewed by the general public as a dangerous or unstable process. This perception is often based on three global nuclear accidents, its false association with nuclear weapons, and how it is portrayed on popular television shows and films.

DOE and its national labs are working with industry to develop new reactors and fuels that will increase the overall performance of these technologies and reduce the amount of nuclear waste that is produced.  

DOE also works to provide accurate, fact-based information about nuclear energy through its social media and STEM outreach efforts to educate the public on the benefits of nuclear energy.

Used Fuel Transportation, Storage and Disposal

Many people view used fuel as a growing problem and are apprehensive about its transportation, storage, and disposal. DOE is responsible for the eventual disposal and associated transport of all used fuel , most of which is currently securely stored at more than 70 sites in 35 states. For the foreseeable future, this fuel can safely remain at these facilities until a permanent disposal solution is determined by Congress.

DOE is currently evaluating nuclear power plant sites and nearby transportation infrastructure to support the eventual transport of used fuel away from these sites.

Subject to appropriations, the Department is moving forward on a government-owned consolidated interim storage facility project that includes rail transportation . 

The location of the storage facility would be selected through DOE's consent-based siting process that puts communities at the forefront and would ultimately reduce the number of locations where commercial spent nuclear fuel is stored in the United States.  

Constructing New Power Plants

Building a nuclear power plant can be discouraging for stakeholders. Conventional reactor designs are considered multi-billion dollar infrastructure projects. High capital costs, licensing and regulation approvals, coupled with long lead times and construction delays, have also deterred public interest.

microreactor_SMR image

Microreactor (left) - Small Modular Reactor (right)

DOE is rebuilding its nuclear workforce by  supporting the construction  of two new reactors at Plant Vogtle in Waynesboro, Georgia. The units are the first new reactors to begin construction in the United States in more than 30 years. The expansion project supported up to 9,000 workers at peak construction and created 800 permanent jobs at the facility when the units came online in 2023 and 2024.

DOE is also supporting the development of smaller reactor designs, such as  microreactors  and  small modular reactors , that will offer even more flexibility in size and power capacity to the customer. These factory-built systems are expected to dramatically reduce construction timelines and will make nuclear more affordable to build and operate.

High Operating Costs

Challenging market conditions have left the nuclear industry struggling to compete. DOE’s  Light Water Reactor Sustainability (LWRS) program  is working to overcome these economic challenges by modernizing plant systems to reduce operation and maintenance costs, while improving performance. In addition to its materials research that supports the long-term operation of the nation’s fleet of reactors, the program is also looking to diversify plant products through non-electric applications such as water desalination and  hydrogen production .

To further improve operating costs. DOE is also working with industry to develop new fuels and cladding known as  accident tolerant fuels . These new fuels could increase plant performance, allowing for longer response times and will produce less waste. Accident tolerant fuels could gain widespread use by 2025.

*Update June 2024

  • ENVIRONMENT

What is nuclear energy and is it a viable resource?

Nuclear energy's future as an electricity source may depend on scientists' ability to make it cheaper and safer.

Nuclear power is generated by splitting atoms to release the energy held at the core, or nucleus, of those atoms. This process, nuclear fission, generates heat that is directed to a cooling agent—usually water. The resulting steam spins a turbine connected to a generator, producing electricity.

About 450 nuclear reactors provide about 11 percent of the world's electricity. The countries generating the most nuclear power are, in order, the United States, France, China, Russia, and South Korea.

The most common fuel for nuclear power is uranium, an abundant metal found throughout the world. Mined uranium is processed into U-235, an enriched version used as fuel in nuclear reactors because its atoms can be split apart easily.

In a nuclear reactor, neutrons—subatomic particles that have no electric charge—collide with atoms, causing them to split. That collision—called nuclear fission—releases more neutrons that react with more atoms, creating a chain reaction. A byproduct of nuclear reactions, plutonium , can also be used as nuclear fuel.

Types of nuclear reactors

In the U.S. most nuclear reactors are either boiling water reactors , in which the water is heated to the boiling point to release steam, or pressurized water reactors , in which the pressurized water does not boil but funnels heat to a secondary water supply for steam generation. Other types of nuclear power reactors include gas-cooled reactors, which use carbon dioxide as the cooling agent and are used in the U.K., and fast neutron reactors, which are cooled by liquid sodium.

Nuclear energy history

The idea of nuclear power began in the 1930s , when physicist Enrico Fermi first showed that neutrons could split atoms. Fermi led a team that in 1942 achieved the first nuclear chain reaction, under a stadium at the University of Chicago. This was followed by a series of milestones in the 1950s: the first electricity produced from atomic energy at Idaho's Experimental Breeder Reactor I in 1951; the first nuclear power plant in the city of Obninsk in the former Soviet Union in 1954; and the first commercial nuclear power plant in Shippingport, Pennsylvania, in 1957. ( Take our quizzes about nuclear power and see how much you've learned: for Part I, go here ; for Part II, go here .)

Nuclear power, climate change, and future designs

Nuclear power isn't considered renewable energy , given its dependence on a mined, finite resource, but because operating reactors do not emit any of the greenhouse gases that contribute to global warming , proponents say it should be considered a climate change solution . National Geographic emerging explorer Leslie Dewan, for example, wants to resurrect the molten salt reactor , which uses liquid uranium dissolved in molten salt as fuel, arguing it could be safer and less costly than reactors in use today.

Others are working on small modular reactors that could be portable and easier to build. Innovations like those are aimed at saving an industry in crisis as current nuclear plants continue to age and new ones fail to compete on price with natural gas and renewable sources such as wind and solar.

The holy grail for the future of nuclear power involves nuclear fusion, which generates energy when two light nuclei smash together to form a single, heavier nucleus. Fusion could deliver more energy more safely and with far less harmful radioactive waste than fission, but just a small number of people— including a 14-year-old from Arkansas —have managed to build working nuclear fusion reactors. Organizations such as ITER in France and Max Planck Institute of Plasma Physics are working on commercially viable versions, which so far remain elusive.

Nuclear power risks

When arguing against nuclear power, opponents point to the problems of long-lived nuclear waste and the specter of rare but devastating nuclear accidents such as those at Chernobyl in 1986 and Fukushima Daiichi in 2011 . The deadly Chernobyl disaster in Ukraine happened when flawed reactor design and human error caused a power surge and explosion at one of the reactors. Large amounts of radioactivity were released into the air, and hundreds of thousands of people were forced from their homes . Today, the area surrounding the plant—known as the Exclusion Zone—is open to tourists but inhabited only by the various wildlife species, such as gray wolves , that have since taken over .

In the case of Japan's Fukushima Daiichi, the aftermath of the Tohoku earthquake and tsunami caused the plant's catastrophic failures. Several years on, the surrounding towns struggle to recover, evacuees remain afraid to return , and public mistrust has dogged the recovery effort, despite government assurances that most areas are safe.

Other accidents, such as the partial meltdown at Pennsylvania's Three Mile Island in 1979, linger as terrifying examples of nuclear power's radioactive risks. The Fukushima disaster in particular raised questions about safety of power plants in seismic zones, such as Armenia's Metsamor power station.

Other issues related to nuclear power include where and how to store the spent fuel, or nuclear waste, which remains dangerously radioactive for thousands of years. Nuclear power plants, many of which are located on or near coasts because of the proximity to water for cooling, also face rising sea levels and the risk of more extreme storms due to climate change.

Related Topics

  • NUCLEAR ENERGY
  • NUCLEAR WEAPONS
  • TOXIC WASTE
  • RENEWABLE ENERGY

You May Also Like

essay on nuclear power station

This pill could protect us from radiation after a nuclear meltdown

essay on nuclear power station

Scientists achieve a breakthrough in nuclear fusion. Here’s what it means.

essay on nuclear power station

This young nuclear engineer has a new plan for clean energy

essay on nuclear power station

The true history of Einstein's role in developing the atomic bomb

essay on nuclear power station

Who is Oppenheimer? The controversial man behind the atomic bomb

  • Environment
  • Paid Content

History & Culture

  • History & Culture
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

Nuclear Energy

Nuclear energy is the energy in the nucleus, or core, of an atom. Nuclear energy can be used to create electricity, but it must first be released from the atom.

Engineering, Physics

Loading ...

Nuclear energy is the energy in the nucleus , or core, of an atom . Atoms are tiny units that make up all matter in the universe , and energy is what holds the nucleus together. There is a huge amount of energy in an atom 's dense nucleus . In fact, the power that holds the nucleus together is officially called the " strong force ." Nuclear energy can be used to create electricity , but it must first be released from the atom . In the process of  nuclear fission , atoms are split to release that energy. A nuclear reactor , or power plant , is a series of machines that can control nuclear fission to produce electricity . The fuel that nuclear reactors use to produce nuclear fission is pellets of the element uranium . In a nuclear reactor , atoms of uranium are forced to break apart. As they split, the atoms release tiny particles called fission products. Fission products cause other uranium atoms to split, starting a chain reaction . The energy released from this chain reaction creates heat. The heat created by nuclear fission warms the reactor's cooling agent . A cooling agent is usually water, but some nuclear reactors use liquid metal or molten salt . The cooling agent , heated by nuclear fission , produces steam . The steam turns turbines , or wheels turned by a flowing current . The turbines drive generators , or engines that create electricity . Rods of material called nuclear poison can adjust how much electricity is produced. Nuclear poisons are materials, such as a type of the element xenon , that absorb some of the fission products created by nuclear fission . The more rods of nuclear poison that are present during the chain reaction , the slower and more controlled the reaction will be. Removing the rods will allow a stronger chain reaction and create more electricity . As of 2011, about 15 percent of the world's electricity is generated by nuclear power plants . The United States has more than 100 reactors, although it creates most of its electricity from fossil fuels and hydroelectric energy . Nations such as Lithuania, France, and Slovakia create almost all of their electricity from nuclear power plants . Nuclear Food: Uranium Uranium is the fuel most widely used to produce nuclear energy . That's because uranium atoms split apart relatively easily. Uranium is also a very common element, found in rocks all over the world. However, the specific type of uranium used to produce nuclear energy , called U-235 , is rare. U-235 makes up less than one percent of the uranium in the world.

Although some of the uranium the United States uses is mined in this country, most is imported . The U.S. gets uranium from Australia, Canada, Kazakhstan, Russia, and Uzbekistan. Once uranium is mined, it must be extracted from other minerals . It must also be processed before it can be used. Because nuclear fuel can be used to create nuclear weapons as well as nuclear reactors , only nations that are part of the Nuclear Non-Proliferation Treaty (NPT) are allowed to import uranium or plutonium , another nuclear fuel . The treaty promotes the peaceful use of nuclear fuel , as well as limiting the spread of nuclear weapons . A typical nuclear reactor uses about 200 tons of uranium every year. Complex processes allow some uranium and plutonium to be re-enriched or recycled . This reduces the amount of mining , extracting , and processing that needs to be done. Nuclear Energy and People Nuclear energy produces electricity that can be used to power homes, schools, businesses, and hospitals. The first nuclear reactor to produce electricity was located near Arco, Idaho. The Experimental Breeder Reactor began powering itself in 1951. The first nuclear power plant designed to provide energy to a community was established in Obninsk, Russia, in 1954. Building nuclear reactors requires a high level of technology , and only the countries that have signed the Nuclear Non-Proliferation Treaty can get the uranium or plutonium that is required. For these reasons, most nuclear power plants are located in the developed world. Nuclear power plants produce renewable, clean energy . They do not pollute the air or release  greenhouse gases . They can be built in urban or rural areas , and do not radically alter the environment around them. The steam powering the turbines and generators is ultimately recycled . It is cooled down in a separate structure called a cooling tower . The steam turns back into water and can be used again to produce more electricity . Excess steam is simply recycled into the atmosphere , where it does little harm as clean water vapor . However, the byproduct of nuclear energy is radioactive material. Radioactive material is a collection of unstable atomic nuclei . These nuclei lose their energy and can affect many materials around them, including organisms and the environment. Radioactive material can be extremely toxic , causing burns and increasing the risk for cancers , blood diseases, and bone decay .

Radioactive waste is what is left over from the operation of a nuclear reactor . Radioactive waste is mostly protective clothing worn by workers, tools, and any other material that have been in contact with radioactive dust. Radioactive waste is long-lasting. Materials like clothes and tools can stay radioactive for thousands of years. The government regulates how these materials are disposed of so they don't contaminate anything else. Used fuel and rods of nuclear poison are extremely radioactive . The used uranium pellets must be stored in special containers that look like large swimming pools. Water cools the fuel and insulates the outside from contact with the radioactivity. Some nuclear plants store their used fuel in dry storage tanks above ground. The storage sites for radioactive waste have become very controversial in the United States. For years, the government planned to construct an enormous nuclear waste facility near Yucca Mountain, Nevada, for instance. Environmental groups and local citizens protested the plan. They worried about radioactive waste leaking into the water supply and the Yucca Mountain environment, about 130 kilometers (80 miles) from the large urban area of Las Vegas, Nevada. Although the government began investigating the site in 1978, it stopped planning for a nuclear waste facility in Yucca Mountain in 2009. Chernobyl Critics of nuclear energy worry that the storage facilities for radioactive waste will leak, crack, or erode . Radioactive material could then contaminate the soil and groundwater near the facility . This could lead to serious health problems for the people and organisms in the area. All communities would have to be evacuated . This is what happened in Chernobyl, Ukraine, in 1986. A steam explosion at one of the power plants four nuclear reactors caused a fire, called a plume . This plume was highly radioactive , creating a cloud of radioactive particles that fell to the ground, called fallout . The fallout spread over the Chernobyl facility , as well as the surrounding area. The fallout drifted with the wind, and the particles entered the water cycle as rain. Radioactivity traced to Chernobyl fell as rain over Scotland and Ireland. Most of the radioactive fallout fell in Belarus.

The environmental impact of the Chernobyl disaster was immediate . For kilometers around the facility , the pine forest dried up and died. The red color of the dead pines earned this area the nickname the Red Forest . Fish from the nearby Pripyat River had so much radioactivity that people could no longer eat them. Cattle and horses in the area died. More than 100,000 people were relocated after the disaster , but the number of human victims of Chernobyl is difficult to determine . The effects of radiation poisoning only appear after many years. Cancers and other diseases can be very difficult to trace to a single source. Future of Nuclear Energy Nuclear reactors use fission, or the splitting of atoms , to produce energy. Nuclear energy can also be produced through fusion, or joining (fusing) atoms together. The sun, for instance, is constantly undergoing nuclear fusion as hydrogen atoms fuse to form helium . Because all life on our planet depends on the sun, you could say that nuclear fusion makes life on Earth possible. Nuclear power plants do not have the capability to safely and reliably produce energy from nuclear fusion . It's not clear whether the process will ever be an option for producing electricity . Nuclear engineers are researching nuclear fusion , however, because the process will likely be safe and cost-effective.

Nuclear Tectonics The decay of uranium deep inside the Earth is responsible for most of the planet's geothermal energy, causing plate tectonics and continental drift.

Three Mile Island The worst nuclear accident in the United States happened at the Three Mile Island facility near Harrisburg, Pennsylvania, in 1979. The cooling system in one of the two reactors malfunctioned, leading to an emission of radioactive fallout. No deaths or injuries were directly linked to the accident.

Articles & Profiles

Media credits.

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrators

Educator reviewer, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Benefits and Disadvantages of Nuclear Energy

Jesse kuet march 22, 2018, submitted as coursework for ph241 , stanford university, winter 2018.

The Dukovany Power Plant, a typical light water reactor. (Source: )

According to the 2017 BP Statistical Review of World Energy, about 4.7% of the world's energy budget is dedicated to nuclear energy. [1] The utilization of nuclear power has been portrayed negatively in the media. Although there are severe consequences if a nuclear power plant goes awry, there are also many benefits associated with its usage. The purpose of this paper is to inform readers about the advantages and disadvantages of using nuclear power to create electrical energy.

Advantages of Nuclear Power

Most light water reactors (See Fig. 1) that make up the world's nuclear capacity create electricity at costs of between $0.025 and $0.07 USD per kilowatt-hour dependent upon the design and requirements of each reactor, and experiences many favorable variables such as government subsidies and research. [2] To put into perspective, in California, the wholesale price to produce electricity from natural gas is approximately $0.05 USD per kilowatt-hour, revealing that nuclear energy may or may not be as costly as other alternatives in certain geographical areas. In addition, nuclear energy by far has the lowest impact on the environment since it does not release any gases like carbon dioxide or methane, which are largely responsible for the greenhouse effect." [3] As a result, this differentiates nuclear energy from fossil fuels in that it does not produce negative carbon externalities as a byproduct, "though some greenhouse gases are released while transporting fuel or extracting energy from uranium." [3] The factor of scarcity is not of concern when it comes to the reactors fuel source, which is primarily uranium. There are roughly 5.5 million tonnes of uranium in the known reserves that could be mined at $130 USD per kilogram. [2] Currently, with the world's consumption of around 66,500 tonnes per year, there is about 80 years worth of fuel with the known reserves since the element is relatively abundant in the earth's crust. The main advantage to nuclear energy is that is it relatively low-cost and consistently runs on its full potential, making it the ideal source to power national grids. [2,4]

Disadvantages of Nuclear Power

The hindrance in the growth of nuclear energy is due to many complex reasons, and a major component is the nuclear waste. The further implementations of nuclear power are limited because although nuclear energy does not produce CO 2 the way fossil fuels do, there is still a toxic byproduct produced from uranium-fueled nuclear cycles: radioactive fission waste. 1 tonne of fresh fuel rod waste from a nuclear reactor would give you a fatal dose of radiation in 10 seconds if placed 3 meters away. Plutonium is also of concern, as it increases an exposed person's potential in developing liver, bone, or lung cancer. [5] There is also a negative political perception associated with nuclear plants and nuclear weapons, so expansive growth of nuclear energy is difficult to accomplish. In addition, nuclear power plants could also be ideal targets for terrorists due to the fissile plutonium components of the waste, which could be reused as bomb fuel. [2] Also a terrorist attack on a large reactor would cause a widespread radiation catastrophe at a scale similar to Chernobyl. The final disadvantage is the plant's concentrated level of capital. Although the fuel cost to produce power using nuclear energy is relatively low, there is still the necessity of having highly skilled workers to build, maintain and monitor the operations to ensure the safety and process of the plant.

© Jesse Kuet. The author warrants that the work is the author's own and that Stanford University provided no input other than typesetting and referencing guidelines. The author grants permission to copy, distribute and display this work in unaltered form, with attribution to the author, for noncommercial purposes only. All other rights, including commercial rights, are reserved to the author.

[1] " BP Statistical Review of World Energy 2017 ," British Petroleum, June 2017.

[2] Q. Schiermeier, "Energy Alternatives: Electricity without Carbon," Nature 454 , 816 (2008).

[3] T. Thomas, " "Advantages of Nuclear Energy Use ," Physics 241, Stanford University, Winter 2016.

[4] G. Cravens, Power to Save the World: The Truth About Nuclear Energy (Knopf, 2008).

[5] D. M. Taylor, "Environmental Plutonium in Humans," Appl. Radiat. Isotopes 46 , 1245 (1995).

Create an account

Create a free IEA account to download our reports or subcribe to a paid service.

Nuclear Power in a Clean Energy System

About this report.

With nuclear power facing an uncertain future in many countries, the world risks a steep decline in its use in advanced economies that could result in billions of tonnes of additional carbon emissions. Some countries have opted out of nuclear power in light of concerns about safety and other issues. Many others, however, still see a role for nuclear in their energy transitions but are not doing enough to meet their goals.

The publication of the IEA's first report addressing nuclear power in nearly two decades brings this important topic back into the global energy debate.

Key findings

Nuclear power is the second-largest source of low-carbon electricity today.

Nuclear power is the second-largest source of low-carbon electricity today, with 452 operating reactors providing 2700 TWh of electricity in 2018, or 10% of global electricity supply.

In advanced economies, nuclear has long been the largest source of low-carbon electricity, providing 18% of supply in 2018. Yet nuclear is quickly losing ground. While 11.2 GW of new nuclear capacity was connected to power grids globally in 2018 – the highest total since 1990 – these additions were concentrated in China and Russia.

Global low-carbon power generation by source, 2018

Cumulative co2 emissions avoided by global nuclear power in selected countries, 1971-2018, an aging nuclear fleet.

In the absense of further lifetime extensions and new projects could result in an additional 4 billion tonnes of CO2 emissions, underlining the importance of the nuclear fleet to low-carbon energy transitions around the globe. In emerging and developing economies, particularly China, the nuclear fleet will provide low-carbon electricity for decades to come.

However the nuclear fleet in advanced economies is 35 years old on average and many plants are nearing the end of their designed lifetimes. Given their age, plants are beginning to close, with 25% of existing nuclear capacity in advanced economies expected to be shut down by 2025.

It is considerably cheaper to extend the life of a reactor than build a new plant, and costs of extensions are competitive with other clean energy options, including new solar PV and wind projects. Nevertheless they still represent a substantial capital investment. The estimated cost of extending the operational life of 1 GW of nuclear capacity for at least 10 years ranges from $500 million to just over $1 billion depending on the condition of the site.

However difficult market conditions are a barrier to lifetime extension investments. An extended period of low wholesale electricity prices in most advanced economies has sharply reduced or eliminated margins for many technologies, putting nuclear at risk of shutting down early if additional investments are needed. As such, the feasibility of extensions depends largely on domestic market conditions.

Age profile of nuclear power capacity in selected regions, 2019

United states, levelised cost of electricity in the united states, 2040, european union, levelised cost of electricity in the european union, 2040, levelised cost of electricity in japan, 2040, the nuclear fade case, nuclear capacity operating in selected advanced economies in the nuclear fade case, 2018-2040, wind and solar pv generation by scenario 2019-2040, policy recommendations.

In this context, countries that intend to retain the option of nuclear power should consider the following actions:

  • Keep the option open:  Authorise lifetime extensions of existing nuclear plants for as long as safely possible. 
  • Value dispatchability:  Design the electricity market in a way that properly values the system services needed to maintain electricity security, including capacity availability and frequency control services. Make sure that the providers of these services, including nuclear power plants, are compensated in a competitive and non-discriminatory manner.
  • Value non-market benefits:  Establish a level playing field for nuclear power with other low-carbon energy sources in recognition of its environmental and energy security benefits and remunerate it accordingly.
  • Update safety regulations:  Where necessary, update safety regulations in order to ensure the continued safe operation of nuclear plants. Where technically possible, this should include allowing flexible operation of nuclear power plants to supply ancillary services.
  • Create a favourable financing framework:  Create risk management and financing frameworks that facilitate the mobilisation of capital for new and existing plants at an acceptable cost taking the risk profile and long time-horizons of nuclear projects into consideration.
  • Support new construction:  Ensure that licensing processes do not lead to project delays and cost increases that are not justified by safety requirements.
  • Support innovative new reactor designs:  Accelerate innovation in new reactor designs with lower capital costs and shorter lead times and technologies that improve the operating flexibility of nuclear power plants to facilitate the integration of growing wind and solar capacity into the electricity system.
  • Maintain human capital:  Protect and develop the human capital and project management capabilities in nuclear engineering.

Executive summary

Nuclear power can play an important role in clean energy transitions.

Nuclear power today makes a significant contribution to electricity generation, providing 10% of global electricity supply in 2018.  In advanced economies 1 , nuclear power accounts for 18% of generation and is the largest low-carbon source of electricity. However, its share of global electricity supply has been declining in recent years. That has been driven by advanced economies, where nuclear fleets are ageing, additions of new capacity have dwindled to a trickle, and some plants built in the 1970s and 1980s have been retired. This has slowed the transition towards a clean electricity system. Despite the impressive growth of solar and wind power, the overall share of clean energy sources in total electricity supply in 2018, at 36%, was the same as it was 20 years earlier because of the decline in nuclear. Halting that slide will be vital to stepping up the pace of the decarbonisation of electricity supply.

A range of technologies, including nuclear power, will be needed for clean energy transitions around the world.  Global energy is increasingly based around electricity. That means the key to making energy systems clean is to turn the electricity sector from the largest producer of CO 2 emissions into a low-carbon source that reduces fossil fuel emissions in areas like transport, heating and industry. While renewables are expected to continue to lead, nuclear power can also play an important part along with fossil fuels using carbon capture, utilisation and storage. Countries envisaging a future role for nuclear account for the bulk of global energy demand and CO 2 emissions. But to achieve a trajectory consistent with sustainability targets – including international climate goals – the expansion of clean electricity would need to be three times faster than at present. It would require 85% of global electricity to come from clean sources by 2040, compared with just 36% today. Along with massive investments in efficiency and renewables, the trajectory would need an 80% increase in global nuclear power production by 2040.

Nuclear power plants contribute to electricity security in multiple ways.  Nuclear plants help to keep power grids stable. To a certain extent, they can adjust their operations to follow demand and supply shifts. As the share of variable renewables like wind and solar photovoltaics (PV) rises, the need for such services will increase. Nuclear plants can help to limit the impacts from seasonal fluctuations in output from renewables and bolster energy security by reducing dependence on imported fuels.

Lifetime extensions of nuclear power plants are crucial to getting the energy transition back on track

Policy and regulatory decisions remain critical to the fate of ageing reactors in advanced economies.  The average age of their nuclear fleets is 35 years. The European Union and the United States have the largest active nuclear fleets (over 100 gigawatts each), and they are also among the oldest: the average reactor is 35 years old in the European Union and 39 years old in the United States. The original design lifetime for operations was 40 years in most cases. Around one quarter of the current nuclear capacity in advanced economies is set to be shut down by 2025 – mainly because of policies to reduce nuclear’s role. The fate of the remaining capacity depends on decisions about lifetime extensions in the coming years. In the United States, for example, some 90 reactors have 60-year operating licenses, yet several have already been retired early and many more are at risk. In Europe, Japan and other advanced economies, extensions of plants’ lifetimes also face uncertain prospects.

Economic factors are also at play.  Lifetime extensions are considerably cheaper than new construction and are generally cost-competitive with other electricity generation technologies, including new wind and solar projects. However, they still need significant investment to replace and refurbish key components that enable plants to continue operating safely. Low wholesale electricity and carbon prices, together with new regulations on the use of water for cooling reactors, are making some plants in the United States financially unviable. In addition, markets and regulatory systems often penalise nuclear power by not pricing in its value as a clean energy source and its contribution to electricity security. As a result, most nuclear power plants in advanced economies are at risk of closing prematurely.

The hurdles to investment in new nuclear projects in advanced economies are daunting

What happens with plans to build new nuclear plants will significantly affect the chances of achieving clean energy transitions.  Preventing premature decommissioning and enabling longer extensions would reduce the need to ramp up renewables. But without new construction, nuclear power can only provide temporary support for the shift to cleaner energy systems. The biggest barrier to new nuclear construction is mobilising investment.  Plans to build new nuclear plants face concerns about competitiveness with other power generation technologies and the very large size of nuclear projects that require billions of dollars in upfront investment. Those doubts are especially strong in countries that have introduced competitive wholesale markets.

A number of challenges specific to the nature of nuclear power technology may prevent investment from going ahead.  The main obstacles relate to the sheer scale of investment and long lead times; the risk of construction problems, delays and cost overruns; and the possibility of future changes in policy or the electricity system itself. There have been long delays in completing advanced reactors that are still being built in Finland, France and the United States. They have turned out to cost far more than originally expected and dampened investor interest in new projects. For example, Korea has a much better record of completing construction of new projects on time and on budget, although the country plans to reduce its reliance on nuclear power.

Without nuclear investment, achieving a sustainable energy system will be much harder

A collapse in investment in existing and new nuclear plants in advanced economies would have implications for emissions, costs and energy security.  In the case where no further investments are made in advanced economies to extend the operating lifetime of existing nuclear power plants or to develop new projects, nuclear power capacity in those countries would decline by around two-thirds by 2040. Under the current policy ambitions of governments, while renewable investment would continue to grow, gas and, to a lesser extent, coal would play significant roles in replacing nuclear. This would further increase the importance of gas for countries’ electricity security. Cumulative CO 2 emissions would rise by 4 billion tonnes by 2040, adding to the already considerable difficulties of reaching emissions targets. Investment needs would increase by almost USD 340 billion as new power generation capacity and supporting grid infrastructure is built to offset retiring nuclear plants.

Achieving the clean energy transition with less nuclear power is possible but would require an extraordinary effort.  Policy makers and regulators would have to find ways to create the conditions to spur the necessary investment in other clean energy technologies. Advanced economies would face a sizeable shortfall of low-carbon electricity. Wind and solar PV would be the main sources called upon to replace nuclear, and their pace of growth would need to accelerate at an unprecedented rate. Over the past 20 years, wind and solar PV capacity has increased by about 580 GW in advanced economies. But in the next 20 years, nearly five times that much would need to be built to offset nuclear’s decline. For wind and solar PV to achieve that growth, various non-market barriers would need to be overcome such as public and social acceptance of the projects themselves and the associated expansion in network infrastructure. Nuclear power, meanwhile, can contribute to easing the technical difficulties of integrating renewables and lowering the cost of transforming the electricity system.

With nuclear power fading away, electricity systems become less flexible.  Options to offset this include new gas-fired power plants, increased storage (such as pumped storage, batteries or chemical technologies like hydrogen) and demand-side actions (in which consumers are encouraged to shift or lower their consumption in real time in response to price signals). Increasing interconnection with neighbouring systems would also provide additional flexibility, but its effectiveness diminishes when all systems in a region have very high shares of wind and solar PV.

Offsetting less nuclear power with more renewables would cost more

Taking nuclear out of the equation results in higher electricity prices for consumers.  A sharp decline in nuclear in advanced economies would mean a substantial increase in investment needs for other forms of power generation and the electricity network. Around USD 1.6 trillion in additional investment would be required in the electricity sector in advanced economies from 2018 to 2040. Despite recent declines in wind and solar costs, adding new renewable capacity requires considerably more capital investment than extending the lifetimes of existing nuclear reactors. The need to extend the transmission grid to connect new plants and upgrade existing lines to handle the extra power output also increases costs. The additional investment required in advanced economies would not be offset by savings in operational costs, as fuel costs for nuclear power are low, and operation and maintenance make up a minor portion of total electricity supply costs. Without widespread lifetime extensions or new projects, electricity supply costs would be close to USD 80 billion higher per year on average for advanced economies as a whole.

Strong policy support is needed to secure investment in existing and new nuclear plants

Countries that have kept the option of using nuclear power need to reform their policies to ensure competition on a level playing field.  They also need to address barriers to investment in lifetime extensions and new capacity. The focus should be on designing electricity markets in a way that values the clean energy and energy security attributes of low-carbon technologies, including nuclear power.

Securing investment in new nuclear plants would require more intrusive policy intervention given the very high cost of projects and unfavourable recent experiences in some countries.  Investment policies need to overcome financing barriers through a combination of long-term contracts, price guarantees and direct state investment.

Interest is rising in advanced nuclear technologies that suit private investment such as small modular reactors (SMRs).  This technology is still at the development stage. There is a case for governments to promote it through funding for research and development, public-private partnerships for venture capital and early deployment grants. Standardisation of reactor designs would be crucial to benefit from economies of scale in the manufacturing of SMRs.

Continued activity in the operation and development of nuclear technology is required to maintain skills and expertise.  The relatively slow pace of nuclear deployment in advanced economies in recent years means there is a risk of losing human capital and technical know-how. Maintaining human skills and industrial expertise should be a priority for countries that aim to continue relying on nuclear power.

The following recommendations are directed at countries that intend to retain the option of nuclear power. The IEA makes no recommendations to countries that have chosen not to use nuclear power in their clean energy transition and respects their choice to do so.

  • Keep the option open:  Authorise lifetime extensions of existing nuclear plants for as long as safely possible.
  • Value non-market benefits:  Establish a level playing field for nuclear power with other low carbon energy sources in recognition of its environmental and energy security benefits and remunerate it accordingly.
  • Create an attractive financing framework:  Set up risk management and financing frameworks that can help mobilise capital for new and existing plants at an acceptable cost, taking the risk profile and long time horizons of nuclear projects into consideration.
  • Support new construction:  Ensure that licensing processes do not lead to project delays and cost increases that are not justified by safety requirements. Support standardisation and enable learning-by-doing across the industry.
  • Support innovative new reactor designs:  Accelerate innovation in new reactor designs, such as small modular reactors (SMRs), with lower capital costs and shorter lead times and technologies that improve the operating flexibility of nuclear power plants to facilitate the integration of growing wind and solar capacity into the electricity system.

Advanced economies consist of Australia, Canada, Chile, the 28 members of the European Union, Iceland, Israel, Japan, Korea, Mexico, New Zealand, Norway, Switzerland, Turkey and the United States.

Reference 1

Cite report.

IEA (2019), Nuclear Power in a Clean Energy System , IEA, Paris https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system, Licence: CC BY 4.0

Share this report

  • Share on Twitter Twitter
  • Share on Facebook Facebook
  • Share on LinkedIn LinkedIn
  • Share on Email Email
  • Share on Print Print

Subscription successful

Thank you for subscribing. You can unsubscribe at any time by clicking the link at the bottom of any IEA newsletter.

 / 

The 3,122-megawatt Civaux Nuclear Power Plant in France, which opened in 1997. GUILLAUME SOUVANT / AFP / Getty Images

Why Nuclear Power Must Be Part of the Energy Solution

By Richard Rhodes • July 19, 2018

Many environmentalists have opposed nuclear power, citing its dangers and the difficulty of disposing of its radioactive waste. But a Pulitzer Prize-winning author argues that nuclear is safer than most energy sources and is needed if the world hopes to radically decrease its carbon emissions. 

In the late 16th century, when the increasing cost of firewood forced ordinary Londoners to switch reluctantly to coal, Elizabethan preachers railed against a fuel they believed to be, literally, the Devil’s excrement. Coal was black, after all, dirty, found in layers underground — down toward Hell at the center of the earth — and smelled strongly of sulfur when it burned. Switching to coal, in houses that usually lacked chimneys, was difficult enough; the clergy’s outspoken condemnation, while certainly justified environmentally, further complicated and delayed the timely resolution of an urgent problem in energy supply.

For too many environmentalists concerned with global warming, nuclear energy is today’s Devil’s excrement. They condemn it for its production and use of radioactive fuels and for the supposed problem of disposing of its waste. In my judgment, their condemnation of this efficient, low-carbon source of baseload energy is misplaced. Far from being the Devil’s excrement, nuclear power can be, and should be, one major component of our rescue from a hotter, more meteorologically destructive world.

Like all energy sources, nuclear power has advantages and disadvantages. What are nuclear power’s benefits? First and foremost, since it produces energy via nuclear fission rather than chemical burning, it generates baseload electricity with no output of carbon, the villainous element of global warming. Switching from coal to natural gas is a step toward decarbonizing, since burning natural gas produces about half the carbon dioxide of burning coal. But switching from coal to nuclear power is radically decarbonizing, since nuclear power plants release greenhouse gases only from the ancillary use of fossil fuels during their construction, mining, fuel processing, maintenance, and decommissioning — about as much as solar power does, which is about 4 to 5 percent as much as a natural gas-fired power plant.

Nuclear power releases less radiation into the environment than any other major energy source.

Second, nuclear power plants operate at much higher capacity factors than renewable energy sources or fossil fuels. Capacity factor is a measure of what percentage of the time a power plant actually produces energy. It’s a problem for all intermittent energy sources. The sun doesn’t always shine, nor the wind always blow, nor water always fall through the turbines of a dam.

In the United States in 2016, nuclear power plants, which generated almost 20 percent of U.S. electricity, had an average capacity factor of 92.3 percent , meaning they operated at full power on 336 out of 365 days per year. (The other 29 days they were taken off the grid for maintenance.) In contrast , U.S. hydroelectric systems delivered power 38.2 percent of the time (138 days per year), wind turbines 34.5 percent of the time (127 days per year) and solar electricity arrays only 25.1 percent of the time (92 days per year). Even plants powered with coal or natural gas only generate electricity about half the time for reasons such as fuel costs and seasonal and nocturnal variations in demand. Nuclear is a clear winner on reliability.

Third, nuclear power releases less radiation into the environment than any other major energy source. This statement will seem paradoxical to many readers, since it’s not commonly known that non-nuclear energy sources release any radiation into the environment. They do. The worst offender is coal, a mineral of the earth’s crust that contains a substantial volume of the radioactive elements uranium and thorium. Burning coal gasifies its organic materials, concentrating its mineral components into the remaining waste, called fly ash. So much coal is burned in the world and so much fly ash produced that coal is actually the major source of radioactive releases into the environment. 

Anti-nuclear activists protest the construction of a nuclear power station in Seabrook, New Hampshire in 1977.  AP Photo

In the early 1950s, when the U.S. Atomic Energy Commission believed high-grade uranium ores to be in short supply domestically, it considered extracting uranium for nuclear weapons from the abundant U.S. supply of fly ash from coal burning. In 2007, China began exploring such extraction, drawing on a pile of some 5.3 million metric tons of brown-coal fly ash at Xiaolongtang in Yunnan. The Chinese ash averages about 0.4 pounds of triuranium octoxide (U3O8), a uranium compound, per metric ton. Hungary and South Africa are also exploring uranium extraction from coal fly ash. 

What are nuclear’s downsides? In the public’s perception, there are two, both related to radiation: the risk of accidents, and the question of disposal of nuclear waste.

There have been three large-scale accidents involving nuclear power reactors since the onset of commercial nuclear power in the mid-1950s: Three-Mile Island in Pennsylvania, Chernobyl in Ukraine, and Fukushima in Japan.

Studies indicate even the worst possible accident at a nuclear plant is less destructive than other major industrial accidents.

The partial meltdown of the Three-Mile Island reactor in March 1979, while a disaster for the owners of the Pennsylvania plant, released only a minimal quantity of radiation to the surrounding population. According to the U.S. Nuclear Regulatory Commission :

“The approximately 2 million people around TMI-2 during the accident are estimated to have received an average radiation dose of only about 1 millirem above the usual background dose. To put this into context, exposure from a chest X-ray is about 6 millirem and the area’s natural radioactive background dose is about 100-125 millirem per year… In spite of serious damage to the reactor, the actual release had negligible effects on the physical health of individuals or the environment.”

The explosion and subsequent burnout of a large graphite-moderated, water-cooled reactor at Chernobyl in 1986 was easily the worst nuclear accident in history. Twenty-nine disaster relief workers died of acute radiation exposure in the immediate aftermath of the accident. In the subsequent three decades, UNSCEAR — the United Nations Scientific Committee on the Effects of Atomic Radiation, composed of senior scientists from 27 member states — has observed and reported at regular intervals on the health effects of the Chernobyl accident. It has identified no long-term health consequences to populations exposed to Chernobyl fallout except for thyroid cancers in residents of Belarus, Ukraine and western Russia who were children or adolescents at the time of the accident, who drank milk contaminated with 131iodine, and who were not evacuated. By 2008, UNSCEAR had attributed some 6,500 excess cases of thyroid cancer in the Chernobyl region to the accident, with 15 deaths.  The occurrence of these cancers increased dramatically from 1991 to 1995, which researchers attributed mostly to radiation exposure. No increase occurred in adults.

The Diablo Canyon Nuclear Power Plant, located near Avila Beach, California, will be decommissioned starting in 2024. Pacific Gas and Electric

“The average effective doses” of radiation from Chernobyl, UNSCEAR also concluded , “due to both external and internal exposures, received by members of the general public during 1986-2005 [were] about 30 mSv for the evacuees, 1 mSv for the residents of the former Soviet Union, and 0.3 mSv for the populations of the rest of Europe.”  A sievert is a measure of radiation exposure, a millisievert is one-one-thousandth of a sievert. A full-body CT scan delivers about 10-30 mSv. A U.S. resident receives an average background radiation dose, exclusive of radon, of about 1 mSv per year.

The statistics of Chernobyl irradiations cited here are so low that they must seem intentionally minimized to those who followed the extensive media coverage of the accident and its aftermath. Yet they are the peer-reviewed products of extensive investigation by an international scientific agency of the United Nations. They indicate that even the worst possible accident at a nuclear power plant — the complete meltdown and burnup of its radioactive fuel — was yet far less destructive than other major industrial accidents across the past century. To name only two: Bhopal, in India, where at least 3,800 people died immediately and many thousands more were sickened when 40 tons of methyl isocyanate gas leaked from a pesticide plant; and Henan Province, in China, where at least 26,000 people drowned following the failure of a major hydroelectric dam in a typhoon. “Measured as early deaths per electricity units produced by the Chernobyl facility (9 years of operation, total electricity production of 36 GWe-years, 31 early deaths) yields 0.86 death/GWe-year),” concludes Zbigniew Jaworowski, a physician and former UNSCEAR chairman active during the Chernobyl accident. “This rate is lower than the average fatalities from [accidents involving] a majority of other energy sources. For example, the Chernobyl rate is nine times lower than the death rate from liquefied gas… and 47 times lower than from hydroelectric stations.” 

Nuclear waste disposal, although a continuing political problem, is not any longer a technological problem.

The accident in Japan at Fukushima Daiichi in March 2011 followed a major earthquake and tsunami. The tsunami flooded out the power supply and cooling systems of three power reactors, causing them to melt down and explode, breaching their confinement. Although 154,000 Japanese citizens were evacuated from a 12-mile exclusion zone around the power station, radiation exposure beyond the station grounds was limited. According to the report submitted to the International Atomic Energy Agency in June 2011:

“No harmful health effects were found in 195,345 residents living in the vicinity of the plant who were screened by the end of May 2011. All the 1,080 children tested for thyroid gland exposure showed results within safe limits. By December, government health checks of some 1,700 residents who were evacuated from three municipalities showed that two-thirds received an external radiation dose within the normal international limit of 1 mSv/year, 98 percent were below 5 mSv/year, and 10 people were exposed to more than 10 mSv… [There] was no major public exposure, let alone deaths from radiation.” 

Nuclear waste disposal, although a continuing political problem in the U.S., is not any longer a technological problem. Most U.S. spent fuel, more than 90 percent of which could be recycled to extend nuclear power production by hundreds of years, is stored at present safely in impenetrable concrete-and-steel dry casks on the grounds of operating reactors, its radiation slowly declining. 

An activist in March 2017 demanding closure of the Fessenheim Nuclear Power Plant in France. Authorities announced in April that they will close the facility by 2020. SEBASTIEN BOZON / AFP / Getty Images

The U.S. Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico currently stores low-level and transuranic military waste and could store commercial nuclear waste in a 2-kilometer thick bed of crystalline salt, the remains of an ancient sea. The salt formation extends from southern New Mexico all the way northeast to southwestern Kansas. It could easily accommodate the entire world’s nuclear waste for the next thousand years.

Finland is even further advanced in carving out a permanent repository in granite bedrock 400 meters under Olkiluoto, an island in the Baltic Sea off the nation’s west coast. It expects to begin permanent waste storage in 2023.

A final complaint against nuclear power is that it costs too much. Whether or not nuclear power costs too much will ultimately be a matter for markets to decide, but there is no question that a full accounting of the external costs of different energy systems would find nuclear cheaper than coal or natural gas. 

Nuclear power is not the only answer to the world-scale threat of global warming. Renewables have their place; so, at least for leveling the flow of electricity when renewables vary, does natural gas. But nuclear deserves better than the anti-nuclear prejudices and fears that have plagued it. It isn’t the 21st century’s version of the Devil’s excrement. It’s a valuable, even an irreplaceable, part of the solution to the greatest energy threat in the history of humankind.

Related Articles

On gulf coast, an activist rallies her community against gas exports.

By Jocelyn C. Zuckerman

Can a California Oilfield Be Retrofitted to Store Solar Energy?

By Stephen Robert Miller

In a Dammed and Diked Mekong, a Push to Restore the Flow

By Stefan Lovgren

More From E360

E360 film contest winner, in california, a solitary herder cares for his goats and the hills, as ‘doomsday’ glacier melts, can an artificial barrier save it, e360 film contest, for 60,000 years, australia’s first nations have put fire to good use, faced with heavier rains, cities scramble to control polluted runoff, in montana’s northern plains, swift foxes are back from the brink, as canadian river shrivels, northern communities call for a highway, in warming world, global heat deaths are grossly undercounted, biodiversity, the ‘internet of animals’ could transform what we know about wildlife, grim dilemma: should we kill one owl species to save another, with co2 levels rising, world’s drylands are turning green, as world’s springs vanish, ripple effects alter ecosystems.

77 Nuclear Power Essay Topics & Examples

If you’re looking for nuclear power essay topics, you may be willing to discuss renewable energy sources, sustainable development, and climate change as well. With the paper titles collected by our team , you’ll be able to explore all these issues!

🏆 Best Nuclear Energy Essay Topics & Examples

👍 good nuclear energy research paper topics, ❓ questions about nuclear power.

  • Pros and Cons of Nuclear Power The first pro of nuclear energy is that it emits little pollution to the environment. The next con of nuclear energy is the occurrence of a meltdown.
  • Nuclear Energy and Its Risks The situation became difficult when the power in the reactors reduced and could not be enough to be used by the operators.
  • Nuclear Power Advantages and Disadvantages The claim is thought to include cost of installations and time taken to construct the nuclear plants. In this case, they fail to note that the cost of electricity from nuclear energy is cheaper than […]
  • Combined-Cycle Gas Plant: The Nuclear Power Plant Replacement This essay will make the case for the use of a combined-cycle gas plant as the best option for replacing a state’s nuclear power plant, as well as explain why a carbon tax or cap-and-trade […]
  • The Nuclear Power Passages: Rhetorical Analysis At that, the writer also provides some data utilized by the former vice president and some information to show the negative side of power plants.
  • Metropolitan Edison Company vs. People Against Nuclear Energy In addition, the commission published a hearing notice which entailed an invitation to parties that were interested to submit their briefs explaining the impacts of the accident to the psychological harm or any other indirect […]
  • Biological Effect of Man-Made Disasters in Nuclear Power Plants When it is disrupted in the reproductive organs, the changes are passed on to the offspring as mutations, which are mostly harmful to the organism and related to many deaths in the course of the […]
  • Nuclear Energy: High-Entropy Alloy One of the tools for reducing the level of greenhouse gas emissions is the development of nuclear energy, which is characterized by a high degree of environmental efficiency and the absence of a significant impact […]
  • Tsunami Handling at a Nuclear Power Plant The information presented in this research paper has been analyzed and proved to be the actual content obtained by various parties that participate in the study of tsunamis.
  • Nuclear Power in India The demand for electricity in India is increasing and there is a need to increase the level of supply to meet the demand and the best option is to invest more in nuclear power, considering […]
  • Nuclear Energy: Impact of Science & Technology on Society In spite of the fact that hopes of adherents of the use of atomic energy substantially were not justified, the majority of the governments of the countries of the world do not wish to refuse […]
  • Nuclear Power Plants’ Safety Strategy Implementation Thus, incidents that occur on nuclear power plants are critical and pose a significant risk to the life and health of workers.
  • Nuclear Power: Is It Sustainable? Another controversial aspect of nuclear power is its effects on human health and the environment. Finally, the use of nuclear energy is a significant political and ethical concern.
  • Iranian Public Opinion on Nuclear Power and Economy Other research topics included the Israel-Palestine conflict, the war in Iraq, the Iranian system of government, and Iran’s relation to the US and the West.
  • Nuclear Energy: Safe, Economical, Reliable Thus, nuclear energy is viable and safe in meeting the current and future demand for energy across the world. Nuclear energy has significant implications for the environment and population health in case of an accident […]
  • Emirates Nuclear Energy Corporation: Business Principles The first 3 are enablers of the system of management while the fourth component is process-oriented, which helps in the development, production, and delivery of services coupled with products of an organization to the market […]
  • Nuclear Power as a Primary Energy Source The energy crisis the world faces currently is one of the most urgent and disturbing questions countries have to deal with.
  • Nuclear Power & Environment The use of nuclear energy is one of the issues that are debated by environmental scientists, economists as well as engineers.
  • Nuclear Power Exploitation to Generate Electricity Nuclear power plants expose the society to significant dangers in the event of a major disaster in the nuclear power plant.
  • Fossil Fuel, Nuclear Energy, and Alternative Power Sources It is important to keep in mind that the amount of coal is decreasing and there is no guarantee that people will be able to discover more.
  • Nuclear Power Station Advantages and Disadvantages The use of nuclear power to produce electricity increases the energy dependence of a country. It has demonstrated that nuclear power is capable of producing enough electricity to satisfy the growing global energy demands.
  • Harmful Health Effects of Nuclear Energy The risk of developing thyroid cancer following exposure to nuclear radiations increased with a decrease in the age of the subject.
  • Nuclear Power — Mega Trend The developmental milestone of the discovery of nuclear fission in the early 30’s paved way to the advent of nuclear power as a source of energy.
  • Nuclear Power Use Controversies As a result, a person in the industrial world needs to have a wide knowledge of its environment. For example, technological adaptation is tied to interest of the public and the government.
  • The Chronicle of North Korea’s Nuclear Power and Diplomacy Lastly, the paper analyzes the Six-Party talk in terms of its successes and failures with special focus on the current status of the nuclear development program in North Korea.
  • A Cost Benefit Analysis of the Environmental and Economic Effects of Nuclear Energy in the United States The nature of damage posed to the environment depends on the nature of the nuclear plant being used and also the extraction process of fossil fuel themselves.
  • Nuclear Energy Fusion and Harnessing Physicists use the equation E=MC2 to calculate the amount of energy that is generated as a result of the fusion of nucleus.
  • Nuclear Energy Usage and Recycling The resulting energy is used to power machinery and generate heat for processing purposes. The biggest problem though is that of energy storage, which is considered to be the most crucial requirement for building a […]
  • The Effect of Nuclear Energy on the Environment In response to the concerns, this paper proposes the use of thorium reactors to produce nuclear energy because the safety issues of uranium.
  • The Emirates Nuclear Energy Corporation The Emirates Nuclear Energy Corporation, ENEC, brought together six UAE member states, the International Atomic Energy Agency and other countries such as the United States of America. The assertions made above indicate that UAE relies […]
  • Nuclear Power Crisis in Japan and Its Implications Nuclear power is perceived in Indonesia, Vietnam, and Thailand and perhaps somewhere else in Asia as an ingredient in a resolution aimed at achieving the requirement of an exceptionally huge amplification of power manufacturing capacity […]
  • Nuclear Energy Benefits and Demerits The aim of the research is to provide substantial proof that nuclear energy is not efficient and sustainable. It is also argued that the whole process and the impacts of nuclear energy production make the […]
  • Balanced Treatment of the Pros and Cons of Nuclear Energy Thus, the use of nuclear power presupposes a number of positive short-term and log-term consequences for the economy of the country and the environment of the planet.
  • The Environmental Impact of Nuclear Energy The country has the opportunity to enhance its capacity to generate electricity from nuclear following the approval of the US Nuclear Regulatory Commission to build and operate between three to four units of the Vogtle […]
  • Should Production of Nuclear Power Be Stopped? A good example of a disaster caused by nuclear power accident is the accident in Chernobyl in April 1986, the accident was the worst in history and it led to mass displacement of people and […]
  • Sources of Energy: Nuclear Power and Hydroelectric Power The main source of power in the world is the Sun. The Sun is the sole source of energy that plants use in the process of photosynthesis in order to manufacture their food.
  • Nuclear Power’ Two Opposing Sides Thus, should possession of nuclear weapons be based on the desired end as to justify the means? It is acceptable to purport that nuclear power may be used if such is meant to promote peace […]
  • Japan’s Nuclear Disaster: Fukushima’s Legacy The cladding, the reactor vessel, the containment building, and a dry-wall building were the barriers to protect the nuclear power plant.
  • Dangers of Nuclear Power The external supply of power to the nuclear plant was disrupted by the earthquake. In addition, organization of the nuclear plant was responsible for some problems that were experienced.
  • Why Developed Countries Should Not Produce Nuclear Power Though nuclear power generation is slowly gaining prominence in the world, especially since the world is seeking more sources of green energy, nuclear energy is a unique source of energy because it bears unique characteristics […]
  • Impact of Nuclear Energy in France Through the process, heat energy is released from the bombardment of the nucleus and the neutrons. The need to manage the nuclear waste affected the economic parameters attached to nuclear energy.
  • Why Nuclear Energy Is Not Good? Even those who say net production is cost effective for unit of nuclear energy produced may not be saying the truth because most of these estimate forget that nuclear energy is recipient of many government […]
  • Nuclear Energy Effectiveness Although water is used to cool nuclear plants, we can conclude that nuclear energy is the most cost effective method of producing electricity.
  • Nuclear Energy Benefits One of the factors why nuclear energy is an effective source of energy is that it is cost effective. The other factor that makes nuclear energy cost effective is that the risks associated with this […]
  • Nuclear Power Provides Cheap and Clean Energy The production of nuclear power is relatively cheap when compared to coal and petroleum. The cost of nuclear fuel for nuclear power generation is much lower compared to coal, oil and gas fired plants.
  • Living With Chernobyl – The Future of Nuclear Power: Summary In the documentary, journalist Cliff Orloff and Olga Shalygin made the journey to the affected zone with the aim of establishing the truth of the predictions made.
  • What Is Nuclear Power in Simple Terms?
  • What Is the Main Purpose of Nuclear Energy?
  • What Is a Nuclear Power Plant and How Does It Work?
  • How Many Countries Use Nuclear Power?
  • What Happens When a Nuclear Power Plant Is Hit?
  • Why Should Nuclear Power Plants Be Closed?
  • Where Is Nuclear Energy Used?
  • Why Is Management of Nuclear Energy Easier Said Than Done?
  • Why Nuclear Power Is Hazardous for Both Humans and Nature?
  • Why Are Megaprojects, Including Nuclear Power Plants, Implemented Over Budget and Late?
  • Why Should Australia Master Nuclear Power?
  • Why Did Some People Change Their Attitude Toward Nuclear Energy After the Fukushima Accident?
  • Why Does Iran Need Nuclear Power?
  • What Are the Implications of China as an Emerging Nuclear Power?
  • What Are the Prospects for the Environmental Sciences of Nuclear Energy?
  • What Role Can Nuclear Power Play in Mitigating Global Warming?
  • What Are the Advantages and Disadvantages of a Nuclear Power Plant?
  • What Is the Emirates Nuclear Energy Corporation Employee Training Program?
  • What Does Nuclear Energy Require?
  • What Are Transaction Costs in Regulation and Subcontracting at a Nuclear Power Plant?
  • What Is the Value of Modular Nuclear Power Plants in the Finite Time Horizon of Decision Making??
  • How Is Nuclear Energy Stored?
  • What Is the Truth About Jaitapur Nuclear Power Plant?
  • How Strong Is Nuclear Energy?
  • Is Nuclear Cheaper Than Solar?
  • Hazardous Waste Essay Topics
  • North Korea Titles
  • Wind Energy Essay Topics
  • Evacuation Essay Topics
  • Alternative Energy Paper Topics
  • Solar Energy Essay Ideas
  • Nazism Topics
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2024, February 29). 77 Nuclear Power Essay Topics & Examples. https://ivypanda.com/essays/topic/nuclear-power-essay-topics/

"77 Nuclear Power Essay Topics & Examples." IvyPanda , 29 Feb. 2024, ivypanda.com/essays/topic/nuclear-power-essay-topics/.

IvyPanda . (2024) '77 Nuclear Power Essay Topics & Examples'. 29 February.

IvyPanda . 2024. "77 Nuclear Power Essay Topics & Examples." February 29, 2024. https://ivypanda.com/essays/topic/nuclear-power-essay-topics/.

1. IvyPanda . "77 Nuclear Power Essay Topics & Examples." February 29, 2024. https://ivypanda.com/essays/topic/nuclear-power-essay-topics/.

Bibliography

IvyPanda . "77 Nuclear Power Essay Topics & Examples." February 29, 2024. https://ivypanda.com/essays/topic/nuclear-power-essay-topics/.

Home

Press centre

  • Nuclear technology and applications
  • Climate change
  • Environment
  • Food and agriculture
  • Nuclear science

Nuclear safety and security

  • Human and organizational factors
  • Governmental, legal and regulatory framework
  • Nuclear installation safety
  • Radiation protection
  • Security of nuclear and other radioactive material
  • Radioactive waste and spent fuel management
  • Emergency preparedness and response

Safeguards and verification

  • Basics of IAEA Safeguards
  • Safeguards implementation
  • Safeguards legal framework
  • Assistance for States
  • Member States Support Programmes

Technical Cooperation Programme

  • How it works
  • How to participate

Coordinated research activities

  • Legislative assistance

Key programmes

  • Atoms4NetZero
  • International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)
  • Together for More Women in Nuclear
  • NUTEC Plastics
  • Peaceful Uses Initiative
  • Rays of Hope
  • The SMR Platform and Nuclear Harmonization and Standardization Initiative (NHSI)
  • Zoonotic Disease Integrated Action (ZODIAC)

Review missions and advisory services

  • Catalogue of review missions and advisory services
  • Peer review and advisory services calendar

Laboratory services

  • Analytical reference materials
  • Dosimetry calibration
  • Dosimetry auditing
  • Inter-laboratory comparisons
  • Global Nuclear Safety and Security Network (GNSSN)

Education and training

  • Training courses
  • Online learning

Scientific and technical publications

  • Full catalogue
  • Safety Standards
  • Nuclear Security Series
  • Nuclear Energy Series
  • Human Health Series
  • Conference Proceedings
  • Newsletters
  • Nuclear Fusion Journal

General interest material

  • IAEA Bulletin
  • Nuclear Explained
  • Photos (Flickr)
  • Photo essays
  • Briefs and factsheets
  • IAEA Virtual Tours

Official documents

  • Information circulars

NUCLEUS information resources

  • International Nuclear Information System (INIS)
  • Power Reactor Information System (PRIS)
  • Advanced Reactors Information System (ARIS)
  • Integrated Nuclear Fuel Cycle Information System (iNFCIS)
  • Spent Fuel and Radioactive Waste Information System (SRIS)
  • Nuclear Data Services (NDS)
  • Research Reactor Database (RRDB)

Other resources

  • Library – Nuclear Information Services
  • Impact stories
  • Press releases
  • Media advisories
  • Director General statements
  • Photo library
  • Press contacts
  • Press enquiries
  • General Conference
  • Board of Governors
  • Scientific and technical events
  • Scientific Forum
  • Medium-Term Strategy
  • Partnerships
  • Gender at the IAEA
  • Sustainable Development Goals (SDGs)
  • Multilingual content
  • List of Member States

Management team

  • Director General
  • Deputy Directors General

Organizational structure

  • Offices Reporting to the Director General
  • Technical Cooperation
  • Nuclear Energy
  • Nuclear Safety and Security
  • Nuclear Sciences and Applications
  • Working at the IAEA
  • Types of Employment

Procurement

  • Procurement overview

Search form

You are here, q&a: public opinion of nuclear and why it matters to the clean energy transition.

essay on nuclear power station

If you would like to learn more about the IAEA’s work, sign up for our weekly updates containing our most important news, multimedia and more.

  • Arabic (monthly)
  • Chinese (monthly)
  • English (weekly)
  • French (monthly)
  • Russian (monthly)
  • Spanish (monthly)

essay on nuclear power station

Nuclear power has a major role to play in the clean energy transition, but for decades, its use has been a divisive topic among the public. With public opinion playing a major part in how governments choose to produce energy, addressing this long-standing debate will be a key part of a sustainable, clean energy transition.

To dive deeper into this topic, I sat down with Zion Lights, an environmental journalist and activist that has been on both sides of the nuclear question. Once a spokesperson for Extinction Rebellion, a global environmental movement critical of nuclear energy, Lights is now the UK Director of Environmental Progress, a research and policy organization on clean power and energy justice for all.

Public acceptance related to nuclear power is also one of the issues that will be touched on during the upcoming IAEA Scientific Forum on ‘ Nuclear Power and the Clean Energy Transition ’ from 22 to 23 September.

You were not always in support of nuclear. What changed your mind?

I had heard many negative myths about how harmful nuclear waste and radiation are: in fact, in the environmental movement, which I have been involved with for most of my life, most people simply believe these myths.

But around 6 or 7 years ago, when I was a member of the Green Party and not ‘pro’ nuclear at the time, I attended an energy debate where I tried to ask a question about nuclear, but my question was quickly shut down. I felt that something was amiss, so I spoke to an engineer friend of mine about it who sent me a scientific paper addressing one of the myths I had believed about the number of deaths caused by radiation from the Fukushima accident. My belief had been that many people had died due to radiation from the disaster, but the truth is, that none had. This led me to dig deeper, and I found that many of my ideas about waste were unfounded, and that nuclear is actually a much safer option than fossil fuels, which many countries are still heavily reliant on.

Why do you think nuclear is important?

We live in a warming world that is causing species extinctions, making life harder for those already living in poverty, and burdening economies worldwide. To reverse these trends, lift people out of poverty and improve air quality, we need clean energy options, and nuclear is our only real option for reaching zero carbon emissions.

Not only does it take up little space, but a single plant can provide 80 years of clean energy. Without this reliable energy, we often see countries ending up using coal or natural gas to fill energy gaps.

The nuclear industry needs to speak up and help the public see how it has owned its mistakes and address the public’s fears so the world can embrace nuclear for the incredible solution that is, instead of being afraid of it.

If the nuclear industry has owned its mistakes, then why do you think gaining public acceptance is still a challenge today?

The myth that nuclear is bad is an easy narrative to draw people into. Many people remember the incidents at the nuclear power plant in Chernobyl in 1986 and in Fukushima in 2011. They were both serious situations, but fearful reporting has contributed to misinformation about what happened and about nuclear more generally, which has only made the anti-nuclear imagery stronger.

Nuclear has also had a bad image for a long time now because of popular culture. When I talk to people who fear nuclear waste, for example, it usually only takes a few minutes until it becomes evident that their idea of waste is that it is a green, corrosive liquid that is poorly managed — an image that has been perpetuated by TV shows, cartoons and films. The idea of radiation is similarly inaccurate, and equally people’s feelings confuse nuclear power with nuclear weapons.

For public opinion around nuclear to change, there needs to be a shift in how we talk about it, who talks about it, and a focus on all the positives nuclear energy brings us rather than the current industry line of ‘it’s safe’. Fossil fuels aren’t safe, and yet the industry has marketed them to be green solutions. Nuclear ought to be rebranded as green energy.

So how do you think we can begin shifting the public narrative around nuclear?

It’s important to start with the root causes of people’s fears and the very basics of what they are worried about. To get there, we need to listen to people’s concerns and encourage dialogue. That means more conversations and shorter presentations. Longer Q&As. Talk with people. Ask questions. We should engage in two-way communication and not polarize the conversation from the outset or belittle their concerns.

Also, not everyone has a clear grasp of what radiation, irradiation or nuclear is, and many do not realize that radiation is naturally occurring from the ground and space, is all around us, and can easily be measured and shielded against if needed. Simple, concrete facts that address myths and concerns directly can help to unpick specific fears, rather than resorting to masses of data, numbers and long articles that many people won’t actually read. But mainly, it’s about being a kind, patient and receptive communicator.

Related stories

essay on nuclear power station

What is the Clean Energy Transition and How Does Nuclear Power Fit In?

essay on nuclear power station

IAEA's Grossi Says Nuclear Power Contributes a Great Deal to Clean Energy Transition

essay on nuclear power station

New IAEA Webinar Series Explores Nuclear Technology Breakthroughs for the 21st Century

essay on nuclear power station

Nuclear Power Supports Clean Energy Transition with Secure and Flexible Electricity Supply

Related resources

  • Scientific Forum, 22-23 September 2020
  • Nuclear Power and the Clean Energy Transition, IAEA Bulletin (Vol. 61/3)
  • 64th IAEA General Conference, 21-25 September 2020
  • The Clean Energy Transition
  • Proven Clean Energy: Time to Talk About Nuclear Power?
  • Stakeholder engagement: nuclear energy
  • Communicating with the public and other interested parties
  • Department of Nuclear Energy
  • Division of Nuclear Power

More on the IAEA

  • Privacy Policy
  • Logo Usage Guidelines

Scientific resources

  • Information Circulars
  • Standards and guides
  • Safeguards and Additional Protocol

Stay in touch

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction & Top Questions

The explosion at Unit 4 and initial containment efforts

Deaths, radioactivity, and the creation of the chernobyl exclusion zone.

Chernobyl disaster

What happened in the Chernobyl disaster?

How many people died as a result of the chernobyl disaster, how big was the exclusion zone created after the chernobyl disaster.

Wide angle view of Pripyat from Polissya Hotel. Chernobyl nuclear power plant zone of alienation.

Chernobyl disaster

Our editors will review what you’ve submitted and determine whether to revise the article.

  • World Nuclear Association - Chernobyl Accident 1986
  • United Nations Scientific Committee on the Effects of Atomic Radiation - Assessments of the radiation effects from the Chernobyl nuclear reactor accident
  • Live Science - Chernobyl: Facts and history of the world's worst nuclear disaster
  • BBC - Future - The true toll of the Chernobyl disaster
  • Nuclear Energy Institute - Chernobyl Accident And Its Consequences
  • Chernobyl disaster - Student Encyclopedia (Ages 11 and up)
  • Table Of Contents

Chernobyl disaster

When did the Chernobyl disaster occur?

The Chernobyl disaster occurred on April 25 and 26, 1986, at the Chernobyl nuclear power station in the Soviet Union . It is one of the worst disasters in the history of nuclear power generation.

The Chernobyl disaster occurred when technicians at nuclear reactor Unit 4 attempted a poorly designed experiment. They shut down the reactor’s power-regulating system and its emergency safety systems, and they removed control rods from its core while allowing the reactor to run at 7 percent power. These mistakes, compounded by others, led to an uncontrolled chain reaction that resulted in several massive explosions.

Some sources state that two people were killed in the initial explosions of the Chernobyl disaster, whereas others report that the figure was closer to 50. Dozens more contracted serious radiation sickness ; some of these people later died. In addition, thousands of deaths from radiation-induced illnesses and cancer were expected years later.

As a result of the Chernobyl disaster, the Soviet Union created an exclusion zone with a radius of about 18.6 miles (30 km) centered on the nuclear power plant, covering 1,017 square miles (2,634 square km) around the plant. The zone was later expanded to 1,600 square miles (4,143 square km) to include heavily radiated areas outside the initial zone.

What effects did the Chernobyl disaster have?

The Chernobyl disaster caused serious radiation sickness and contamination. Between 50 and 185 million curies of radionuclides escaped into the atmosphere. Millions of acres of forest and farmland were contaminated, livestock was born deformed, and humans suffered long-term negative health effects.

Recent News

Chernobyl disaster , accident in 1986 at the Chernobyl nuclear power station in the Soviet Union , the worst disaster in the history of nuclear power generation. The Chernobyl power station was situated at the settlement of Pryp’yat , 10 miles (16 km) northwest of the city of Chernobyl (Ukrainian: Chornobyl ) and 65 miles (104 km) north of Kyiv , Ukraine . The station consisted of four reactors, each capable of producing 1,000 megawatts of electric power ; it had come online in 1977–83.

essay on nuclear power station

The disaster occurred on April 25–26, 1986, when technicians at reactor Unit 4 attempted a poorly designed experiment. Workers shut down the reactor’s power-regulating system and its emergency safety systems, and they withdrew most of the control rods from its core while allowing the reactor to continue running at 7 percent power. These mistakes were compounded by others, and at 1:23 am on April 26 the chain reaction in the core went out of control. Several explosions triggered a large fireball and blew off the heavy steel and concrete lid of the reactor. This and the ensuing fire in the graphite reactor core released large amounts of radioactive material into the atmosphere , where it was carried great distances by air currents. A partial meltdown of the core also occurred.

essay on nuclear power station

On April 27 the 30,000 inhabitants of Pryp’yat began to be evacuated. A cover-up was attempted, but on April 28 Swedish monitoring stations reported abnormally high levels of wind -transported radioactivity and pressed for an explanation. The Soviet government admitted there had been an accident at Chernobyl, thus setting off an international outcry over the dangers posed by the radioactive emissions . By May 4 both the heat and the radioactivity leaking from the reactor core were being contained, albeit at great risk to workers. Radioactive debris was buried at some 800 temporary sites, and later in the year the highly radioactive reactor core was enclosed in a concrete-and-steel sarcophagus (which was later deemed structurally unsound).

essay on nuclear power station

Some sources state that two people were killed in the initial explosions, whereas others report that the figure was closer to 50. Dozens more people contracted serious radiation sickness; some of them later died. Between 50 and 185 million curies of radionuclides (radioactive forms of chemical elements ) escaped into the atmosphere—several times more radioactivity than that created by the atomic bombs dropped on Hiroshima and Nagasaki , Japan. This radioactivity was spread by the wind over Belarus , Russia , and Ukraine and soon reached as far west as France and Italy . Millions of acres of forest and farmland were contaminated, and, although many thousands of people were evacuated, hundreds of thousands more remained in contaminated areas. In addition, in subsequent years many livestock were born deformed, and among humans several thousand radiation-induced illnesses and cancer deaths were expected in the long term. The Chernobyl disaster sparked criticism of unsafe procedures and design flaws in Soviet reactors, and it heightened resistance to the building of more such plants. Chernobyl Unit 2 was shut down after a 1991 fire, and Unit 1 remained on-line until 1996. Chernobyl Unit 3 continued to operate until 2000, when the nuclear power station was officially decommissioned.

essay on nuclear power station

Following the disaster, the Soviet Union created a circle-shaped exclusion zone with a radius of about 18.6 miles (30 km) centred on the nuclear power plant. The exclusion zone covered an area of about 1,017 square miles (2,634 square km) around the plant. However, it was later expanded to 1,600 square miles (4,143 square km) to include heavily radiated areas outside the initial zone. Although no people actually live in the exclusion zone, scientists, scavengers, and others may file for permits that allow them to enter for limited amounts of time. With the dissolution of the Soviet Union in 1991, control of the site passed to Ukraine. In 2011 the Ukrainian government opened parts of the exclusion zone to organized tour groups, and Chernobyl and the abandoned city of Pryp’yat became popular destinations for so-called “dark tourists.” During the Russian invasion of Ukraine in 2022 , Russian forces attacking from Belarus captured Chernobyl after a brief but pitched battle. Combat at the site of the world’s worst nuclear disaster led to concerns about damage to the containment structure and the possibility of widespread radioactive contamination.

National Academies Press: OpenBook

Nuclear Power: Technical and Institutional Options for the Future (1992)

Chapter: 5 conclusions and recommendations, conclusions and recommendations.

The Committee was requested to analyze the technological and institutional alternatives to retain an option for future U.S. nuclear power deployment.

A premise of the Senate report directing this study is “that nuclear fission remains an important option for meeting our electric energy requirements and maintaining a balanced national energy policy.” The Committee was not asked to examine this premise, and it did not do so. The Committee consisted of members with widely ranging views on the desirability of nuclear power. Nevertheless, all members approached the Committee's charge from the perspective of what would be necessary if we are to retain nuclear power as an option for meeting U.S. electric energy requirements, without attempting to achieve consensus on whether or not it should be retained. The Committee's conclusions and recommendations should be read in this context.

The Committee's review and analyses have been presented in previous chapters. Here the Committee consolidates the conclusions and recommendations found in the previous chapters and adds some additional conclusions and recommendations based upon some of the previous statements. The Committee also includes some conclusions and recommendations that are not explicitly based upon the earlier chapters but stem from the considerable experience of the Committee members.

Most of the following discussion contains conclusions. There also are a few recommendations. Where the recommendations appear they are identified as such by bold italicized type.

GENERAL CONCLUSIONS

In 1989, nuclear plants produced about 19 percent of the United States ' electricity, 77 percent of France's electricity, 26 percent of Japan's electricity, and 33 percent of West Germany's electricity. However, expansion of commercial nuclear energy has virtually halted in the United States. In other countries, too, growth of nuclear generation has slowed or stopped. The reasons in the United States include reduced growth in demand for electricity, high costs, regulatory uncertainty, and public opinion. In the United States, concern for safety, the economics of nuclear power, and waste disposal issues adversely affect the general acceptance of nuclear power.

Electricity Demand

Estimated growth in summer peak demand for electricity in the United States has fallen from the 1974 projection of more than 7 percent per year to a relatively steady level of about 2 percent per year. Plant orders based on the projections resulted in cancellations, extended construction schedules, and excess capacity during much of the 1970s and 1980s. The excess capacity has diminished in the past five years, and ten year projections (at approximately 2 percent per year) suggest a need for new capacity in the 1990s and beyond. To meet near-term anticipated demand, bidding by non-utility generators and energy efficiency providers is establishing a trend for utilities acquiring a substantial portion of this new generating capacity from others. Reliance on non-utility generators does not now favor large scale baseload technologies.

Nuclear power plants emit neither precursors to acid rain nor gases that contribute to global warming, like carbon dioxide. Both of these environmental issues are currently of great concern. New regulations to address these issues will lead to increases in the costs of electricity produced by combustion of coal, one of nuclear power's main competitors. Increased costs for coal-generated electricity will also benefit alternate energy sources that do not emit these pollutants.

Major deterrents for new U.S. nuclear plant orders include high capital carrying charges, driven by high construction costs and extended construction times, as well as the risk of not recovering all construction costs.

Construction Costs

Construction costs are hard to establish, with no central source, and inconsistent data from several sources. Available data show a wide range of costs for U.S. nuclear plants, with the most expensive costing three times more (in dollars per kilowatt electric) than the least expensive in the same year of commercial operation. In the post-Three Mile Island era, the cost increases have been much larger. Considerable design modification and retrofitting to meet new regulations contributed to cost increases. From 1971 to 1980, the most expensive nuclear plant (in constant dollars) increased by 30 percent. The highest cost for a nuclear plant beginning commercial operation in the United States was twice as expensive (in constant dollars) from 1981 to 1984 as it was from 1977 to 1980.

Construction Time

Although plant size also increased, the average time to construct a U.S. nuclear plant went from about 5 years prior to 1975 to about 12 years from 1985 to 1989. U.S. construction times are much longer than those in other major nuclear countries, except for the United Kingdom. Over the period 1978 to 1989, the U.S. average construction time was nearly twice that of France and more than twice that of Japan.

Billions of dollars in disallowances of recovery of costs from utility ratepayers have made utilities and the financial community leery of further investments in nuclear power plants. During the 1980s, rate base disallowances by state regulators totaled about $14 billion for nuclear plants, but only about $0.7 billion for non-nuclear plants.

Operation and maintenance (O&M) costs for U.S. nuclear plants have increased faster than for coal plants. Over the decade of the 1980s, U.S. nuclear O&M-plus-fuel costs grew from nearly half to about the same as those for fossil fueled plants, a significant shift in relative advantage.

Performance

On average, U.S. nuclear plants have poorer capacity factors compared to those of plants in other Organization for Economic Cooperation and Development (OECD) countries. On a lifetime basis, the United States is barely above 60 percent capacity factor, while France and Japan are at 68 percent, and West Germany is at 74 percent. Moreover, through 1988 12 U.S. plants were in the bottom 22. However, some U.S. plants do very well: 3 of the top 22 OECD plants through 1988 were U.S. U.S. plants averaged 65 percent in 1988, 63 percent in 1989, and 68 percent in 1990.

Except for capacity factors, the performance indicators of U.S. nuclear plants have improved significantly over the past several years. If the industry is to achieve parity with the operating performance in other countries, it must carefully examine its failure to achieve its own goal in this area and develop improved strategies, including better management practices. Such practices are important if the generators are to develop confidence that the new generation of plants can achieve the higher load factors estimated by the vendors.

Public Attitudes

There has been substantial opposition to new plants. The failure to solve the high-level radioactive waste disposal problem has harmed nuclear power's public image. It is the Committee's opinion, based upon our experience, that, more recently, an inability of states, that are members of regional compact commissions, to site low-level radioactive waste facilities has also harmed nuclear power's public image.

Several factors seem to influence the public to have a less than positive attitude toward new nuclear plants:

no perceived urgency for new capacity;

nuclear power is believed to be more costly than alternatives;

concerns that nuclear power is not safe enough;

little trust in government or industry advocates of nuclear power;

concerns about the health effects of low-level radiation;

concerns that there is no safe way to dispose of high-level waste; and

concerns about proliferation of nuclear weapons.

The Committee concludes that the following would improve public opinion of nuclear power:

a recognized need for a greater electrical supply that can best be met by large plants;

economic sanctions or public policies imposed to reduce fossil fuel burning;

maintaining the safe operation of existing nuclear plants and informing the public;

providing the opportunity for meaningful public participation in nuclear power issues, including generation planning, siting, and oversight;

better communication on the risk of low-level radiation;

resolving the high-level waste disposal issue; and

assurance that a revival of nuclear power would not increase proliferation of nuclear weapons.

As a result of operating experience, improved O&M training programs, safety research, better inspections, and productive use of probabilistic risk analysis, safety is continually improved. The Committee concludes that the risk to the health of the public from the operation of current reactors in the United States is very small. In this fundamental sense, current reactors are safe. However, a significant segment of the public has a different perception and also believes that the level of safety can and should be increased. The

development of advanced reactors is in part an attempt to respond to this public attitude.

Institutional Changes

The Committee believes that large-scale deployment of new nuclear power plants will require significant changes by both industry and government.

One of the most important factors affecting the future of nuclear power in the United States is its cost in relation to alternatives and the recovery of these capital and operating charges through rates that are charged for the electricity produced. Chapter 2 of this report deals with these issues in some detail. As stated there, the industry must develop better methods for managing the design and construction of nuclear plants. Arrangements among the participants that would assure timely, economical, and high-quality construction of new nuclear plants, the Committee believes, will be prerequisites to an adequate degree of assurance of capital cost recovery from state regulatory authorities in advance of construction. The development of state prudency laws also can provide a positive response to this issue.

The Committee and others are well aware of the increases in nuclear plant construction and operating costs over the last 20 years and the extension of plant construction schedules over this same period. 1 The Committee believes there are many reasons for these increases but is unable to disaggregate the cost effect among these reasons with any meaningful precision.

Like others, the Committee believes that the financial community and the generators must both be satisfied that significant improvements can be achieved before new plants can be ordered. In addition, the Committee believes that greater confidence in the control of costs can be realized with plant designs that are more nearly complete before construction begins, plants that are easier to construct, use of better construction and management methods, and business arrangements among the participants that provide stronger incentives for cost-effective, timely completion of projects.

It is the Committee's opinion, based upon our experience, that the principal participants in the nuclear industry--utilities, architect-engineers, and suppliers –should begin now to work out the full range of contractual arrangements for advanced nuclear power plants. Such arrangements would

See discussion of costs and construction schedules in .

increase the confidence of state regulatory bodies and others that the principal participants in advanced nuclear power plant projects will be financially accountable for the quality, timeliness, and economy of their products and services.

Inadequate management practices have been identified at some U.S. utilities, large and small public and private. Because of the high visibility of nuclear power and the responsibility for public safety, a consistently higher level of demonstrated utility management practices is essential before the U.S. public's attitude about nuclear power is likely to improve.

Over the past decade, utilities have steadily strengthened their ability to be responsible for the safety of their plants. Their actions include the formation and support of industry institutions, including the Institute of Nuclear Power Operations (INPO). Self-assessment and peer oversight through INPO are acknowledged to be strong and effective means of improving the performance of U.S. nuclear power plants. The Committee believes that such industry self-improvement, accountability, and self-regulation efforts improve the ability to retain nuclear power as an option for meeting U.S. electric energy requirements. The Committee encourages industry efforts to reduce reliance on the adversarial approach to issue resolution.

It is the Committee's opinion, based upon our experience, that the nuclear industry should continue to take the initiative to bring the standards of every American nuclear plant up to those of the best plants in the United States and the world. Chronic poor performers should be identified publicly and should face the threat of insurance cancellations. Every U.S. nuclear utility should continue its full-fledged participation in INPO; any new operators should be required to become members through insurance prerequisites or other institutional mechanisms.

Standardization. The Committee views a high degree of standardization as very important for the retention of nuclear power as an option for meeting U.S. electric energy requirements. There is not a uniformly accepted definition of standardization. The industry, under the auspices of the Nuclear Power Oversight Committee, has developed a position paper on standardization that provides definitions of the various phases of standardization and expresses an industry commitment to standardization. The Committee believes that a strong and sustained commitment by the principal participants will be required to realize the potential benefits of standardization (of families of plants) in the diverse U.S. economy. It is the Committee's opinion, based upon our experience, that the following will be necessary:

Families of standardized plants will be important for ensuring the highest levels of safety and for realizing the potential economic benefits of new nuclear plants. Families of standardized plants will allow standardized approaches to plant modification, maintenance, operation, and training.

Customers, whether utilities or other entities, must insist on standardization before an order is placed, during construction, and throughout the life of the plant.

Suppliers must take standardization into account early in planning and marketing. Any supplier of standardized units will need the experience and resources for a long-term commitment.

Antitrust considerations will have to be properly taken into account to develop standardized plants.

Nuclear Regulatory Commission

An obstacle to continued nuclear power development has been the uncertainties in the Nuclear Regulatory Commission's (NRC) licensing process. Because the current regulatory framework was mainly intended for light water reactors (LWR) with active safety systems and because regulatory standards were developed piecemeal over many years, without review and consolidation, the regulations should be critically reviewed and modified (or replaced with a more coherent body of regulations) for advanced reactors of other types. The Committee recommends that NRC comprehensively review its regulations to prepare for advance reactors, in particular. LWRs with passive safety features. The review should proceed from first principles to develop a coherent, consistent set of regulations.

The Committee concludes that NRC should improve the quality of its regulation of existing and future nuclear power plants, including tighter management controls over all of its interactions with licensees and consistency of regional activities. Industry has proposed such to NRC.

The Committee encourages efforts by NRC to reduce reliance on the adversarial approach to issue resolution. The Committee recommends that NRC encourage industry self-improvement, accountability, and self-regulation initia tives . While federal regulation plays an important safety role, it must not be allowed to detract from or undermine the accountability of utilities and their line management organizations for the safety of their plants.

It is the Committee's expectation that economic incentive programs instituted by state regulatory bodies will continue for nuclear power plant operators. Properly formulated and administered, these programs should improve the economic performance of nuclear plants, and they may also enhance safety. However, they do have the potential to provide incentives counter to safety. The Committee believes that such programs should focus

on economic incentives and avoid incentives that can directly affect plant safety. On July 18, 1991 NRC issued a Nuclear Regulatory Commission Policy Statement which expressed concern that such incentive programs may adversely affect safety and commits NRC to monitoring such programs. A joint industry/state study of economic incentive programs could help assure that such programs do not interfere with the safe operation of nuclear power plants.

It is the Committee's opinion, based upon our experience, that NRC should continue to exercise its federally mandated preemptive authority over the regulation of commercial nuclear power plant safety if the activities of state government agencies (or other public or private agencies) run counter to nuclear safety. Such activities would include those that individually or in the aggregate interfere with the ability of the organization with direct responsibility for nuclear plant safety (the organization licensed by the Commission to operate the plant) to meet this responsibility. The Committee urges close industry-state cooperation in the safety area.

It is also the Committee's opinion, based upon our experience, that the industry must have confidence in the stability of NRC's licensing process. Suppliers and utilities need assurance that licensing has become and will remain a manageable process that appropriately limits the late introduction of new issues.

It is likely that, if the possibility of a second hearing before a nuclear plant can be authorized to operate is to be reduced or eliminated, legislation will be necessary. The nuclear industry is convinced that such legislation will be required to increase utility and investor confidence to retain nuclear power as an option for meeting U.S. electric energy requirements. The Committee concurs.

It is the Committee's opinion, based upon our experience, that potential nuclear power plant sponsors must not face large unanticipated cost increases as a result of mid-course regulatory changes, such as backfits. NRC 's new licensing rule, 10 CFR Part 52, provides needed incentives for standardized designs.

Industry and the Nuclear Regulatory Commission

The U.S. system of nuclear regulation is inherently adversarial, but mitigation of unnecessary tension in the relations between NRC and its nuclear power licensees would, in the Committee's opinion, improve the regulatory environment and enhance public health and safety. Thus, the Committee commends the efforts by both NRC and the industry to work

more cooperatively together and encourages both to continue and strengthen these efforts.

Department of Energy

Lack of resolution of the high-level waste problem jeopardizes future nuclear power development. The Committee believes that the legal status of the Yucca Mountain site for a geologic repository should be resolved soon, and that the Department of Energy's (DOE) program to investigate this site should be continued. In addition, a contingency plan must be developed to store high-level radioactive waste in surface storage facilities pending the availability of the geologic repository.

Environmental Protection Agency

The problems associated with establishing a high-level waste site at Yucca Mountain are exacerbated by the requirement that, before operation of a repository begins, DOE must demonstrate to NRC that the repository will perform to standards established by the Environmental Protection Agency (EPA). NRC's staff has strongly questioned the workability of these quantitative requirements, as have the National Research Council's Radioactive Waste Management Board and others. The Committee concludes that the EPA standard for disposal of high-level waste will have to be reevaluated to ensure that a standard that is both adequate and feasible is applied to the geologic waste repository.

Administration and Congress

The Price-Anderson Act will expire in 2002. The Committee sought to discover whether or not such protection would be required for advanced reactors. The clear impression the Committee received from industry representatives was that some such protection would continue to be needed, although some Committee members believe that this was an expression of desire rather than of need. At the very least, renewal of Price-Anderson in 2002 would be viewed by the industry as a supportive action by Congress and would eliminate the potential disruptive effect of developing alternative liability arrangements with the insurance industry. Failure to renew Price-Anderson in 2002 would raise a new impediment to nuclear power plant orders as well as possibly reduce an assured source of funds to accident victims.

The Committee believes that the National Transportation Safety Board (NTSB) approach to safety investigations, as a substitute for the present NRC approach, has merit. In view of the infrequent nature of the activities of such a committee, it may be feasible for it to be established on an ad hoc basis and report directly to the NRC chairman. Therefore, the Committee recommends that such a small safety review entity be established. Before the establishment of such an activity, its charter should be carefully defined, along with a clear delineation of the classes of accidents it would investigate. Its location in the government and its reporting channels should also be specified. The function of this group would parallel those of NTSB. Specifically, the group would conduct independent public investigations of serious incidents and accidents at nuclear power plants and would publish reports evaluating the causes of these events. This group would have only a small administrative structure and would bring in independent experts, including those from both industry and government, to conduct its investigations.

It is the Committee's opinion, based upon our experience, that responsible arrangements must be negotiated between sponsors and economic regulators to provide reasonable assurances of complete cost recovery for nuclear power plant sponsors. Without such assurances, private investment capital is not likely to flow to this technology.

In Chapter 2 , the Committee addressed the non-recovery of utility costs in rate proceedings and concluded that better methods of dealing with this issue must be established. The Committee was impressed with proposals for periodic reviews of construction progress and costs--“rolling prudency” determinations--as one method for managing the risks of cost recovery. The Committee believes that enactment of such legislation could remove much of the investor risk and uncertainty currently associated with state regulatory treatment of new power plant construction, and could therefore help retain nuclear power as an option for meeting U.S. electric energy requirements.

On balance, however, unless many states adopt this or similar legislation, it is the Committee's view that substantial assurances probably cannot be given, especially in advance of plant construction, that all costs incurred in building nuclear plants will be allowed into rate bases.

The Committee notes the current trend toward economic deregulation of electric power generation. It is presently unclear whether this trend is compatible with substantial additions of large-scale, utility-owned, baseload generating capacity, and with nuclear power plants in particular.

It is the Committee's opinion, based upon our experience, that regional low-level radioactive waste compact commissions must continue to establish disposal sites.

The institutional challenges are clearly substantial. If they are to be met, the Committee believes that the Federal government must decide, as a matter of national policy, whether a strong and growing nuclear power program is vital to the economic, environmental, and strategic interests of the American people. Only with such a clearly stated policy, enunciated by the President and backed by the Congress through appropriate statutory changes and appropriations, will it be possible to effect the institutional changes necessary to return the flow of capital and human resources required to properly employ this technology.

Alternative Reactor Technologies

Advanced reactors are now in design or development. They are being designed to be simpler, and, if design goals are realized, these plants will be safer than existing reactors. The design requirements for the advanced reactors are more stringent than the NRC safety goal policy. If final safety designs of advanced reactors, and especially those with passive safety features, are as indicated to this Committee, an attractive feature of them should be the significant reduction in system complexity and corresponding improvement in operability. While difficult to quantify, the benefit of improvements in the operator 's ability to monitor the plant and respond to system degradations may well equal or exceed that of other proposed safety improvements.

The reactor concepts assessed by the Committee were the large evolutionary LWRs, the mid-sized LWRs with passive safety features, 2 the Canadian deuterium uranium (CANDU) heavy water reactor, the modular high-temperature gas-cooled reactor (MHTGR), the safe integral reactor (SIR), the process inherent ultimate safety (PIUS) reactor, and the liquid metal reactor (LMR). The Committee developed the following criteria for comparing these reactor concepts:

The term “passive safety features” refers to the use of gravity, natural circulation, and stored energy to provide essential safety functions in such LWRs.

safety in operation;

economy of construction and operation;

suitability for future deployment in the U.S. market;

fuel cycle and environmental considerations;

safeguards for resistance to diversion and sabotage;

technology risk and development schedule; and

amenability to efficient and predictable licensing.

With regard to advanced designs, the Committee reached the following conclusions.

Large Evolutionary Light Water Reactors

The large evolutionary LWRs offer the most mature technology. The first standardized design to be certified in the United States is likely to be an evolutionary LWR. The Committee sees no need for federal research and development (R&D) funding for these concepts, although federal funding could accelerate the certification process.

Mid-sized Light Water Reactors with Passive Safety Features

The mid-sized LWRs with passive safety features are designed to be simpler, with modular construction to reduce construction times and costs, and to improve operations. They are likely the next to be certified.

Because there is no experience in building such plants, cost projections for the first plant are clearly uncertain. To reduce the economic uncertainties it will be necessary to demonstrate the construction technology and improved operating performance. These reactors differ from current reactors in construction approach, plant configuration, and safety features. These differences do not appear so great as to require that a first plant be built for NRC certification. While a prototype in the traditional sense will not be required, the Committee concludes that no first-plant mid-sized LWR with passive safety features is likely to be certified and built without government incentives, in the form of shared funding or financial guarantees.

CANDU Heavy Water Reactor

The Committee judges that the CANDU ranks below the advanced mid-sized LWRs in market potential. The CANDU-3 reactor is farther along in design than the mid-sized LWRs with passive safety features. However, it has not entered NRC's design certification process. Commission requirements are complex and different from those in Canada so that U.S. certification

could be a lengthy process. However, the CANDU reactor can probably be licensed in this century.

The heavy water reactor is a mature design, and Canadian entry into the U.S. marketplace would give added insurance of adequate nuclear capacity if it is needed in the future. But the CANDU does not offer advantages sufficient to justify U.S. government assistance to initiate and conduct its licensing review.

Modular High-Temperature Gas-Cooled Reactor

The MHTGR posed a difficult set of questions for the Committee. U.S. and foreign experience with commercial gas-cooled reactors has not been good. A consortium of industry and utility people continue to promote federal funding and to express interest in the concept, while none has committed to an order.

The reactor, as presently configured, is located below ground level and does not have a conventional containment. The basic rationale of the designers is that a containment is not needed because of the safety features inherent in the properties of the fuel.

However, the Committee was not convinced by the presentations that the core damage frequency for the MHTGR has been demonstrated to be low enough to make a containment structure unnecessary. The Oak Ridge National Laboratory estimates that data to confirm fuel performance will not be available before 1994. The Committee believes that reliance on the defense-in-depth concept must be retained, and accurate evaluation of safety will require evaluation of a detailed design.

A demonstration plant for the MHTGR could be licensed slightly after the turn of the century, with certification following demonstration of successful operation. The MHTGR needs an extensive R&D program to achieve commercial readiness in the early part of the next century. The construction and operation of a first plant would likely be required before design certification. Recognizing the opposite conclusion of the MHTGR proponents, the Committee was not convinced that a foreseeable commercial market exists for MHTGR-produced process heat, which is the unique strategic capability of the MHTGR. Based on the Committee 's view on containment requirements, and the economics and technology issues, the Committee judged the market potential for the MHTGR to be low.

The Committee believes that no funds should be allocated for development of high-temperature gas-cooled reactor technology within the commercial nuclear power development budget of DOE.

Safe Integral Reactor and Process Inherent Ultimate Safety Reactor

The other advanced light water designs the Committee examined were the United Kingdom and U.S. SIR and the Swedish PIUS reactor.

The Committee believes there is no near-term U.S. market for SIR and PIUS. The development risks for SIR and PIUS are greater than for the other LWRs and CANDU-3. The lack of operational and regulatory experience for these two is expected to significantly delay their acceptance by utilities. SIR and PIUS need much R&D, and a first plant will probably be required before design certification is approved.

The Committee concluded that no Federal funds should be allocated for R&D on SIR or PIUS.

Liquid Metal Reactor

LMRs offer advantages because of their potential ability to provide a long-term energy supply through a nearly complete use of uranium resources. Were the nuclear option to be chosen, and large scale deployment follow, at some point uranium supplies at competitive prices might be exhausted. Breeder reactors offer the possibility of extending fissionable fuel supplies well past the next century. In addition, actinides, including those from LWR spent fuel, can undergo fission without significantly affecting performance of an advanced LMR, transmuting the actinides to fission products, most of which, except for technetium, carbon, and some others of little import, have half-lives very much shorter than the actinides. (Actinides are among the materials of greatest concern in nuclear waste disposal beyond about 300 years.) However, substantial further research is required to establish (1) the technical and the economic feasibility of recycling in LMRs actinides recovered from LWR spent fuel, and (2) whether high-recovery recycling of transuranics and their transmutation can, in fact, benefit waste disposal. Assuming success, it would still be necessary to dispose of high-level waste, although the waste would largely consist of significantly shorter-lived fission products. Special attention will be necessary to ensure that the LMR's reprocessing facilities are not vulnerable to sabotage or to theft of plutonium.

The unique property of the LMR, fuel breeding, might lead to a U.S. market, but only in the long term. From the viewpoint of commercial licensing, it is far behind the evolutionary and mid-sized LWRs with passive safety features in having a commercial design available for review. A federally funded program, including one or more first plants, will be required before any LMR concept would be accepted by U.S. utilities.

Net Assessment

The Committee could not make any meaningful quantitative comparison of the relative safety of the various advanced reactor designs. The Committee believes that each of the concepts considered can be designed and operated to meet or closely approach the safety objectives currently proposed for future, advanced LWRs. The different advanced reactor designs employ different mixes of active and passive safety features. The Committee believes that there currently is no single optimal approach to improved safety. Dependence on passive safety features does not, of itself, ensure greater safety. The Committee believes that a prudent design course retains the historical defense-in-depth approach.

The economic projections are highly uncertain, first, because past experience suggests higher costs, longer construction times, and lower availabilities than projected and, second, because of different assumptions and levels of maturity among the designs. The Electric Power Research Institute (EPRI) data, which the Committee believes to be more reliable than that of the vendors, indicate that the large evolutionary LWRs are likely to be the least costly to build and operate on a cost per kilowatt electric or kilowatt hour basis, while the high-temperature gas-cooled reactors and LMRs are likely to be the most expensive. EPRI puts the mid-sized LWRs with passive safety features between the two extremes.

Although there are definite differences in the fuel cycle characteristics of the advanced reactors, fuel cycle considerations did not offer much in the way of discrimination among reactors, nor did safeguards and security considerations, particularly for deployment in the United States. However, the CANDU (with on-line refueling and heavy water) and the LMR (with reprocessing) will require special attention to safeguards.

SIR, MHTGR, PIUS, and LMR are not likely to be deployed for commercial use in the United States, at least within the next 20 years. The development required for commercialization of any of these concepts is substantial.

It is the Committee's overall assessment that the large evolutionary LWRs and the mid-sized LWRs with passive safety features rank highest relative to the Committee 's evaluation criteria. The evolutionary reactors could be ready for deployment by 2000, and the mid-sized could be ready for initial plant construction soon after 2000. The Committee's evaluations and overall assessment are summarized in Figure 5-1 .

essay on nuclear power station

FIGURE 5.1 Assessment of advanced reactor technologies.

This table is an attempt to summarize the Committee's qualitative rankings of selected reactor types against each other , without reference either to an absolute standard or to the performance of any other energy resource options, This evaluation was based on the Committee's professional judgment.

The Committee has concluded the following:

Safety and cost are the most important characteristics for future nuclear power plants.

LWRs of the large evolutionary and the mid-sized advanced designs offer the best potential for competitive costs (in that order).

Safety benefits among all reactor types appear to be about equal at this stage in the design process. Safety must be achieved by attention to all failure modes and levels of design by a multiplicity of safety barriers and features. Consequently, in the absence of detailed engineering design and because of the lack of construction and operating experience with the actual concepts, vendor claims of safety superiority among conceptual designs cannot be substantiated.

LWRs can be deployed to meet electricity production needs for the first quarter of the next century:

The evolutionary LWRs are further developed and, because of international projects, are most complete in design. They are likely to be the first plants certified by NRC. They are expected to be the first of the advanced reactors available for commercial use and could operate in the 2000 to 2005 time frame. Compared to current reactors, significant improvements in safety appear likely. Compared to recently completed high-cost reactors, significant improvements also appear possible in cost if institutional barriers are resolved. While little or no federal funding is deemed necessary to complete the process, such funding could accelerate the process.

Because of the large size and capital investment of evolutionary reactors, utilities that might order nuclear plants may be reluctant to do so. If nuclear power plants are to be available to a broader range of potential U.S. generators, the development of the mid-sized plants with passive safety features is important. These reactors are progressing in their designs, through DOE and industry funding, toward certification in the 1995 to 2000 time frame. The Committee believes such funding will be necessary to complete the process. While a prototype in the traditional sense will not be required, federal funding will likely be required for the first mid-sized LWR with passive safety features to be ordered.

Government incentives, in the form of shared funding or financial guarantees, would likely accelerate the next order for a light water plant. The Committee has not addressed what type of government assistance should be provided nor whether the first advanced light water plant should be a large evolutionary LWR or a mid-sized passive LWR.

The CANDU-3 reactor is relatively advanced in design but represents technology that has not been licensed in the United States. The Committee did not find compelling reasons for federal funding to the vendor to support the licensing.

SIR and PIUS, while offering potentially attractive safety features, are unlikely to be ready for commercial use until after 2010. This alone may limit their market potential. Funding priority for research on these reactor systems is considered by the Committee to be low.

MHTGRs also offer potential safety features and possible process heat applications that could be attractive in the market place. However, based on the extensive experience base with light water technology in the United States, the lack of success with commercial use of gas technology, the likely higher costs of this technology compared with the alternatives, and the substantial development costs that are still required before certification, 3 the Committee concluded that the MHTGR had a low market potential. The Committee considered the possibility that the MHTGR might be selected as the new tritium production reactor for defense purposes and noted the vendor association's estimated reduction in development costs for a commercial version of the MHTGR. However, the Committee concluded, for the reasons summarized above, that the commercial MHTGR should be given low priority for federal funding.

LMR technology also provides enhanced safety features, but its uniqueness lies in the potential for extending fuel resources through breeding. While the market potential is low in the near term (before the second quarter of the next century), it could be an important long-term technology, especially if it can be demonstrated to be economic. The Committee believes that the LMR should have the highest priority for long-term nuclear technology development.

The problems of proliferation and physical security posed by the various technologies are different and require continued attention. Special attention will need to be paid to the LMR.

Alternative Research and Development Programs

The Committee developed three alternative R&D programs, each of which contains three common research elements: (1) reactor research using federal facilities. The experimental breeder reactor-II, hot fuel examination facility/south, and fuel manufacturing facility are retained for the LMR; (2) university research programs; and (3) improved performance and life extension programs for existing U.S. nuclear power plants.

The Gas Cooled Reactor Associates estimates that, if the MHTGR is selected as the new tritium production reactor, development costs for a commercial MHTGR could be reduced from about $1 billion to $0.3 - 0.6 billion.[DOE, 1990 in ]

The Committee concluded that federal support for development of a commercial version of the MHTGR should be a low priority. However, the fundamental design strategy of the MHTGR is based upon the integrity of the fuel (=1600°C) under operation and accident conditions. There are other potentially significant uses for such fuel, in particular, space propulsion. Consequently, the Committee believes that DOE should consider maintaining a coated fuel particle research program within that part of DOE focused on space reactors.

Alternative 1 adds funding to assist development of the mid-sized LWRs with passive safety features. Alternative 2 adds a LMR development program and associated facilities--the transient reactor test facility, the zero power physics reactor, the Energy Technology Engineering Center, and either the hot fuel examination facility/north in Idaho or the Hanford hot fuel examination facility. This alternative would also include limited research to examine the feasibility of recycling actinides from LWR spent fuel, utilizing the LMR. Finally, Alternative 3 adds the fast flux test facility and increases LMR funding to accelerate reactor and integral fast reactor fuel cycle development and examination of actinide recycle of LWR spent fuel.

None of the three alternatives contain funding for development of the MHTGR, SIR, PIUS, or CANDU-3.

Significant analysis and research is required to assess both the technical and economic feasibility of recycling actinides from LWR spent fuel. The Committee notes that a study of separations technology and transmutation systems was initiated in 1991 by DOE through the National Research Council's Board on Radioactive Waste Management.

It is the Committee's judgment that Alternative 2 should be followed because it:

provides adequate support for the most promising near-term reactor technologies;

provides sufficient support for LMR development to maintain the technical capabilities of the LMR R&D community;

would support deployment of LMRs to breed fuel by the second quarter of the next century should that be needed; and

would maintain a research program in support of both existing and advanced reactors.

The construction of nuclear power plants in the United States is stopping, as regulators, reactor manufacturers, and operators sort out a host of technical and institutional problems.

This volume summarizes the status of nuclear power, analyzes the obstacles to resumption of construction of nuclear plants, and describes and evaluates the technological alternatives for safer, more economical reactors. Topics covered include:

  • Institutional issues—including regulatory practices at the federal and state levels, the growing trends toward greater competition in the generation of electricity, and nuclear and nonnuclear generation options.
  • Critical evaluation of advanced reactors—covering attributes such as cost, construction time, safety, development status, and fuel cycles.

Finally, three alternative federal research and development programs are presented.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.45(Suppl 1); 2016 Jan

Logo of ambio

Nuclear power in the 21st century: Challenges and possibilities

Akos horvath.

MTA Centre for Energy Research, KFKI Campus, P.O.B. 49, Budapest 114, 1525 Hungary

Elisabeth Rachlew

Department of Physics, Royal Institute of Technology, KTH, 10691 Stockholm, Sweden

The current situation and possible future developments for nuclear power—including fission and fusion processes—is presented. The fission nuclear power continues to be an essential part of the low-carbon electricity generation in the world for decades to come. There are breakthrough possibilities in the development of new generation nuclear reactors where the life-time of the nuclear waste can be reduced to some hundreds of years instead of the present time-scales of hundred thousand of years. Research on the fourth generation reactors is needed for the realisation of this development. For the fast nuclear reactors, a substantial research and development effort is required in many fields—from material sciences to safety demonstration—to attain the envisaged goals. Fusion provides a long-term vision for an efficient energy production. The fusion option for a nuclear reactor for efficient production of electricity has been set out in a focussed European programme including the international project of ITER after which a fusion electricity DEMO reactor is envisaged.

Introduction

All countries have a common interest in securing sustainable, low-cost energy supplies with minimal impact on the environment; therefore, many consider nuclear energy as part of their energy mix in fulfilling policy objectives. The discussion of the role of nuclear energy is especially topical for industrialised countries wishing to reduce carbon emissions below the current levels. The latest report from IPCC WGIII ( 2014 ) (see Box 1 for explanations of all acronyms in the article) says: “Nuclear energy is a mature low-GHG emission source of base load power, but its share of global electricity has been declining since 1993. Nuclear energy could make an increasing contribution to low-carbon energy supply, but a variety of barriers and risks exist ”.

Demand for electricity is likely to increase significantly in the future, as current fossil fuel uses are being substituted by processes using electricity. For example, the transport sector is likely to rely increasingly on electricity, whether in the form of fully electric or hybrid vehicles, either using battery power or synthetic hydrocarbon fuels. Here, nuclear power can also contribute, via generation of either electricity or process heat for the production of hydrogen or other fuels.

In Europe, in particular, the public opinion about safety and regulations with nuclear power has introduced much critical discussions about the continuation of nuclear power, and Germany has introduced the “Energiewende” with the goal to close all their nuclear power by 2022. The contribution of nuclear power to the electricity production in the different countries in Europe differs widely with some countries having zero contribution (e.g. Italy, Lithuania) and some with the major part comprising nuclear power (e.g. France, Hungary, Belgium, Slovakia, Sweden).

Current status

The use of nuclear energy for commercial electricity production began in the mid-1950s. In 2013, the world’s 392 GW of installed nuclear capacity accounted for 11 % of electricity generation produced by around 440 nuclear power plants situated in 30 countries (Fig.  1 ). This share has declined gradually since 1996, when it reached almost 18 %, as the rate of new nuclear additions (and generation) has been outpaced by the expansion of other technologies. After hydropower, nuclear is the world’s second-largest source of low-carbon electricity generation (IEA 2014 1 ).

An external file that holds a picture, illustration, etc.
Object name is 13280_2015_732_Fig1_HTML.jpg

Total number of operating nuclear reactors worldwide. The total number of reactors also include six in Taiwan (source: IAEA 2015) ( https://www.iaea.org/newscenter/focus/nuclear-power )

The Country Nuclear Power Profiles (CNPP 2 ) compiles background information on the status and development of nuclear power programmes in member states. The CNPP’s main objectives are to consolidate information about the nuclear power infrastructures in participating countries, and to present factors related to the effective planning, decision-making and implementation of nuclear power programmes that together lead to safe and economical operations of nuclear power plants.

Within the European Union, 27 % of electricity production (13 % of primary energy) is obtained from 132 nuclear power plants in January 2015 (Fig.  1 ). Across the world, 65 new reactors are under construction, mainly in Asia (China, South Korea, India), and also in Russia, Slovakia, France and Finland. Many other new reactors are in the planning stage, including for example, 12 in the UK.

Apart from one first Generation “Magnox” reactor still operating in the UK, the remainder of the operating fleet is of the second or third Generation type (Fig.  2 ). The predominant technology is the Light Water Reactor (LWR) developed originally in the United States by Westinghouse and then exploited massively by France and others in the 1970s as a response to the 1973 oil crisis. The UK followed a different path and pursued the Advanced Gas-cooled Reactor (AGR). Some countries (France, UK, Russia, Japan) built demonstration scale fast neutron reactors in the 1960s and 70s, but the only commercial reactor of this type currently operating is in Russia.

An external file that holds a picture, illustration, etc.
Object name is 13280_2015_732_Fig2_HTML.jpg

Nuclear reactor generations from the pioneering age to the next decade (reproduced with permission from Ricotti 2013 )

Future evolution

The fourth Generation reactors, offering the potential of much higher energy recovery and reduced volumes of radioactive waste, are under study in the framework of the “Generation IV International Forum” (GIF) 3 and the “International Project on Innovative Nuclear Reactors and Fuel Cycles” (INPRO). The European Commission in 2010 launched the European Sustainable Nuclear Industrial Initiative (ESNII), which will support three Generation IV fast reactor projects as part of the EU’s plan to promote low-carbon energy technologies. Other initiatives supporting biomass, wind, solar, electricity grids and carbon sequestration are in parallel. ESNII will take forward: the Astrid sodium-cooled fast reactor (SFR) proposed by France, the Allegro gas-cooled fast reactor (GFR) supported by central and eastern Europe and the MYRRHA lead- cooled fast reactor (LFR) technology pilot proposed by Belgium.

The generation of nuclear energy from uranium produces not only electricity but also spent fuel and high-level radioactive waste (HLW) as a by-product. For this HLW, a technical and socially acceptable solution is necessary. The time scale needed for the radiotoxicity of the spent fuel to drop to the level of natural uranium is very long (i.e. of the order of 200 000–300 000 years). The preferred solution for disposing of spent fuel or the HLW resulting from classical reprocessing is deep geological storage. Whilst there are no such geological repositories operating yet in the world, Sweden, Finland and France are on track to have such facilities ready by 2025 (Kautsky et al. 2013 ). In this context it should also be mentioned that it is only for a minor fraction of the HLW that recycling and transmutation is required since adequate separation techniques of the fuel can be recycled and again fed through the LWR system.

The “Strategic Energy Technology Plan” (SET-Plan) identifies fission energy as one of the contributors to the 2050 objectives of a low-carbon energy mix, relying on the Generation-3 reactors, closed fuel cycle and the start of implementation of Generation IV reactors making nuclear energy more sustainable. The EU Energy Roadmap 2050 provides decarbonisation scenarios with different assumptions from the nuclear perspective: two scenarios contemplate a nuclear phase-out by 2050, whilst three others consider that 15–20 % of electricity will be produced by nuclear energy. If by 2050 a generation capacity of 20 % nuclear electricity (140 GWe) is to be secured, 100–120 nuclear power units will have to be built between now and 2050, the precise number depending on the power rating (Garbil and Goethem 2013 ).

Despite the regional differences in the development plans, the main questions are of common interest to all countries, and require solutions in order to maintain nuclear power in the power mix of contributing to sustainable economic growth. The questions include (i) maintaining safe operation of the nuclear plants, (ii) securing the fuel supplies, (iii) a strategy for the management of radioactive waste and spent nuclear fuel.

Safety and non-proliferation risks are managed in accordance with the international rules issued both by IAEA and EURATOM in the EU. The nuclear countries have signed the corresponding agreements and the majority of them have created the necessary legal and regulatory structure (Nuclear Safety Authority). As regards radioactive wastes, particularly high-level wastes (HLW) and spent fuel (SF) most of the countries have long-term policies. The establishment of new nuclear units and the associated nuclear technology developments offer new perspectives, which may need reconsideration of fuel cycle policies and more active regional and global co-operation.

Open and closed fuel cycle

In the frame of the open fuel cycle, the spent fuel will be taken to final disposal without recycling. Deep geological repositories are the only available option for isolating the highly radioactive materials for a very long time from the biosphere. Long-term (80–100 years) near soil intermediate storages are realised in e.g. France and the Netherlands which will allow for permanent access and inspection. The main advantage of the open fuel cycle is its simplicity. The spent fuel assemblies are first stored in interim storage for several years or decades, then they will be placed in special containers and moved into deep underground storage facilities. The technology for producing such containers and for excavation of the underground system of tunnels exists today (Hózer et al. 2010 ; Kautsky et al. 2013 ).

The European Academies Science Advisory Board recently released the report on “Management of spent nuclear fuel and its waste” (EASAC 2014 ). The report discusses the challenges associated with different strategies to manage spent nuclear fuel, in respect of both open cycles and steps towards closing the nuclear fuel cycle. It integrates the conclusions on the issues raised on sustainability, safety, non-proliferation and security, economics, public involvement and on the decision-making process. Recently Vandenbosch et al. ( 2015 ) critically discussed the issue of confidence in the indefinite storage of nuclear waste. One complication of the nuclear waste storage problem is that the minor actinides represent a high activity (see Fig.  3 ) and pose non-proliferation issues to be handled safely in a civil used plant. This might be a difficult challenge if the storage is to be operated economically together with the fuel fabrication.

An external file that holds a picture, illustration, etc.
Object name is 13280_2015_732_Fig3_HTML.jpg

Radiotoxicity of radioactive waste

The open (or ‘once through’) cycle only uses part of the energy stored in the fuel, whilst effectively wasting substantial amounts of energy that could be recovered through recycling. The conventional closed fuel cycle strategy uses the reprocessing of the spent fuel following interim storage. The main components which can be further utilised (U and Pu) are recycled to fuel manufacturing (MOX (Mixed Oxide) fuel fabrication), whilst the smaller volume of residual waste in appropriately conditioned form—e.g. vitrified and encapsulated—is disposed of in deep geological repositories.

The advanced closed fuel cycle strategy is similar to the conventional one, but within this strategy the minor actinides are also removed during reprocessing. The separated isotopes are transmuted in combination with power generation and only the net reprocessing wastes and those conditioned wastes generated during transmutation will be, following appropriate encapsulation, disposed of in deep geological repositories. The main factor that determines the overall storage capacity of a long-term repository is the heat content of nuclear waste, not its volume. During the anticipated repository time, the specific heat generated during the decay of the stored HLW must always stay below a dedicated value prescribed by the storage concept and the geological host information. The waste that results from reprocessing spent fuel from thermal reactors has a lower heat content (after a period of cooling) than does the spent fuel itself. Thus, it can be stored more densely.

A modern light water reactor of 1 GWe capacity will typically discharge about 20–25 tonnes of irradiated fuel per year of operation. About 93–94 % of the mass of typical uranium oxide irradiated fuel comprises uranium (mostly 238 U), with about 4–5 % fission products and ~1 % plutonium. About 0.1–0.2 % of the mass comprises minor actinides (neptunium, americium and curium). These latter elements accumulate in nuclear fuel because of neutron capture, and they contribute significantly to decay heat loading and neutron output, as well as to the overall radiotoxic hazard of spent fuel. Although the total minor actinide mass is relatively small—20 to 25 kg per year from a 1 GWe LWR—it has a disproportionate impact on spent fuel disposal because of its long radioactive decay times (OECD Nuclear Energy Agency 2013 ).

Generation IV development

To address the issue of sustainability of nuclear energy, in particular the use of natural resources, fast neutron reactors (FNRs) must be developed, since they can typically multiply by over a factor 50 the energy production from a given amount of uranium fuel compared to current reactors. FNRs, just as today’s fleet, will be primarily dedicated to the generation of fossil-free base-load electricity. In the FNR the fuel conversion ratio (FCR) is optimised. Through hardening the spectrum a fast reactor can be designed to burn minor actinides giving a FCR larger than unity which allows breeding of fissile materials. FNRs have been operated in the past (especially the Sodium-cooled Fast Reactor in Europe), but today’s safety, operational and competitiveness standards require the design of a new generation of fast reactors. Important research and development is currently being coordinated at the international level through initiatives such as GIF.

In 2002, six reactor technologies were selected which GIF believe represent the future of nuclear energy. These were selected from the many various approaches being studied on the basis of being clean, safe and cost-effective means of meeting increased energy demands on a sustainable basis. Furthermore, they are considered being resistant to diversion of materials for weapons proliferation and secure from terrorist attacks. The continued research and development will focus on the chosen six reactor approaches. Most of the six systems employ a closed fuel cycle to maximise the resource base and minimise high-level wastes to be sent to a repository. Three of the six are fast neutron reactors (FNR) and one can be built as a fast reactor, one is described as epithermal, and only two operate with slow neutrons like today’s plants. Only one is cooled by light water, two are helium-cooled and the others have lead–bismuth, sodium or fluoride salt coolant. The latter three operate at low pressure, with significant safety advantage. The last has the uranium fuel dissolved in the circulating coolant. Temperatures range from 510 to 1000 °C, compared with less than 330 °C for today’s light water reactors, and this means that four of them can be used for thermochemical hydrogen production.

The sizes range from 150 to 1500 MWe, with the lead-cooled one optionally available as a 50–150 MWe “battery” with long core life (15–20 years without refuelling) as replaceable cassette or entire reactor module. This is designed for distributed generation or desalination. At least four of the systems have significant operating experience already in most respects of their design, which provides a good basis for further research and development and is likely to mean that they can be in commercial operation well before 2030. However, when addressing non-proliferation concerns it is significant that fast neutron reactors are not conventional fast breeders, i.e. they do not have a blanket assembly where plutonium-239 is produced. Instead, plutonium production happens to take place in the core, where burn-up is high and the proportion of plutonium isotopes other than Pu-239 remains high. In addition, new reprocessing technologies will enable the fuel to be recycled without separating the plutonium.

In January 2014, a new GIF Technology Roadmap Update was published. 4 It confirmed the choice of the six systems and focused on the most relevant developments of them so as to define the research and development goals for the next decade. It suggested that the Generation IV technologies most likely to be deployed first are the SFR, the lead-cooled fast reactor (LFR) and the very high temperature reactor technologies. The molten salt reactor and the GFR were shown as furthest from demonstration phase.

Europe, through sustainable nuclear energy technology platform (SNETP) and ESNII, has defined its own strategy and priorities for FNRs with the goal to demonstrate Generation IV reactor technologies that can close the nuclear fuel cycle, provide long-term waste management solutions and expand the applications of nuclear fission beyond electricity production to hydrogen production, industrial heat and desalination; The SFR as a proven concept, as well as the LFR as a short-medium term alternative and the GFR as a longer-term alternative technology. The French Commissariat à l’Energie Atomique (CEA) has chosen the development of the SFR technology. Astrid (Advanced Sodium Technological Reactor for Industrial Demonstration) is based on about 45 reactor-years of operational experience in France and will be rated 250 to 600 MWe. It is expected to be built at Marcoule from 2017, with the unit being connected to the grid in 2022.

Other countries like Belgium, Italy, Sweden and Romania are focussing their research and development effort on the LFR whereas Hungary, Czech Republic and Slovakia are investing in the research and development on GFR building upon the work initiated in France on GFR as an alternative technology to SFR. Allegro GFR is to be built in eastern Europe, and is more innovative. It is rated at 100 MWt and would lead to a larger industrial demonstration unit called GoFastR. The Czech Republic, Hungary and Slovakia are making a joint proposal to host the project, with French CEA support. Allegro is expected to begin construction in 2018 operate from 2025. The industrial demonstrator would follow it.

In mid-2013, four nuclear research institutes and engineering companies from central Europe’s Visegrád Group of Nations (V4) agreed to establish a centre for joint research, development and innovation in Generation IV nuclear reactors (the Czech Republic, Hungary, Poland and Slovakia) which is focused on gas-cooled fast reactors such as Allegro.

The MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) 5 project proposed in Belgium by SCK•CEN could be an Experimental Technological Pilot Plant (ETPP) for the LFR technology. Later, it could become a European fast neutron technology pilot plant for lead and a multi-purpose research reactor. The unit is rated at 100 thermal MW and has started construction at SCK-CEN’s Mol site in 2014 planned to begin operation in 2023. A reduced-power model of Myrrha called Guinevere started up at Mol in March 2010. ESNII also includes an LFR technology demonstrator known as Alfred, also about 100 MWt, seen as a prelude to an industrial demonstration unit of about 600 MWe. Construction on Alfred could begin in 2017 and the unit could start operating in 2025.

Research and development topics to meet the top-level criteria established within the GIF forum in the context of simultaneously matching economics as well as stricter safety criteria set-up by the WENRA FNR demand substantial improvements with respect to the following issues:

  • Primary system design simplification,
  • Improved materials,
  • Innovative heat exchangers and power conversion systems,
  • Advanced instrumentation, in-service inspection systems,
  • Enhanced safety,

and those for fuel cycle issues pertain to:

  • Partitioning and transmutation,
  • Innovative fuels (including minor actinide-bearing) and core performance,
  • Advanced separation both via aqueous processes supplementing the PUREX process as well as pyroprocessing, which is mandatory for the reprocessing of the high MA-containing fuels,
  • Develop a final depository.

Beyond the research and development, the demonstration projects mentioned above are planned in the frame of the SET-Plan ESNII for sustainable fission. In addition, supporting research infrastructures, irradiation facilities, experimental loops and fuel fabrication facilities, will need to be constructed.

Regarding transmutation, the accelerator-driven transmutation systems (ADS) technology must be compared to FNR technology from the point of view of feasibility, transmutation efficiency and cost efficiency. It is the objective of the MYRRHA project to be an experimental demonstrator of ADS technology. From the economical point of view, the ADS industrial solution should be assessed in terms of its contribution to closing the fuel cycle. One point of utmost importance for the ADS is its ability for burning larger amounts of minor actinides (the typical maximum in a critical FNR is about 2 %).

The concept of partitioning and transmutation (P&T) has three main goals: reduce the radiological hazard associated with spent fuel by reducing the inventory of minor actinides, reduce the time interval required to reach the radiotoxicity of natural uranium and reduce the heat load of the HLW packages to be stored in the geological disposal hence reducing the foot print of the geological disposal.

Advanced management of HLW through P&T consists in advanced separation of the minor actinides (americium, curium and neptunium) and some fission products with a long half-life present in the nuclear waste and their transmutation in dedicated burners to reduce the radiological and heat loads on the geological disposal. The time scale needed for the radiotoxicity of the waste to drop to the level of natural uranium will be reduced from a ‘geological’ value (300 000 years) to a value that is comparable to that of human activities (few hundreds of years) (OECD/NEA 2006 ; OECD 2012 ; PATEROS 2008 6 ). Transmutation of the minor actinides is achieved through fission reactions and therefore fast neutrons are preferred in dedicated burners.

At the European level, four building blocks strategy for Partitioning and Transmutation have been identified. Each block poses a serious challenge in terms of research & development to be done in order to reach industrial scale deployment. These blocks are:

  • Demonstration of advanced reprocessing of spent nuclear fuel from LWRs, separating Uranium, Plutonium and Minor Actinides;
  • Demonstration of the capability to fabricate at semi-industrial level dedicated transmuter fuel heavily loaded in minor actinides;
  • Design and construct one or more dedicated transmuters;
  • Fabrication of new transmuter fuel together with demonstration of advanced reprocessing of transmuter fuel.

MYRRHA will support this Roadmap by playing the role of an ADS prototype (at reasonable power level) and as a flexible irradiation facility providing fast neutrons for the qualification of materials and fuel for an industrial transmuter. MYRRHA will be not only capable of irradiating samples of such inert matrix fuels but also of housing fuel pins or even a limited number of fuel assemblies heavily loaded with MAs for irradiation and qualification purposes.

Options for nuclear fusion beyond 2050

Nuclear fusion research, on the basis of magnetic confinement, considered in this report, has been actively pursued in Europe from the mid-60s. Fusion research has the goal to achieve a clean and sustainable energy source for many generations to come. In parallel with basic high-temperature plasma research, the fusion technology programme is pursued as well as the economy of a future fusion reactor (Ward et al. 2005 ; Ward 2009 ; Bradshaw et al. 2011 ). The goal-oriented fusion research should be driven with an increased effort to be able to give the long searched answer to the open question, “will fusion energy be able to cover a major part of mankind’s electricity demand?”. ITER, the first fusion reactor to be built in France by the seven collaborating partners (Europe, USA, Russia, Japan, Korea, China, India) is hoped to answer most of the open physics and many of the remaining technology/material questions. ITER is expected to start operation of the first plasma around 2020 and D-T operation 2027.

The European fusion research has been successful through the organisation of EURATOM to which most countries in Europe belong (the fission programme is also included in EURATOM). EUROfusion, the European Consortium for the Development of Fusion Energy, manages European fusion research activities on behalf of EURATOM. The organisation of the research has resulted in a well-focused common fusion research programme. The members of the EUROfusion 7 consortium are 29 national fusion laboratories. EUROfusion funds all fusion research activities in accordance with the “EFDA Fusion electricity. Roadmap to the realisation of fusion energy” (EFDA 2012 , Fusion electricity). The Roadmap outlines the most efficient way to realise fusion electricity. It is the result of an analysis of the European Fusion Programme undertaken by all Research Units within EUROfusion’s predecessor agreement, the European Fusion Development Agreement, EFDA.

The most successful confinement concepts are toroidal ones like tokamaks and helical systems like stellarators (Wagner 2012 , 2013 ). To avoid drift losses, two magnetic field components are necessary for confinement and stability—the toroidal and the poloidal field component. Due to their superposition, the magnetic field winds helically around a system of nested toroids. In both cases, tokamak and stellarator, the toroidal field is produced by external coils; the poloidal field arises from a strong toroidal plasma current in tokamaks. In case of helical systems all necessary fields are produced externally by coils which have to be superconductive when steady-state operation is intended. Europe is constructing the most ambitious stellarator, Wendelstein 7-X in Germany. It is a fully optimised system with promising features. W7-X goes into operation in 2015. 8

Fusion research has now reached plasma parameters needed for a fusion reactor, even if not all parameters are reached simultaneously in a single plasma discharge (see Fig.  4 ). Plotted is the triple product n•τ E• T i composed of the density n, the confinement time τ E and the ion temperature T i . For ignition of a deuterium–tritium plasma, when the internal α-particle heating from the DT-reaction takes over and allows the external heating to be switched off, the triple product has to be about >6 × 10 21  m −3  s keV). The record parameters given as of today are shown together with the fusion experiment of its achievement in Fig.  4 . The achieved parameters and the missing factors to the ultimate goal of a fusion reactor are summarised below:

  • Temperature: 40 keV achieved (JT-60U, Japan); the goal is surpassed by a factor of two
  • Density n surpassed by factor 5 (C-mod,USA; LHD,Japan)
  • Energy confinement time: a factor of 4 is missing (JET, Europe)
  • Fusion triple product (see Fig.  4 : a factor of 6 is missing (JET, Europe)
  • The first scientific goal is achieved: Q (fusion power/external heating power) ~1 (0,65) (JET, Europe)
  • D-T operation without problems (TFTR (USA), JET, small tritium quantities have been used, however)
  • Maximal fusion power for short pulse: 16 MW (JET)
  • Divertor development (ASDEX, ASDEX-Upgrade, Germany)
  • Design for the first experimental reactor complete (ITER, see below)
  • The optimisation of stellarators (W7-AS, W7-X, Germany)

An external file that holds a picture, illustration, etc.
Object name is 13280_2015_732_Fig4_HTML.jpg

Progress in fusion parameters. Derived in 1955, the Lawson criterion specifies the conditions that must be met for fusion to produce a net energy output (1 keV × 12 million K). From this, a fusion “triple product” can be derived, which is defined as the product of the plasma ion density, ion temperature and energy confinement time. This product must be greater than about 6 × 10 21  keV m −3  s for a deuterium–tritium plasma to ignite. Due to the radioactivity associated with tritium, today’s research tokamaks generally operate with deuterium only ( solid dots ). The large tokamaks JET(EU) and TFTR(US), however, have used a deuterium–tritium mix ( open dots ). The rate of increase in tokamak performance has outstripped that of Moore’s law for the miniaturisation of silicon chips (Pitts et al. 2006 ). Many international projects (their names are given by acronyms in the figure) have contributed to the development of fusion plasma parameters and the progress in fusion research which serves as the basis for the ITER design

After 50 years of fusion research there is no evidence for a fundamental obstacle in the basic physics. But still many problems have to be overcome as detailed below:

Critical issues in fusion plasma physics based on magnetic confinement

  • confine a plasma magnetically with 1000 m 3 volume,
  • maintain the plasma stable at 2–4 bar pressure,
  • achieve 15 MA current running in a fluid (in case of tokamaks, avoid instabilities leading to disruptions),
  • find methods to maintain the plasma current in steady-state,
  • tame plasma turbulence to get the necessary confinement time,
  • develop an exhaust system (divertor) to control power and particle exhaust, specifically to remove the α-particle heat deposited into the plasma and to control He as the fusion ash.

Critical issues in fusion plasma technology

  • build a system with 200 MKelvin in the plasma core and 4 Kelvin about 2 m away,
  • build magnetic system at 6 Tesla (max field 12 Tesla) with 50 GJ energy,
  • develop heating systems to heat the plasma to the fusion temperature and current drive systems to maintain steady-state conditions for the tokamak,
  • handle neutron-fluxes of 2 MW/m 2 leading to 100 dpa in the surrounding material,
  • develop low activation materials,
  • develop tritium breeding technologies,
  • provide high availability of a complex system using an appropriate remote handling system,
  • develop the complete physics and engineering basis for system licensing.

The goals of ITER

The major goals of ITER (see Fig.  5 ) in physics are to confine a D-T plasma with α-particle self-heating dominating all other forms of plasma heating, to produce about ~500 MW of fusion power at a gain Q  = fusion power/external heating power, of about 10, to explore plasma stability in the presence of energetic α-particles, and to demonstrate ash-exhaust and burn control.

An external file that holds a picture, illustration, etc.
Object name is 13280_2015_732_Fig5_HTML.jpg

Schematic layout of the ITER reactor experiment (from www.iter.org )

In the field of technology, ITER will demonstrate fundamental aspects of fusion as the self-heating of the plasma by alpha-particles, show the essentials to a fusion reactor in an integrated system, give the first test a breeding blanket and assess the technology and its efficiency, breed tritium from lithium utilising the D-T fusion neutron, develop scenarios and materials with low T-inventories. Thus ITER will provide strong indications for vital research and development efforts necessary in the view of a demonstration reactor (DEMO). ITER will be based on conventional steel as structural material. Its inner wall will be covered with beryllium to surround the plasma with low-Z metal with low inventory properties. The divertor will be mostly from tungsten to sustain the high α-particle heat fluxes directed onto target plates situated inside a divertor chamber. An important step in fusion reactor development is the achievement of licensing of the complete system.

The rewards from fusion research and the realisation of a fusion reactor can be described in the following points:

  • fusion has a tremendous potential thanks to the availability of deuterium and lithium as primary fuels. But as a recommendation, the fusion development has to be accelerated,

An external file that holds a picture, illustration, etc.
Object name is 13280_2015_732_Fig6_HTML.jpg

Fusion time strategy towards the fusion reactor on the net (EFDA 2012 , Fusion electricity. A roadmap to the realisation of fusion energy)

In addition, there is the fusion technology programme and its material branch, which ultimately need a neutron source to study the interaction with 14 MeV neutrons. For this purpose, a spallation source IFMIF is presently under design. As a recommendation, ways have to be found to accelerate the fusion development. In general, with ITER, IFMIF and the DEMO, the programme will move away from plasma science more towards technology orientation. After the ITER physics and technology programme—if successful—fusion can be placed into national energy supply strategies. With fusion, future generations can have access to a clean, safe and (at least expected of today) economic power source.

The fission nuclear power continues to be an essential part of the low-carbon electricity generation in the world for decades to come. There are breakthrough possibilities in the development of new generation nuclear reactors where the life-time of the nuclear waste can be reduced to some hundreds of years instead of the present time-scales of hundred thousand of years. Research on the fourth generation reactors is needed for the realisation of this development. For the fast nuclear reactors a substantial research and development effort is required in many fields—from material sciences to safety demonstration—to attain the envisaged goals. Fusion provides a long-term vision for an efficient energy production. The fusion option for a nuclear reactor for efficient production of electricity should be vigorously pursued on the international arena as well as within the European energy roadmap to reach a decision point which allows to critically assess this energy option.

Box 1 Explanations of abbreviations used in this article

ADSAccelerator-driven transmutation systems
AGRAdvanced gas-cooled reactor
ASTRIDAdvanced sodium technological reactor for industrial demonstration
CEACommissariat l´Energie Atomique
DEMODemonstration power plant
ESNII2000European sustainable nuclear industrial initiative for sustainable fission
ETTPExperimental technological pilot plant
EURATOMThe European Atomic Energy Community
IAEAInternational Atomic Energy Agency
FNRFast neutron reactor
GFRGas-cooled fast reactor
GIFGeneration IV international forum
GWeGiga watt energy
HLWHigh-level radioactive waste
IFMIFInternational fusion materials irradiation facility
INPROInternational project on innovative nuclear reactors and fuel cycles
ITERInternational thermonuclear experimental reactor or from latin “the way”
LFRLead-cooled fast reactor
LWRLight water reactor
MOXMixed oxide fuel
MYRRHAMulti-purpose hybrid research reactor for high-tech applications
P&TPartitioning and transmutation
PATEROSPartitioning and transmutation European roadmap for sustainable nuclear energy
PUREX processPlutonium and Uranium extraction process
-valueFusion energy gain factor ( / )
SET-planStrategic energy technology plan
SFRSodium-cooled fast reactor
SNETPSustainable nuclear energy technology platform

Biographies

is Professor in Energy Research and Director of MTA Center for Energy Research, Budapest, Hungary. His research interests are in the development of new fission reactors, new structural materials, high temperature irradiation resistance, mechanical deformation.

is Professor of Applied Atomic and Molecular Physics at Royal Institute of Technology, (KTH), Stockholm, Sweden. Her research interests are in basic atomic and molecular processes studied with synchrotron radiation, development of diagnostic techniques for analysing the performance of fusion experiments in particular development of photon spectroscopic diagnostics.

1 http://www.iea.org/ .

2 https://cnpp.iaea.org/pages/index.htm .

3 GenIV International forum: ( http://www.gen-4.org/index.html ).

4 https://www.gen-4.org/gif/jcms/c_60729/technology-roadmap-update-2013 .

5 http://myrrha.sckcen.be/ .

6 www.sckcen.be/pateros/ .

7 https://www.euro-fusion.org/ .

8 https://www.ipp.mpg.de/ippcms/de/pr/forschung/w7x/index.html .

Contributor Information

Akos Horvath, Email: [email protected] .

Elisabeth Rachlew, Email: es.htk@kre .

  • Bradshaw AM, Hamacher T, Fischer U. Is nuclear fusion a sustainable energy form? Fusion Engineering and Design. 2011; 86 :2770–2773. doi: 10.1016/j.fusengdes.2010.11.040. [ CrossRef ] [ Google Scholar ]
  • EASAC. 2014. EASAC Report 23—Management of spent nuclear fuel and its waste. http://www.easac.eu/energy/reports-and-statements/detail-view/article/management-o.html .
  • EFDA. 2012. Fusion electricity. A roadmap to the realization of fusion energy. https://www.euro-fusion.org/wpcms/wp-content/uploads/2013/01/JG12.356-web.pdf .
  • Garbil, R., and G. Van Goethem. (ed.). 2013. Symposium on the “Benefits and limitations of nuclear fission for a low carbon economy”, European Commission, Brussels, ISBN 978-92.79.29833.2.
  • Hózer, Z. S. Borovitskiy, G. Buday, B. Boullis, G. Cognet, S. A. Delichatsios, J. Gadó, A. Grishin, et al. 2010. Regional strategies concerning nuclear fuel cycle and HLRW in Central and Eastern European Countries. International conference on management of spent fuel from Nuclear Power Reactors, Vienna, Conference ID:38089 (CN-178).
  • IEA (International Energy Authority). 2014. World Energy Outlook 2014. http://www.iea.org/ .
  • IPCC. 2014. Summary for policymakers WGIII AR5, SPM.4.2.2 Energy supply.
  • Kautsky, U., T. Lindborg, and J. Valentin (ed.). 2013. Humans and ecosystems over the coming millenia: A biosphere assessment of radioactive waste disposal in Sweden. Ambio 42(4): 381–526. [ PMC free article ] [ PubMed ]
  • OECD. 2011–2012. Fact book: Economic, environmental and social statistics. Retrieved from http://www.oecd-ilibrary.org/economics/oecd-factbook-2011-2012_factbook-2011-en .
  • OECD/NEA. 2006. Potential benefits and impacts of advanced nuclear fuel cycles with actinide partitioning and transmutation. ISBN: 978-92-64-99165-1, http://www.oecd-nea.org/science/reports/2011/6894-benefits-impacts-advanced-fuel.pdf .
  • OECD Nuclear Energy Agency. 2013. Minor actinide burning in thermal reactors. A report by the Working Party on Scientific Issues of Reactor Systems, NEA #6997. http://www.oecd-nea.org/science/pubs/2013/6997-minor-actinide.pdf .
  • Pitts R, Buttery R, Pinches S. Fusion: The way ahead. Physics World. 2006; 19 :20–26. doi: 10.1088/2058-7058/19/3/35. [ CrossRef ] [ Google Scholar ]
  • Ricotti ME. Nuclear energy: Basics, present, future. EPJ Web of Conferences. 2013; 54 :01005. doi: 10.1051/epjconf/20135401005. [ CrossRef ] [ Google Scholar ]
  • Vandenbosch R, Vandenbosch SE. Nuclear waste confidence: Is indefinite storage safe? APS Physics and Society. 2015; 44 :5–7. [ Google Scholar ]
  • Wagner, F. 2012. Fusion energy by magnetic confinement. IPP 18/3, http://hdl.handle.net/11858/00-001M-0000-0026-E767-A .
  • Wagner F. Physics of magnetic confinement fusion. EPJ Web of Conferences. 2013; 54 :01007. doi: 10.1051/epjconf/20135401007. [ CrossRef ] [ Google Scholar ]
  • Ward DJ. The contribution of fusion to sustainable development. Fusion Engineering and Design. 2009; 82 :528–533. doi: 10.1016/j.fusengdes.2007.02.028. [ CrossRef ] [ Google Scholar ]
  • Ward DJ, Cook I, Lechon Y, Saez R. The economic viability of fusion power. Engineering and Design. 2005; 75–79 :1221–1227. doi: 10.1016/j.fusengdes.2005.06.160. [ CrossRef ] [ Google Scholar ]

Nuclear Power

By Sarah Robey

Mirroring a nation-wide wave of commercial interest in nuclear power plants in the 1950s and 1960s, the Philadelphia Electric Company (PECO) and other energy companies in Greater Philadelphia jumped at the opportunity to develop relatively inexpensive electricity for the region. Nuclear power plants began servicing the region’s electrical grid in 1967. However, as was the case across the nation, planning for the Philadelphia area’s nuclear power plants often met significant resistance and concerns over public and environmental safety. Several nuclear accidents—in the region and elsewhere—contributed to ongoing public ambivalence about the region’s reactors.

A black and white photograph of the PECO building, a modernist high rise with black cladding and a prominent electronic billboard atop it.

Following World War II , the federal government developed civilian nuclear power technologies as an extension of wartime nuclear weapons research. Nuclear power reactors, which used the same physical reaction as in a fission-powered nuclear bomb, were promising commercial investments: although nuclear power required high start-up construction costs, it had low long-term operational costs. In 1956, federal regulators made nuclear power technologies available to public and private utility corporations.

In 1967, after nearly a decade of planning, building, and certifications, PECO opened the first of three planned reactors at the Peach Bottom Nuclear Generating Station on the Susquehanna River in York County. At that time, construction was planned for several additional reactors in the region. PECO selected Limerick , Pennsylvania, about thirty miles northeast of Philadelphia, as a site for two additional reactors. Metropolitan Edison began work on two reactors on Three Mile Island, on the Susquehanna River south of Harrisburg. And Jersey Central Power and Light made plans to build a reactor at Oyster Creek , in Ocean County, New Jersey. In the next several years, it was predicted, these seven reactors—three at Peach Bottom, two at Limerick, two at Three Mile Island, and one at Oyster Creek—would generate enough electricity to power Philadelphia and the surrounding counties several times over.

Anti-Nuclear Activism

Plans to expand Greater Philadelphia’s nuclear power capacity, however, were slowed by anti-nuclear power activism in the late 1960s and 1970s. Across the nation, protests erupted in response to proposed plants. Activists cited the environmental impact of nuclear power plants, which, like many other thermal power plants, required the use of local bodies of water to regulate the plants’ temperature. Opponents of the expansion at Peach Bottom and construction of the Limerick, Three Mile Island, and Oyster Creek plants were concerned about the potential ecological consequences of local temperature increases in the Susquehanna and Schuylkill Rivers and along the New Jersey shoreline. Protesters were also deeply troubled by the possibility of radioactive contaminants escaping into the surrounding habitat. Their protests thus reflected the broader concerns of the global environmental movement.

a black and white photograph of a group of protesters standing on stone steps. Signs read "Solar" and "No Nukes"

While nuclear power protests delayed construction at some sites, during the 1970s several new reactors went online. During 1973-74, PECO replaced Peach Bottom’s original small reactor with two new reactors. In 1974, Metropolitan Edison began commercial production at Three Mile Island’s first reactor. Two years later, Public Service Electric and Gas opened the Salem Nuclear Power Plant on the Delaware Bay in Salem County, New Jersey. In 1978, Three Mile Island added a second reactor.

In response to what they believed to be shortsighted, runaway production, anti-nuclear power activists renewed their pressure on PECO and other local energy companies. In 1977, the Philadelphia-based pacifist organization Movement for a New Society formed the Keystone Alliance, a diverse group of antinuclear activists who coalesced around the construction of the Limerick nuclear reactors. Throughout the late 1970s, the Keystone Alliance held rallies and protests outside Philadelphia’s PECO offices and organized teach-ins, letter-writing campaigns, and marches across the region.

a black and white photograph of Three Mile Island showing four large cooling towers in the background and the Susquehanna river in the foreground.

The movement against nuclear power gained national attention on March 28, 1979, when an operational problem at Three Mile Island initiated a partial meltdown of its second reactor. The meltdown itself was contained by the end of the day. However, the accident caused significant damage to the reactor, and it was unclear to the public for several days whether associated dangers, such as explosions and fire, had passed. As technicians worked to eliminate the dangers, officials issued voluntary evacuation recommendations to protect local residents, and the nation watched to see if the accident would escalate into a more severe emergency. By April 1, experts issued an all-clear.

Although a catastrophe at Three Mile Island was averted—later studies concluded that the radiation received by local residents was less than that of one medical X-ray—the accident added significant momentum to anti-nuclear power campaigns. As hundreds of thousands of protesters marched in cities across the country, the Keystone Alliance redoubled its efforts in Philadelphia. In 1981, the Alliance, backed by a broad coalition of residents, environmental groups, professional organizations, and politicians petitioned the federal Nuclear Regulatory Commission (NRC) to abandon the construction of the partially-completed Limerick complex. The Keystone Alliance also later filed suit against PECO alleging misappropriation of funds for a pro-nuclear public relations campaign.

Chernobyl Affects the Debate

The Keystone Alliance delayed, but failed to halt, the construction of additional nuclear production sites in the Philadelphia region: by 1990, both Limerick reactors, two additional reactors at the Salem County complex, and two reactors in Luzerne County, Pennsylvania, had gone online. However, the controversies that predated and followed the accident at Three Mile Island significantly increased public criticism of nuclear power. In the 1980s, the New Jersey-based Sea Alliance joined the ranks of the region’s anti-nuclear power groups, specifically targeting the facilities in Salem County, one of the largest nuclear power sites in the nation. Such protest organizations gained further traction as Cold War hostilities increased in the 1980s and contributed to a broad antinuclear movement that called for abolishing nuclear weapons as well as nuclear power. The April 1986 nuclear disaster at the Chernobyl Nuclear Power Station in Ukraine, the most severe nuclear accident in history, cemented public fears about nuclear power around the globe.

a black and white photograph of a group of protesters in front of the PECO building. Most of the protesters lay on the ground as if dead. Two in the front hold a sign reading "Phila. Electric Co." with their fists raised in the air. Behind them, a large banner reads "Stop nuclear power"

In the United States, the Three Mile Island and Chernobyl accidents contributed to increased regulatory scrutiny of nuclear power production. In 1987, the Philadelphia area’s nuclear power sites once again gained critical national attention when the NRC ordered the shutdown of the Peach Bottom power complex, citing employee misconduct, operational problems, and corporate negligence. As the national media reported, the official reprimand revealed that operators had been found asleep while on duty, among many other problems. Likewise, in the 1990s, both Salem County reactors were shut down for two years for emergency maintenance on malfunctioning systems.

After early 1990, when the second Limerick reactor began commercial production, no new reactors were added to the Philadelphia area’s electrical grid. The Nuclear Regulatory Commission and local agencies continued to oversee the scheduled maintenance, repairs, and minor accidents of the region’s aging nuclear power infrastructure. Although the region’s nuclear power plants regularly appeared in the news for such reason, after the 1980s, protest largely abated.

As the region’s environmental advocates began to demand low- and no-emissions electricity in the 1980s and 1990s, some activists began to accept nuclear power as a clean energy alternative. Although nuclear power is not strictly renewable, because it consumes fuel in the form of fissile materials, it does not release greenhouse gases into the atmosphere. Thus the green energy movement created some new opportunities for the nuclear power industry. However, especially in Pennsylvania, traditional segments of the energy sector, including the natural gas and coal industries, remained fierce competitors and voiced critical opposition to the growth of nuclear energy.

a color image of an artificial island with two nuclear power plants. To the left, a large cooling tower stands. In the foreground the Delaware Bay is visible.

In the 2000s, new concerns dominated public discussions about nuclear power. The terrorist attacks of September 11, 2001, for example, raised critical questions about the resilience and safety of nuclear power plants in the event of sabotage or attack. More importantly, the catastrophic meltdown of three reactors at the Fukushima Nuclear Power Plant in eastern Japan in March 2011 once again brought nuclear power under severe public criticism in the United States. The Fukushima accident was caused by a tsunami that followed a massive earthquake, which rendered the plant’s cooling system inoperable. The meltdowns, considered the second-worst nuclear accident in history, released a great deal of radiation into the environment and required the evacuation of hundreds of thousands of residents. For Americans, Fukushima served as a stark reminder that nuclear power production could be vulnerable to natural disasters as well as human and technological error. Fortunately, during 2012’s Hurricane Sandy , the reactor at Oyster Creek in Ocean County, New Jersey, was unharmed and continued to function normally, despite severe coastal flooding.

From the time plans began in the late 1950s, nuclear power production in Greater Philadelphia was controversial. For decades, residents, politicians, and businesses struggled to balance economic motivations and energy demands with concerns about public safety and environmental risk. In 2017, nuclear production facilities generated over one-third of the electricity for both Pennsylvania and New Jersey, with nearly all of the plants located within one hundred miles of Philadelphia and in close proximity to millions of residents. The extreme tension between public safety and public benefits came to define the nuclear power industry in the region.

A map showing Philadelphia and New Jersey with nuclear power plant locations marked. Charts and graphs show electric power generation by fuel source since the year 2000.

Sarah Robey completed her Ph.D. in history at Temple University and is an Assistant Professor of the History of Energy at Idaho State University. Her research explores American nuclear history through the lens of activism, public knowledge, and civic engagement. She has held fellowships at the Philadelphia History Museum, the National Museum of American History, and the National Air and Space Museum. (Author information current at time of publication.)

Copyright 2017, Rutgers University

essay on nuclear power station

Three Mile Island

Centers for Disease Control and Prevention

Panic surrounded the nuclear generating plant at Three Mile Island when it suffered a partial meltdown, starting on March 28, 1979, with a stuck valve in the number two reactor (TMI-2) and was exacerbated by failure of the plant staff to recognize the problem. As the temperature in the reactor rose and coolant leaked out of the stuck valve, alarms and warning lights were activated but misinterpreted by the operators. They turned off coolant pumps and reduced the amount of emergency coolant entering the core to prevent a mechanical failure. This caused the core to overheat and the fuel pellets to melt. The problem was not properly diagnosed until a shift change occurred two hours after the initial valve failure.

Unlike the accident at Chernobyl, Ukraine, seven years later, Three Mile Island’s containment building remained intact and contained nearly all of the radioactive material released in the accident. Only small amounts of radioactive gases were released into the atmosphere and testing in the area showed no significant increase in radioactivity. Studies later concluded that the dose of radiation received by local residents was no more than that received during a chest x-ray. Nevertheless, the incident provoked widespread panic and prompted a voluntary evacuation of the area. The partial meltdown galvanized the anti-nuclear movement in the United States and led to national protests. In some quarters, public discomfort was also fueled by The China Syndrome , a film about nuclear disaster released less than two weeks before the accident. Locally, the activist group Keystone Alliance petitioned to stop the construction of the Limerick, Pennsylvania, nuclear power plant but ultimately failed to halt the project.

Three Mile Island’s reactor number one (TMI-1) was down for refueling during the accident and was not brought back online until 1985. Operation of TMI-2 was never resumed and it was defueled between 1985 and 1990. The refurbished generator from TMI-2 was sent to a new facility in North Carolina in 2010. In 2017, the Nuclear Regulator Commission announced that TMI-1 would cease operations by 2019.

essay on nuclear power station

Keystone Alliance

Special Collections Research Center, Temple University Libraries

The Keystone Alliance was formed in 1977 to protest the construction of Limerick Nuclear Generating Station in Montgomery County, Pennsylvania. The group, along with others of the same nature, argued that the potential for a meltdown accident and the environmental impact of hot waste water being released into the Schuylkill River were too much of a risk to local residents. Instead, they pushed for PECO to adopt greener energy sources such as wind and solar. After the partial meltdown of reactor number two at Three Mile Island, the group’s efforts intensified. Within a month of the accident, they were able to amass a group of six thousand demonstrators to block the entrance to the Limerick site. The protests resulted in construction delays and the cancellation of a secondary plant at Limerick, but ultimately failed to stop construction. Limerick Nuclear Generating Station came online in 1986.

essay on nuclear power station

Keystone Alliance Protest at PECO

The partial meltdown at Three Mile Island sparked numerous anti-nuclear protests across the nation. This photograph, taken two days after the accident, shows a group of demonstrators at the PECO building on Twenty-Third and Market Streets.

essay on nuclear power station

Philadelphia Electric Company (PECO)

Special Collection Research Center, Temple University Libraries

PECO, Philadelphia’s utility company, constructed nuclear plants at Peach Bottom in York County and Limerick in Montgomery County. The utility’s headquarters at Twenty-Third and Market Streets was the site of demonstrations at the height of anti-nuclear protests.

essay on nuclear power station

Hope Creek and Salem Nuclear Power Plants

Wikimedia Commons

Hope Creek Nuclear Generating Station (left) and Salem Nuclear Power Plant share an artificial island in the Delaware River off the coast of Salem County, New Jersey. Salem opened in 1977 with two pressurized water reactors. Hope Creek, which opened in 1986, is a single-unit boiling water reactor with a prominent cooling tower that is visible for many miles. Both plants use water from the Delaware Bay as coolant.

essay on nuclear power station

Map of Nuclear Power Plants

Nuclear power plants generate a substantial amount of megawatthours in Pennsylvania, where they compete mainly with coal and, increasingly, natural gas plants. This map shows the location of nuclear power plants in Pennsylvania and New Jersey. (Map by Michael Siegel, Department of Geography, Rutgers University)

essay on nuclear power station

Related Topics

  • Greater Philadelphia
  • Philadelphia and the World
  • Philadelphia and the Nation

Time Periods

  • Twenty-First Century
  • Twentieth Century after 1945
  • Center City Philadelphia
  • Environmental Movement
  • Garbage Barge (Khian Sea)
  • Heating (Home)
  • Philadelphia Gas Works
  • Public Health
  • Refineries (Oil)
  • Superfund Sites
  • Women’s International League for Peace and Freedom

Related Reading

Balogh, Brian. Chain Reaction: Expert Debate and Public Participation in American Commercial Nuclear Power, 1945-1975 . New York: Oxford University Press, 1991.

Hughes, Michael L. “Civil Disobedience in Transnational Perspective: American and West German Anti-Nuclear-Power Protesters, 1975-1982.” Historical Social Research 39 (2014): 236-53.

Kairys, David. “Going to School at the Electric Company.” Philadelphia Freedom: Memoir of a Civil Rights Lawyer . Ann Arbor: University of Michigan Press, 2008.

Meserve, Richard and Ernest Moniz. “The Changing Climate for Nuclear Power in the United States.” Bulletin of the American Academy of Arts and Sciences 55 (Winter, 2002): 57-72.

Walker, J. Samuel. Three Mile Island: A Nuclear Crisis in Historical Perspective . Berkeley: University of California Press, 2004.

Related Collections

  • Movement for a New Society Records (DG154) Swarthmore College Peace Collection 500 College Avenue, Swarthmore, Pa.
  • George D. McDowell Philadelphia Evening Bulletin Collection Urban Archives, Temple University Libraries 1210 Polett Walk, Philadelphia.

Related Places

  • PECO Building

Backgrounders

Connecting Headlines with History

  • Limerick nuclear plant unit licenses extended (WHYY, October 21, 2014)
  • Oyster Creek nuclear plant shuts down temporarily (WHYY, March 23, 2015)
  • Oldest nuclear power plant in NJ will close (WHYY, May 11, 2016)
  • Nation's oldest nuclear plant temporarily shuts down due to system problem (WHYY, November 20, 2016)
  • PSE&G warns shutting down nuclear plants could mean higher electric bills (WHYY, May 1, 2017)
  • South Jersey teen's love of science leads him to build nuclear fusor...in his basement (WHYY, May 12, 2017)
  • Nuclear plant safety drill leads to thousands of 911 calls in New Jersey (WHYY, May 24, 2017)
  • Oyster Creek, nation's oldest nuclear power plant, shutting down (WHYY, September 17, 2018)
  • 40 years later, the prospect of Three Mile Island-related evacuation remains daunting (StateImpact via WHYY, March 31, 2019)
  • As Three Mile Island stops producing electricity, one local community braces for change (WITF via WHYY, September 20, 2019)
  • The History of Nuclear Energy (pdf, Department of Energy)
  • U.S. Anti-Nuclear Activists Partially Block Establishment of Nuclear Power Plant in Limerick, PA, 1977-1982 (Swarthmore College)
  • US Nuclear Power Plants (Nuclear Energy Institute)
  • Operating Nuclear Power Reactors (United States Nuclear Regulary Commission)
  • Bulletin of the Atomic Scientists
  • Three Mile Island Emergency (Dickinson College)

Connecting the Past with the Present, Building Community, Creating a Legacy

The Michigan Daily

The Michigan Daily

One hundred and thirty-three years of editorial freedom

Photo Essay: Inside a nuclear power plant

Share this:.

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)

essay on nuclear power station

A nuclear power plant probably isn’t what comes to mind when you think of a school field trip. But in anticipation of Nuclear Science Week, hosted in Ann Arbor this year from Oct. 21-17, DTE and The University of Michigan’s Nuclear Engineering and Radiological Sciences (NERS) department organized a trip to the Fermi 2 Power Plant for students on Oct. 3.

Although the event was primarily attended by NERS undergraduate and graduate students, the opportunity to tour a working nuclear power plant was enough to pique the interest of non-engineers, including a communications major.

essay on nuclear power station

Located in a nature preserve on the shores of Lake Erie near Monroe, Mich., Fermi’s campus is gorgeous. The early morning arrival at the plant also meant that visitors were greeted by gorgeous views from the visitor center of the sun rising. After a presentation from Pete Dietrich, DTE’s Chief Nuclear Operator, attendees were split into groups for a tour of the plant.

essay on nuclear power station

According to Nuclear Science Week, the internationally recognized event is dedicated to spreading awareness about “how nuclear science plays a vital role in the lives of Americans – and the world . ”

The event fit within the mission of Nuclear Science Week by showing off the inner workings of a nuclear power plant and placing a heavy emphasis on how Fermi 2 interacts with its southeast Michigan service area. Thanks to rigorous safety protocols, the plant is able to work around the clock to generate 20% of the power delivered to DTE’s customers — all with zero carbon emissions.

Most of the morning was spent learning about day-to-day operations in the plant. After suiting up in personal protective equipment, students experienced a nuclear waste cleanup simulation and practiced using a full body nuclear contamination monitor.

essay on nuclear power station

After a quick break for lunch, it was off to a tour of some of the plant facilities. The first stop on the tour was a scale model of Fermi’s campus and reactor core. There, Gordon Terry, a licensed nuclear operator trainee, explained the inner workings and layout of the plant. After, students learned about the refueling process that the plant undergoes every 18 months.

essay on nuclear power station

Throughout all of these presentations, plant workers placed emphasis on the steps the plant takes to ensure the safety of employees and the public. From the thorough reactor operator training to the numerous, redundant failsafe systems, it was clear that safety is a key priority at Fermi.

Nowhere was this more clear than in the control room simulator. This one-to-one, button-to-button replica of the actual control room exemplified how aware of the risk of nuclear power plant accidents the operators of the plant were. Brett Hasson, supervisor of nuclear operations training, walked us through the binders of checklists and protocols that licensed operators had to memorize to pass their rigorous licensing exams.

essay on nuclear power station

As impressive as DTE’s nuclear facilities were, the sizable environmental impact of DTE’s power plants on the environment can’t be overlooked. Although DTE has committed to net-zero carbon emissions by 2050, its plan to do so relies on the implementation of novel technologies such as carbon capture and small modular nuclear reactors. As promising as these technologies are, they have yet to be successfully commercialized.

Instead of placing their hopes for a carbon-neutral future in unproven technologies, DTE could be investing more heavily in proven solutions like solar, wind and nuclear. 

As our nation, and the world, faces the prospect of a global climate catastrophe, it’s clearer than ever that transitioning to renewable energy sources is a must. And as attractive as solar and wind power are, the fact of the matter is that nuclear power will need to remain a part of the conversation until other forms of renewable energy have the infrastructure necessary to deliver uninterrupted power to a power grid adapting to a growing population.

A common adage in the world of nuclear power is that it has had only three problems: Three Mile Island, Chernobyl and Fukushima. These three nuclear disasters, as well as the issue of disposing of nuclear waste, have turned public opinion against this otherwise promising energy source. 

essay on nuclear power station

In their tour of Fermi 2, DTE made a compelling argument for nuclear power. By inviting a group of customers (albeit a very select group) to interact with nuclear energy and see firsthand the steps taken to make nuclear energy safe and reliable, they were able to paint a picture of nuclear power that wasn’t a barbed wire enclosed radiation zone that spits out a disaster every 40 years.

Nuclear energy will be key in DTE’s plan to cut their emissions. But for nuclear to succeed, DTE, as well as other utility companies, must commit more resources towards interacting with the communities they serve to change the narrative surrounding it.

Staff Photographer Sam Adler can be reached at [email protected].

Related articles

[ditty id=484978]

  • Today's news
  • Reviews and deals
  • Climate change
  • 2024 election
  • Fall allergies
  • Health news
  • Mental health
  • Sexual health
  • Family health
  • So mini ways
  • Unapologetically
  • Buying guides

Entertainment

  • How to Watch
  • My Portfolio
  • Latest News
  • Stock Market
  • Biden Economy
  • Stocks: Most Actives
  • Stocks: Gainers
  • Stocks: Losers
  • Trending Tickers
  • World Indices
  • US Treasury Bonds Rates
  • Top Mutual Funds
  • Options: Highest Open Interest
  • Options: Highest Implied Volatility
  • Basic Materials
  • Communication Services
  • Consumer Cyclical
  • Consumer Defensive
  • Financial Services
  • Industrials
  • Real Estate
  • Stock Comparison
  • Advanced Chart
  • Currency Converter
  • Credit Cards
  • Balance Transfer Cards
  • Cash-back Cards
  • Rewards Cards
  • Travel Cards
  • Credit Card Offers
  • Best Free Checking
  • Student Loans
  • Personal Loans
  • Car insurance
  • Mortgage Refinancing
  • Mortgage Calculator
  • Morning Brief
  • Market Domination
  • Market Domination Overtime
  • Asking for a Trend
  • Opening Bid
  • Stocks in Translation
  • Lead This Way
  • Good Buy or Goodbye?
  • Financial Freestyle
  • Capitol Gains
  • Living Not So Fabulously
  • Fantasy football
  • Pro Pick 'Em
  • College Pick 'Em
  • Fantasy baseball
  • Fantasy hockey
  • Fantasy basketball
  • Download the app
  • Daily fantasy
  • Scores and schedules
  • GameChannel
  • World Baseball Classic
  • Premier League
  • CONCACAF League
  • Champions League
  • Motorsports
  • Horse racing
  • Newsletters

New on Yahoo

  • Privacy Dashboard

Yahoo Finance

Bill gates is bringing 'the most advanced nuclear facility in the world' to a small city with only 2,000 people.

Bill Gates is making big changes in the small town of Kemmerer, Wyoming, with a population of just about 2,400. Gates' company TerraPower has started building what he calls "the most advanced nuclear facility in the world" in this tiny community.

This will be the first of the so-called Natrium plants, which promise to be safer, cheaper, and more efficient than traditional nuclear power plants. It is a groundbreaking project expected to provide clean, zero-carbon energy.

Don't Miss:

Amid the ongoing EV revolution, previously overlooked low-income communities now harbor a huge investment opportunity at just $500.

Warren Buffett once said, "If you don't find a way to make money while you sleep, you will work until you die." Here’s how you can earn passive income with just $100.

Kemmerer, a town once known for its coal plant, is transforming into a center for next-generation nuclear technology. The project will provide jobs to 1,600 skilled workers and boost the local economy, with new businesses and housing developments emerging to support the growing community. It is a huge transformation for a town that relied on coal for so long. As Gates said on his blog, “It's a huge milestone for the local economy, America's energy independence, and the fight against climate change.”

Commercial real estate has historically outperformed the stock market, and this platform allows individuals to invest in commercial real estate with as little as $5,000 offering a 12% target yield with a bonus 1% return boost today!

Gates is rethinking how nuclear power is generated and believes that the Natrium plant will revolutionize the energy landscape in the U.S. and worldwide. The plant, designed by TerraPower, a company he founded in 2008, is expected to start operating by 2030.

General Motors and other leaders revealed to be investing in this revolutionary lithium start-up — allowing easy entry by launching at just $9.50/share with a $1,000 minimum.

The TerraPower project in Kemmerer is notable for its advanced technology and cost efficiency compared to recent projects. For example, Georgia’s Plant Vogtle, which recently expanded from two to four reactors, cost nearly $35 billion, including $11 billion in overruns. In contrast, the TerraPower project is expected to cost up to $4 billion, with half funded by the U.S. Department of Energy.

But Gates isn’t stopping at nuclear power. His energy investment firm, Breakthrough Energy Ventures, backed by other big names like Jeff Bezos, Michael Bloomberg, and Richard Branson, has just raised $839 million for a new climate fund called BEV III. This fund is part of Gates’ bigger plan to invest in technologies that can drastically cut greenhouse gas emissions. The fund will focus on five main areas: electricity, transportation, manufacturing, buildings, and food and agriculture.

Gates, who was the richest person in the world from 1995 to 2017, has been focusing on philanthropy, particularly vaccines, clean water, and sustainability. Due to these and other initiatives, he’s often in the spotlight and occasionally at the center of controversy.

Unlock the hidden potential of commercial real estate — This platform allows individuals to invest in commercial real estate offering a 12% target yield with a bonus 1% return boost today!

This Jeff Bezos-backed startup will allow you to become a landlord in just 10 minutes, and you only need $100 .

"ACTIVE INVESTORS' SECRET WEAPON" Supercharge Your Stock Market Game with the #1 "news & everything else" trading tool: Benzinga Pro - Click here to start Your 14-Day Trial Now!

Get the latest stock analysis from Benzinga?

APPLE (AAPL): Free Stock Analysis Report

TESLA (TSLA): Free Stock Analysis Report

This article Bill Gates Is Bringing 'The Most Advanced Nuclear Facility In The World' To A Small City With Only 2,000 People originally appeared on Benzinga.com

© 2024 Benzinga.com. Benzinga does not provide investment advice. All rights reserved.

  • Up next View Comments Advertisement

Constructionreview

essay on nuclear power station

Ghana’s First Nuclear Power Plant to be Developed as Country Signs an Agreement with a U.S. Developer to Develop the Project

essay on nuclear power station

Ghana has signed an agreement with a U.S. developer to advance the country’s first nuclear power plant using NuScale Power’s (SMR.N) technology, according to the U.S. State Department.

The agreement between Nuclear Power Ghana and Regnum Technology Group was finalized at the U.S.-Africa nuclear energy summit in Nairobi and involves deploying a NuScale VOYGR-12 small modular reactor (SMR), according to Reuters.

What are Small Modular Reactors?

Small Modular Reactors (SMRs) are a type of nuclear reactor that is smaller in size and power output compared to traditional nuclear reactors.

They are designed to be built in factories and then shipped to the site where they will be operated, allowing for easier and faster construction.

However, concerns remain about whether SMRs will become commercially widespread.

essay on nuclear power station

Ghana believes nuclear power can help it achieve its industrial ambitions while fighting climate change.

According to Aleshia Duncan, deputy assistant secretary for international cooperation at the U.S. Department of Energy, “Ghana and many other African countries are pursuing nuclear energy to achieve their economic development, energy security, and decarbonization goals,”

“It’s imperative that the United States remain a strong and engaged partner, offering technical expertise and resources to ensure the successful deployment of nuclear energy across the continent.”

The U.S. is keen on promoting clean energy technologies, especially to developing nations, as part of its broader strategy.

President Joe Biden’s administration sees nuclear energy as a crucial tool in the battle against climate change, as it generates power with virtually no emissions. Nuclear power, despite its benefits, produces long-lasting nuclear waste.

NuScale is currently the only company licensed to build a U.S. Small Modular Reactor (SMR), but last year it cancelled its sole U.S. project due to escalating costs.

Other major players vying for the contract to build Ghana’s nuclear plant included France’s EDF and the China National Nuclear Corporation, according to an energy ministry official in May.

Developers interested in the Ghana’s First Nuclear Power Project

South Korea’s Kepco, alongside its subsidiary Korea Hydro Nuclear Power Corporation, as well as Russia’s ROSATOM , were also in the race for the decade-long project.

Africa’s nuclear energy ambitions face significant challenges as experts question whether the continent’s infrastructure can support such a leap. Industry leaders from the US and Africa’s nuclear energy sector are meeting in Nairobi this week to discuss how to move forward.

essay on nuclear power station

The four-day conference aims to address the obstacles hindering the adoption of nuclear energy on the continent.

While South Africa remains the only African nation with nuclear power plants, Kenya and Rwanda are eager to follow.

This summit is the second major convention on the issue, following a similar event in Accra, Ghana, in October-November 2023. That event was organised by the US Department of Energy in collaboration with the Nuclear Power Institute of the Ghana Atomic Energy Commission.

Feasibility in Question

Experts are questioning the feasibility of building nuclear power plants in Africa.

“There is a lot of talk about nuclear programmes in Africa, but these ideas are closer to fantasy than industrial reality,” said Mycle Schneider, project coordinator at the World Nuclear Industry Status Report (WNISR).

The first major obstacle, he told RFI, is the size of grids.

The Intrnational Atomic Energy Agency states that an average large nuclear reactor is around 1,000 megawatts (MW) or one gigawatt (GW). However, only four African countries have a grid larger than 10,000MW or 10GW – Algeria, Libya, Morocco and Nigeria. Most other African nations have much smaller grids.

“Kenya’s grid is about 3.3GW, so the largest unit should be around 300MW, which is much less than a large nuclear reactor,” Schneider said.

“In Rwanda, the total national grid is 300MW. So we’re in a situation where an ordinary nuclear power plant would absolutely not have the grid size needed in most African countries.”

Schneider argues that African countries need decentralised energy production systems, a mix of renewable energy and power systems that can be built quickly, unlike nuclear power plants.

Also read:  Africa’s First Nuclear Energy Training Hub Launched in Accra, Ghana

                  Construction of One of West Africa’s First Nuclear Power Plant Takes Shape as Russia-based Rosatom Comes on Board.

Kenya to Build East Africa’s First Nuclear Power Plant by 2034 Amid Local Opposition

Leave a Comment

pixel

IMAGES

  1. Should we build more nuclear power stations? Free Essay Example

    essay on nuclear power station

  2. ≫ Nuclear Power Reactor Technology Free Essay Sample on Samploon.com

    essay on nuclear power station

  3. Nuclear energy

    essay on nuclear power station

  4. The History and Development of an Underground Nuclear Power Plant Essay

    essay on nuclear power station

  5. Pro Nuclear Power Essay

    essay on nuclear power station

  6. Essay On Nuclear Power

    essay on nuclear power station

VIDEO

  1. Eskom celebrates 40 years of Koeberg Unit 1

  2. DUNGENESS NUCLEAR POWER STATION ( LEAKING ??? )

  3. The Nuclear Power Station That Could Cause Catastrophic Consequences

  4. Ielts essay: Nuclear technique

  5. 10 Lines Essay On Nuclear Family

  6. Russia Offered Its Floating Nuclear Power Station To India#shorts

COMMENTS

  1. Essay on Nuclear Energy in 500+ words for School Students

    Ans. Nuclear energy is the energy released during nuclear reactions. Its importance lies in generating electricity, medical applications, and powering spacecraft. 2. Write a short note on nuclear energy. Ans. Nuclear energy is exploited from the nucleus of atoms through processes like fission or fusion.

  2. What is Nuclear Energy? The Science of Nuclear Power

    The Science of Nuclear Power. Nuclear energy is a form of energy released from the nucleus, the core of atoms, made up of protons and neutrons. This source of energy can be produced in two ways: fission - when nuclei of atoms split into several parts - or fusion - when nuclei fuse together. The nuclear energy harnessed around the world ...

  3. The Advantages and Disadvantages of Nuclear Energy

    Since the first nuclear plant started operations in the 1950s, the world has been highly divided on nuclear as a source of energy. While it is a cleaner alternative to fossil fuels, this type of power is also associated with some of the world's most dangerous and deadliest weapons, not to mention nuclear disasters.The extremely high cost and lengthy process to build nuclear plants are ...

  4. Nuclear power plant

    A nuclear power plant ( NPP) [ 1] or atomic power station ( APS) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity. As of September 2023, the International Atomic Energy ...

  5. Nuclear Power Advantages and Disadvantages Essay

    Introduction. Nuclear power is the energy generated by use of Uranium. The energy is produced via complex chemical processes in the nuclear power stations. Major chemical reactions that involve the splitting of atom's nucleus take place in the reactors. This process is known as fission (Klug and Davies 31-32).

  6. Advantages and Challenges of Nuclear Energy

    Office of Nuclear Energy. Advantages and Challenges of Nuclear Energy. Plant Vogtle Units 1-4. Georgia Power. Nuclear energy protects air quality by producing massive amounts of carbon-free electricity. It powers communities in 28 U.S. states and contributes to many non-electric applications, ranging from the medical field to space exploration.

  7. Nuclear energy facts and information

    Nuclear energy's future as an electricity source may depend on scientists' ability to make it cheaper and safer. Nuclear power is generated by splitting atoms to release the energy held at the ...

  8. Nuclear Energy

    Nuclear energy is the energy in the nucleus, or core, of an atom. Atoms are tiny units that make up all matter in the universe, and energy is what holds the nucleus together. There is a huge amount of energy in an atom's dense nucleus.In fact, the power that holds the nucleus together is officially called the "strong force." Nuclear energy can be used to create electricity, but it must first ...

  9. Benefits and Disadvantages of Nuclear Energy

    The main advantage to nuclear energy is that is it relatively low-cost and consistently runs on its full potential, making it the ideal source to power national grids. [2,4] Disadvantages of Nuclear Power. The hindrance in the growth of nuclear energy is due to many complex reasons, and a major component is the nuclear waste.

  10. Nuclear Power in a Clean Energy System

    Nuclear power is the second-largest source of low-carbon electricity today, with 452 operating reactors providing 2700 TWh of electricity in 2018, or 10% of global electricity supply. In advanced economies, nuclear has long been the largest source of low-carbon electricity, providing 18% of supply in 2018. Yet nuclear is quickly losing ground.

  11. Why Nuclear Power Must Be Part of the Energy Solution

    In the early 1950s, when the U.S. Atomic Energy Commission believed high-grade uranium ores to be in short supply domestically, it considered extracting uranium for nuclear weapons from the abundant U.S. supply of fly ash from coal burning. In 2007, China began exploring such extraction, drawing on a pile of some 5.3 million metric tons of brown-coal fly ash at Xiaolongtang in Yunnan.

  12. A fresh look at nuclear energy

    For example, the assumed height of Tsunami waves against Fukushima nuclear power plant #1 was 10 meters while over 14 meters Tsunami waves hit the power plant on March 11, 2011. About nuclear energy, we still have two unsolved problems from the technology and engineering viewpoint: nuclear decommissioning and how to manage nuclear wastes.

  13. Nuclear power as foundation of a clean energy future: A review

    Some Safety mechanisms of a Nuclear Power Plant are control of radioactivity, maintenance of core cooling, safe transportation of spent fuel and management of radioactive waste. Dealing with nuclear waste is also a concern for safety issues. All of the used nuclear fuel generated in every nuclear plant in the past 50 years would fill a football ...

  14. Nuclear power and climate change

    Nuclear power is a low-carbon source of energy. In 2018, nuclear power produced about 10 percent of the world's electricity. Together with the expanding renewable energy sources and fuel switching from coal to gas, higher nuclear power production contributed to the levelling of global CO 2 emissions at 33 gigatonnes in 2019 1/.Clearly, nuclear power - as a dispatchable low carbon source of ...

  15. Pros and cons of nuclear power

    Nuclear power has quite a number of pros associated with its use. The first pro of nuclear energy is that it emits little pollution to the environment. A power plant that uses coal emits more radiation than nuclear powered plant. Another pro of nuclear energy is that it is reliable. Because of the fact that nuclear plants uses little fuel ...

  16. 77 Nuclear Power Essay Topics & Samples

    77 Nuclear Power Essay Topics & Examples. Updated: Feb 29th, 2024. 7 min. If you're looking for nuclear power essay topics, you may be willing to discuss renewable energy sources, sustainable development, and climate change as well. With the paper titles collected by our team, you'll be able to explore all these issues!

  17. Q&A: Public Opinion of Nuclear and Why it Matters to the Clean Energy

    Nuclear power has a major role to play in the clean energy transition, but for decades, its use has been a divisive topic among the public. With public opinion playing a major part in how governments choose to produce energy, addressing this long-standing debate will be a key part of a sustainable, clean energy transition.

  18. Chernobyl disaster

    Chernobyl disaster, accident at the Chernobyl nuclear power station in the Soviet Union in 1986, the worst disaster in nuclear power generation history. Between 2 and 50 people were killed in the initial explosions, and dozens more contracted serious radiation sickness, some of whom later died.

  19. Nuclear Power: Technical and Institutional Options for the Future

    It is the Committee's opinion, based upon our experience, that potential nuclear power plant sponsors must not face large unanticipated cost increases as a result of mid-course regulatory changes, such as backfits. NRC 's new licensing rule, 10 CFR Part 52, provides needed incentives for standardized designs.

  20. Nuclear power in the 21st century: Challenges and possibilities

    The use of nuclear energy for commercial electricity production began in the mid-1950s. In 2013, the world's 392 GW of installed nuclear capacity accounted for 11 % of electricity generation produced by around 440 nuclear power plants situated in 30 countries (Fig. 1 ). This share has declined gradually since 1996, when it reached almost 18 % ...

  21. Nuclear explained Nuclear power and the environment

    Nuclear energy produces radioactive waste. A major environmental concern related to nuclear power is the creation of radioactive wastes such as uranium mill tailings, spent (used) reactor fuel, and other radioactive wastes. These materials can remain radioactive and dangerous to human health for thousands of years.

  22. Nuclear Power

    Nuclear Power. Mirroring a nation-wide wave of commercial interest in nuclear power plants in the 1950s and 1960s, the Philadelphia Electric Company (PECO) and other energy companies in Greater Philadelphia jumped at the opportunity to develop relatively inexpensive electricity for the region. Nuclear power plants began servicing the region's ...

  23. Photo Essay: Inside a nuclear power plant

    A nuclear power plant probably isn't what comes to mind when you think of a school field trip. But in anticipation of Nuclear Science Week, hosted in Ann Arbor this year from Oct. 21-17, DTE and The University of Michigan's Nuclear Engineering and Radiological Sciences (NERS) department organized a trip to the Fermi 2 Power Plant for students on Oct. 3.

  24. Bill Gates Is Bringing 'The Most Advanced Nuclear Facility In The World

    Bill Gates is making big changes in the small town of Kemmerer, Wyoming, with a population of just about 2,400. Gates' company TerraPower has started building what he calls "the most advanced ...

  25. Michigan Plotting to Re-Open Shuttered 1970s Nuclear Plant

    Calling Homer Simpson! Power Hour. After shutting it down in 2022, Michigan is making an abrupt u-turn and is now planning to reopen an old 1970s nuclear power, according to The Wall Street Journal.

  26. Whitehall unlocks up to £5.5bn for new nuclear power station subsidy

    Whitehall has unlocked up to £5.5 billion as part of a new nuclear power station subsidy scheme. The money is for "development expenditure" including enabling works at Sizewell C before a "final investment decision", when the project's backers decide whether or not to press ahead with it ...

  27. Government unlocks up to £5.5bn for nuclear power subsidy scheme

    Up to £5.5bn of government money has been unlocked as part of a new nuclear power station subsidy scheme. The money will be used for "development expenditure" including enabling works at Sizewell ...

  28. Nuclear fusion prototype will be 'UK's Nasa moment'

    Fusion is the process of combining atomic particles together, releasing huge amounts of energy, and is much cleaner than the nuclear fission currently used by some other power stations, the Local ...

  29. Kursk Nuclear Power Plant: The Newest Target for Russian Disinformation

    The recent Ukrainian incursion into Russia's Kursk oblast has raised concerns over the potential risks to the Kursk Nuclear Power Plant (KNPP), with Russia endeavouring to paint a picture of the KNPP as being in imminent danger from Ukrainian military attack. Yet, Moscow's accusations that Ukraine is planning to target the KNPP have had no ...

  30. Ghana's First Nuclear Power Plant to be Developed as Country Signs an

    Ghana has signed an agreement with a U.S. developer to advance the country's first nuclear power plant using NuScale Power's (SMR.N) technology, according to the U.S. State Department.. The agreement between Nuclear Power Ghana and Regnum Technology Group was finalized at the U.S.-Africa nuclear energy summit in Nairobi and involves deploying a NuScale VOYGR-12 small modular reactor (SMR ...